
Improving Throughput with Cascaded TCP
Connections: the Logistical Session Layer

UCSB Technical Report 2002-24
Martin Swany and Rich Wolski

Abstract—
This paper describes a system designed to improve net-

work performance and functionality in a way that is ap-
plicable from high-performance distributed computing to
wireless and mobile networking. Our architecture cap-
tures the benefits of application-level routing while being
designed as a general-purpose network service. We call our
abstraction the Logistical Session Layer as it allows deci-
sions about a flow’s path through the network to be made
based on what can be thought of as network logistics. The
“session” layer affords a conversation based on multiple
transport-layer hops. We empirically examine the perfor-
mance implications of the “cascaded” TCP connections that
our approach facilitates.

I. INTRODUCTION

THE landscape of computing and networking is
changing. On the one hand, Computational Grid en-

vironments [1] demand high performance networking as
large, distributed systems use the network like never be-
fore. On the other hand, lightweight edge devices are pro-
liferating and driving evolution of the network in a differ-
ent manner.

Network capacities are growing at an amazing rate.
However for the most part, that increased capacity is real-
ized in link aggregation and not in individual flows. For
the Transmission Control Protocol [2] (TCP), congestion
control mechanisms provide vital network-wide stability
and fairness properties at the potential expense of indi-
vidual end-to-end throughput. Moreover, the proliferation
of high-speed connectivity exacerbates this cost since the
overhead associated with this congestion control becomes
more appreciable – particularly when the network is over-
provisioned. At the same time, more and more devices are
connected to the Internet via wireless mechanisms, so the

Department of Computer Science, University of California at Santa
Barbara.

Authors’ Email: {swany,rich}@cs.ucsb.edu

trend is toward a broadening range of network technolo-
gies (having differing performance characteristics) with
which end-to-end protocols such as TCP must contend.

In this work, we present a novel approach to optimiz-
ing end-to-end throughput by mitigating the cost of end to
end congestion control while being, by definition, “TCP
friendly.” We detail our approach in terms of the imple-
mentation and performance of a new “session” layer [3]
— the Logistical Session Layer (LSL) — that can use
TCP for transport. Logistics refers to the practice of mov-
ing things from place to place while making best use
of available resources according to some objective func-
tion (e.g. lowest cost or shortest time). We define the
term “Logistical Networking” to describe the application
of these principles to improving performance and func-
tionality in network settings [4]. A Logistical Network
is one in which “depots” located throughout the network
can provide application-controlled buffering (via a com-
plete storage hierarchy) to potentially anonymous clients.
Whereas other work in this area focuses on larger, longer-
lived storage allocations [5], LSL uses small, short-lived
intermediate buffers to improve end-to-end performance
between communicating hosts. The protocol constructs a
session consisting of multiple sequential TCP/IP streams
“cascaded” from source to sink through intermediate LSL
storage depots. Because TCP’s control mechanisms con-
tinue to govern packet traffic, the underlying network per-
formance remains stable. At the same time, despite the
additional transport level processing and buffer-copying
overhead at each depot, our results show that LSL can in-
crease end-to-end throughput by an average of 40% and
as much as 75% in a variety of network settings.

Perhaps it is initially counter-intuitive that intermediate
buffering would provide performance gains in this range,
and that it would do so for high-performance networks
as well as those with wireless components. Further, this
prototype is implemented as an unprivileged process on a

2

general-purpose system, so it represents a worst-case sce-
nario in some sense. This paper investigates this potential
performance improvement, and we will

• describe a prototype LSL implementation we have
developed to investigate the efficacy of end-to-end
throughput optimization,

• quantify the throughput effects empirically, includ-
ing all concomitant processing overheads, and

• explain, through packet trace analysis, the observed
LSL effect for different network configurations.

Taken together, our results show that judicious interme-
diate buffering can dramatically improve throughput in a
broad spectrum of network settings. At the same time, our
approach is intended to remain consistent with current and
future Internet protocol technologies in general and TCP
congestion control in particular.

II. RELATED WORK

While our design for LSL [6] is novel, it is related
to many efforts in the network community. Classically,
many Internet protocols and systems have relied on hop-
by-hop (rather than end-to-end) forwarding. SMTP [7]
and NNTP [8] are two well-known examples. The notion
that end-nodes might want to direct the path taken by a
flow of packets was provided for with the loose and strict
source route options to IP [9], although this has fallen into
disfavor because of its (often realized) potential for abuse
and the per-packet overhead associated with forwarding
such traffic.

