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University of California, Santa Barbara

raju@cs.ucsb.edu zoran@cs.ucsb.edu echang@ece.ucsb.edu schauser@cs.ucsb.edu

Abstract

The performance of streaming media servers has been limited due to the dual requirements of high
throughput and low memory use. Although disk throughput has been enjoying a 40% annual increase,
slower improvements in disk access times necessitate the use of large DRAM buffers to improve the
overall streaming throughput. MEMS-based storage is an exciting new technology that promises to
bridge the widening performance gap between DRAM and disk-drives in the memory hierarchy. This
paper explores the impact of integrating these devices into the memory hierarchy on the class of streaming
media applications. We evaluate the use of MEMS-based storage for buffering and caching streaming
data. We also show how a bank of k MEMS devices can be managed in either configuration and that
they can provide a k-fold improvement in both throughput and access latency. An extensive analytical
study shows that using MEMS storage can reduce the buffering cost and improve the throughput of
streaming servers significantly.

1 Introduction

Applications such as news or video on demand, distance learning, scientific visualization, and immersive
virtual reality must store, maintain, and retrieve large volumes of real-time data. These data are collectively
referred to as continuous or streaming media. They require storage architectures that can accommodate
their real-time delivery constraints as well as their large sizes. Economical delivery of these data requires
that such architectures also provide high disk throughput and minimize memory usage.

Even after the long reign of Moore’s Law, the basic memory hierarchy in computer systems has not
changed significantly. At the non-volatile end, magnetic disks have managed to survive as the most cost-
effective mass storage medium, and there are no alternative technologies which show promise for replacing
them in the next decade [19]. Disk access times, however, are improving at the rate of only 10% per year.
For more than a decade they have continued to lag behind the annual disk throughput increase of 40%
and capacity increase of 60% [19]. Due to the increasing gap between the improvements in disk bandwidth
and disk access times (both seek time and rotational delay), achieving high disk throughput necessitates
accessing the disk drive in larger chunks. This translates to a rapidly-increasing DRAM buffering cost. A
large DRAM buffer is especially necessary for servers which stream to a large number of clients. Multimedia
server architects have tried to cope with this performance gap by proposing solutions ranging from simple
resource trade-offs [13, 24] to more complex ones that require substantial engineering effort [2, 7, 10].

Micro-electro-mechanical-systems (MEMS) based storage is an emerging technology that promises to
bridge the performance gap between magnetic disks and DRAM [1]. MEMS devices are predicted to be
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an order of magnitude cheaper than DRAM, while offering an order of magnitude faster access times than
disk drives [15]. These devices offer a unique low-cost solution for streaming applications. In this study, we
propose an analytical framework to evaluate the effective use of MEMS devices in a streaming media server.
Specifically, we derive analytical models for studying two MEMS configurations, using MEMS storage as
a buffer between DRAM and disk, and using MEMS storage as a cache.

• MEMS buffer. When MEMS storage is used as a speed-matching buffer between the disk drive and
DRAM, all data retrieved from the disk to DRAM are first retrieved into the MEMS buffer and then
transferred to DRAM.

• MEMS cache. When MEMS storage is used as a cache, it stores popular multimedia streams in their
entirety.

MEMS-based storage provides access characteristics superior to those of disk drives, thus reducing the
DRAM buffering requirement. In addition, being a magnitude cheaper than DRAM, MEMS devices can
improve the disk throughput by providing low-cost buffering for large disk IOs. Caching popular content on
MEMS storage can also reduce the DRAM buffer requirement and improve the total streaming throughput
of the media server. At first glance, the issues involved in placing MEMS storage between the DRAM and
the disk-drive, either as a buffer or as a cache, seem straightforward enough. However, the real-time IO
requirement of the media data and the mismatch between the transfer rates of disk and DRAM make some
MEMS storage configurations infeasible or counter-productive. Our extensive analytical and empirical
studies reveal the following design principles: (i) when used to buffer streaming data, MEMS storage must
be used to buffer only low and medium bit-rate streams, (ii) When the streaming content has a non-
uniform popularity distribution, MEMS-based disk caching can improve the server throughput regardless
of the bit-rate of the streams serviced. We shall examine these principles further in the experimental
section.

This work has led to several research contributions. Primarily, it takes the first step towards under-
standing the role of MEMS-based storage devices in next-generation streaming multimedia servers. In
particular, we make the following contributions:
1. We propose using MEMS devices in two possible configurations: MEMS as a buffer and MEMS as a
cache. We also show how a bank of k MEMS devices can be managed in either configuration and that
they can provide a k-fold improvement in both throughput and access latency.

2. We develop an analytical framework for guaranteeing real-time constraints in the presence of the
additional MEMS-based storage layer in the memory hierarchy.

3. Based on our evaluation, we provide guidelines for designing the next generation of streaming media
servers using MEMS devices.

The rest of this paper is organized as follows: Section 2 briefly explains one possible architecture for the
MEMS storage and presents current predictions for future DRAM, disk, and MEMS storage characteristics.
Section 3 introduces MEMS storage as an intermediate buffer as well as a cache for streaming data. In
Section 4 we present a quantitative model for analyzing the two MEMS storage configurations. Section 5
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presents a performance evaluation of the MEMS-based streaming server architecture based on our analytical
model. Section 6 presents related research. In Section 7, we suggest directions for future work.

2 MEMS-based Storage

Researchers at the Carnegie Mellon University have proposed one possible architecture for a MEMS-based
storage device [5, 15] depicted in Figure 1. They propose MEMS devices which would be fabricated on-chip,
but would use a spring-mounted magnetic media sled as a storage medium. The media sled is placed above
a two-dimensional array of micro-electro-mechanical read/write heads (tips). Actuators move the media
sled above the array of fixed tips along both the X and Y dimensions. Moving along the Y dimension at
a constant velocity enables the tips to concurrently access data stored on the media sled. Using a large
number of tips (of the order of thousands) concurrently, such a device can deliver high data throughput.
The light-weight media sled of the MEMS device can be moved and positioned much faster than bulkier
disk servo-mechanisms, thus cutting down access times by an order of magnitude.

Media accessed
by a single tip

Electronics

Tip

Media SledX Actuator

Y Actuator

Figure 1: MEMS-based storage architecture.

Year DRAM MEMS Disk

Capacity [GB] 0.5 n/a 100
Access time [ms] 0.05 n/a 1− 11

2002 Bandwidth [MB/s] 2, 000 n/a 30− 55
Cost/GB $200 n/a $2
Cost/device $50- $200 n/a $100- $300

Capacity [GB] 5 10 1, 000
Access time [ms] 0.03 0.4− 1 0.75− 7

2007 Bandwidth [MB/s] 10, 000 320 170− 300
Cost/GB $20 $1 $0.2
Cost/device $50- $200 $10 $100- $300

Table 1: Storage media characteristics.

Table 1 summarizes important characteristics of different storage media for the year 2002 and the
predicted values for the year 2007. The MEMS device projections are borrowed from [15]; the disk drive
projections are based on [19]; and DRAM predictions are based on [12].

