CS24 Week 7 Lecture 2

Kyle Dewey
Overview

• Binary search
• Binary search trees
Binary Search
Motivation

• Say we have an array holding a million elements in arbitrary order

• How might we determine if a given element is contained within?
Linear Search

- Looking through all elements is often called a *linear search* or a *linear scan*

- What is the time complexity of this?
Linear Search

• Looking through all elements is often called a *linear search* or a *linear scan*

• What is the time complexity of this?
 • $O(N)$
Optimization

• What if we have the same array contents, but now they are in sorted order

• How might we take advantage of this?
Binary Search

- Start looking at the middlemost element
- If our element we are looking for is less than the middle element, then repeat this process on the lefthand side of the data
- If greater, repeat on the righthand side
- If equal, we found it
- If we have no data to look at, the element is not contained within
Example I
Binary Search

Looking for: 3
Binary Search

Looking for: 3

3 < 7?

0 3 4 7 10 12 15
Binary Search

Looking for: 3

3 < 7? true; look left

0 3 4 7 10 12 15
Binary Search

Looking for: 3
Binary Search

Looking for: 3

3 == 3?

0 3 4 7 10 12 15
Binary Search

Looking for: 3

3 == 3? true; found it!
Example 2
Binary Search

Looking for: 10
Binary Search

Looking for: 10

10 < 7?

```
0  3  4  7  10  12  15
```
Binary Search

Looking for: 10

10 < 7? false; look right

0 3 4 7 10 12 15
Binary Search

Looking for: 10

| 0 | 3 | 4 | 7 | 10 | 12 | 15 |
Binary Search

Looking for: 10

10 < 12?

0 3 4 7 10 12 15
Binary Search

Looking for: 10

true; look left

10 < 12?
Binary Search

Looking for: 10
Binary Search

Looking for: 10

10 == 10?

0 3 4 7 10 12 15
Binary Search

Looking for: 10

true; found it! 10 == 10?

0 3 4 7 10 12 15
Example 3
Binary Search

Looking for: 5

| 0 | 3 | 4 | 7 | 10 | 12 | 15 |
Binary Search

Looking for: 5

5 < 7?

0 3 4 7 10 12 15
Binary Search

Looking for: 5

true; look left 5 < 7?

0 3 4 7 10 12 15
Binary Search

Looking for: 5

0 3 4 7 10 12 15
Binary Search

Looking for: 5

5 < 3?
Binary Search

Looking for: 5

5 < 3? false; look right
Binary Search

Looking for: 5
Binary Search

Looking for: 5

5 < 4?
Binary Search

Looking for: 5

5 < 4? false; look right

0 3 4 7 10 12 15
Binary Search

Looking for: 5
Binary Search

Looking for: 5

No possibilities remain - 5 is not within the array
Time Complexity

• Binary search has a special property: at each step, the total size of the input is cut in half

• Does this influence the time complexity?
Time Complexity

• Binary search has a special property: at each step, the total size of the input is cut in half

• Does this influence the time complexity?

• Yes. An input size of N which is cut in half repeatedly shrinks rapidly
Time Complexity

• Repeatedly doubling something gets an exponential time complexity

• Here we do the opposite

• We end up with a logarithmic time complexity - $O(\log(N))$
Arrays vs. Linked Lists

- We’ve been showing this for arrays, not for linked lists
- What sort of issues would a linked list representation have?
Arrays vs. Linked Lists

• We’ve been showing this for arrays, not for linked lists

• What sort of issues would a linked list representation have?
 • Cannot jump to a node in $O(1)$, instead is $O(N)$
Binary Search With Linked Lists

• Binary search is $O(\log(N))$ with arrays

• Accessing an arbitrary element of a linked list is $O(N)$

• What time complexity would binary search have on linked lists?
Binary Search With Linked Lists