LSL is similar in spirit to recent work in application
level routing (or overlay networks) and non-default route
selection [10–13]. This work has addressed a number of
issues including route asymmetry and optimal, or parallel,
route selection. There is also a growing industry surround-
ing traffic tuning based on these principles. The benefits
of retransmission from strategic locations for reliable mul-
ticast has been observed as well [14]. LSL differs in that
it is presented as an evolution of the Internet architecture,
rather than a workaround for ineffective routing policy.
Indeed in the examples that we present here, the “default”
route has not been changed in any extreme way (only
insofar as necessary to model a general-purpose depot.)
Specifically, we don’t use this system to “route around
congestion” but rather note that some of the effects ob-
served in other work may complement aspects of the LSL
effect that we observe.

MSOCKS [15] is conceptually similar in using seg-
mented TCP to facilitate mobility. Link-layer retransmit
and other techniques to mitigate high RTT and loss rates
are discussed in RFC 3135 [16]. Techniques developed
for wireless networks [17, 18] seek to reduce the cost of

retransmission in lossy environments. Systems to proxy
TCP have been developed with the same goals in mind.
One example is TPOT [19], which alters TCP to allow
this mode of operation. A similar approach that targets
the caching of web objects also proposes modifications to
TCP [20]. Solutions that require modifications to the TCP
protocol limit the potential for incremental deployment in
a global Internet sense as it is often difficult to change ex-
tant protocol infrastructure. Our approach takes the form
of a service layer atop standard TCP that interested clients
can choose to use without modification to the underlying
networking protocols.

The reduction in CPU utilization stemming from seg-
mented or cascaded TCP have been explored as well [21].
LSL differs in that some of the same benefits can be real-
ized without violating the separation of functionality be-
tween protocol layers, and that the services must be ex-
plicitly requested by the program using them – there is no
“transparency” expressed or implied.

Also related are projects designed to increase band-
width available to distributed applications. The PSock-
ets [22] work has spawned a great deal of interest in using
multiple TCP sockets in parallel to increase throughput.
The notion that the connection bundle is something more
general than binding from file handle to transport layer is
similar to the session-layer abstraction that we describe.
However, that work is focused on an application-level so-
lution rather than “in the network” support for general
mechanisms.

To a certain extent, our results are based on the nature
of TCP’s flow control. The research community has rec-
ognizes the issues inherent in using TCP over networks
with high bandwidth/delay products. There is a tremen-
dous body of research [23–29], too vast to properly cite
here, devoted to understanding and improving TCP’s per-
formance. Appealing to intuition, however, we note that
there is a fundamental cost associated with buffering data
for potential retransmission. Allowing data to leave a host
without being acknowledged by the receiving host effec-
tively allows an increase in the amount of pipelining that a
network link supports. Also, TCP’s performance is widely
understood to depend greatly on the end to end Round
Trip Time (RTT). We leverage the well understood stabil-
ity and fairness qualities of TCP by utilizing it between
depots. Whereas more drastic changes to TCP (such as
Explicit Congestion Notification) may take time for their
ramifications to be fully understood (and to be deployed
ubiquitously), LSL is treading in more familiar territory.

Also note that this can be thought of as an extension of
the increasing requirements for network state [30,31] with
the benefit of being deployable without modification of

3

extant software in the network. End stations are, in many
cases, becoming more simple and routers in the core of
the network are more and more sophisticated. It is is no
longer necessary to assume that the network is inherently
unreliable and should remain stateless. LSL is another
example of how careful state management within the net-
work fabric itself can improve delivered network perfor-
mance while, at the same time, preserving the stability and
reliability characteristics that the Internet Protocol suite
provides. In addition, the architecture we have defined is
compatible the current implementations of TCP/IP while
offering a similar programming interface to that provided
by the Unix socket abstraction.

III. ARCHITECTURE

source sinkdepotsublink sublink

Fig. 1. LSL connection illustration

The architecture of the Logistical Session Layer is very
simple. A “session” layer is logically layered atop the
Transport layer. In the same way that a transport layer
connection may traverse multiple network layer hops, a
session layer may make use of multiple transport-layer
connections. The session is described by a 128-bit session
identifier. Conceptually, the ultimate sending and receiv-
ing ports need not exist at the same time, enabling a wide
range of functionality. The connection from source to sink
can use multiple TCP “sublinks” as depicted in Figure 1.

Currently, the path through the network is specified
with a “loose source route” – an initiator-specified path
through some number of session-layer routers (which we
refer to as depots.) LSL clients and depots are assumed
to have network performance information available from
a system such as the Network Weather Service [32], in
order to make decisions about paths. We consider the de-
pot nodes themselves to be in a system orthogonal to a
larger measurement system except to make passive perfor-
mance information available via the TCP extended statis-
tics MIB [33] or the like.

