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1. Introduction 

Magnetic disks have been the dominant on-line storage technology for more than three decades. Disks 
have maintained this dominance in spite of other competing storage technologies such as bubble memory, 
holographic stores, and improved DRAMs. Although magnetic disks have enjoyed this position in the 
persistent storage arena, more recently the memory hierarchy has suffered from problems of latency, 
bandwidth, and cost gap. In particular, due to the advances in processor technology and semiconductor 
manufacturing, the processor-to-disk performance gap has been consistently growing. Fortunately, the 
processor-to-memory performance gap in the memory hierarchy has been partially mitigated by the 
integration of very fast caches. In spite of these efforts, the RAM-to-DISK gap has remained unfilled. 
Currently this gap has widened to six-orders of magnitude and future trends indicate that unless a 
breakthrough occurs in the disk technology, this gap will continue to widen by about 50% annually. The 
RAM-to-Disk performance gap arises due to the physical characteristics of disk drives. Although the disk 
capacity growth has been phenomenal (about 60% per year), the mechanical positioning system in the 
disks limits the access times improvements to only about 7% per year. 
Micro-ElectroMechanical Systems (MEMS) [11,12] based storage systems are being developed as an 
alternative to conventional rotational disks for the non-volatile storage of large amounts of data.  MEMS 
are extremely small mechanical structures formed by the integration of mechanical elements, actuators, 
electronics and sensors. These are fabricated on silicon chips using photolithographic processes similar to 
those employed in manufacturing standard semiconductor devices. As a result, MEMS devices can be 
produced and manufactured at a very low cost. MEMS based systems can be used in a variety of 
applications due to their improved cost, size, capacity and power consumption. Specifically, MEMS 
based systems can be used in mobile application platforms such as PDA's, laptops and bio-medical 
monitoring systems. 
Unlike traditional disks, MEMS based storage devices [2] do not make use of rotating platters due to the 
difficulty in manufacturing efficient and reliable rotating parts in silicon. The emerging paradigm for such 
systems is that of a large scale MEMS array which, like disk drives, has read/write heads and a recording 
media surface. The read/write heads are probe tips mounted on micro-cantilevers embedded in a 
semiconductor wafer and arranged in a rectangular fashion. The recording media is another rectangular 
silicon wafer (called the media sled) that can use conventional techniques for recording data. In general 
power consumption of MEMS devices is considerably lower than the conventional disks which means 
that when these devices are integrated as part of a system, designers do not need to worry about costly 
idle time prediction algorithms to conserve power. Preliminary studies have also shown that stand-alone 
MEMS based storage devices reduce I/O stall times by 4 to 74 times over disks and improves the overall 
application run times by 1.9X to 4.4X [8]. When used as on-board caches for disks, MEMS based storage 
improves I/O response time by up to 3.5X. 
MEMS-based storage has quite different characteristics from disk. In particular, they are two dimensional 
while disks have been approached always as one dimensional storage devices by dividing them into 
cylinders, sectors and tracks. Even though existing techniques developed for disks, such as disk 
scheduling algorithms and data placement scheme, can be adapted to MEMS-based storage devices, some 
characteristics of MEMS-based storage devices have not been considered adequately. In this paper, we 
first show that optimal scheduling for MEMS-based storage is NP-complete and then propose off-line and 
on-line scheduling algorithms that exploit the two dimensional characteristics of these devices. We then 
show that these algorithms are guaranteed to perform within twice the optimal performance time. 
The remainder of the paper is organized as follows. Section 2 presents the MEMS-based storage model 
and a brief review of existing scheduling algorithms. In Section 3, we show that optimal MEMS-based 
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storage scheduling is NP-complete and exploit some properties of minimum spanning trees in the infinity 
distance space. In Section 4, off-line algorithm and on-line algorithm are developed. In Section 5, we 
analyze the proposed algorithms by developing an upper bound on their performance and providing some 
preliminary experiment results. Section 6 concludes the paper. 
 
2. Background 

In this section, the architecture of MEMS-based storage devices is first described. Our development is 
based on the CMU CHIP project [9] and the IBM Millipede project [7]. Then we review some existing 
scheduling algorithms for this new storage device. 

 
  

   
 
 
 
 
 
 
 
 
 
 

 
Figure 1: A design of MEMS-based                           Figure 2: The media sled is divided into  

                        storage devices             rectangular regions. 
 
