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Abstract
Component additions or failures are common for large-scale stor-
age clusters in production environments. To improve manageabil-
ity, it is desirable to automatically integrate new resources into an
existing system as one virtual volume and repair data redundancy
damaged by component failures. A key enabling technique for
these capabilities is a flexible and scalable object placement and
location scheme that quickly adapts to the additions or departures
of storage nodes. This paper presents an object placement and
location protocol that differentiates between small and large data
objects for better space utilization and reduced management over-
head comparing with uniform strategies. In our protocol, small ob-
jects, which are typically in large quantities, are placed through a
high-dimension consistent hashing scheme. Large objects, which
are much fewer in practice, are placed through a usage-based pol-
icy, and their locations are tracked with Bloom filters. Our proto-
col is fully distributed and only relies on soft states. It is partic-
ularly suitable for large-scale storage clusters with several thou-
sand nodes and millions of objects. We validate the effectiveness
of proposed techniques through simulations and experiments.

1 Introduction

Large-scale storage systems are a critical component in
data-intensive applications such as multimedia databases,
web information services, and data archival repositories.
For these applications, their demand for storage capacity
keeps growing as faster computers with larger memory at
lower cost become available for more advanced comput-
ing [2, 8, 20, 22, 36]. To provide easy manageability, scat-
tered storage resources need be unified and interfaced as a
virtual disk, and component failures should be invisible to
applications as much as possible.

A popular solution is to interconnect multiple storage de-
vices through a dedicated storage area network (SAN) [36],
such as Fiber Channels. Storage resources in a SAN system
are typically organized in volumes, each of which normally
consists of one or more disk groups and each group forms
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a RAID system. Volume formation information, called vol-
ume maps, are maintained by volume controllers. Data are
addressed through virtual offsets within a volume, which
are directly translated to physical disk addresses through
the volume map. Such a volume-based resource virtualiza-
tion scheme has two limitations:

1) Expanding the capacity of an existing volume typically
requires reconfiguring existing disk groups and reorganiz-
ing the data. Some systems can expand a volume by adding
a complete disk group at the end of the volume to avoid
data reorganization. However, the process of extending the
existing volume must be done manually and go through cor-
responding volume controllers.

2) A hard drive failure in a disk group reduces the re-
dundancy level of that disk group, which makes it more
vulnerable to further failures. To restore the redundancy
level, either the failed hard drive must be replaced or the
disk group be reorganized manually. Techniques such as
hardware-based dedicated hot-spare or software-based dis-
tributed spare lessens the burden of administration, but the
process is still not transparent to administrators.

Cluster-based storage systems have gained attention from
both academia [2, 4, 7, 12, 14, 15, 16] and industry [21, 34]
as an alternative to provide storage for data-intensive appli-
cations due to their scalability and cost advantage. In such
a system, storage resources are directly attached to dedi-
cated or general-purpose cluster nodes. Cluster nodes coor-
dinate with each other through a shared LAN and aggregate
distributed storage resources. Most of previous researches
took the same approach as SAN to organize data into RAID-
based volumes and thus share the same set of limitations.

This paper addresses the aforementioned limitations in
the context of cluster-based storage systems, because the
manageability could be exacerbated for a large-scale clus-
ter with up to several thousand nodes. For example, at
AskJeeves, disk additions or failures can occur as often as
once every 2-3 days for a storage subsystem with several
hundred nodes. The proposed solution, which is part of our
Sorrento project for building self-organizing storage clus-
ters, attacks both problems through the following two fea-
tures:
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1) automatic resource integration – new resources are au-
tomatically integrated as part of the system to expand its
capacity without manual intervention;

2) automatic redundancy restoration – after detecting node
failures, the system automatically restores the redundancy
level of affected data.

Designing such a self-organizing storage cluster is not triv-
ial. Server nodes may often be added or temporarily out of
reach in a cluster due to node failures or scheduled mainte-
nance. When more nodes are added, data may be relocated
from one node to another to maintain the overall balance
of storage usage. Data stored on inaccessible disks need
be reconstructed through redundancy and moved to other
nodes. To accommodate the fact that storage resources and
data locations are dynamically changing, we need a new
data placement and location scheme that strikes the bal-
ance between flexibility and scalability. The scheme must
be flexible in the sense that the address mapping from data
to storage nodes must be adaptive to node additions or de-
partures. The scheme must also be scalable to perhaps a
few thousand storage nodes and millions of data objects,
which discourages solutions relying on centralized compo-
nents or distributed data structures with strong consistency
assumptions [13] (such as the page mapping table scheme
suggested in [22]).

