
Predicting Program Power Consumption

Chandra Krintz Ye Wen Rich Wolski

University of California, Santa Barbara
Department of Computer Science

{ckrintz,wenye,rich}@cs.ucsb.edu

Abstract

In this paper, we investigate the degree to which power dis-
sipation induced by program execution can be measured by
application-level software tools and predicted by a compiler
and runtime system. Application control of the power it uses
while executing on a processor is critical to battery-powered
mobile devices that are an integral to any realization of ubiq-
uitous computing. Our work investigates the use of dissipa-
tion rates to make whole-program power-consumption esti-
mates.

1. INTRODUCTION
The Internet is a vast distributed system that connects a
great diversity of electronic devices which over the last decade
has come to include everything from desktops to supercom-
puters, from laptops to handhelds, and from web tablets to
web phones. Each type of device differs in compute power,
memory size, electricity consumption (and how power is ac-
quired), connectivity, availability, among many other char-
acteristics. A vision of ubiquitous computing is taking shape
that will enable “anytime anywhere” access to the Internet’s
vast offerings and create wholly new applications based on
a user’s physical location.

While handheld, battery-powered devices are emerging as
new access points to the world’s digital infrastructure, their
cost and short battery life are factors that are holding back
their enormous potential. While economic factors will re-
duce the former, mechanisms are needed to enable execut-
ing programs to adapt to dwindling battery life. Many such
techniques have been proposed [18, 13, 20, 14, 12, 24] that
facilitate energy conservation through different modes of op-
eration at both the device and device component level, i.e.,
active, idle, standby, and sleep modes [16, 13, 14, 12, 24].
Other techniques select instructions based on their energy
consumption [15, 22, 23, 20].

A key feature of these low-level techniques is that they model

the power dissipation associated with a particular subsys-
tem within a computational device. Much work [22, 23, 15,
20, 19, 17] has focused on the power consumed by a CPU
when executing a particular instruction. We observe, how-
ever, that the power dissipation caused by a program when
running on a handheld device will involve many internal
subsystems (e.g. CPU, memory, I/O, display, etc.). Fur-
ther, even if efficient models for all subsystems are available,
their independence is not obvious making a comprehensive
compositional model potentially complex.

The method we describe in this paper relies on application-
level observations of power dissipation for a representative
set of benchmarks when running on the entire device (and
not any subsystem in isolation). We show how these bench-
mark dissipation rates can be combined to form a power
consumption estimate for an arbitrary program. By observ-
ing the power consumed by the whole device as a “black-
box” our technique does not require a composition of subsys-
tem models. At the same time, we use only measurements
that are available via standard operating system interfaces
making the methodology practical for implementation in a
compilation system using currently available hardware (i.e.
without new hardware features for measuring power dissi-
pation). For this study, we use the iPAQ handheld device
which uses a StrongARM SA-1110 processor [4, 21, 10, 11]
— a popular Personal Data Assistant (PDA) that is com-
monly available.

To combine individual benchmark values into an estimate
for a non-benchmark program, our work makes two impor-
tant contributions. First, it identifies the set of relevant set
of instruction categories that are necessary to make accu-
rate power dissipation estimates for the iPAQ. Secondly, it
demonstrates the way in which benchmark readings for these
categories can be composed into a dissipation estimate for a
target program. We detail the accuracy of these estimates
by comparing them to observed dissipation values for a set
of target application programs. Our results show that with
relatively few instruction categories, accurate estimates can
be derived.

Moreover, as mentioned previously, we use dissipation mea-
surements that are obtained via the operating system inter-
face to the battery subsystem and our comparative results
are empirical. As such, our results attempt to describe, as
directly as possible, the efficacy that would be observed by a
compilation system deployed on currently available devices.



2. EXPERIMENTAL METHODOLOGY
To determine the observable power consumption character-
istics of applications, we chose the Compaq iPAQ H3600 per-
sonal digital assistant (PDA) as a test platform. The iPAQ’s
processor is a StrongARM SA-1110 [21, 10, 11] — a com-
mercially available, example of a popular, power-sensitive
processor technology for mobile computing. Indeed, we note
that many of the students at UCSB use iPAQs as produc-
tivity “enhancing” tools.