2.1 Architecture for MEMS-based storage 

A MEMS-based storage device is composed of recording media heads and a recording media surface. The 
recording heads, usually called tips, are embedded in a semiconductor wafer arranged in a rectangular 
fashion. The recording media is another rectangular silicon wafer referred to as the media sled. There are 
different approaches for recording data. For example, IBM’s Millipede [7] uses pits in the polymers made 
by tip heating, CMU CHIPS [1] adopts the same techniques as data recording on disks. In this system, 
because it is very hard to rotate the unit on a microscopic scale, the media sled is suspended by springs 
above the wafer with probe tips. Data is accessed by moving the media sled in X or Y directions over the 
stationary probe tips. The movement in the Z direction is used to actuate the distance between the probe 
tips and the media sled. This design is shown in the Figure 1 (It is derived from the CMU design [8]). The 
X and Y actuators provide the force for moving the media sled in the X and Y directions while the spring 
supplies the restoring motion. These two actuators work independently.    
The media sled is divided into rectangular regions as shown in Figure 2. Each of these rectangular regions 
contains an array of M bits and is serviced by one probe tip. The relation between the regions and 
tips is a one-to-one mapping, i.e., the number of regions is the same as the number of probe tips. In 
theory, all the probe tips can be activated simultaneously. For the CMU CHIP device, the system has 
6400 tips, arranged in an array of 80 x 80 tips per rectangular region with each region having 2500 x 2500 
(M x N) bits. Due to power and heat constraints, only 1280 tips can be activated simultaneously.  

N×

Based on the above design considerations, some basic observations and assumption can be made: 
(1) Because the relation between the probe tips and regions is a one-to-one mapping, it can be 

assumed that the max distance the media sled can move in the X (Y) direction is the edge length 
of regions in the X (Y) direction. 

(2) The infinity distance L between two points, ( ) and ( ), is the larger value of ∞ 11 , yx 22 , yx

21 xx −  and 21 yy − . Because the movement in the X and Y directions are independent, the 

distance between two points in one region is . ∞L
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(3) The time T for the sled to move from one point to another is an increasing function of the 
distance in the x and y directions. Based on observation (2), time T is the larger of these two 
values (time spent on the X (called T ) and Y (called T ) direction movement). For example, 

given points v and w, the time spent is T(v, w), where T (v, w) is a function of the distance 
between v and w. Note that the time is symmetric, i.e. T(v, w) = T(w, v).  

x y

∞L

 
2.2 Existing scheduling algorithms for MEMS-based storage  

Many different scheduling algorithms have been developed for conventional disks[6], such as FCFS 
(first-come first-service), CLOOK (cyclical look), SSTF (shortest seek time first), SSTF_LBN (shortest 
seek time based on the Logical Block Number of the request), and SPTF (shortest position time first). The 
CMU group has adapted many of these disk scheduling algorithms in the context of MEMS-based storage 
by mapping these storage devices into a disk-like interface [1].  The CMU experimental results show that 
SPTF performs best in terms of average response time. 
 
3. Theoretical Development. 

This section describes the motivation to design a new scheduling algorithm for MEMS devices that is not 
adapted from disk-like devices. We first argue that finding an optimal scheduling algorithm for MEMS-
based storage is NP-complete. Then we develop some properties of minimum spanning trees in the 
infinity distance domain. As described earlier, the scheduling performance in MEMS-based storage 
devices is a function of the infinity distance. Our scheduling algorithms are based on a minimum 
spanning tree in this domain. 
 
3.1 Motivation. 

MEMS-based storage characteristics are different from disks. Instead of plates rotating with a head 
moving back and forth, in MEM-based storage, the media sled can move in the X, Y and Z dimension. 
The seek time is dependent on the displacement in the X and Y dimension. Given these different 
parameters, MEMS-based storage devices require different request scheduling algorithms to fit in this 
environment. However finding the optimal solution is NP-complete.  
In MEMS-based storage devices, for simplicity, a request can be denoted by vector (x, y), where x, y 
determine the position of the request in the active tip region. Because the tip’s number is not related to the 
seek time, and scheduling algorithms find the shortest seek time to serve all requests, we can simply 
ignore the active tip’s number. Requests for a MEMS-based storage can be viewed as points distributed in 
one rectangular area which is the same as one region. When the device serves requests, the media sled 
moves to the request’s position determined by the x and y, and the corresponding tips are activated, then 
the device accesses (reads or writes) data by the activated tips. The time spent moving the media sled 
from its current position to the next position is called seek time T, which is determined by the L  
distance between these two positions. 