An MD5 [34] message digest over the complete stream
should be sent between end-systems. We note that this
will counter the potential for data corruption that is al-
ready present with TCP error detection [35]. Note that
in terms of the end-to-end argument [36], we do consider
the ultimate verification of data integrity to be the respon-
sibility of the end nodes. We have simply moved away
from the requirement that flow control and buffering also
be considered exclusively in an end-to-end fashion.

The interface to LSL is simply BSD sockets using
the {P/A}F LSL protocol/address family (as described in
[6]). However, we note that to support session-layer fram-
ing, we would need a host interception mechanism (e.g.
SOCKS [37]) or a kernel-level implementation of the pro-
tocol.

While the results in this paper deal with increased
throughput across a path, we envision many cases in
which a session layer such as this is an appropriate ab-
straction. Intermittently connected devices could use the
session layer to mitigate connection creation overhead and
the effects of roaming (in that the ultimate server need
not know of an address change). Also, when consider-
ing TCP running over IPv6, the community has yet to
come to consensus about the implications of site multi-
homing in that a different route to the same host might en-
tail using a different IP address. A session layer identifier
would allow us to leave the semantics of TCP unchanged
and yet accommodate the notion that transport connec-
tions may come and go without disrupting the integrity of
the session-layer handle.

In this work we focus on the performance improve-
ments offered as the network becomes articulated so that
TCP can adapt to local conditions more rapidly and with
more specificity.

Thus LSL is
• Incrementally deployable – no changes are required

to extant hardware and protocols
• Voluntarily utilized – no need for automatic “inter-

ception”, easy to implement in existing software, and
can be employed selectively

• TCP compatible – by definition cooperates with TCP
and can track and benefit from its evolution

• Throughput optimizing – improves performance in
certain cases.

IV. RESULTS

Next we deal with the performance implications of a
system such as LSL, focusing on the synchronous connec-
tion case. This section will present measurements from
our prototype of the system. Section V will demonstrate
some of the underlying reasons for the improvement in
performance.

A. Experimental Method

As described in previous work [6], we have im-
plemented a simple session layer forwarding processes
(called lsd) and a library that is used by a client and a
server. The daemon runs without privileges – it is a user-
level process. For this set of experiments, we focused

4

on synchronous, connection-oriented streams from end-
system to end-system. So, the lsd process very simply
establishes a transport to transport binding based on the
LSL header information.

All machines in this study were running the Linux op-
erating system, with kernel version 2.4.x, although previ-
ous work has validated the effects across a range of sys-
tems. The machines at both ends supported large windows
and were configured with 8 MByte TCP buffers for the
exercised direction. Earlier work [6] noted that the per-
formance improvements are more profound in the case of
limited buffers at the end nodes as might be the case with
lightweight mobile devices. The tests took place at sites
connected to the Abilene [38] network and all wide area
transfers traversed it.

subpath2subpath1

end to end path

UCSB
Houston U

Florida

POP

Fig. 2. Diagram of Experiment Configuration. The depot was chosen
for its proximity to a POP on the default path.

It is important to note that in no case did we fail to
obey the Acceptable Use Policy (AUP) of any network
traversed. Previously [6], we described a case in which
the routing configuration at two autonomous systems did
not provide a symmetric route and we note that even in
this case, our path did not make unacceptable use of any
network. However, for this set of experiments, we do not
even alter the default path through the network, except in-
sofar as we insert a depot in the connection. These depots
were again chosen to minimize the divergence of the LSL
path from the default TCP path to model, as closely as
possible, integral depots.

Figure 2 depicts the conceptual layout of some of the
hosts in question. We refer to LSL “subpaths” as the
(TCP) connections between depots, clients and servers.
We compare this with the default end-to-end TCP con-
nection. In the first two datasets, the depot machines are
located close to Abilene POPs in Houston and Denver. In
each dataset, the route between client and server traverses
the intermediate gigapop (either Houston or Denver, as
the case may be) so the latency being added should be
minimal. Using a depot in Denver, we measured trans-
fers from UC Santa Barbara (UCSB) to the University of
Illinois (UIUC) and separately to Ohio State University
(OSU). We also measured transfer performance between
UCSB and the University of Florida (UF) using a depot
located in Houston for the LSL communications.

We used the tcpdump program to capture packet traces
from each TCP connection (whether “sublink” or end-to-
end). The captures took place at the sending host in each
case.

0

10

20

30

40

50

60

70

80

�����������
	��������������	�� ���������
�����������

��������

Subpaths
m

se
c

Fig. 3. Average Observed TCP Round Trip Time for Case 1.