Typically, most storage media are optimized for sequential access. For instance, the maximum DRAM
throughput is achieved when data is accessed in sequential chunks, about the size of the largest cache block.
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These are typically tens to hundreds of bytes. However, both magnetic disks and MEMS-based storage
devices (MEMS) have much longer access times than DRAM. These devices have to be accessed in much
larger chunks to mask the access overheads, the MEMS device being the faster of the two by an order of
magnitude. Figure 2 shows the effective throughput of the disk drive and the MEMS device depending on
the average IO sizes on these devices. In Figure 2 we use the maximum access times for servicing MEMS
IO requests, and the average access times for disk IO requests.
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Figure 2: Effective device throughputs.

3 MEMS-based Streaming

Streaming data is characterized by the dual requirements of guaranteed-rate IO and high throughput.
To service multiple streams, the disk-drive bandwidth is time-shared among the streams. However, this
time-sharing degrades disk throughput. Any system designed for servicing streaming data must address
the inherent trade-off between disk throughput and data buffering requirements.

In this paper, we adopt the time-cycle based scheduling model [13] for scheduling continuous media
streams. In this model, time is split into basic units called IO cycles. In each IO cycle, the disk performs
exactly one IO operation for each media stream. Given the stream bit-rates, the IO cycle time is the
amount of time required to transfer sufficient amount of data for each stream so as to sustain jitter-free
playback. The IO cycle time depends on the system configuration as well as the number and type of
streams requested. To service multiple streams, the IO scheduler services the streams in the same order
in each time-cycle. Careful management of data buffers and precise scheduling [2] can reduce the total
amount of buffering required to the amount of data read in one time-cycle.

In traditional multimedia servers, the buffering requirement is addressed using the system memory
(DRAM). MEMS-based storage devices can be used to offload part of the DRAM buffering requirement.
They can also be used as caches to provide faster access to multimedia content. Figure 3 illustrates the
new system architecture that includes the MEMS device in the storage hierarchy. The MEMS storage
module can consist of multiple MEMS devices to provide greater storage capacity and throughput. The
MEMS device is accessed through the IO bus. It can be envisioned as part of the disk drive or as an
independent device. In either case, IOs can be scheduled on the MEMS device as well as on the disk drive
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Figure 3: The MEMS Architecture

independently. Similar to disk caches found on current-day disk drives, we assume that MEMS storage
devices would also include on-device caches. In what follows, we present two possible scenarios in which
such an architecture can be used to improve the performance of a multimedia system.

3.1 MEMS Multimedia Buffer

Using MEMS storage as an intermediate buffer between the disk and DRAM enables the disk drive to
be better utilized. At a fraction of the cost of DRAM, MEMS storage can provide a large amount of
buffering required for achieving high disk utilization (See Figure 2). Although DRAM buffering cannot be
completely eliminated, the low access latency of MEMS storage provides high throughput with significantly
lesser DRAM buffering requirement. The MEMS device can thus act as a speed-matching buffer between
the disk drive and the system memory, in effect addressing the disk utilization and data buffering tradeoff.

Using MEMS storage as an intermediate buffer implies that the MEMS-based device must handle both
disk and DRAM data traffic simultaneously. To understand the service model, let us assume that the
multimedia streams being serviced are all read streams, so that stream data read from the disk drive is
buffered temporarily in the MEMS device before it is read into the DRAM. This model can be easily
extended to address write streams.

To service buffered data from the MEMS device, we use the time-cycle-based service model previously
proposed for disk drives. Data is retrieved in cycles into the DRAM such that no individual stream
experiences data underflow at the DRAM. At the same time, the data read from the disk drive must be
written to the MEMS device. The disk IO scheduler controls the read operations at the disk drive. The
MEMS IO scheduler controls the write operations for data read from the disk as well as read operations
into the DRAM. In the steady state, the amount of data being written to the MEMS device is equal to
the amount read from it. The MEMS bandwidth is thus split equally among read and write operations.
Thus, although the MEMS device can help improve disk utilization, we must realize that to do so, it must
operate at twice the throughput of the disk drive. In order to minimize buffering requirements between
the disk drive and the MEMS storage, the disk and the MEMS IO schedulers must therefore co-operate.

The MEMS buffer could consist of multiple physical MEMS devices to provide greater buffering capacity
and throughput. As we shall see in Section 5, a bank of MEMS devices may be required to buffer IOs for
a single disk. The (predicted) low entry-cost of these devices makes such configurations practical. We now
present a feasible IO schedule that maintains real-time guarantees, when a single MEMS device is used for
buffering. We then extend our methodology to work with a bank of MEMS devices.
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3.1.1 IO Scheduling: Single MEMS

We now present one possible IO scheduler which guarantees real-time data retrieval from the disk using a
single-device MEMS buffer. The MEMS IO scheduler services IOs on the MEMS device in rounds or IO
cycles. In each IO cycle, the MEMS device services exactly one DRAM transfer for each of the N streams
serviced by the system. The amount of data read for each stream is sufficient to sustain playback before
the next IO for the stream is performed. Further, the MEMS device also services M transfers (M < N)
from the disk in each IO cycle. In the steady state, the total amount of data transferred from the disk
to the MEMS buffer is equal to that transferred from the MEMS buffer to DRAM. Thus, there exist two
distinct IO cycles, one for the disk (the disk IO cycle, during which N IOs are performed on the disk-drive)
and the other for the MEMS buffer (the MEMS IO cycle, during which N IO transfers occur from the
MEMS buffer to the DRAM).
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Figure 4: MEMS IO Scheduling.

Figure 4 describes the data transfer operations occurring during a single MEMS IO cycle. The X-axis
is the time axis; the three horizontal lines depict the activity at the disk head, the MEMS tips, and the
DRAM, respectively. In this example, the system services 10 streams (N = 10). The lightly shaded
regions depict data-transfer from the disk drive into the MEMS device. The dark regions depict data-
transfer between the MEMS device and the DRAM. The MEMS device performs N small IO transfers
between MEMS and DRAM, and M large disk transfers in each MEMS IO cycle.

3.1.2 IO Scheduling: Multiple MEMS

According to certain predictions [15, 21], a single MEMS device might not be able to support twice the
bandwidth of future disk drives. In such cases, a bank of k MEMS devices would provide a higher aggregate
bandwidth. Using k MEMS devices for buffering disk IOs raises interesting questions. How should stream
data be split across these devices? What constitutes an IO cycle at the MEMS buffer? To what uses can
we put any spare storage or bandwidth at the MEMS devices? We answer each question in turn.

Placing stream data: Buffered data can be placed in one of two ways: stripe the buffered data for
each stream across the MEMS bank or buffer each stream on a single MEMS device. Striping data for
each stream across the k MEMS devices can be accomplished by splitting each disk IO into k parts and
routing each part to a different MEMS device. The size of disk-side IOs performed on the MEMS device is
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reduced by a factor of k. Since a smaller average IO size decreases the MEMS device throughput, striping
can be undesirable.