∞

After mapping requests into (x, y) locations in a two-dimensional surface, a graph can be constructed. 
Requests can be denoted as vertices, edges are the time spent traveling from one vertex to another. The 
goal is to find a shortest path that visits each vertex exactly once in the graph. It is a Symmetric Traveling 
Salesman Problem, so finding the optimal path is NP-complete [3]. The symmetry arises from the fact 
that the traveling time from vertex v to vertex w is the same as the time traveling from w to v.       
In the existing disk-based algorithms, SPTF performs best [1]. However, it is easy to show that it does not 
perform well in all settings. For example, consider the case where all requests have different x values, but 
the same y value, as shown in Figure 3. Assume request R3 is the current request being served, because 
R2 is nearer to R3 than R4, then R2 is the next request to be served. Applying the same reasoning, the 
order of requests to be served is R3 R2 R4 R1 R5. The problem is that this algorithm is greedy, 
and finds the next request to serve based on the shortest seek time and does not consider the whole 
distribution of requests.  In this example, if all requests are considered, the minimal order in terms of seek 
time would be   R3 R2 R1 R4 R5. 
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Even though it is not practical to design an optimal algorithm, we develop an algorithm with guaranteed 
upper bound for any workload. We first introduce some basic concepts. A spanning tree of a graph is a 
cycle-free sub-graph that spans all the vertices. The cost of a spanning tree is the sum of the costs of 
edges in it. A minimum spanning tree (MST) is the smallest cost spanning tree of a graph, the cost for 
MST is referred to as T . A double walk of a spanning tree means traversing all the vertices in pre-
order, hence the cost of a double walk is equal to two times the cost of this spanning tree, as shown in 
Figure 4. The double walk is composed of all the arrow lines.      
  

MST

 
 
 
  
                     
    
 
Figure 3: A setting that SPTF does not perform well                                                                                                                

                                                                                            

Figure 4: The double walk of a MST. 

      
    
R1            R2   R3  R4                                     R5 
  

We propose a new scheduling algorithm based on serving requests in the order of the double walk of a 
minimum spanning tree. Because this algorithm is constructed on the minimum spanning tree (MST), 
before introducing the algorithms, we first present some properties of minimum spanning trees in the 
infinity distance space.  
 
3.2 Properties of minimum spanning trees in infinity distance space 

We start by defining region1 to region4 with respect to a vertex in the infinity distance space.  Then we 
establish that the degree of any vertex in a MST is at most eight and can be reduced to four. It is 
interesting to note that in the Euclidian distance space, the bound on the degree is six and can be reduced 
to five [5]. In the following sections, without any specification, everything is in infinity distance space. 
Consider a vertex is v with coordinates , we define the following four regions with respect to 
v as follows:  

),( yx
),( yx

region1 is the subspace with any vertex (  satisfying . ), 11 yx yyxx ≥> 11 ,
region2 is the subspace with any vertex ( satisfying . ), 22 yx yyxx >≤ 22 ,
region3 is the subspace with any vertex ( satisfying . ), 33 yx yyxx ≤< 33 ,
region4 is the subspace with any vertex ( satisfying . ), 44 yx yyxx <≥ 44 ,
All regions mentioned in the following refer to region1 to region4. We now establish several lemmas 
based on these regions. 
 
Lemma 0: In any region of a vertex, there are at most two neighbors in the minimum spanning tree. 
Proof: We first prove that a vertex v in any region could have two neighbors. Then we prove that in 
each region, it is impossible for vertex v to have more than two neighbors.  

),( yx

Consider some region, say region1, and two neighbors v1 and v2 ( . (A similar argument 
holds for any of the four regions.) There are four cases to consider depending on how v1 and v2 relate to a 

line passing through v. 

),( 11 yx ), 22 yx

°45
Case 1: Both v1 and v2 are on the 45 line, as shown in Figure 5.1. We have x  and . 
Without loss of generality, assume . Then d(v, v1)<d(v, v2); d(v1, v2)<d(v, v2). Edge (v, v2) has 
to be replaced by (v1, v2) in the minimum spanning tree, so two neighbors of vertex v cannot be on the 

line at the same time. 