0
10
20
30
40
50
60
70
80
90

100

������������	���������������	�� ���������
�����������

���������

Subpaths

m
se

c

Fig. 4. Average Observed TCP Round Trip Time for Case 2.

To determine the effect of “detouring” from the direct
route to the LSL depot (see Figure 2), we observed RTTs
for the end-to-end link, and both sublinks. Figure 3 com-
pares the average RTT for each subpath and the end-to-
end TCP connection. The final bar in the figure shows the
sum of the average RTTs for both sublinks as an indication
of the overall RTT for LSL. These RTT measurements are
based on TCP acknowledgments from the traces, hence
they do not include the latency associated with traversing
the depot itself. A more accurate measure of end-to-end
RTT would take into account the intra-host latency, but
the values we present do represent a lower bound. We
can see in Figure 3 (via Denver), that the additional RTT
for LSL is minimal at approximately 6ms. However, Fig-

5

ure 4 (via Houston) shows an average increase over the
direct end-to-end connection of about 20ms. 1 Despite
these increases in overall RTT, however, LSL improves
throughput through both intermediate depot points.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 50 100 150 200 250 300

M
bi

t/s
ec

Xfer Size in Kbytes

UCSB->UIUC
UCSB->UIUC via Denver with LSL

Fig. 5. Average Observed Bandwidth of data transfers from UCSB to
UIUC (32K - 256K)

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70

M
bi

t/s
ec

Xfer Size in Mbytes

UCSB->UIUC
UCSB->UIUC via Denver with LSL

Fig. 6. Average Observed Bandwidth of data transfers from UCSB to
UIUC (1M - 64M)

Tests of various-sized transfers were run over these two
configurations. In these cases, 10 iterations were run and
the wall clock times were recorded. That is, when measur-
ing throughput, we did not rely on TCP packet trace tim-
ings, but rather we observed the host to host throughput
empirically so as to include all additional overheads as-
sociated with traversing the relevant intermediate depot.
Figure 5 shows the average throughput for small trans-
fers from UCSB to UIUC (via Denver). For the smallest

1For the Houston depot the latency difference measured by ping
information shows an approximate additional latency under 2ms, so
much of the 20ms average is load induced and likely related to the
transfer time through the host. At the time of this writing, we did not
have the data available to deconvolve the queue delay effect from the
effect of detouring to the depot.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 50 100 150 200 250 300

M
bi

t/s
ec

Xfer Size in KBytes

UCSB->UF
UCSB->UF via Houston with LSL

Fig. 7. Average Observed Bandwidth of data transfers from UCSB to
UF (32K - 256K)

10

15

20

25

30

35

40

45

50

55

0 20 40 60 80 100 120 140

M
bi

t/s
ec

Xfer Size in Mbytes

UCSB->UF
UCSB->UF via Houston with LSL

Fig. 8. Average Observed Bandwidth of data transfers from UCSB to
UF (1M - 128M)

transfer sizes, the overhead of setting up two connections
is too great and LSL achieves a lower throughput than the
standard end-to-end transfer. However, LSL transfers be-
gin to enjoy better performance quickly as the amount of
data grows, increasing the bandwidth by about 60 percent
for 256KByte transfers. Figure 6 shows larger transfers
and the differences remain significant, still with an im-
provement of approximately 60 percent. Figure 7 shows
small transfers going from UCSB to UF (via Houston).
We note that for small transfers along this path the perfor-
mance is roughly equivalent. Figure 8 shows larger trans-
fers from UCSB to UF and the bandwidth using LSL again
becomes significantly higher as the overhead is amortized
away. Even though with LSL the one way transmission la-
tency is longer from end system to end system, and there
is additional processing overhead at the depot, the aver-
age throughput is significantly higher for large transfers
for both the Denver and Houston depot locations.

We also wanted to examine the effectiveness of LSL
for a lightweight, edge node connected via 802.11b wire-

6

0

20

40

60

80

100

120

������������	�� �����������
	�� � �������
�����������

��������

Subpaths

m
se

c

Fig. 9. Average Observed TCP Round Trip Time for Case 3.

less. In this case, the experiment was designed to model
a mobile node on the edge of the network and the LSL
depot was placed much closer to the client. Our inten-
tion is to use this experimental configuration to model a
wireless provider with infrastructure willing to gateway
LSL into TCP for users. We used end-points at the Uni-
versity of Tennessee, Knoxville (UTK) and UCSB, but the
UCSB end-point was connected to the campus network in-
frastructure by an 802.11b wireless network. We located
the LSL depot on a machine at UCSB, near the “edge”
of the wired network. Figure 9 again shows the average
observed RTTs. Note that the average RTT value is quite
high on on sublink 1 – the UTK to UCSB wired sublink.