Our solution adopts the object-based storage device
model [1], and views the whole system as a collection of
objects: a small number of large data objects and a large
number of small objects. The central idea of our solution
is to use a differentiated strategy for these two types of ob-
jects. The different characteristics of small objects and large
objects have been studied in [5] and [35], and used to dif-
ferentiate I/O operations in various researches [2, 7, 16].
However, to our knowledge, none have taken advantage of
it to optimize object placement and location operations.

In our solution, the locations of small objects are chosen
by a consistent hashing [18] based scheme. The scheme
places balanced share of objects on each storage node. In
the event of node additions or departures, it only migrates a
small fraction of objects to maintain hash consistency. For
large objects, migration is discouraged to avoid high copy-
ing overhead and we adopt a simple usage-based object dis-
tribution mechanism to balance space usage among nodes.
We keep track of their locations by using Bloom filters [6].
The Bloom filters are incrementally updated through multi-
cast, and we use a chunked and redundant refreshing mech-
anism to tolerate packet losses.

The object placement and location protocol described in
this paper has been completely implemented and is the fo-
cus of this paper, while the Sorrento prototype is currently
under development at UCSB. The rest of the paper is orga-
nized as follows: Section 2 presents a brief overview of the
system design of Sorrento. Section 3 and 4 describe our ob-
ject placement and location protocol using consistent hash-

ing and Bloom filters. We show the effectiveness of our
protocol design in Section 5 through simulations and ex-
periments. Section 6 discusses related work and Section 7
concludes the paper.

2 System Overview

The design of Sorrento has leveraged two techniques from
Slice [2] and OceanStore [20]: object-based storage device
and local client request routing.

Object-Based Storage Device. The concept of object-
based storage device (OBSD) was proposed by the National
Storage Industry Consortium (NSIC) [1] in 1999 and has
been adopted in the design of various storage systems such
as Slice [2] and OceanStore [20]. Data in an OBSD are ad-
dressed through logical offsets within objects. Each object
is identified by a globally unique ID called GUID. Compar-
ing with a sector-based storage device, where logical ad-
dresses are directly mapped to physical addresses and data
redundancy is performed on sector basis, an OBSD offers
more freedom in choosing data placement and redundancy
schemes as a benefit from the location-transparency nature
of GUIDs.

In Sorrento, addressable objects from external applications
are called logical objects. Meta-data corresponding to a
logical object, such as redundancy schemes and additional
parameters, are stored in a meta object, which functions
similarly as i-nodes in traditional UNIX file systems. In
fact, a logical object shares the same GUID with its corre-
sponding meta object. For a small logical object, its data are
attached with the meta object. For a large logical object, it
is fragmented into a set of content objects and the GUIDs
for content objects are stored in its meta object. Both meta
objects and content objects are refereed to as physical ob-
jects inside Sorrento. Physical objects are stored in their
entirety on native file systems. Thus the data location prob-
lem in Sorrento is essentially the problem of how to locate
physical objects.

We want to emphasize that data layout schemes in tradi-
tional RAID systems, such as striping, could also be used
to organize data in fragments. In Sorrento, applications can
specify a combination of striping and partitioning to orga-
nize data in fragments for each logical object.

Local Client Request Routing. In Slice [2], client requests
are intercepted and routed to storage providers by a light-
weight entity called µproxy, which resides in clients and
route requests through packet rewriting. By pushing the re-
sponsibility of request routing to client nodes, the system
can retain transparency with little overhead. A similar idea
is adopted by Sorrento, where we use an entity called stor-
age aggregators to route client requests. As will be dis-



cussed below, however, the approach taken by aggregators
is quite different from µproxies.
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Figure 1: Sorrento system architecture.

Figure 1 shows the system architecture of Sorrento. Ap-
plications access Sorrento through a set of library APIs,
which interact with three types of entities: directory server,
provider and aggregator (left half of the figure).

Directory servers maintain the mapping between human un-
derstandable hierarchical names to object GUIDs. The hi-
erarchical tree can be easily stored in a relational database
and various partitioning [2] or primary-secondary replica-
tion schemes [3, 9, 33] can be applied to provide scalability
and fault-tolerance.
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Figure 2: Components inside aggregators and providers.