°

1 x<
11 y= 22 yx =

2x

°45
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Case 2: Both v1 and v2 are either to the left or to the right of the 45 line. Without loss of generality, we 
analyze the case where v1 and v2 are on the right side of the line, as shown in Figure 5.2. In this case, 

, , . Thus d(v, v1) = x ; d(v, v2) = x . Assume that 
(the other case is symmetric). Since d(v1, v2) =

°

°45
−11yy ≤

1xx <
2yy ≤

2x
2211 , yxyx >> x x−2

< )1y, 21 yx −max( 2x − , there are four cases 
to consider. 
If d(v1, v2)= , since y , then y  . However, since d(v, v2) = x , it 
implies that < . Thus d(v1, v2) < d(v, v2). 

12 yy −
y−2 x

1y≤ 12 y− ≤ yy −2 x−2

y x−2

If d(v1, v2)= , then since , we have  . However, since d(v, v1) = , 
it implies that y < . Furthermore we know that x < , since d(v, v1)<d(v, v2). 
Hence d(v1, v2) < d(v, v2). 

21 yy −
−1

2yy ≤ 21 yy − ≤ yy −1

x−1

xx −1

y xx −1 xx −2

If d(v1, v2) = , then since , we get <  = d(v, v2). Hence d(v1, v2) < d(v, v2). 12 xx − 1xx < 12 xx − xx −2

If d(v1, v2)= , it is impossible since . 21 xx − 21 xx <
Thus swapping edge (v, v2) with (v1, v2) will reduce the cost of the spanning tree, i.e., both v1 and v2 
connect to v, the spanning tree is not a MST. 
Case 3: v1 and v2 are on different sides of the 45 line, as shown in Figure 5.3. In this case, we have 

. Thus d(v, v1) = ; d(v, v2) = . 

°

21212211 ,,,,, yyyyxxxxyxyx <≤<<<> xx −1 yy −2

If d(v1, v2)= , because , then d(v1, v2)=  =d(v, v2). The equality holds 
when . So in this condition, both v1 and v2 can connect to v in a MST. 

12 yy − 1yy ≤ 12 yy − ≤ yy −2

1yy =
If d(v1, v2)= , because , then d(v1, v2)=  < =d(v, v1). 21 yy − 2yy ≤ 21 yy − ≤ yy −1 xx −1

If d(v1, v2)= , because , then d(v1, v2)= < < =d(v, v2). 12 xx − 1xx < 12 xx − xx −2 yy −2

If d(v1, v2)= , because , then d(v1, v2)= < =d(v, v1). 21 xx − 2xx < 21 xx − xx −1

So in this case, v1 and v2 can connect to vertex v when and d(v1, v2)= . 1yy = 12 yy −
Case 4: One of vertex v’s neighbors is on the 45 line.  °

If one of them is on the line and the other is on the right side of the line. We have 
. Based on a proof similar to Case 3, we can show that 

v1 and v2 can connect to v if d(v, v2) = d(v1, v2). 

°45
2 ,x<

°45
2112211 ,,,, yyyyxxxyxyx <≤<=>

If one of them is on the line and the other is on the left side of the line. We have 
. Thus d(v, v1) = ; d(v, v2) = = . 

°45
2 ,x

°45
y −22112211 ,,,, yyyyxxxyxyx <<<<<= yy −1 y xx −2

If d(v1, v2)= , because , then d(v1, v2)= < =d(v, v2). 12 yy − 1yy < 12 yy − yy −2

If d(v1, v2)= , because , then d(v1, v2)= < =d(v, v1). 21 yy − 2yy < 21 yy − yy −1

If d(v1, v2)= , because , then d(v1, v2)= < =d(v, v2). 12 xx − 1xx < 12 xx − xx −2

If d(v1, v2)= , because , then d(v1, v2)= < < =d(v, v1). 21 xx − 1xx < 21 xx − xx −1 yy −1

So v1 and v2 cannot connect to v in a MST in this case. 
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We can conclude that vertex v in region1 can have two neighbors v1 and v2 ( , where v1 is 
on the X axis, v2 is on the line or on its left side, and d(v, v2) = d(v1, v2). 

),( 11 yx ), 22 yx
°45

Without loss of generality, assume neighbor v3(x3, y3) is the furthest vertex among v1, v2, v3 to vertex v 
in region1. Based on the proof above, we have two cases. 
Case 1: If vertex v1 is on the X axis and v2 is on the left side of the 45 line. It is impossible for vertex v3 
to be on any side of the line, the same reason as Case 2. If vertex v3 is on the line, v2 and v3 
cannot both connect to v based on Case 4. So it is impossible to add more neighbors. 