- Binary search is $O(\log(N))$ with arrays.
- Accessing an arbitrary element of a linked list is $O(N)$.
- What time complexity would binary search have on linked lists?
 - $O(N \times \log(N))$ - worse than linear search!
Binary Search Trees
Motivation
Problem Setup

- Consider Facebook, with ~1 billion users
- Users added frequently
- Users search for each other by name
- Addition and search should take milliseconds at most
Representation

- Addition and search should take milliseconds at most
- What is wrong with an array?
- What is wrong with a linked list?
Optimizing Addition

• Users should be able to be added within milliseconds

• How can we make this happen?
Optimizing Addition

• Users should be able to be added within milliseconds

• How can we make this happen?

• Linked lists work well
Optimizing Search

• Users want to be able to search for other users by name within milliseconds

• How can we speed up search?
Optimizing Search

- Users want to be able to search for other users by name within milliseconds
- How can we speed up search?
 - Use binary search on an array
Conflicting Problems

- For rapid search, we want arrays
- For rapid addition, we want linked lists
- Need elements of both
Combining Both

• For rapid addition, linked data structures are best, like linked lists

• For rapid search, we need a way to split data in half efficiently, specifically in $O(1)$

• Let’s revisit the binary search example and see what we can get out of it
Combining Both

- The lack of links prevents easy addition
 - We need links somewhere
- We need a way to quickly split data in half
- Any ideas?
• Idea: add links at points which would split the data in half

| 0 | 3 | 4 | 7 | 10 | 12 | 15 |
• Idea: add links at points which would split the data in half

• Needs two links per node

| 0 | 3 | 4 | 7 | 10 | 12 | 15 |

Diagram:

```
     7
   /   \
  3     12
 /   \   /   \
0     4   10   15
```
Binary Search Tree

• This representation is known as a *binary search tree*

• Binary: each node has two child nodes

• Search: search is efficient

• Tree: forms a tree (each node has at most one parent)
Search Example
Search

Looking for: 10
Search

Looking for: 10

10 < 7?

Wednesday, August 6, 14
Search

Looking for: 10

10 < 7? false; look right
Search
Looking for: 10

10 < 12?
Search
Looking for: 10

true; look left
Search

Looking for: 10

10 == 10?
Search

Looking for: 10

10 == 10?

true; item found!

Wednesday, August 6, 14
On Search

- At each point, we still cut the input in half
- Now, in order to get to the next half, we simply traverse a link - $O(1)$
- Search is overall $O(\log(N))$ as shown
Insertion

- Nodes need to be inserted in sorted order
- While duplicates are possible with some forms of trees, we consider a tree where duplicates are impossible
 - Trying to insert a duplicate changes nothing in the tree
Insertion Example
Insertion

Inserting: 5

0
3
4
10
12
15

7
Insertion

5 < 7?

Inserting: 5
Insertion

5 < 7?

true; look left

Inserting: 5
Insertion

Inserting: 5

5 < 3?
false; look right

5 < 3?

Insertion

Inserting: 5
Insertion

Inserting: 5

Insertion:

5 < 4?
Insertion

Inserting: 5

false; look right
Insertion

Inserting: 5

No node on right - insert here
Insertion

Inserting: 5
Remaining Issues

• It turns out that we may not always split data in half with this

• After a long chain of insertions, the tree may become *unbalanced*, meaning we rarely split in half

• Inserting data that’s already sorted into an empty tree sees this problem
Already Sorted Data

Data Remaining: 1, 2, 3, 4, 5
Already Sorted Data

Data Remaining: 2, 3, 4, 5
Already Sorted Data

Data Remaining: 3, 4, 5
Already Sorted Data

Data Remaining: 4, 5
Already Sorted Data

Data Remaining: 5
Already Sorted Data

Data Remaining: None
Big Problem

• Worst case, search and insertion are still $O(N)$, because we do not guarantee the tree will split things up evenly

• There are ways to fix this to guarantee $O(\log(N))$ time complexity, but they are beyond this class