Overview

- Depth-first traversals
- Removing elements from a BST
- Priority queues
- Heaps
Depth-First Traversals
On Using Stacks

• We can cut out the explicit stack by using the call stack implicitly via recursion

```c
void traverse(Node* current) {
    if (current != NULL) {
        traverse(current->getLeft());
        traverse(current->getRight());
    }
}
```
Specific Kinds of DFS Traversals

- Depending on when we process the current node, there are three general kinds of DFS traversals:
 - Pre-order: process current first
 - In-order: process current between left and right
 - Post-order: process current after left and right
void traverse(Node* current) {
 if (current != NULL) {
 process(current);
 traverse(current->getLeft());
 traverse(current->getRight());
 }
}

Pre-Order Traversal
In-Order Traversal

```c
void traverse(Node* current) {
    if (current != NULL) {
        traverse(current->getLeft());
        process(current);
        traverse(current->getRight());
    }
}
```
void traverse(Node* current) {
 if (current != NULL) {
 traverse(current->getLeft());
 traverse(current->getRight());
 process(current);
 }
}
Using Traversals

• Say we want to print out the contents of a binary search tree in sorted order

• What kind of traversal should we use?
Using Traversals

• Say we want to print out the contents of a binary search tree in sorted order

• What kind of traversal should we use? - in-order
Using Traversals

• Say we want to delete a binary search tree
• Which traversal is best?
Using Traversals

- Say we want to delete a binary search tree
- Which traversal is best? - post-order

```
    7
   / \
  3   12
 / \   /
0  4 10 15
```
Removing BST Elements
Removing Elements

- Say we want to remove 4. Any problems?
Removing Elements

• Say we want to remove 4. Any problems? - no
Removing Elements

- Say we want to remove 7 - any problems?
Removing Elements

• Say we want to remove 7 - any problems?
• Both 3 and 12 cannot be a root
Removing Elements

- Removing 7
- Let’s try making 12 a root...
Removing Elements

• Removing 7
• Let’s try making 12 a root...
Removing Elements

• Removing 7

• Let’s try making 12 a root...
Removing Elements

- Removing 7
- Let’s try making 12 a root...

Other than the missing 10, this move will always work. Why?
Removing Elements

- Removing 7
- Let’s try making 12 a root...

Other than the missing 10, this move will always work. Why?

All elements in the left subtree are guaranteed to be less than 12.
Removing Elements

- Now we need to put 10 back
- 10 could be an arbitrarily deep subtree
- Always goes into the same position - where?
Removing Elements

Why?
Removing Elements

Guaranteed that 10 is greater than anything on the subtree beginning with 3.

Goes to the rightmost position here always. Why?
Deletion Issues

• Algorithm described prior is somewhat tricky to implement, and easily leads to unbalanced trees

• A better strategy follows
Alternative

- Deleting 7
Alternative

- Get the greatest node less than 7 (always on far left subtree)
Alternative

- Copy its value to the node being deleted
Alternative

- Recursively delete the copied element from the left subtree

```
delete 4
```

```
0 4 10 15
3 4 12
```
Alternative

- We are guaranteed to eventually reach a leaf node (a base case)

```
    delete 4

    4
     / \    
    3   12
   /  \  /  
  0   4 10 15
```
Alternative

- We are guaranteed to eventually reach a leaf node (a base case)

```
def delete_4:
    # Code to delete node 4
```
Priority Queues
Motivation

• Consider a hospital emergency room

• Three patients arrive with specific problems in the following order:
 • Minor cough
 • Light skin irritation
 • Anaphylactic shock

• How can we prioritize them?
Prioritization

• Stack makes no sense in general (whoever gets there last always gets treatment first)

• Queue makes some sense (get treatment in order of arrival)

• Not good for life-threatening situations

• Need a new data structure to handle this
Priority Queue

• Like a queue, but elements are associated with a given priority

• We always want to dequeue the highest priority element

• How might we implement this?
Implementation #1

- Use a simple linked list
- On dequeue, remove the element from the list with the highest priority
- Enqueue time complexity?
- Dequeue time complexity?
Implementation #1

- Use a simple linked list
- On dequeue, remove the element from the list with the highest priority
- Enqueue time complexity? - $O(1)$
- Dequeue time complexity? - $O(N)$
Implementation #2