The processor on our iPAQ [4] is a 206MHz StrongARM
SA-1110 [21, 10, 11, 5] that uses two on-chip data caches
(DCache) and one on-chip 16KB instruction cache (ICache).
The first, primary DCache is a standard level 1 (L1) data
cache that holds 8KB of data in 256 lines (32 bytes each). It
is 32-way set-associative. The second cache is also on-chip
and is referred to as the minicache. It is a 512 byte write-
back cache with 16 lines (each 32 bytes in length) with 32-
way set-associative organization. The minicache is used to
reduce thrashing caused by large data structures (objects)
in the main cache. The processor has 27 registers; however,
only 16 are available to the compiler for user code at any
one time.

The device can use AC or DC power; the battery that sup-
plies the latter is a Danionics Lithium-Ion Polymer Battery
(#DLP 305590) [1]. The voltage range for the battery is
specified as 3.0 to 4.2 Volts.

We installed Familiar Linux [7] 0.5.1 with kernel version
2.4.16-rmk1. Familiar implements battery management us-
ing the Hardware Abstraction Layer (HAL) which exports
battery data via the /proc file system. The data values
exported by HAL can be directly converted to millivolts:
Given the voltage range of our battery and observed HAL
maximum and minimum values of 953 and 705, respectively,
we multiple the HAL raw data value by 4.2 to compute mil-
livolts. A similar computation is performed by the Familiar
kernel for power management and visualization facilities [3].
We use millivolts throughout this text (since it is the metric
exported) to describe battery level.

2.1 Application-Level Observations and Power
Prediction

Our objective with this work is to determine the degree
to which program power consumption could be predicted
using application-level measurements of battery drain that
could be made available to a compilation system. Previous
work [22, 23, 15, 20, 19, 17] has studied the power dissipa-
tion characteristics at the processor instruction level. The
iPAQ is a complete system consisting of a display, mem-
ory, I/O subsystem, etc. Rather than attempting to com-
pose a complete dissipation model from component dissi-
pation models for each subsystem, we chose a “black-box”
approach in which we attempt to observe the dissipation
characteristics for the entire iPAQ system while it is execut-
ing a particular type of instruction. Our goal is to combine
these system-comprehensive observations into an estimate of
power dissipation for arbitrary programs. Similarly, because
our ultimate aim is to design power-sensitive compiler opti-
mizations, we wish to examine the efficacy of using measure-
ments that a compiler and/or run time system could access

without special-purpose hardware.

2.2 Benchmarks
Our methodology uses a set of observed drain-rate curves
from a suite of benchmarks to determine the power dissi-
pation rate associated with a particular kind of instruction.
Then, using the observed dissipation measurements for in-
dividual instruction categories, we compose an estimate of
overall program dissipation rate for an arbitrary program.
For example, if the compilation system determined that a
program consists of 70% integer operations and 30% integer
loads and stores, our system would compose the dissipation
rates from an integer operation benchmark and and integer
memory benchmark to make an estimate for the program.
However the fraction of each, as we describe more completely
in Section 3.2, is not 70–30, but rather is proportional to the
time the program spends executing instructions from each
category.

Each benchmark

• contains only a single kind of instruction (with the
exception of jumps for looping), and

• has been crafted to fit within the ICache of the iPAQ.

For example, to test the power dissipation of integer add in-
structions, we crafted an assembly language program (that
produces no useful output) consisting of only integer add
instructions. The length of the program (i.e. the number
of integer adds) is long enough to fill the ICache, but not
spill out of it since we wished to “wash out” any of the
overhead introduced by a jump instruction. That is, the
simple add-jump-back loop would consist of 50% adds and
50% jumps. We wished to minimize the effect of the looping
jump. In addition, we used constant address offset to min-
imize register activity in the memory-testing benchmarks,
and similarly chose a stride-8 access pattern to ensure each
access touched a new cache line.