°

°45 °45

Case 2: If one of v1 is on the X axis and v2 is on line. If v3 is on the right side, it is the same situation 
as Case2; if v3 is on the line, Case 1 can be applied; if v3 is on the left side of the line, Case 4 can 
be applied. So under any condition, it is impossible for vertex v to have more than two neighbors in 
region1. □ 

°45
°45 °45

Lemma 0 proves that in a minimum spanning tree, any vertex in any region can have at most two 
neighbors. We can easily derive Lemma 1 which state that the degree of any vertex is at most eight. 
 
Lemma 1: The degree of any vertex in the MST is at most eight. 
We now establish a stronger result, namely that in the L model and a set of vertices, there exists some 
MST where the degree of every vertex is at most four. 

∞

 
Lemma 2: There exists some MST, in which the degree of any vertex is at most four. 
Proof: We claim that any MST with some vertices of degree larger than four can be transformed to a 
MST where no vertex has degree larger than four. 
From Lemma 0, we know that in any of the four regions, at most two vertices may connect to a vertex in a 
MST. Without loss of generality, for a vertex v ( , its two neighbors in region1 are v1 and 
v2 ( . From the proof of Lemma0, in all the possible positions of v1 and v2, d(v, v2) = d(v1, v2).  
By swapping edge(v, v2) with edge(v1, v2) would not increase the cost of MST, but the degree of vertex 
v is reduced to one in region1. The similar arguments can be achieved in region2 to region4.  

), yx ),( 11 yx
), 22 yx

By repeating this procedure in each vertex with more than four neighbors, we obtain a MST in which the 
degree of any vertex is at most four. □ 
We now explore ways to reduce the cost of traversing a MST. 
 
Lemma 3: When traversing the MST, the cost of moving from one vertex to its sibling directly is no 
larger than the cost of passing through their parent vertex. 
Proof:  Because satisfies the triangle inequality, vertex v, its siblings s and their parent p form a 
triangle, then the cost of moving from vertex v to s directly is no larger than the cost of moving from v to 
s by visiting p. □ 

∞L

Lemma 3 can be generalized as follows. The edge cost from one vertex to another vertex is less than or 
equal to the cost of the path between these two vertices in the MST. 
In the following section, we develop scheduling algorithms based on these properties of MST in the 
infinity distance space. 
 
4. Scheduling Algorithms 

Our algorithm is based on building a minimum spanning tree of all requests and serving the requests in 
the tree order. An undirected graph (called cost graph) needs to be constructed in order to build a 
minimum spanning tree. In the cost graph, requests are treated as vertices, the edge cost from one request 

 to another request R  is the seek time T . For MEMS-based storage, the following information is 
known: 

iR j ji ,

1. Requests and their positions (x, y).  
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2. The equation to compute the seek time between two requests and : T = ),( iii yxR ),( jjj yxR ji ,

)),(max( jiji yyxxf −− , which is the distance between the two requests.  ∞L

Since in a MEMS-based storage device, it is possible to traverse from a request (  to any other 
request , the number of edges in the cost graph will be n where n is the number of 

vertices. It is very inefficient to construct a MST based on a graph with n  edges, because the 
time complexity of constructing MST is dependent on the number of edges and vertices. Both Prim’s and 
Kruskal’s algorithms for constructing MST have time complexity O , where m is the number 
of edges. However, the number of edges in the cost graph can be reduced to at most 8n. From Lemma 2, 
the degree of each vertex in a MST could have one nearest neighbor in each region.  If these four nearest 
neighbors for each vertex are in a cost graph G, the MST can be built based on graph G. Thus the cost 
graph only needs to include all edges that are formed by connecting each vertex to its nearest neighbors in 
each region. 

), ii yx

2
),( jj yx ,2/)1( −n

(n

log( 2 nm

/)1−

)

 
4.1 The cost graph 

Based on Lemma 2, to build the cost graph for a given set of requests, we need to find at most four 
connecting vertices of every vertex which are distributed in region1 to region4 respectively. We now 
describe the method for finding the four connecting vertices for a given vertex . ),( iii yxR
Assume they are n vertices (or requests): . ),(,),,(),(),,( 3332,22111 nnn yxRyxRyxRyxR
Two vectors are constructed: X-VECTOR and Y-VECTOR.  
X-VECTOR contains the X dimension values in increasing order. Y-VECTOR contains the Y dimension 
values in increasing order. 
With respect to , the infinity distance space is divided into region1 to region4. From another 
point of view, X-VECTOR is divided into two sub-vectors, X+ and X-, by x , Y-VECTOR is divided 
into two sub-vectors, Y+ and Y-, by . The next task is to find the vertex nearest to  in each 
region.  