Instead of striping the data, the set of streams could be split across the MEMS bank. Each stream
would thus be buffered on a single MEMS device. This would preserve the size of disk-side IO transfers.
To achieve such a split, the disk IOs are routed to the MEMS devices in a round-robin fashion. Every
kth disk IO is routed to the same MEMS device. Routing each IO to a single MEMS device improves the
MEMS throughput and is thus preferable to striping each disk IO across the MEMS bank.
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Figure 5: IO Scheduling for a MEMS bank.

IO Cycle for a k-device MEMS bank: Routing each disk IO to a single MEMS device splits the
set of streams across the k MEMS devices in the bank. The notion of IO cycle for the MEMS bank can
be defined in the same manner as that for a single device MEMS buffer. It is the time required to perform
exactly one DRAM transfer for each of the N streams serviced by the system. For the sake of simplicity,
let us assume that each MEMS device services N

k streams. Figure 5 depicts the operations during an IO
cycle at each MEMS device. The number of streams, N , is 45 and the number of MEMS devices in the
bank is k = 3. For each disk IO, 15 DRAM transfers take place. The amount of data read from and
written into the MEMS device is the same in the steady state.

Using the spare MEMS storage and bandwidth: Depending on the number and type of streams
serviced and the capacity of the MEMS device bank, spare storage and/or bandwidth might be available
at the MEMS device. If additional storage is available at the MEMS device, the operating system could
use it for other non-real-time data: as a persistent write buffer, as a cache for read data with temporal or
spatial locality, or as a disk prefetch buffer. The MEMS storage can also be used to cache entire streams,
as we shall explore next. Spare bandwidth, if available, can be used for non-real-time traffic.

3.2 MEMS Multimedia Cache

Multimedia content usually has a well-defined popularity distribution, and some content are accessed more
frequently than others. Besides using MEMS storage as a buffer for streaming multimedia data from the
disk drive, we can also use a MEMS storage device as a cache for popular multimedia content. Since
the MEMS device offers low latency data access at throughput levels similar to those of the disk-drive,
storing popular content on a MEMS cache reduces the buffering requirement for streaming data and hence
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DRAM cost. By using k MEMS devices, we can also use the aggregate bandwidth of the MEMS cache for
improving the server throughput.

One significant difference between using a MEMS device as a cache and using it as a buffer is that with
caching, the MEMS cache behaves primarily as a read-only device. The MEMS cache is updated only to
account for changes in stream popularity. This can be accomplished off-line, during service down-time. To
service streams from the cache, we use time-cycle-based IO scheduling. Again, there exist two distinct IO
cycles, one for the streams serviced from the disk-drive and the other for those serviced from the MEMS
cache. The performance of either device depends on the available DRAM buffering and the number of
streams serviced from it.

When more than one MEMS device is used for caching, the performance of the MEMS cache depends
on the data management policy used for the MEMS bank. With multiple devices, we must ensure that the
load on the MEMS devices is balanced. In this regard, we can draw on research from data management
policies for disk arrays [3]. We now investigate two cache-management policies, representing two classes of
load balancing strategies, which ensure total load-balance across the MEMS bank. These approaches make
different trade-offs to optimize for a sub-set of system configurations. More sophisticated load-balancing
strategies, including hybrid approaches of the above, have been proposed in literature [3, 14, 22, 23]. We
investigate two simple, representative approaches as a first step.

3.2.1 Striped Cache-management

Using striped cache-management, each stream is bit- or byte-striped across all the k MEMS devices. There
is no redundancy, and data for each stream is distributed in round-robin fashion across the MEMS devices.
To perform an IO on the MEMS cache, all the devices access exactly the same relative data location, in a
lock-step fashion. The load is thus perfectly balanced across the MEMS cache. The effective data transfer
rate of the MEMS cache is k times that of a single device. The effective access latency of the MEMS cache
is the same as that of a single device. If Nm streams are serviced from the MEMS cache, the total number
of seek operations in an IO cycle is k · Nm. Using striped cache-management, perfect load-balancing is
achieved at the cost of reduced access parallelism of the devices.

3.2.2 Replicated Cache-management

Using replicated cache-management, the cached streams are replicated on the k MEMS devices. All the
devices store exactly the same content. To perform an IO on the MEMS cache, any of the k devices can
be accessed. If the number of streams serviced from the MEMS cache is Nm, then each MEMS device
services exactly Nm

k of the streams. Since each MEMS device stores all the cached streams, such a division
is possible. The effective data transfer rate of the MEMS cache is k times that of a single device. Operating
the k devices independently improves parallelism of access. The total number of seek operations in an IO
cycle is only Nm as opposed to k ·Nm in striped cache-management. Using replicated cache-management,
perfect load balancing is achieved at the cost of reduced cache size due to data redundancy. In Section 4.2,
we further analyze the trade-offs involved in each policy.
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4 Quantitative Analysis

In this section we derive quantitative models to analyze buffering requirements for systems supporting
real-time streaming applications using MEMS devices. We discuss two system configurations:

• MEMS as a buffer. All data retrieved from the disk to DRAM are first retrieved into the MEMS
buffer and then transferred to DRAM.

• MEMS as a cache. Selected data are cached on the MEMS device. Requested data can be serviced
either from the disk-drive or the MEMS cache.

Parameter Description

N Number of continuous media streams
B̄ Average bit-rate of the streams serviced [B/s]
k Number of MEMS devices in system

Rdisk Sequential data transfer rate from disk media [B/s]
Rmems Sequential data transfer rate from MEMS media [B/s]
L̄disk Average latency of for disk IO operations [s]
L̄mems Average latency of for MEMS IO operations [s]

Cdram Unit DRAM cost [$/B]
Cmems Unit MEMS cost [$/B]
Sizemems MEMS capacity per device [B]
Sizedisk Disk capacity [B]

Sdisk−dram Average IO size from disk to DRAM [B]
Sdisk−mems Average IO size from disk to MEMS [B]
Smems−dram Average IO size from MEMS to DRAM [B]

Tdisk Disk IO cycle [s]
Tmems MEMS IO cycle [s]

Table 2: Parameter definitions.

To evaluate the effectiveness of MEMS-based buffering and caching, we compare the system cost with
and without MEMS. Let Cdram and Cmems denote the unit cost ($/B) of DRAM and MEMS buffer,
respectively. Furthermore, we use a per-device cost model for MEMS storage. The k MEMS devices cost
k × Cmems × Sizemems even if the system does not utilize all the available MEMS storage.

4.1 MEMS as a Buffer

Let Sdisk−dram denote the per-stream IO size from disk to DRAM, Sdisk−mems from disk to MEMS, and
Smems−dram from MEMS to DRAM. Let k denote the number of MEMS devices in the system. Let N

denote the number of streams in the system. The buffer cost with and without the MEMS buffer is:

COSTwithout mems = N × Cdram × Sdisk−dram (1)

COSTwith mems = k × Cmems × Sizemems + N × Cdram × Smems−dram ,

where k × Sizemems ≥ N × Sdisk−mems. (2)

Using MEMS devices in a streaming system is cost effective only if COSTwith mems < COSTwithout mems.
In order to calculate the system cost, we first calculate IO sizes that guarantee the real-time streaming

requirements. We next compute disk and MEMS IO sizes given the following four input parameters:
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• N : The number of streams that the server supports.