Initially, we identified four categories of relevant instruc-
tion types: integer register operations, integer loads and
stores, floating point register operations, and floating point
loads and stores. The remainder of this text, refers to these
benchmarks as IReg, IMem, FPReg, and FPMem re-
spectively. In addition, we wished to examine the effect of
cache-only data access versus full memory subsystem ac-
cess. To do so, we varied the address range of the IMem
and FPMem benchmarks between 8000 bytes (cache par-
tially filled), 16000 bytes (cache full) and 32000 bytes (com-
plete cache flush). The in-cache versions of the IMem and
FPMem benchmarks are denoted IMem Cache and FP-
Mem Cache respectively, and the sizes are given in con-
text. We verified that all benchmarks in fact exercised
only the CPU and memory subsystems we intended using
a StrongARM version of the SimpleScalar simulator [2].

Finally, we developed memory benchmarks that implemented
only loads or only stores to determine whether the differ-
ence between battery consumption for loads and stores is
significant. Documentation and developer reports for the
iPAQ vary with respect to the functioning of the cache



system, particularly for cache-write-back. The IMem, FP-
Mem, IMem Cache, and FPMem Cache use only load in-
structions. We developed versions of the integer bench-
marks (IMemW and IMemW Cache) that implement
only store instructions. We did not implement FPMemW
or FPMemW Cache because on the iPAQ we chose, all
floating point operations (including loads and stores) were
implemented in an operating system trap. As such, we as-
sume that they have equivalent power consumption charac-
teristics. The entire set of benchmarks we have defined for
this work are freely available.

To build executables from the benchmarks for the iPAQ, and
to compile the test programs that we use to verify our results,
we used the gcc StrongARM cross-compiler (arm-linux-gcc)
on a Debian Linux version 2.4.17 X86-based machine. The
cross-compiler (as well as other tools, e.g., objdump, as,ld,
etc.) was obtained from [9].

2.3 Benchmark Power Consumption
To measure benchmark power consumption, we modified our
benchmarks so that each looped infinitely. We then fully
charged the iPAQ battery (to approximately 4000 mV) and
executed each benchmark until the battery died (at approxi-
mately 3000 mV). We periodically polled (every 20 seconds)
the Linux HAL resource interface via a serial connection,
converted the HAL raw data value to millivolts, and logged
the result on the remote computer. We performed this
experiment repeatedly for each of the benchmarks: IReg,
FPReg, IMem, FPMem, IMem Cache, and FPMem Cache.
We varied the array sizes for both the in-cache and out-of-
cache benchmarks but report on only 8000B (IMem Cache)
and 32000B (IMem (out of cache)) here for brevity. How-
ever, curves for other array sizes were nearly identical to the
in-cache and out-of-cache representatives that we present
here.

A set of results that is representative of those collected is
shown in Figure 1. The x-axis is the time in seconds since
power was disconnected. The y-axis is the percentage of
battery available as reported by HAL (converted to milli-
volts). We include arrows to help distinguish the different
benchmark dissipation curves.

The graph contains many interesting details. First, as ex-
pected, the rate at which the battery is consumed is consid-
erably slower when registers (IReg) are used than when the
memory system is accessed. Shutdown occurs 3553 seconds
earlier for IMem than for IReg. Secondly, floating point
register operations consume battery power at a rate very
similar to that of floating point loads and stores.

We do not include FPMem Cache in this graph for clar-
ity. However the curves exhibit similar behavior to FPMem.
Likewise FPMem and FPReg are very similar. This is due
to the use of a coprocessor: Each floating point instruction
traps to the operating system kernel which uses library rou-
tines to emulate floating point operations. As such, in the
remainder of this study, we consider all floating point op-
erations equal: We predict the consumption rate of these
operations using only the FPReg benchmark.

Next, load instructions that miss the cache (IMem) drain

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000
Time Since Power Disconnect (sec.)