),( iii yxR

i

iy ),( iii yxR

We describe the procedure for finding the nearest vertex in the region1, which is equivalent to searching 
the X+ and Y+ sets. Assume the vertex nearest to  is . ),( iii yxR ),( jjj yxR
Step 1: There are two pointers, X_Pointer and Y_Pointer, pointing to the current positions of X+ and Y+. 
Initially, they point to the first element in the X+ and Y+.  
x is the value of the element pointed to by X_Pointer; is the value of the element pointed to by 
Y_Pointer.  

y

Step 2: If R ( x , ) is a vertex pair in R , then it is the 

vertex we are searching for. Connect  with . 

y ),(,),,(),(),,( 3332,22111 nnn yxRyxRyxRyx
), ii yx ),( yxR(iR

Step 3: If yyxx ii −≥− , move Y_Pointer to the next element in Y+,  
       the value of element pointed by Y_Pointer, goto Step 2. =y
Step 4: Else yyxx ii −<− , move X_Pointer to the next element in X+, 

=x  the value of element pointed by X_Pointer, gotoStep 2. 
The procedure for finding the nearest vertices in the region 2 to region4 is similiar. The cost graph is built 
by repeating this procedure for all vertices. Since each vertex has four neighbors, in the cost graph, each 
vertex has between 4 and 8 neighbors. The resulting cost graph has all the necessary edges to build an 
MST.  
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4.2 Off-line scheduling Algorithm 

Based on the theoretical development described above, we now present a scheduling algorithm for the 
case when all the requests are known a priori. In the off-line algorithm, the cost graph is built by the 
method mentioned above, and the MST is built by Prim’s Algorithm. The requests are served in a pre-
order traversal of the MST. The algorithm is composed of one main subroutine called Main Method and a 
function subroutine called Find_next. 
 
Main Method: 

1. Given n requests:  );,(,),,(,),,(),,( 222111 nnniii yxRyxRyxRyxR
2. Build the cost graph G for the n vertices (or requests); 
3. Based on G, build the Minimum spanning tree MST for the n requests; 
4. number_request_left = n; 
5. next_request = root in the MST; Serve(next_request); 
6. While (  next_request != null ) do 
7.   number_request_left = number_request_left – 1; 
8.   current_position = , where ),( yx yx,  are displacement of next_request; 
9.   next_request = find_next( next_request ); Serve(next_request); 
10.  END. 

Find_next ( current_request ) 
1. If number_request_left = 0, return null; 
2. If current_request has no children then save_parent = parent of current_request; Remove 

current_request from MST, and  
3.                          return find_next(save_parent); 
4.   else  choose minimum cost child of current_request, label it served, 
5.                        return the minimum cost child. 

      6.    END. 

The variable number_request_left is used to record the number of requests that have yet not been served.   
The subroutine find_next (current_request) is used to find next request to serve. It also finds and returns 
the next request to serve. The main idea of finding the next request is primarily based on the tree preorder 
traversal. Even though as the algorithm is finding the next request, it traverses the tree, but the real 
distance moved is the distance between the current_request and the next_request based on Lemma 3. This 
algorithm starts from the root. After it is served, find one of its nearest children as the next request and 
label it as ‘SERVED’. Otherwise recursively call find_next(parent of current_position) until find the 
next_request. 
The overall cost of this algorithm is dominated by building the cost graph, which is O . Because the 
cost of constructing a minimum spanning tree is O  and m is at most 8n, the cost is reduced to 

. 