• B̄: The average bitrate of the N streams.

• Rd: The data transfer rate of device d. Rd is substituted by Rdisk (disk transfer rate) or Rmems (MEMS
transfer rate) depending on where the IO takes place.

• L̄d: The average latency of device d in a time-cycle. L̄d is substituted by L̄disk (disk latency) or L̄mems

(MEMS latency) depending on the where the IO takes place. L̄d also depends on the scheduling policy
employed to manage device d.

In computing IO size, we make two assumptions that are commonly used in modeling a media server.
First, we use the notion of IO cycles (Section 3). Second, to simplify the analytical model, we assume all
streams are in constant bit-rate (CBR).1 We summarize the parameters used in this paper in Table 2.
Theorem 1. For a system which streams directly from the disk to DRAM, the minimum size of the
per-stream DRAM buffer required to satisfy real-time streaming requirements is

Sdisk−dram =
N × L̄disk ×Rdisk × B̄

Rdisk −N × B̄
, where Rdisk > N × B̄. (3)

Proof: Given N streams to support, in each IO cycle the disk must perform N IO operations, each
consisting of a latency component and a data transfer component. Let Tdisk denote the disk cycle time.
Let Ldiski denote the disk latency to start IO transfer for stream i. Then Tdisk can be written as

Tdisk ≥
N∑

i=1

Ldiski +
N × Tdisk × B̄

Rdisk
.

To fulfill the real-time data requirement, the amount of data transferred during Tdisk must be sufficient to
sustain the next Tdisk time of playback for N streams. Thus the average disk IO size Sdisk−dram = Tdisk×B̄.
Now, we isolate Tdisk on the left-hand side of the equation, and rewrite Tdisk as

Tdisk ≥ N × L̄disk ×Rdisk

Rdisk −N × B̄
.

Given Tdisk and B̄, we can compute the average disk IO size as Sdisk−dram = Tdisk × B̄. 2

Corollary 1. To stream directly from the MEMS device to the DRAM, the minimum size of the per-stream
DRAM buffer required to satisfy real-time streaming requirements is

Smems−dram =
N × L̄mems ×Rmems × B̄

Rmems −N × B̄
, where Rmems > N × B̄. (4)

Although Theorem 1 is well established [13], calculating IO sizes is more complex in a system that uses
MEMS as an intermediate buffer between the disk and DRAM because we must consider the real-time
requirements between the disk and MEMS as well as between the MEMS and DRAM.
Theorem 2. For a system which uses k MEMS devices as a disk buffer, the minimum size of the per-stream
DRAM buffer required to satisfy real-time streaming requirements is

Smems−dram = B̄ × C × (1 + 2k−2
N )× Tdisk

Tdisk − C
, where C =

N × L̄mems ×Rmems

k ×Rmems − 2× (N + k − 1)× B̄
. (5)

1Many studies [8] have shown that VBR can be modeled by CBR plus some memory cushion for handling bitrate variability.
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Tdisk is the largest value such that the following three conditions (real-time requirement, storage require-
ment, and scheduling requirement) are satisfied:

Tdisk ≥ N × L̄disk ×Rdisk

Rdisk −N × B̄
, where Rdisk > N × B̄ (6)

2×N × Tdisk × B̄ ≤ k × Sizemems (7)
Tmems

Tdisk
=

M

N
, M < N, M ∈ Integer. (8)

Proof: Let M denote the number of disk IOs performed in one MEMS time-cycle. For the sake of
simplicity, we will assume that M must be an integer. Let k denote the number of MEMS devices acting
as a buffer. The amount of data transferred between the disk-drive and the MEMS buffer in one MEMS
IO cycle must be equal to that transferred between the MEMS buffer and DRAM. This is to ensure that
the MEMS buffer does not overflow or underflow in the steady state. Consequently,

N × Smems−dram = M × Sdisk−mems

N

M
=

Sdisk−mems

Smems−dram
=

B̄ × Tdisk

B̄ × Tmems
=

Tdisk

Tmems

M = N × Tmems

Tdisk
, {N,M} ∈ Integer. (9)

Equations 6 and 7 give a possible range for Tdisk. However, the lower bound for Tmems has to be derived.
Let us first express Tmems in a system with k MEMS devices so that real-time streaming requirements are
satisfied. Each MEMS device performs at most

⌈
M
k

⌉
disk transfers and

⌈
N
k

⌉
DRAM transfers. Thus, we

can express Tmems at each MEMS device as

Tmems ≥
(⌈

N

k

⌉
+

⌈
M

k

⌉)
× L̄mems + (2×

⌈
N

k

⌉
× B̄ × Tmems)/Rmems. (10)

Using Equation 10 we derive minimum value for Tmems as

Tmems ×
(

Rmems − 2×
⌈
N

k

⌉
× B̄

)
≥

(⌈
N

k

⌉
+

⌈
M

k

⌉)
× L̄mems ×Rmems

Tmems ≥ (N + 2k − 2 + M)× L̄mems
k × k ×Rmems

k ×Rmems − 2× (N + k − 1)× B̄
. (11)

Corollary 2. When N and M are divisible by k (or are relatively large compared to k), k MEMS devices
behave as a single MEMS device with both k times smaller average latency and k times larger throughput.
Proof: Since Smems−dram = B̄×Tmems, the proof follows from a comparison between Equations 4 and 11.

Let us now express minimum Tmems as a function of Tdisk using Equations 6, 9, and 11 as

Tmems =
C × (1 + 2k−2

N )× Tdisk

Tdisk − C
, where C =

N × L̄mems ×Rmems

k ×Rmems − 2× (N + k − 1)× B̄
. (12)

Figure 6 depicts the possible values of Tmems as a function of Tdisk (C1 = C and C2 = C × (1 + (2k −
2)/N)). Equation 6 gives minimum value for Tdisk so that the system satisfies real-time requirements.
Maximum Tdisk is bounded by the capacity of MEMS storage as in Equation 7. 2

We can now find a minimum cost for the streaming buffer by performing the iterative method depicted
in Figure 7.
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Figure 6: Tmems as a function of Tdisk. DRAM buffering can be reduced by increasing Tdisk.
Input: N , B̄, L̄disk, Rdisk, L̄mems, Rmems.
Output: k, Tmems, and Tdisk.

1. MinCost = Cdram ×N × Sdisk−dram

2. k = 0
3. do
4. k = k + 1
5. Find Tmems using Theorem 2.
6. Cost = k × Cmems × Sizemems + Cdram ×N × Tmems × B̄
7. if Cost < MinCost then MinCost = Cost
8. while MinCost > (k + 1)× Cmems × Sizemems

Figure 7: Procedure for finding the minimum buffer cost.