B
at

te
ry

L
ev

el
(m

ill
iv

o
lt

s)

IReg

IMem-Cache

FPReg

IMem

IMemW

IMemW-Cache

FPMem

Figure 1: Comparison of battery drain rates for our
benchmarks: IReg, FPReg, IMem, and FPMem.
The memory benchmarks implement different types
of memory accesses: cache-only (8000B) and mem-
ory only (32000B).

the battery 993 seconds earlier than those that hit the cache
(IMem Cache). However, this relationship does not hold for
in-cache and out-of cache store instructions. This seems
to indicate that our benchmark causes the iPAQ to exhibit
”write-through” behavior. This is due to a combination of
the ”no write-allocate” cache implementation of the iPAQ’s
StrongARM processor [11] and our IMemW benchmark im-
plementation: Since we only use store instructions, a load is
never executed and hence a cache line is never allocated.

As with floating point operations, we assume that all stores
are equal and as such predict their consumption using the
IMemW benchmark. We detail the implications (in terms
of prediction error) of these assumptions in Section 3.2. In
summary, the benchmarks consumption rates that we com-
pose to make predictions in this study are IReg, IMem,
IMem Cache, IMemW, and FPReg.

3. COMPOSING BENCHMARK
POWER CONSUMPTION RATES

Given the HAL millivolt curves for the selected benchmarks,
we set out to predict this curve for arbitrary programs using
only our benchmark data and various program execution
statistics. The latter includes program execution time (for
a single run), and the percentage of time spent executing
instructions in each of aforementioned categories (integer
register operations, floating point operations, integer loads,
and integer stores).

Notice that the HAL millivolt curves in Figure 1 are not
linear, i.e., consumption rates for the same execution that
occurs at different points in battery life. As such, a dynamic
compilation or runtime system will require a predicted rate
curve from which it can extract a prediction of program
consumption given the current battery level.



BasicMath MiBenchmark: Automotive/Industrial
Mathematical calculations commonly
unsupported in embedded processors

BitCount MiBenchmark: Automotive/Industrial
Bit manipulations

Dijkstra MiBenchmark: Network
Dijkstra’s shortest path algorithm
performed on an adjacency matrix

FFT MiBenchmark: Telecommunications
Fast Fourier Transform

LUD Numerical recipe [6]
L/U decomposition of a matrix

MMult Integer matrix multiply using a
2D array of X integers

QSort MiBenchmark: Automotive/Industrial
Quicksort on an array in memory

Table 1: Description of the benchmarks used in this
study.

Alternately, we could simply profile HAL consumption rate
curves for the program we are interested in. However in some
cases, such a utility may not be available to us. In addition,
program execution characteristics can be obtained by al-
ternate means, e.g., simulation, estimation, etc. Many such
systems do not have accurate battery consumption measure-
ment available to them. As such, we investigate alternate
means of battery consumption prediction that is based on
composition of dissipation rate curves from benchmarks. We
believe that this work also opens doors to new research on
mechanisms that estimate program execution time and the
accuracy with which such estimates impact power predic-
tion. We plan to investigate such questions as part of future
work.

For our prediction to be accurate, the consumption rate
for register instructions and memory instructions must com-
pose. That is, the battery consumption rates for benchmarks
implementing individual instruction categories must sum to
the battery consumption rate of the overall application. To
our knowledge, this is the first such work that evaluates em-
pirically the degree to which energy consumption composes
to form the overall dissipation given only application-level
information for arbitrary programs.

3.1 Empirical Evaluation
To verify (or disprove) this thesis (that battery consump-
tion of individual instructions composes for arbitrary combi-
nations of register and memory instructions), we predicted
and observed the consumption rates of seven C programs
from the MiBench embedded program suite [8] and from
hand-coded implementations of other well known algorithms
from [6]. A description and various statistics on the pro-
grams we report results for is shown in Table 3 and Ta-
ble 3.1, respectively. In addition, we executed each program
using the StrongARM version of the SimpleScalar simulator
to determine L1 DCache miss rate for the programs. On
average the miss rate is 1.4%.

Table 3.1 contains 7 columns of data. The first column is
the execution time of the program in seconds. The second
column is the dynamic instruction count (IC) in millions
of instructions. The third through sixth column shows the
percentage of these dynamic counts that constitute each of
the four instruction categories: integer register operations
(IReg), integer load (IMem), integer stores (IMemW), and
floating point operations (FPReg). As mentioned above,
we include floating point loads and stores in the latter. Pro-
grams with 0 in the FPReg column perform no floating point
operations and as such, are integer programs (BitCount, Di-
jkstra, and MMult); all others are floating point programs.