As shown in Figure 2, each provider manages the objects
stored in its locally attached physical disks and maintains
an object catalog. Providers are responsible for data re-
trieval/modification (reader/writer) and answering queries
about the existence of a certain object (catalog manager).
Additionally, providers multicast control information peri-
odically (mcast publisher). The control information dis-
seminated by a provider contains its current work load, stor-
age space availability, and a summary of objects it keeps
(master Bloom filter). Providers are also responsible for de-
tecting node additions and failures and relocating objects to
maintain the healthiness of the system through the process
of proactive introspection performed by object relocators
(details in Section 4.3).

Also shown in Figure 2, each aggregator subscribes to the
same multicast channel and maintains a global picture of the
set of live providers (provider table). Using the provider ta-

ble, aggregators can answer queries such as: which nodes
may have a certain object, what are the loads of those nodes,
or which nodes may have storage space to host a new ob-
ject. Aggregators will be discussed in detail in Section 4.1
and 4.2. Aggregators can either run as a standalone pro-
cess and communicate with local processes through IPC, or
it can be configured as a set of threads with shared states
inside another process. Running an aggregator inside an-
other process eliminates the IPC overhead; however, col-
lecting and maintaining information about the set of live
providers is a gradual process and thus for short-lived pro-
cesses, they must connect to standalone aggregators. Note
that each provider has an integrated aggregator module in-
side it, which is used by relocators to expedite the process
of proactive introspection (Section 4.3).

The arcs labeled with ➀ –➂ in Figure 1 illustrate a simpli-
fied sequence of steps for an application to access a data
object: ➀ the object name is resolves to its GUID through
a directory server; ➁ the location of this object is returned
by a local aggregator (Section 4.1 and 4.2); ➂ the client di-
rects read/write operations to the selected provider. Note
that all these operations are encapsulated in a user-level li-
brary linked to the application, and are transparent to end
users.

In Figure 1 (shadowed area marked with A), each proxy
is a special application that accesses the storage on behalf
of clients outside the trusted network boundary. We also
depict a possible scenario of co-locating applications and
providers on a single cluster node in Figure 1 (shadowed
area marked with B), which may be preferable for clusters
with functionally symmetric nodes [31].

Data redundancy, consistency, concurrency control and
conflict resolution have been extensively studied in stor-
age systems [26, 27], distributed databases [9, 13, 30, 33]
and distributed file systems [4, 19, 24], and are not the fo-
cus of this work. We briefly describe the schemes adopted
in Sorrento on these three aspects as follows: 1) Data
redundancy. Sorrento uses a combination of replication
and erasure coding [23, 27] to survive data through soft-
ware/hardware failures. 2) Consistency model. Sorrento
adopts a version-based consistency model on logical object
basis, which bears some similarity with Amoeba [24] and
the Coda file system [19]. A user’s modifications are first
applied to a shadow copy of the object, which is invisible
to other users. Once a set of modifications transfer the log-
ical object from one consistent state to another, they can
be explicitly made visible to other users by the commit op-
eration. 3) Concurrency control and conflict resolution.
Conflicting updates can be avoided by cooperative write-
lock leasing through directory servers; otherwise, they will
be detected during the commit operation and subsequently
resolved through some external mechanisms or end-user in-
tervention. Albeit its simplicity, automatic conflict resolu-
tion schemes such as OceanStore’s predicate-based update
primitives [20] or Bayou’s merge procedures [33] could be



easily implemented upon it.

3 Design Alternatives for Object Placement
and Location

The fundamental issue of object placement and location is
the management of a mapping from objects (GUIDs) to the
dynamically changing set of storage providers. Using a cen-
tralized manager to maintain such a mapping is not scalable
with millions of objects and thousands of storage providers.
In terms of distributed approaches, [22] suggested to use a
mapping table with one entry per object. However, repli-
cating and synchronizing the mapping table on all aggrega-
tors can be expensive in terms of memory consumption and
communication overhead. In this section, we first present
two alternative object placement and location schemes to-
gether with their limitations. Then we present a solution
which differentiates data objects based on their sizes and
uses both schemes accordingly.

3.1 Consistent Hashing

The first idea is to use fixed hashing to distribute objects
to storage providers to eliminate the need of a mapping
table. More specifically, all we need is a hash function
that maps object GUIDs to storage providers. A typical
modulus-based hash function will not work well because
when the number of providers changes, virtually all objects
must be migrated due to changed hash results. In fact, a
usable hashing scheme must only change the locations of
a small fraction of total objects when a provider joins or
leaves the cluster. The concept of consistent hashing [18]
proposed by Karger et al. meets this requirement. The most
important feature of consistent hashing is that it maintains
stable hashing results for the majority of objects when the
membership of the provider set is slightly changed.