4.2 MEMS as a Cache

Although streaming data do not have temporal locality, they are often characterized by a non-uniform
popularity distribution. Caching popular content in MEMS storage can decrease the DRAM buffering
requirement so that the system can support more streams. Let h denote the hit-rate for the MEMS cache.
Given N streams to service, N × h of them can then be serviced from MEMS, and N × (1 − h) streams
are serviced from disk. As in the cost model for the MEMS multimedia buffer, we can express the cost of
DRAM buffer and MEMS cache as

COSTwith mems−cache = k × Cmems × Sizemems + h×N × Cdram × Smems−dram

+ (1− h)×N × Cdram × Sdisk−dram. (13)

Using Theorem 1 we can calculate Sdisk−dram as

Sdisk−dram =
(1− h)×N × L̄disk ×Rdisk × B̄

Rdisk − (1− h)×N × B̄
, where Rdisk > (1− h)×N × B̄. (14)

In order to calculate h and Smems−dram, let us assume that the popularity distribution of content is
specified by X : Y , where X% of the streams are accessed Y % of the time. Let us assume that both
popular (X%) and non-popular streams (100%−X) are accessed uniformly in their class. The capacity of
the disk, Sizedisk, is the total storage required for all the streams serviced by the system. Let the capacity
of a single MEMS device be denoted by Sizemems. Let the percentage of movies cached be denoted by p.
Then the cache hit ratio, h, can be expressed as

h =

{
p
X × Y

100% if X ≥ p,
Y

100% + p−X
100%−X × 100%−Y

100% otherwise.
(15)

12



If the MEMS cache contains a single MEMS device, then p and Smems−dram (using Equation 4) are

p =
SIZEmems

SIZEdisk
; Smems−dram =

n× L̄mems ×Rmems × B̄

Rmems − n× B̄
(16)

However, if the cache consists of more than one MEMS device, both p and Smems−dram depend on the
cache management policy used for accessing the MEMS cache. We explore the two policies, namely striped
and replicated, introduced in Section 3.2.

4.2.1 Striped Cache Management

Theorem 3. For a server that employs the striped cache-management policy across an array of k MEMS
devices for serving n streams, the minimum size of per-stream DRAM buffer required to satisfy real-time
streaming requirements is

Smems−dram =
n× L̄mems × (k ×Rmems)× B̄

(k ×Rmems)− n× B̄
, where k ×Rmems > n× B̄. (17)

Proof: For the striped case, each MEMS device stores 1
k th of each cached stream. All the MEMS devices

perform IO operations synchronously and each MEMS device is used to retrieve 1
k th of the data for each

IO. We can express the MEMS time-cycle at each device as

Tmems ≥ n× L̄mems +
(

n

k
× B̄ × Tmems

)
/Rmems. (18)

The rest of the proof proceeds as in Theorem 2.
Corollary 3. A striped cache, consisting of k MEMS devices, behaves as a single MEMS cache with k

times larger throughput and unchanged access latency.
Proof: The proof follows by comparing Equation 17 with Equation 16.

For the striped case, the percentage of cached streams is

p =
k × Sizemems

Sizedisk
.

Using Theorem 3, we can express the per-stream buffer requirement for access to the striped cache as

Smems−dram =
h×N × L̄mems × (k ×Rmems)× B̄

(k ×Rmems)− h×N × B̄
, where k ×Rmems > h×N × B̄.

4.2.2 Replicated Cache Management

Theorem 4. For a server that employs the replicated cache-management policy across an array of k

MEMS devices for serving n streams, the minimum size of per-stream DRAM buffer required to satisfy
real-time streaming requirements is

Smems−dram =
(n + k − 1)× L̄mems

k × (k ×Rmems)× B̄

(k ×Rmems)− (n + k − 1)× B̄
, where k ×Rmems > (n + k − 1)× B̄. (19)
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Proof: For the replicated case, each MEMS device contains all cached streams. All the MEMS devices
are operated independently, and each of them services at most

⌈
n
k

⌉
of the streams. We can then express

the MEMS time-cycle as

Tmems ≥
⌈
n

k

⌉
× L̄mems +

(⌈
n

k

⌉
× B̄ × Tmems

)
/Rmems. (20)

The rest of the proof proceeds as in Theorem 2.
Corollary 4. When N is divisible by k (or is relatively large compared to k), k replicated cache behaves
as a single MEMS device with k times larger throughput as well as k times smaller average latency.
Proof: The proof follows by comparing Equation 19 with Equation 16.

For the replicated case, the percentage of cached streams is

p =
Sizemems

Sizedisk
, for any k.

Using Equation 15 we can calculate h. Then, using Theorem 4, we can express the per-stream buffer
requirement as

Smems−dram =
h× (N + k − 1)× L̄mems

k × (k ×Rmems)× B̄

(k ×Rmems)− h× (N + k − 1)× B̄
, where k×Rmems > h× (N + k− 1)× B̄.

5 Experimental Evaluation

This section presents an experimental evaluation of a streaming multimedia system equipped with a MEMS-
based storage device. We compare its performance to that of a system which does not include such a device
in the storage hierarchy. We evaluate separately the performance of the MEMS device when it is used
to buffer streaming data stored on the disk drive, and when it is used to cache popular streams. The
evaluation presented in this section is based on the analytical model presented in Section 4.

Parameter Atlas 10K FutureDisk G3 MEMS DRAM

year 2002 2007 2007 2007
rotations per minute 10, 000 20, 000 – –
maximum bandwidth [MB/s] 55 300 320 10, 000
average seek [ms] 4.5 2.8 – –
full stroke seek [ms] 11.0 7.0 0.45 –
X settle time [ms] – – 0.14 –
per-sled capacity [GB] – – 10 –
Cost/GB [$] – 0.2 1 20
Cost/device [$] 100–300 100–300 10 50–200

Table 3: Performance characteristics of the storage devices in 2002 and in 2007. The FutureDisk
and the reference Atlas 10K III SCSI disk, the G3 MEMS device, and DRAM used in our experiments are
based on projections using current trends.

To model the performance of the MEMS device, we closely followed one such model proposed by
researchers at Carnegie Mellon University. The work in [15] describes their model comprehensively. For our
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experiments, we use the “3rd Generation” (G3) MEMS device model proposed in this study. We obtained
predictions for disk-drive and DRAM performance by using projections on current-day devices produced by
Maxtor [9] and Rambus [12] respectively. To model disk-drive performance, we used the performance of a
hypothetical FutureDisk, obtained by a projection of current disk-drive trends to the year 2007. A current-
day Atlas 10K III SCSI disk drive [9] was used as the reference disk. The performance characteristics
of these devices are summarized in Table 3. Of course, predictions regarding the performance and cost
of these devices may not be 100% accurate. We therefore conducted a sensitivity study by varying the
relative performance factors and costs of these devices.