2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

1.0 10.0 100.0 1000.0

M
bi

t/s
ec

Xfer Size in Mbytes

UTK->UCSB
UTK->UCSB with LSL

Fig. 10. Average Observed Bandwidth of data transfers from UTK to
UCSB (1M - 128M)

Figure 10 shows the observed bandwidth of the wire-
less case. Note that the X axis is graphed using a log
scale as the transfers in this test ranged from 1MByte to
256MByte. Again, we see the same pattern. In this case,
sublink 1 (ironically, the non-wireless link) appears to be
the bottleneck. Even so, in this case LSL provides a 13

percent average increase in bandwidth.

V. ANALYSIS

Despite the additional protocol processing and addi-
tional latency introduced in the path, LSL’s cascaded TCP
connections frequently outperform direct TCP. This ben-
efit results from a shorter RTT along each sublink (even
though the combined “RTT” is longer) for LSL allow-
ing TCP congestion control and avoidance mechanisms
to function more rapidly. It has been long understood and
repeatedly observed that the performance of TCP’s con-
gestion control state machine is governed by end-to-end
RTT [24, 25] — a longer RTT implies a slower response
and potentially less throughput at the beginning of a trans-
fer, and immediately after the loss of a packet. Simply put,
TCP can only resize its congestion window for a given
stream (up or down) according to the speed with which
it received acknowledgement packets. Our experiments
with LSL demonstrates that by cascading TCP streams,
the overall throughput is increased.

To investigate why this phenomenon might be occur-
ring we use the commonly-accepted method for under-
standing the life of a TCP connection — the growth of the
sequence number over time. From graphs such as these,
we can see the duration of the transfer and understand
some of its dynamics.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 20 40 60 80 100 120

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test

Average

Fig. 11. Direct TCP connection sequence number growth through
64MB transfers from UCSB to UIUC – individual connections and
their average.

For each of the cases presented above, packet traces
were gathered at the sender. In addition to using these
traces to compute the RTT figures above, we also normal-
ized the sequence number so that the relative growth of
the various iterations could be averaged. In Figure 11 we
show the individual tests on a single graph (note the vari-
ation) and the average of the sequence number growth for
64MByte transfers from UCSB to UIUC over direct TCP

7

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 5 10 15 20 25 30

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test

Average

Fig. 12. Sublink 1 connection sequence number growth through
64MB transfers from UCSB to UIUC – individual connections and
their average.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 5 10 15 20 25 30 35

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test

Average

Fig. 13. Sublink 2 connection sequence number growth through
64MB transfers from UCSB to UIUC – individual connections and
their average.

connections (no LSL). Figure 12 depicts subpath 1 of the
LSL transfer between the same hosts and Figure 13 shows
subpath 2. Note that subpath 2 has been normalized with
respect to subpath 1 so that we can observe the relative
growth of these cascaded connections.

Figure 14 compares the average sequence number
growth over time for subpath 1, subpath 2 and the direct
connection (taken from Figures 12, 13, and 11 respec-
tively). It is easy to see the effects of RTT clocking on the
window growth. Note that the seemingly flattened area
toward the end of Figure 14 for direct TCP does not rep-
resent a single connection slowing toward the end of the
transfer but is rather is an effect of averaging of all the
connections in Figure 11.

To further isolate the effects of LSL on throughput
we compare transfers of similar sizes having similar loss
characteristics. That is, we wish to compare sequence
number growth rate between LSL and direct TCP streams

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 20 40 60 80 100 120

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Subflow 1
Subflow 2

Direct TCP

Fig. 14. Average sequence number growth through 64MB transfers
from UCSB to UIUC – Sublinks and direct TCP.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Sublink 1
Sublink 2

Direct TCP

Fig. 15. Comparison of 4M transfers from UCSB to UIUC with no
packet loss.

having similar loss rates.
Figure 15 shows the sequence number growth for a

4MB transfer between UCSB and UIUC in which no
packet loss occurred. Figure 16 shows cases in which the
median observed packet loss (amongst all of the 4MB ex-
periments) happened. Figure 17 shows a connection with
the maximum loss rate and finally Figure 18 depicts the
average of the sequence number growth over all tests. Our
intention with this additional detail is to show the perfor-
mance response (in terms of sequence number growth) of
LSL and direct TCP under three conditions: minimal loss,
median loss, and maximum loss. As these graphs clearly
illustrate, for 4MB transfers even in the case when no
packets are lost, the congestion control mechanisms can
take significantly longer to open the window fully than in
the LSL case. Indeed, even after 4MB, the slopes do not
appear to have converged. The effect becomes more pro-
nounced with increased loss rate as each LSL sublink can
respond more quickly to the loss of a packet.