The last column in the table shows the observed millivolt
battery drain for a single run of each program when invoked
with a battery level of 3864mV (almost fully charged). The
starting point (battery level) is arbitrary and we include the
values to give the reader an example of program battery
consumption for a single execution.

3.2 Consumption Rate Prediction Results
To predict the power consumption rate for an arbitrary pro-
gram we composed the consumption rates obtained from
our benchmarks profiles. Note that we are not computing
the consumption of individual instructions from the bench-
mark measurements. Since the dissipation curve changes
over time, so does instruction-level consumption. As such,
our goal is to construct a complete rate curve for the tar-
get application. Our compilation system can then, given
the current battery level, obtain an estimate of the power
consumption for the program.

We compute the rate of drain for an arbitrary program di-
rectly from the rate of drain of the benchmarks that im-
plement the constituent instruction types of the programs.
However, the computation is complicated since a program
that executes 70% register instructions does not spend 70%
of the execution time performing register operations. As
such, we must first compute the amount of time required to
perform these register operations using the IReg benchmark
characteristics. Likewise we compute the time required to
execute the remaining instructions using the IMem bench-
mark characteristics. We then use these times to find the
corresponding dissipation in each curve (IReg and IMem).

This methodology assumes that we have battery consump-
tion samples at a sufficiently fine granularity. However, since
the measurement itself consumes energy, we cannot sample
too often. For this study, our sample rate is every 20 sec-
onds. Given this frequency, we are unable to make predic-
tions at a granularity finer than 20 seconds. As such, we
construct our predicted rate curve in a piecewise fashion,
using the average millivolt change over each 20 second in-
terval.

Notice also that we are only able to compute the predicted
rate curve until the underlying benchmark rate curves ter-
minate. That is, when the IMem benchmark ends (which
is earlier in time that our IReg benchmark curve), our pre-
dicted rate curve ends also. As such, our predicted rate
curves commonly terminate earlier than do the observed
curves.



ET DynIC IReg IMem IMemW FPReg mV drain
Prog. (secs) (*1Mil) (pct) (pct) (pct) (pct) start: 3864mV
BasicMath 153.96 214 57 11 12 20 7.35
BitCount 46.56 6576 50 32 17 0 2.12
Dijkstra 39.43 5061 45 49 6 0 1.88
FFT 121.73 341 51 9 13 27 6.09
LU 92.31 302 44 31 6 18 4.03
MMult 18.14 1789 70 27 3 0 1.04
QSort 45.29 161 73 8 15 4 2.32

Average 73.92 2063 56 24 10 10 3.55

Table 2: Execution statistics for the programs described in Table 3. Column 1 is the execution time of
the program in seconds. Column 2 is the dynamic instruction count (IC) in millions of instructions. The
third through sixth column shows the percentage of these dynamic counts that constitute each of the four
instruction categories: integer register operations (IReg), integer load (IMem), integer stores (IMemW), and
floating point operations (FPReg). The last column shows the millivolt battery drain for a single run of each
program when invoked with a battery level of 3864mV (almost fully charged).

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000
Time Since Power Disconnect (sec.)

B
at

te
ry

L
ev

el
(m

ill
iv

o
lt

s)

Observed (BitCount)
Predicted (IReg+IMem)
Predicted (IReg+IMem_Cache)

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000
Time Since Power Disconnect (sec.)

B
at

te
ry

L
ev

el
(m

ill
iv

o
lt

s)

Observed (Dijkstra)
Predicted (IReg+IMem)
Predicted (IReg+IMem_Cache)

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000
Time Since Power Disconnect (sec.)

B
at

te
ry

L
ev

el
(m

ill
iv

o
lt

s)

Observed (MMult)
Predicted (IReg+IMem)
Predicted (IReg+IMem_Cache)

Figure 2: Predicted and observed battery consumption curves for the integer programs studied.