In our experiments the average bit-rate of streams, B̄, was varied within the range of 10KB/s to
10MB/s. Since the maximum bandwidth of the FutureDisk, Rdisk, is 300MB/s, it can support tens of
high-definition streams at a few megabytes per second each, more than a hundred compressed MPEG2
(DVD quality) streams at 1MB/s, or a thousand DivX (MPEG4) streams at 100KB/s, or even tens of
thousands of MP3 audio or low-resolution video streams at a bit-rate of 10KB/s or less. To minimize the
misprediction of seek-access characteristics for the MEMS device, we assume that MEMS accesses, L̄mems,
always experience the maximum device latency.2 In contrast, we use scheduler-determined latency values,
L̄disk, for disk accesses. The disk IO scheduler uses elevator scheduling to optimize for disk utilization.

5.1 MEMS Multimedia Buffer

Accessing streaming content through a MEMS buffer (rather than directly accessing the disk drive) can
reduce the DRAM requirement of a streaming media server. In our experiments, we used at least two G3
MEMS devices for buffering the streaming data, which provided a maximum aggregate MEMS throughput
of 640 MB/s. To evaluate the performance of the MEMS multimedia buffer, our experiments aimed to
answer the following questions:

• By how much does a MEMS device reduce DRAM requirement for various streaming workloads ?

• By how much does a MEMS buffering device reduce the overall system cost ?

• How sensitive are each of the above metrics to possible variations in MEMS device characteristics ?

Theorems 1 and 2 presented in Section 4 define the relationship between the system parameters. To
study the sensitivity of our evaluation to MEMS device characterisitcs, we introduce the latency ratio,
L̄disk

L̄mems
, as a tunable parameter.

Latency ratio: We define the latency ratio as the ratio of the average disk access latency to the maximum
MEMS access latency. We varied the latency ratio within the range 1 to 10. The value for this parameter
is around 5 for the FutureDisk (employing elevator scheduling) and the G3 MEMS device listed in Table 3.

Next, we conducted three separate experiments to answer each of our questions. In the first two
experiments, we assumed that the maximum available amount of DRAM and MEMS storage was unlimited.
We also used a cost-per-byte price model for MEMS storage. These relaxations allowed us to observe the
relationship between all the system parameters. In the third experiment, we performed a case-study using

2This assumption is not favorable to the MEMS device performance. We would expect the average latency to be better
than the worst-case.
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a predicted “off-the-shelf” system which could be developed by the year 2007. The available buffering on
this system is limited, and its size is based on current trends in server system configurations.

5.1.1 Reduction in DRAM requirement

0.0001

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000

D
R

A
M

 r
eq

ui
re

m
en

t (
G

B
)

Number of streams

Avg. bitrate
mp3 10KB/s

DivX 100KB/s
DVD 1MB/s

HDTV 10MB/s

(a) Without MEMS buffer

0.0001

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000
D

R
A

M
 r

eq
ui

re
m

en
t (

G
B

)
Number of streams

Avg. bitrate
mp3 10KB/s

DivX 100KB/s
DVD 1MB/s

HDTV 10MB/s

(b) With MEMS buffer

Figure 8: DRAM requirement for various media types. Using a MEMS device as disk buffer reduces
the DRAM requirement by an order of magnitude.

In Figure 8(a), we vary the number of streams, N , and the average stream bit-rate, B̄. We plot the
DRAM requirement in GB on the Y-axis. The X and Y axes are drawn to logarithmic scale. The disk drive
supports different number of streams for different media types. The FutureDisk can support only around
30 HDTV streams, whereas it can support as many as 30, 000 mp3 streams. Irrespective of the bit-rates,
the total buffering requirement increases rapidly with the number of streams (according to Equations 1
and 3). For a fixed system throughput, the buffering requirement is thus much larger for smaller bit-rates
than for larger ones. In the absence of a MEMS buffer, the DRAM requirement for a fully utilized disk
ranges from 1GB for 10MB/s streams to 1TB for 10KB/s streams. In practice, multimedia systems cannot
operate at such high utilizations. due to the large DRAM requirement. If we assume that the available
DRAM buffering is limited to 1GB, then the system with a MEMS buffer can support the maximum
possible streams when the average stream bit-rate is 1− 10MB/s. It can also support more than twice the
number of streams when the average stream bit-rate is in the range of 10−100KB/s. Looking at it another
way, the DRAM requirement is reduced by an order of magnitude to support a given system throughput.

5.1.2 Reduction in Cost

Addition of a MEMS buffer reduces DRAM requirement. However, we must take the total system cost into
account before reaching a conclusion about the benefits. A streaming multimedia system might use multiple
disks for storing its streams. Since a MEMS device decreases the DRAM requirement, the reduction in the
DRAM cost lowers the total system cost. In this regard, we can calculate the cost per disk of buffering,
including MEMS and DRAM. The savings can then be multiplied for each disk in the system.
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Figure 9: Reduction in the total buffering cost for various media types.

Figure 9 shows the reduction in total buffering cost, including the additional cost of the MEMS buffer.
To calculate the cost of buffering, we use cost predictions as presented in Table 3. According to the
predictions, MEMS buffering is 20 times cheaper than DRAM buffering per-byte. In Figure 9(a) in spite
of the addition of the MEMS buffer, the total cost of buffering is reduced for all media types. Cost savings
range from tens of dollars for high bit-rate streams to tens of thousands of dollars for lower bit-rates.
These cost savings are almost directly proportional to the DRAM reductions presented in Figure 8, since
the fractional cost-addition due to MEMS buffering is negligible in most cases. This curve also shows that
using a MEMS buffer for streaming large bit-rates does not cause a significant reduction in the buffering
cost. Indeed, for large bit-rates, even DRAM buffering is sufficient to achieve high disk utilization.

Figure 9(b) shows the percentage reduction in the total buffering cost upon addition of the MEMS
buffer. The cost-reduction is between 80% and 90% depending on the number of streams, N , and their
average bit-rates, B̄. The variations in the reduction are due to the relative cost of DRAM, both with and
without the MEMS device. As N is increased, the required throughput from the disk drive increases. The
amount of DRAM buffering required to sustain a higher throughput level is also greater. The relationship
is depicted in Figure 2 for the FutureDisk disk drive and the G3 MEMS device. The behaviour of the
curves is ismilar for different media types, showing that the cost-reduction depends mainly on the total
throughput desired from the system, and not so much on the individual values of B̄ and N . The slight
variations in the absolute values of these curves are due to the variations in disk latency (depending on N)
due to the elevator scheduling policy employed. For larger values of N , the average latency is lesser.