To investigate whether the LSL effect is only observ-

8

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Sublink 1
Sublink 2

Direct TCP

Fig. 16. Comparison of 4M transfer cases from UCSB to UIUC in
which the median observed number of retransmissions occurred.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Sublink 1
Sublink 2

Direct TCP

Fig. 17. Comparison of 4M transfer cases from UCSB to UIUC in
which the maximum observed number of retransmissions occurred.

able before TCP has reached its “steady state” we con-
duct the same analysis as described above for successively
larger transfer sizes. Figure 19 shows sequence number
growth for a 16MB transfer from UCSB to UIUC in which
the minimum observed packet loss occurred. No cases
were observed with zero packet loss for transfers of this
size. Again, Figure 20 and Figure 21 depict cases in which
the median packet and maximum packet loss occurred re-
spectively. Finally, Figure 22 shows the average sequence
number growth over all cases as a measure of expected
performance.

Similarly for 64MB transfers, Figure 23 shows the min-
imum loss case, Figure 24 show the median loss case and
Figure 25 show the maximum loss case. The average se-
quence number growth is shown in Figure 14.

Figure 26 shows the average sequence number growth
for 32MByte transfers from UCSB to UF (which uses the
Houston LSL depot). Here, we note that the slopes are
very close together, suggesting that subpath 1 (the link
nearer the sender) was the bottleneck rather than subpath

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Subflow 1
Subflow 2

Direct TCP

Fig. 18. Average sequence number growth for 4MB transfer cases
from UCSB to UIUC.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0 2 4 6 8 10 12 14

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Sublink 1
Sublink 2

Direct TCP

Fig. 19. Comparison of 16M transfer cases from UCSB to UIUC in
which the minimum observed number of retransmissions occurred.

2.
Finally, Figure 27 shows the sequence number for a

256MB transfer over the wireless link. This data is again
consistent with the figures above and does indicate that
sublink 1 was the bottleneck in this case.

VI. DISCUSSION: TCP PERFORMANCE AND RTT

Some might argue that these transfers are all of mod-
erate size and that the steady-state performance of TCP
would ultimately be better than that using LSL. Certainly
there are many configurations in which direct TCP would
outperform LSL (e.g. if the LSL detour were a significant
bottleneck or in cases where the end hosts are “close”).

However in general, the control mechanisms used by
TCP require that acknowledgments (ACKs) be sent from
the receiver. This stream of ACKs acts as a clock for
strobing packets into the network [39]. The speed with
which slow-start allows the TCP connection to approach
the advertised flow-control window is determined with
the RTT (measured as the sum of the transit time of a

9

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0 5 10 15 20 25

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Sublink 1
Sublink 2

Direct TCP

Fig. 20. Comparison of 16M transfer cases from UCSB to UIUC in
which the median observed number of retransmissions occurred.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0 10 20 30 40 50 60

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Sublink 1
Sublink 2

Direct TCP

Fig. 21. Comparison of 16M transfer cases from UCSB to UIUC in
which the maximum observed number of retransmissions occurred.

packet and its ACK.) The effects of RTT have been ob-
served [24–26] but intuitively, since increase in conges-
tion window requires a full RTT, the longer the RTT, the
longer it takes TCP to reach full link capacity. Further,
since loss events cause the congestion window to be re-
duced, the rate at which TCP increases the window is
again governed by the RTT. The performance benefits of
our system over direct TCP are simply due to effects that
are endemic to TCP’s congestion control mechanism [40]
and we note that RTT of a path is important for the life of
a connection.

To empirically examine the “steady-state” TCP perfor-
mance, we performed experiments from UCSB to OSU
with larger transfers sizes and more measurements of each
case. Transfers from 32K to 512MB were made, with
120 tests of each transfer size. Figure 28 shows the av-
erage observed bandwidth (not sequence number growth)
on transfers from 1MB to 512MB (and Figure 29 shows
smaller transfers). Larger transfers very much seem to
have captured the maximum available bandwidth and the

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0 10 20 30 40 50 60

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Subflow 1
Subflow 2

Direct TCP

Fig. 22. Average sequence number growth for 16M transfer cases
from UCSB to UIUC.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Sublink 1
Sublink 2

Direct TCP

Fig. 23. Comparison of 64M transfer cases from UCSB to UIUC in
which the minimum observed number of retransmissions occurred.

trend shows no signs of convergence. This data seems to
validate the dependence on RTT for the life of the connec-
tion even when steady-state is obviously reached.