We first consider the integer programs (BitCount, MMult,
Dijkstra). These programs implement two types of instruc-
tions: register operations and memory operations. As such
we compose the dissipation rate curves of the IReg and the
IMem benchmark. With the use of the latter, we are assum-
ing that loads and stores in the program consume battery
power at a rate equivalent to our benchmark that performs
only loads that miss the cache. We also computed this pre-
dicted rate curve using IMem Cache instead of IMem. This
configuration assumes that loads and stores in the program
consume battery power at a rate equivalent to our bench-
mark that performs only loads that hit in cache.

We measured each program (modified to loop infinitely) as
we did for the benchmarks to obtain an observed consump-
tion curve to which we can compare our predicted curves.
The integer program results are shown in Figure 2. A graph
is shown for each program (identified by the Observed legend
entry). The x-axis in each graph is time (in seconds) since
the battery was disconnected. The y-axis is the battery life
in millivolts exported using the HAL interface.

Each graph contains two curves, one predicted using IReg
and IMem (IReg-IMem) and one predicted using IReg and
IMem Cache (IReg-IMem Cache). These curves provide a
lower and upper bound on prediction error. We report error
rates of the predicted curves at the end of this section. How-
ever, we can observe that the IReg-IMem predicted curves
are nearly indistinguishable from the observed curve for all
benchmarks. As such, these results indicate that for
integer programs, benchmark consumption rates of
constituent instruction types can be composed to
accurately predict program consumption rates.

We next investigate the efficacy of this approach for floating
point programs (BasicMath, FFT, LU, QSort). The result
graphs are shown in Figure 3. As in the previous figure, the
x-axis is time (in seconds) since the battery was disconnected
and the y-axis is the battery life in millivolts as reported by
HAL.

For these programs, we computed the predicted curves us-
ing three compositions of benchmarks: IReg and IMem only
(IReg-IMem), IReg and IMem Cache only (IReg-IMem Cache),
and IReg, IMem, and FPReg only (IReg-IMem-FPReg).
Each of the resulting prediction curves is shown in the graphs
for each program; the observed curves are also included.

IReg-IMem and IReg-IMem Cache again bound the observed
curves (providing lower and upper bounds, respectively, on
prediction error). When we include FPReg in the compo-
sition, the resulting predicted curve is remarkably similar
to the observed curves. This set of results indicates that
floating point operations should be considered in battery
consumption prediction. In addition, doing so results in an
accurate prediction of floating point program battery con-
sumption.

Table 3.2 shows the errors in millivolts for the various pre-
diction techniques for both integer and floating point pro-
grams. In addition to the various compositions shown in the
above graphs, we also provide error values that result when
we consider store instructions.

The first seven columns of data in the table hold the mean
absolute error of the predictions over predicted drain curves.
IReg-IMem, IReg-IMem Cache, and IReg-IMem-FPReg are
the same as presented in the graphs above. IReg-IMem-
IMemW prediction uses the IReg benchmark curve to com-
pute the drain that results from the percentage of integer
register operations, the IMemW curve for the percentage of
stores in the program, and IMem for all other instructions;
this assumes that all memory accesses miss in the cache.
Since the IMemW curve ends at 12000s, so does our predic-
tion (and error measurement). The final row of data shows
the average values. For the IReg-IMem-FPReg columns we
only average the values of the floating point programs (Ba-
sicMath, FFT, LU, QSort).

Each of these data sets includes two error values, one for the
entire curve (”Curve”) and one for the curve up to 12800 sec-
onds (”12800s”). HAL consumption curves drop off sharply
when battery power gets low. As such, this dramatic change
in slope (a small change in time is a very large change in
millivolts) causes a large error values in our prediction data
which is reflected in the average (”Curve” data). The 12800s
data indicates the mean absolute prediction error up to this
point.

These results indicate that for these programs, we achieve
the most accurate prediction when we compose the con-
sumption rate for the appropriate percentage of register in-
structions with the consumption rate of IMem for all other
instructions (IReg-IMem). On average, the absolute error
is 15 millivolts. Additional accuracy can be obtained for
floating point programs when the FPReg consumption rate
is used for the percentage of floating point operations in the
programs. The average absolute error across floating point
programs only is 14 millivolts.