5.1.3 A Parameter Sensitivity Study

We now present a hypothetical off-the-shelf system which could be developed in the future. We compare
a system without MEMS buffering to one that uses a MEMS buffer. Using this off-the-shelf system, we
determine the sensitivity of cost-reductions to unpredictable trend changes in device characteristics. Earlier
in the section, we defined a sensitivity parameter, latency-ratio. This parameter has a predicted value of 5
for the FutureDisk disk drive and the G3 MEMS device used in earlier experiments. However, this value
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is sensitive to future trends. In this section, we explain how the cost-savings mentioned earlier could be
sensitive to future trends in the access characteristics of these devices.3

Varying the latency-ratio ( L̄disk

L̄mems
)

In our earlier experiments, we assumed that the system could use an unlimited amount of DRAM and/or
MEMS storage, and we used a cost-per-byte model for MEMS buffering. However, a system with terabytes
of DRAM and/or buffering would be expensive and practically unrealistic. For our next set of experiments,
we restricted the system configuration to an off-the-shelf system projected for the year 2007. These
configurations restrict the buffering requirement to a practical limit. For a system that supports different
media types, the moderate utilization range depends on the average stream bit-rate, B̄, and the available
DRAM buffer, Mdram. Therefore, to make a realistic evaluation, we chose a fixed Mdram, and obtained
N for different average stream bit-rates for a system without the MEMS buffer. We then calculated the
savings in DRAM obtained by addition of a MEMS buffer to support the same number (N) of streams.
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Figure 10: Percentage cost reduction.

In the following experiment, the maximum available DRAM is fixed at 5GB, to obtain N in the absence
of a MEMS buffer. The size of the DRAM is chosen based on trend projection for server memory to the
year 2007. Cost predictions for the year 2007 (see Table 3) indicate that a 5GB DRAM buffer would
probably sell for $100. The MEMS buffering cost is calculated using a cost-per-device model. Table 3
indicates that a 10GB MEMS device would probably sell for $10. We calculated the reduction in DRAM
requirement with the addition of two MEMS devices to obtain a 20GB MEMS buffer. Factoring the cost
of the MEMS device, we plot the percentage cost-reduction curve in Figure 10.

Figure 10(a) depicts the percentage reduction in the buffering cost for different average stream bit-rates
when the latency ratio is varied. As the latency-ratio is increased, the MEMS device can deliver higher
throughputs with less buffering. As a result, the buffering cost is reduced. Another interesting observation
is that the cost-reduction trend is reversed at large bit-rates, 10MB/s in Figure 10(a). When the average

3We also investigated the sensitivity of the MEMS buffer performance to the cost and bandwidth values. The conclusion
that MEMS buffering is effective for low and medium bit-rate traffic is the same as long as the MEMS device is an order of
magnitude cheaper than DRAM and provides streaming bandwidths comparable to or greater than those of disk-drives.

18



bit-rate is increased in the lower range, the performance of both the disk drive and the MEMS device
improves. However, the differential improvement in throughput for the MEMS device is more rapid due
to its faster access characteristics (See Figure 2). This increases savings in DRAM and hence reduces the
buffering cost. However, beyond a certain average bit-rate (1MB/s in this case), the savings in DRAM
begin to taper off. In this region, the DRAM requirement in the absence of the MEMS buffer is small,
and the available 5GB DRAM buffer is under-utilized even without the MEMS buffer. In the absence of
a MEMS buffer, the DRAM requirement for the 10MB/s bit-rate range is approximately 1.5GB, thereby
limiting the cost-reduction to only 30%.

In Figure 10(b), contour lines on the XY-plane depict the regions in which the percentages of reduction
in total buffering costs are 25%, 50%, and 75%. The MEMS buffer is cost-effective almost over the entire
parameter space, with at least a 50% to 75% reduction in the total buffering cost. The cost-reductions
observed here are much smaller than those presented in Figure 9. We attribute this to the cost-per-device
model assumption for the MEMS buffer. The MEMS device used in the current experiment costs $20 and
therefore the cost-savings is less than 80%. Figure 9 had assumed a cost-per-byte model.

5.2 MEMS Multimedia Cache

When data stored on the disk drive has a non-uniform access probability, then using the MEMS device
as a cache for popular streams can improve the performance of a multimedia server as analyzed in Sec-
tion 4. However, the performance of the MEMS cache depends on three factors: the amount of MEMS
cache available, the popularity distribution of streams, and the average stream bit-rate. To measure the
performance of the MEMS cache, we calculated the improvement in the server throughput in terms of the
number of additional streams serviced using a MEMS cache by fixing the total cost of the system. The
additional cost of using a MEMS cache is reflected by a reduced amount of available DRAM buffering.
We evaluated the performance of the MEMS cache using the two cache-management policies described in
Section 3: striped and replicated. Our experiments aim to answer the following questions:

• What is the improvement in the server throughput for various popularity distributions of streams ?

• What is the improvement in the server throughput when the total cost is flexible ?

• How much does the improvement in server throughput depend on the average stream bit-rate ?

• What is the optimal size (k) of the MEMS cache for a given server setting ?

The number of streams serviced from the MEMS device depends on the number of cache hits and
follows Equation 13. To determine the cache hits, we used the size of the MEMS device relative to the size
of the disk drive. The FutureDisk has a storage capacity of a terabyte, implying that each 10GB MEMS
device can cache only 1% of the content. In our experiments, we assumed that if a stream was found in
the cache, it would be serviced only from the cache.4

To answer our first three questions, we conducted the following experiment. We fixed the cost of the
system and varied the popularity distribution to determine the server throughput with and without a

4It can be shown that the performance of the cache can be further enhanced by off-loading the servicing of some popular
streams to the disk drive if the disk is under-utilized. We leave this study for future work.
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(b) Average bit-rate 1MB/s

Figure 11: MEMS cache performance. The performance of the MEMS cache using two management
policies: striped and replicated, are compared against that of a system witout a MEMS cache.

MEMS cache. Each MEMS caching device we added reduced the amount of DRAM buffering available by
500MB to keep the cost invariant. The popularity distribution follows X:Y, where X% of the streams are
accessed Y% of the time. We also assumed that all X% of the streams were equally popular. Similarly,
we assumed that the remaining (100-X)% of the streams were equally unpopular. We conducted the same
experiment for three different values of the total buffering cost: $50, $100, and $200. The number of MEMS
devices, k, used for caching for these buffer costs are chosen as 1, 2, and 4 respectively. Later, we will
examine the effect of varying k for each value of the buffering cost. The entire experiment was performed
for two different average stream bit-rates: 10KB/s, and 1MB/s.

5.2.1 Effect of popularity distribution

Figure 11(a) compares the performance of the two cache-management policies: striped and replicated,
against a system without a MEMS cache. The X-axis represents the popularity distribution and the Y-
axis represents the server throughput in terms of the number of streams serviced. The average stream
bit-rate is fixed at 10KB/s. The performance of the system without a MEMS cache is independent of
the popularity distribution. A uniform popularity distribution is denoted by the point 50 : 50 along the
X-axis. When the number of MEMS devices is one, the performance of the replicated cache is equal to
the performance of the striped cache, since they are equivalent. For skewed popularity distributions of
1 : 99, 5 : 95, and 10 : 90, both cache management policies outperform the system without the MEMS
cache. The MEMS cache can support more streams than the disk drive due to its lower access latencies
and higher throughput. However, when the popularity distribution leans towards the uniform side, the
MEMS caching is not cost-effective. The MEMS cache is able to store only a small fraction of the popular
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movies, thereby failing to offset its cost.
We can also compare the relative performance of the two cache-management policies. When the pop-

ularity distribution is greatly skewed (1 : 99), the replicated cache-management policy supports the max-
imum number of streams. Since all the popular streams are available on the cache regardless of which
policy is used, replication outperforms striping by offering much lower average access latencies to the
MEMS cache. This is not the case for more uniform popularity distributions, wherein striping can cache
more popular content than replication can.