VII. FUTURE WORK

To carry this work forward, we hope to continue to
refine the design of our session layer. We believe that
this abstraction is also useful for other approaches such
as multi-path performance optimizations and parallel TCP
streams. To facilitate this generalization and to allow for a
more general-purpose implementation, we will investigate
session-layer framing.

A. Scalability

This paper has not addressed the scalability of this sys-
tem in any way, although we hope to do so in future work.
We did not measure the effects of multiple-connection
contention or examine carrying capacity of the experi-
mental configuration. However, the hosts used in these

10

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Sublink 1
Sublink 2

Direct TCP

Fig. 24. Comparison of 64M transfer cases from UCSB to UIUC in
which the median observed number of retransmissions occurred.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Sublink 1
Sublink 2

Direct TCP

Fig. 25. Comparison of 64M transfer cases from UCSB to UIUC in
which the maximum observed number of retransmissions occurred.

experiments were general purpose, single-homed comput-
ers and were not designed to forward traffic efficiently like
dedicated network hardware. Also, due to the very nature
of the protocol, admission control and load balancing over
a pool of available depots could easily be used to provide
scalability.

VIII. CONCLUSION

This paper discusses an evolution to the Internet model
that removes the requirement for end-to-end congestion
control and instead allows for hop-by-hop congestion con-
trol in a novel manner. We present an architecture that
allows us to speak about such systems as an integral part
of the Internet rather than application-level workarounds.
We show a performance advantage to segmented tech-
niques such as this over TCP for reasons that are simply
due to TCP’s control mechanism. Finally, we empirically
demonstrate this architecture in two very different con-
texts – Grid computing and wireless networks – both of
which will see more and more use in the coming years.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 2 4 6 8 10 12 14

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Subflow 1
Subflow 2

Direct TCP

Fig. 26. Comparison of 32MB transfers from UCSB to UF.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 100 200 300 400 500 600 700 800

N
or

m
al

iz
ed

 S
eq

ue
nc

e
N

um
be

r

Time

Sublink 1
Sublink 2

Direct TCP

Fig. 27. Sequence number growth for 256MB wireless case.

REFERENCES

[1] Ian Foster and Carl Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann Publishers, Inc.,
1998.

[2] J. Postel, “Transmission control protocol,” RFC 793,
USC/Information Sciences Institute, September 1981.

[3] Information Technology: Open Systems Interconnection Interna-
tional Organization for Standardization, ,” ISO/IEC 8827, 1990.

[4] M. Beck, T. Moore, J. Plank, and M. Swany, “Logistical net-
working: Sharing more than the wires,” in Proc. of 2nd Annual
Workshop on Active Middleware Services, August 2000.

[5] J. S. Plank, A. Bassi, M. Beck, T. Moore, D. M. Swany, and
R. Wolski, “Managing data storage in the network,” IEEE In-
ternet Computing, vol. 5, no. 5, pp. 50–58, September/October
2001.

[6] M. Swany and R. Wolski, “Data logistics in network computing:
The Logistical Session Layer,” in IEEE Network Computing and
Applications, October 2001.

[7] D. Crocker, “Standard for the format of ARPA internet text mes-
sages,” RFC 822, August 1992.

[8] P. Lapsley B. Kantor, “A proposed standard for the stream-based
transmission of news,” RFC 977, February 1986.

[9] J. Postel, “Internet protocol,” RFC 791, USC/Information Sci-
ences Institute, September 1981.

[10] J. Touch, “The XBone,” Workshop on Research Directions for
the Next Generation Internet, May 1997.

11

8.0
10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0

1.0 10.0 100.0 1000.0

M
bi

t/s
ec

Xfer Size in Mbytes

UCSB->OSU
UCSB->OSU via Denver with LSL

Fig. 28. Comparison of transfers from UCSB to OSU (1MB - 512MB
in size – log scale).

0.0

2.0

4.0

6.0

8.0

10.0

12.0

100 200 300 400 500 600 700 800 900 1000

M
bi

t/s
ec

Xfer Size in Kbytes

UCSB->OSU
UCSB->OSU via Denver with LSL

Fig. 29. Comparison of transfers from UCSB to OSU (32KB -
1024KB in size).

[11] Stefan Savage, Andy Collins, Eric Hoffman, John Snell, and
Thomas Anderson, “The end-to-end effects of internet path se-
lection,” in SIGCOMM, 1999, pp. 289–299.