Our predicted rate curves can be used to accurately pre-
dict program battery consumption in an embedded system
dynamic compiler and runtime system. For example, if the
current battery level is 3864mV, an estimate of program con-
sumption can be obtained using an appropriate predicted
rate curve. We performed this experiment using the IMem-
IReg curves for each program. The absolute prediction error
(not averaged) for each program (if execution is to begin at
3864mV) is shown in the final column of the table. The
observed millivolt drain for each program during this pe-
riod is included as the last column of Table 3.1. On av-
erage, for a single program execution at this battery level,
we achieve an average error of 0.64mV. Power consumption
prediction can be used to guide optimization and dynamic
code generation, migration, quality-of-service, and voltage
scaling among other techniques. We plan to investigate such
services as part of future work.

4. CONCLUSION
While handheld, battery-powered devices such as personal
digital assistants (PDA’s) and web-enabled mobile phones
are emerging as new access points to the world’s digital in-
frastructure, their cost and short battery life are factors that
are holding back their enormous potential. Worse yet, the
cost of such devices might even widen the “digital divide”
rather than extending the reach of the Internet not just to
anywhere and at any time but also to everyone.



3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000

Time Since Power Disconnect (sec.)

B
at

te
ry

L
ev

el
(m

ill
iv

o
lt

s)

Observed (BasicMath)
Predicted (IReg+IMem)
Predicted (IReg+IMem_Cache)
Predicted(IReg+IMem+FPReg)

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000

Time Since Power Disconnect (sec.)

B
at

te
ry

L
ev

el
(m

ill
iv

o
lt

s)

Observed (FFT)
Predicted (IReg+IMem)
Predicted (IReg+IMem_Cache)
Predicted(IReg+IMem+FPReg)

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000

Time Since Power Disconnect (sec.)

B
at

te
ry

L
ev

el
(m

ill
iv

o
lt

s)

Observed (LU)
Predicted (IReg+IMem)
Predicted (IReg+IMem_Cache)
Predicted(IReg+IMem+FPReg)

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000

Time Since Power Disconnect (sec.)

B
at

te
ry

L
ev

el
(m

ill
iv

o
lt

s)

Observed (QSort)
Predicted (IReg+IMem)
Predicted (IReg+IMem_Cache)
Predicted(IReg+IMem+FPReg)

Figure 3: Predicted and observed battery consumption curves for the floating point programs studied.

IReg-IMem
IReg-IMem IReg-IMem Cache IReg-IMem-IMemW IReg-IMem-FPReg mV drain (1 run)

Prog. Curve To 12800s Curve To 12800s To 12000s Curve To 12800s start: 3864mV
BasicMath 26.33 13.49 19.21 16.63 14.88 7.27 5.62 1.25
BitCount 10.75 10.60 54.88 40.61 2.31 0.00 0.00 0.60
Dijkstra 11.54 7.30 47.04 37.25 7.15 0.00 0.00 0.44
FFT 19.55 8.15 26.23 22.24 20.32 10.01 10.36 0.66
LU 11.88 2.78 37.45 31.60 29.21 19.40 19.11 1.20
MMult 17.00 7.05 28.52 23.06 6.75 0.00 0.00 0.11
QSort 9.58 3.01 36.70 27.94 24.90 17.61 15.03 0.24

Average 15.23 7.48 35.72 28.48 15.08 13.57 12.53 0.64

Table 3: Prediction error in millivolts for the various prediction techniques. The first seven columns of data
are the mean absolute errors for the entire drain curve for each program given predictions of different types.
Columns entitled ”Curve” is the average error for the entire battery drain curve. Those entitled ”12800s”
show the average error prior to the battery drop off that commonly occurs at 12800s. The final column is the
absolute error (not averaged) due to drain prediction of a single run of the programs. For each prediction,
various benchmark curves (IReg, IMem, IMem Cache, IMemW, and FPReg) were used according to the
percentage of instruction categories executed by each program.



Tools that dynamically control application power consump-
tion are essential. To enable development of such tools we
first must fundamentally understand application power con-
sumption. The techniques presented herein are an initial
step.