5.2.2 Effect of varying the total cost

If the cost of the system is flexible, a system designer must know the size of the MEMS cache and DRAM
buffer which provides the best server performance. To calculate this, we varied the amount of MEMS
cache and DRAM buffer available per disk to determine the effect on server throughput. Caching improves
system performance when the number of MEMS devices is large enough to cache a majority of the popular
movies. More MEMS devices can be used for caching when the available budget for buffering and caching is
large. The greater the available budget, the bigger the range of popularity distributions where the MEMS
cache is cost-effective. For instance, in Figure 11(a), with a $50 budget, the MEMS cache (using one
MEMS device) is cost-effective only within the popularity range of 1 : 99 to 5 : 95. With a higher budget
($200), the MEMS cache with 4 devices is cost-effective over a greater popularity range, 1 : 99 to 20 : 80.

5.2.3 Effect of varying the average stream bit-rate

Unlike the MEMS buffer, the performance improvement due to the MEMS cache is independent of the bit-
rate of the streams served. Figures 11(a) and (b) show this behavior. Regardless of the bit-rate, addition of
one or more MEMS devices increases the total streaming capacity of the server. One interesting behavior
that depends on the bit-rate occurs in the case without the MEMS cache. We see in Figure 11(b) that
the additional improvement for buffering costs of $100 and $200 are negligible. This is because for large
bit-rates, even a small amount of buffering is sufficient for utilizing the disk throughput. When the average
bit-rate is small, additional buffering significantly improves the server throughput.

5.2.4 Effect of varying the number of MEMS devices

Figure 12 shows the effect of varying the size of the MEMS cache, k, on the improvement in the server
throughput. Striped cache-management policy is used for this experiment. The total cost of buffering
and caching with and without the MEMS cache is fixed at $100 and the system serves an average bit-
rate of 100KB/s. Each MEMS device can cache 1% of the content. As k is increased, the throughput
of the MEMS cache increases. However, to keep the total cost invariant, the available DRAM buffer size
decreases. Hence, for each popularity distribution, there exists a unique optimal size of the MEMS bank.
When the popularity distribution is uniform, represented by 50 : 50, the MEMS cache always degrades
the server performance. For skewed popularity distributions (1 : 99, 5 : 95, and 10 : 90), the MEMS cache
improves the server throughput by as much as 140%.
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Figure 12: Varying the size of the MEMS cache. The X-axis represents the number of MEMS devices
in the cache. The system serves 100KB/s streams and uses the striped management policy.

5.3 Results Summary

Using a MEMS device as disk buffer or cache can improve system performance. However, the performance
improvement is not consistent over all system workloads. We summarize our findings as follows:

• Using a MEMS device as a disk buffer can improve the system performance when the server load
requires a large amount of buffering. This is true when the average bit-rate of the streams is small.
The performance improvement due to a MEMS-based disk buffer can be as much as 75% when the
average bit-rate is less than a few megabytes per second. For larger stream bit-rates, the MEMS
device simply does not prove cost-effective.

• If content has a non-uniform popularity distribution, using a MEMS device as a disk cache can
improve the throughput of streaming servers. The MEMS cache provides additional streaming band-
width at the server, regardless of the stream bit-rates. However, there is degradation in the server
throughput if the content does not have a sufficiently skewed popularity distribution.

• When the popularity distribution is not sufficiently skewed (for example, 20 : 80 to 50 : 50 in
Figure 11), it is better to use the MEMS device as a buffer rather than as a cache. In this range,
caching does not improve server throughput, but buffering can reduce the system cost as much as
75%. The range of popularity distributions in which the cache is cost-effective depends on the average
stream bit-rate.

6 Related Work

Multimedia workloads fall into two main categories: (1) best-effort and (2) real-time. The best-effort
class of multimedia data usually displays spatial and/or temporal locality attributes. Traditional caching
policies [17] are well suited for such applications. The work of [15] shows that including a MEMS-based
cache in the storage hierarchy can improve I/O response time by up to 3.5X for best-effort data. The focus
of this work is to examine if such an addition can also improve the performance of the real-time class of
multimedia data.
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To service real-time disk IOs, two classes of scheduling algorithms have been proposed. Quality Pro-
portion Multi-Subscriber Servicing (QPMS or time-cycle based scheduling) [13] and the Earliest Deadline
First (EDF) [4] are representative scheduling algorithms. Several improvements to these algorithms have
been since investigated [2, 20, 10, 16]. In this paper, we built upon the time-cycle model [13] for scheduling
continuous media on MEMS devices.

Scheduling multimedia streams on a k-device MEMS bank is similar to scheduling streams on a disk
array. However, using a MEMS bank as a disk buffer must consider the real-time requirements between
the disk and MEMS storage as well as between MEMS storage and DRAM. On the other hand, disk load
balancing policies [3, 14, 22, 23] are directly applicable to a MEMS bank when it is used as a cache. We
investigated two representative policies from previous work on disk arrays for a MEMS bank.

7 Conclusions and Future Work

We have investigated the possibility of using MEMS storage for buffering and caching streaming multimedia
content. Summarizing our findings, MEMS storage can improve the performance of streaming media servers
by providing low-access latency and high throughput for accessing streaming data. We propose using
MEMS storage in two possible configurations: MEMS as a multimedia buffer and MEMS as a multimedia
cache. We have developed an analytical framework for evaluating each of these configurations while using
either a single MEMS device or a k-device MEMS bank. Based on our analytical study we have provided
the following design guidelines: (i) for low and medium bit-rate streams, using MEMS storage as buffer
reduces the cost of designing server systems by as much as an order of magnitude, (ii) when the popularity
distribution is non-uniform, the server throughput can be improved by caching data in the MEMS device.
The MEMS device improves access to popular content and also provides additional streaming bandwidth,
regardless of the stream bit-rates.

Although this is a somewhat speculative study, several research and industry efforts [1, 6, 11, 18, 21]
suggest that commercially mass-produced MEMS storage devices are only a few years away. Thus, it is
necessary to start thinking now about the architectural impact of these devices on current applications.
We hope that this study can provide guidelines for designing next-generation media servers.

Our work can be further explored in at least two directions. First, we realize that the MEMS storage
could be simultaneously used for buffering and for caching popular streams. For instance, when the
popularity distribution is not skewed sufficiently to efficiently utilize the MEMS storage as a cache, part of
the MEMS storage can be used as a buffering medium to increase the disk throughput. Second, this work
can be extended to include formulating intelligent placement policies for data on the MEMS device so as
to improve the access characteristics of these devices for multimedia data.
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