[12] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris,
“The case for resilient overlay networks,” in 8th Annual Work-
shop on Hot Topics in Operating Systems (HotOS-VIII), May
2001.

[13] N. Rao, “Netlets: End-to-end QoS mechanisms for distributed
computing over internet using two-paths,” Int. Conf. on Internet
Computing, 2001.

[14] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans
Kaashoek, and James W. O’Toole, Jr., “Overcast: Reliable mul-
ticasting with an overlay network,” pp. 197–212.

[15] David A. Maltz and Pravin Bhagwat, “MSOCKS: An architec-
ture for transport layer mobility,” in INFOCOM (3), 1998, pp.
1037–1045.

[16] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,
“Performance enhancing proxies intended to mitigate link-
related degradations,” RFC 3135, June 2001.

[17] Hari Balakrishnan, Srinivasan Seshan, and Randy H. Katz, “Im-
proving reliable transport and handoff performance in cellular
wireless networks,” ACM Wireless Networks, vol. 1, no. 4, 1995.

[18] Ajay Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mo-
bile hosts,” 1995.

[19] P. Rodriguez, S. Sibal, and O. Spatscheck, “TPOT: Translucent
proxying of TCP,” Technical report TR 00.4.1, ATT Research
Labs, 2000., 2000.

[20] Ulana Legedza and John Guttag, “Using network-level support to
improve cache routing,” Computer Networks and ISDN Systems,
vol. 30, no. 22–23, pp. 2193–2201, 1998.

[21] D. Maltz and P. Bhagwat, “Tcp splicing for application layer
proxy performance,” 1998.

[22] H. Sivakumar, S. Bailey, and R. L. Grossman, “Psockets: The
case for application-level network striping for data intensive ap-
plications using high speed wide area networks,” SC2000, Nov
2000.

[23] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for
high performance,” Network Working Group, Internet Engineer-
ing Task Force. Request For Comments: 1323, May 1992.

[24] T. Lakshman and U. Madhow, “The performance of TCP/IP for
networks with high bandwidth-delay products and random loss,”
1997.

[25] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behavior of the TCP congestion avoidance algorithm,” Computer
Communications Review, 27(3), July 1997., 1997.

[26] S. Floyd, “Connections with multiple congested gateways in
packet-switched networks part1: One-way traffic,” Computer
Communication Review, V.21 N.5, October 1991.

[27] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe, “Modeling TCP
throughput: A simple model and its empirical validation,” Pro-
ceedings of the ACM SIGCOMM ’98 conference on Applications,
technologies, architectures, and protocols for computer commu-
nication, pp. 303–314, 1998.

[28] T. Ott, J. Kemperman, and M. Mathis, “The stationary behavior
of ideal tcp congestion avoidance,” ftp://ftp.bellcore.
com/pub/tjo/TCPwindow.ps.

[29] Mark Allman and Vern Paxson, “On estimating end-to-end net-
work path properties,” in SIGCOMM, 1999, pp. 263–274.

[30] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the
differentiated services field,” 1998.

[31] R. Braden, D. Clark, and S. Shenker, “Integrated services in the
internet architecture: an overview,” RFC 1633, June 1994.

[32] R. Wolski, “Dynamically forecasting network performance using
the network weather service,” Cluster Computing, vol. 1, pp.
119–132, January 1998.

[33] M. Mathis, R. Reddy, J. Heffner, and J. Saperia, “TCP extended
statistics MIB,” Internet Draft, draft-mathis-rfc2012-extension-
00.txt, November 2001.

[34] R. Rivest, “The md5 message-digest algorithm,” Network Work-
ing Group, Internet Engineering Task Force. Request for Com-
ments: 1321, April 1992.

[35] Vern Paxson, “End-to-end internet packet dynamics,”
IEEE/ACM Transactions on Networking, vol. 7, no. 3, pp. 277–
292, 1999.

[36] Jerome H. Saltzer, David P. Reed, and David D. Clark, “End-to-
end arguments in system design,” ACM Transactions on Com-
puter Systems, vol. 2, no. 4, pp. 277–288, 1984.

[37] “SOCKS,” http://www.socks.nec.com/.
[38] “Abilene,” http://www.ucaid.edu/abilene/.
[39] V. Jacobson, “Congestion avoidance and control,” ACM Com-

puter Communication Review; Proceedings of the Sigcomm ’88
Symposium in Stanford, CA, August, 1988, vol. 18, 4, pp. 314–
329, 1988.

[40] Allman, Paxson, and et al., “TCP congestion conrol,” RFC 2581,
April 1999.