Our work investigates the degree to which power dissipation
can be sensed and predicted at the application-level. For
each of our techniques, we compare the power dissipation
effects of different processor activities on measurable power
drain. We show how these benchmark dissipation rates can
be combined to form a power consumption estimate for an
arbitrary program. By observing the power consumed by
the whole device as a “black-box” our technique does not
require a composition of subsystem models. At the same
time, we use only measurements that are available via stan-
dard operating system interfaces making the methodology
practical for implementation in a compilation system using
currently available hardware (i.e. without new hardware
features for measuring power dissipation).

5. REFERENCES
[1] Lithium-ion polymer batteries - dlp 305590.

http://www.danionics.com/products/index.asp.
[2] D. Burger and T. Austin. The simplescalar toolset, version

2. Technical Report 1342, University of Wisconsin-Madison
Computer Science Department, Jun 1997.

[3] Conversion code from hal raw data to percentage battery
remaining and voltage: h3600 micro battery ack.
linux/2.4.18-rmk3/arch/arm/mach-sa1100
/h3600_micro.c.

[4] C. C. Corporation. Compaq ipaq pocket pc h3700 series,
2002. http://www.compaq.com/products
/quickspecs/10973_na/10973_na.HTML.

[5] I. Corporation. Intel strongarm sa-1110 microprocessor
brief datasheet, 2002. ftp://download.intel.com/design
/strong/datashts/278241.htm.

[6] W. P. et.al. Numerical Recipes in C. Cambridge University
Press, 1992.

[7] Familiar linux on ipaq. http://familiar.handhelds.org/.
[8] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,

T. Mudge, and R. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In 4th IEEE
International Workshop on Workload Characteristics,
pages 3–14, Dec 2001.

[9] Handhelds.org. StrongARM toolchain
ftp://ftp.handhelds.org/pub/linux /arm/toolchain/.

[10] J. Hicks and J. Gettys. Compaq iPAQ H3600 Hardware
Design Specification - Version 0.2f. Compaq Computer
Corporation, 2000. http://www.handhelds.org/Compaq
/iPAQH3600/iPAQ_H3600.html.

[11] Intel. Instruction set; chapter 4.
[12] Intel corporation. Pentium III processors: Low Power

Consumption via SpeedStep.
[13] A. Iyer and D. Marculescu. Power aware microarchitecture

resource scaling. In Proc. IEEE Design, Automation and
Test in Europe Conf. (DATE), 2001.

[14] J.Heeb. The next generation of strongarm. In Embedded
Processor Forum, May 1999.

[15] A. Krishnaswamy and R. Gupta. Profile guided selection of
arm and thumb instructions. In ACM SIGPLAN
Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’02), Jun 2002.

[16] L.Benini, A. Bogliolo, and G. Micheli. Dynamic power
management of electronic systems. In International
Conference on Computer-Aided Design, pages 696–702,
1998.

[17] S. Lee, A. Ermedahl, and S. Min. An accurate
instruction-level energy consumption model for embedded
risc processors. In ACM SIGPLAN Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES’01), Jun 2001.

[18] R. Maro, Y. Bai, and R. I. Bahar. Dynamically
reconfiguring processor resources to reduce power
consumption in high-performance processors. In PACS,
pages 97–111, 2000.

[19] J. Russell and M. Jacome. Software power estimation and
optimization for high performance, 32-bit embedded
processors. In International Conference on Computer
Design (ICCD ’98), Oct 1998.

[20] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
J. Hu, C-H.Hsu, and U. Kremer. Energy-conscious
compilation based on voltage scaling. In ACM SIGPLAN
Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’02), Jun 2002.

[21] D. Seal, editor. The ARM Instruction Set; Chapter A3.
Addison-Wesley, 2000.

[22] V. Tiwari, S. Malik, and A. Wolf. Power analysis of
embedded software: A first step towards software power
minimization. In IEEE Transactions on VLSI Systems,
Dec 1994.

[23] V. Tiwari, S. Malik, and A. Wolf. Instruction level power
analysis and optimization of sofware. Journal of VLSI
Signal Processing, pages 1–18, 1996.

[24] Transmeta corporation. Crusoe Processor
http://www.transmeta.com/technology/index.html.