)( 2n
)log( 2 nm

)log( 2 nnO
 
4.3 On-line scheduling Algorithm  

In this section, the algorithm for the on-line scheduling is presented where requests are continually 
arriving as prior requests are being served. The algorithm is different from the off-line one. When new 
requests arrive during the service of existing requests, the MST has to be updated to include the new 
requests. Current dynamic MST algorithms [4] only consider changes in the cost of edges and not the 
inclusion of new vertices.  
Our on-line algorithm is composed of two parts. One serves existing requests in the current MST, the 
other updates the current MST with new incoming requests. The first part is the same as the off-line 
algorithm, so we primarily focus on describing the algorithm for updating the current MST. In the 
algorithm for updating the MST, according to the Lemma 2, the four nearest vertices in the different 
regions, if they exist, are found. The new vertex is connected to the MST by the smallest cost edge to one 
of these four vertices. The remaining three edges are checked to see if the MST cost can be reduced. 
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Update the MST with the new coming request . ),( newnewnew yxR

1. Insert x  into the X-VECTOR, into Y-VECTOR; new newy
2. Search the requests which are nearest to the new request in region1 to region4 with respect to 

. The procedure is the same as computing each vertex’s neighbors in building up the 
cost graph. At most four requests exist, say . Connect to the nearest vertex 
in . So that is included in the MST. 

newR

1R
4321 ,,, RRRR newR

432 ,,, RRR newR
3. After step 2, there are at most three edges left, if they are all larger than the max cost edge in 

the MST, DONE. 
4.   for any edge e of the three edges left with cost less than the max cost edge in the MST do 
5.         Insert e into the MST, it results in a cycle, remove the maximum cost edge from the cycle. 
6.   end.  

Based on the Lemma 2, every vertex in MST connects to at most four other vertices, these four vertices 
are located in the region1, 2, 3, 4 respectively. Step 1 and 2 basically locate these four vertices if they 
exist. Because these four vertices are the nearest vertices to vertex v, connect v to the MST by the nearest 
neighbor in these four neighbors. The following steps are used for updating the current MST, because 
inserting new vertices may reduce the total cost of the MST. Step 3 is an optimization. If the remaining 
three edges are larger than the maximum cost edge in the MST, none of them will be in the MST.  Step 4 
and 5 update the MST. There must be a cycle c if an edge is added, according to the tree property of 
MST, remove the largest edge in this cycle.  
The cost of updating the MST is dominated by finding cycles and finding four nearest vertices, both of 
them are , so the total cost of this algorithm is O . )(nO )(n
 
5. Analysis. 

Our approach is based on the properties of MST. In Section 5.1, we show that in any workload, our 
approach can satisfy an upper bound. A preliminary performance is studied in Section 5.2. 
 
5.1 Upper bound. 

Without the optimizations made by Lemma 3 & 4, our approach corresponds to a double walk of a 
minimum spanning tree. The cost of a double walk is equal to two times the cost of this spanning tree, as 
shown in Figure 4. The double walk is composed of all the arrow lines. If the spanning tree is a MST, the 
cost of a doubling walk is equal to 2*T  (T  is the cost of the MST). The optimal algorithm tries to 
find a path with the minimum cost. Actually the path is a spanning tree too. So the cost of the optimal 
path T  is no less than T .  If we serve the requests by the route of a double walk, the following 
results can be obtained. 

MST MST

opt MST

MSTseek TT *2= ,T . optMST T≤
Hence T , where T is the total seek time for serving all requests.  optseek T*2≤ seek

Our approach made some optimizations based on Lemma 2 & 3. So we have the following equation: 
  . optseek TT *2<
Hence, our approach is guaranteed has an upper bound of 2*T  irrespective of the workload. opt

5.2 Preliminary performance. 

We set up the experiments by simulating 100 100 region with uniformly distributed workloads. We 
implemented four scheduling algorithms: FCFS, SSTF, SPTF and Tree-based off-line algorithm. Because 
the seek time is a function of seek distance, we give simulation results based on the average seek distance 
instead of average seek time. The simulation results are shown in Figure 6. 

×
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The data shows that SPTF and Tree-based approaches always perform better than SSTF and FCFS. SSTF 
is better than FCFS. As the number of requests increases, the average seek distance of FCFS and SSTF is 
almost a constant, so these two algorithms are not scalable. However the average seek distance of SPTF 
and Tree-based approach decrease. When the workload is not heavy, the Tree-based approach achieves 
better average seek distance than SPTF. Under heavy workload, their performance is comparable. 
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Figure 6: Average seek distance. 

6. Conclusion. 

In this paper, based on the characteristics of MEMS-based storage devices, we developed two 
dimensional scheduling algorithms which guarantee the upper bound 2T  on seek time. The cost of 
serving a request is O . The cost of updating the MST is also O . Based on the algorithm designed 
by Christofides [10], we could achieve an upper bound of 1.5T , but the cost for the online case would 
be more expensive. Our future research will explore tradeoffs among these different approaches. 

OPT

)(n )(n

OPT
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