• Using a linked list, keep elements in descending sorted order

• Always dequeue from the front
 • Enqueue time complexity?
 • Dequeue time complexity?
Implementation #2

- Using a linked list, keep elements in descending sorted order
- Always dequeue from the front
 - Enqueue time complexity? - $O(N)$
 - Dequeue time complexity? - $O(1)$
Problems

• Somewhere we have an \(O(N) \) operation buried

• Any ideas for speeding this up?
Heaps
Heap

- **Not** a binary search tree; just a binary tree
- Always have the maximal (or minimal) element at the root
- Support removing the root element in $O(\log(N))$, and adding elements in $O(\log(N))$
Heap Property

• A binary tree has the heap property if:
 • It is empty
 • Its value is greater than or equal to both of its children, and the children have the heap property
Example
Advantage

- Heaps always have the highest priority element on top, so we always have easy access to it.
Additional Invariant

• In practice, heaps are always complete
 • What does this mean?
Additional Invariant

• In practice, heaps are always complete

• What does this mean? - full except for the last row

```
10
  5
  4   3
      8
```
Enqueue

• If the tree is complete, we can enqueue by putting the element on the end

• Not done yet - could violate heap property
Enqueue

- To restore the heap property, we can *bubble up* - ensure the heap property holds stepwise with parents, and swap if not
Enqueue

- To restore the heap property, we can *bubble up* - ensure the heap property holds stepwise with parents, and swap if not

```
9 < 8?
```
To restore the heap property, we can *bubble up* - ensure the heap property holds stepwise with parents, and swap if not
Enqueue

- To restore the heap property, we can *bubble up* - ensure the heap property holds stepwise with parents, and swap if not
Enqueue

- To restore the heap property, we can *bubble up* - ensure the heap property holds stepwise with parents, and swap if not

```
9 < 10?
```

```
4 5 3 8
```

```
10
```

```
9
```
Enqueue

• To restore the heap property, we can *bubble up* - ensure the heap property holds stepwise with parents, and swap if not

```
9 < 10? - true; done
```
Dequeue

- After getting the element from the top of the tree, we must restore the heap
• After getting the element from the top of the tree, we must restore the heap
Dequeue

- After getting the element from the top of the tree, we must restore the heap
Dequeue

• After getting the element from the top of the tree, we must restore the heap

• Idea: swap in the last node from the last level
Dequeue

- After getting the element from the top of the tree, we must restore the heap
- Idea: swap in the last node from the last level
Dequeue

- In order to restore the heap property, we must *bubble down* - swap with the greatest of the children recursively
Dequeue

- In order to restore the heap property, we must *bubble down* - swap with the greatest of the children recursively

```
3 > 8?
```

```
4 5 3
  
8
```
Dequeue

• In order to restore the heap property, we must *bubble down* - swap with the greatest of the children recursively.

3 > 8? - false; need to bubble down
Dequeue

- In order to restore the heap property, we must *bubble down* - swap with the greatest of the children recursively
• In order to restore the heap property, we must *bubble down* - swap with the greatest of the children recursively.

5 > 8? false; swap and bubble down on right
Dequeue

• In order to restore the heap property, we must *bubble down* - swap with the greatest of the children recursively.
Dequeue

- In order to restore the heap property, we must *bubble down* - swap with the greatest of the children recursively

```
base case - no children; done bubbling down
```
Time Complexity

• Because we force the construction to be complete, we get balanced trees

• Dequeue and enqueue are both $O(\log(N))$ as a result
Optimization

- Heaps can be concisely represented with arrays

As Array

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>5</th>
<th>8</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
</table>

As Tree

0 → 10

1 → 5

2 → 8

3 → 4
Advantages of Arrays

• What sort of advantages does an array representation have?
Advantages of Arrays

- What sort of advantages does an array representation have?
- Overall simpler
- Less space consumed for the same data
- Getting the last node at the last level is just getting the last valid element in the array
- (Advanced) CPUs are much happier with arrays than trees (i.e., better performance)
Disadvantages of Arrays

• What sort of issues does the array representation have?
Disadvantages of Arrays

• What sort of issues does the array representation have?
• Adding elements is more difficult; may entail reallocating the whole array
• In practice, this is very minor compared to all the other advantages