The basic idea of their construction is to map objects and
buckets (storage providers in our case) to points in a one-
dimension interval [0, 1] and thus establish a distance rela-
tionship between objects and providers1. The scheme then
hashes objects to their closest providers. One may conceive
that every point on [0, 1] is controlled by its closest provider
and an object that is mapped to point x will be hashed to
the provider controlling x. When a provider is added or re-
moved, only objects in the neighborhood of that provider
will change their locations. To make sure each provider
controls a similar range of neighborhood in [0, 1], the algo-
rithm maps each provider to κ log P points (called virtual
nodes in their paper), where P is the number of providers.

1A slight modification introduced in [32] calculates the distance in a
one-dimension circular space – for example, in the [0, 1] circular space,
the distance from 0.1 to 0.2 is 0.1 and the distance from 0.2 to 0.1 is 0.9.

[18] proved that the deviation of the object distribution can
be controlled by adjusting the scaling factor κ.

However, such a hashing scheme has two weaknesses:
1) The locations of objects are not controllable to balance
storage usages on different nodes under hashing. When
some providers run out of storage space, others might only
use a fraction of local storage. This practically limits the
amount of total usable storage space. This problem could
be much worse for heterogeneous environments where stor-
age resources are not evenly distributed to providers. Our
experiments show that the percentage of wasted space could
be as much as 26% for a homogeneous 100-node cluster.
2) Data migration is inevitable in the event of adding or los-
ing a provider. For a large-scale storage cluster, the amount
of migrated data could still be quite considerable.

3.2 Tracking Object Locations with Bloom Filters

In the second scheme, we use a heuristic algorithm to place
objects to balance storage usage among different providers.
Then we use a compact data structure, Bloom filters2 [6],
to track the locations of individual objects. Briefly speak-
ing, each provider uses a master Bloom filter to capture the
set of objects in its local store, and each aggregator main-
tains an array of slave Bloom filters, each corresponding to
a provider’s master Bloom filter. To locate an object, an ag-
gregator simply iterates through each slave Bloom filter and
performs the membership test.

Comparing with the mapping table approach [22], Bloom
filters reduce the memory requirement by an order of mag-
nitude, with the introduction of a small percentage of false
positives. Additionally, since changes to the Bloom filters
are propagated from providers to aggregators periodically, it
is possible to have false negatives – even though a provider
holds an object, the stale slave Bloom filter for that provider
on an aggregator might return false for the membership test
of that object. The presence of false positives and false neg-
atives will not harm the correctness of the object location
process. False positives will be detected when we actually
attempt to access an object from a provider and only find
that the provider does not hold the object. False negatives
can be tolerated by a retry in a later time, or by multicasting
a query to all providers asking who has the object.

The weakness with Bloom filters is that the memory and
bandwidth required to maintain these filters could still turn
out to be too much for a large-scale storage cluster. For
example, our simulation study shows that Bloom filters
will consume 15MB memory and 142KB/s bandwidth for a
modest-sized cluster with 100 nodes and 10 million objects.
For a large-scale cluster with several thousand nodes, the

2A Bloom filter encodes a set of object GUIDs in a bit array and can be
used to check whether a given GUID is in that set with a small percentage
of false positive. Please refer to [6] for details.
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Total # of Objs 489601 34235 92715
Total Size (MB) 7167382 1978640 46977

%obj using 90% space 1.3 6.9 7.1
%obj using 95% space 4.3 8.1 16.1
%obj using 98% space 9.1 8.8 23.3
knee-point (%obj/%spc) 3.1/94.0 9.5/99.7 5.5/88.8

Figure 3: The statistics and characteristics of three file systems for non-

interactive usage.

memory consumption can be more than 100MB and 1MB/s
respectively.

3.3 Differentiated Strategy for Small and Large
Objects

Our solution is to combine both schemes to manage objects
with different sizes. This is motivated by previous studies
by Baker et al. [5] and Vogels [35], in which they found
that large files and small files exhibit different character-
istics in terms of user activities, access patterns, and their
life times. Particularly, in terms of file size distribution, it
turns out that most operations are for small files while most
bytes transferred are for large files. This could be translated
to the statement that the majority of files in a file system
are small files, but the majority of disk space is consumed
by large files. Additionally, most file creations and dele-
tions operations are for small files. Both studies are based
on typical interactive usage of file systems. However, we
believe the conclusions still hold for non-interactive work-
load. To confirm our belief, we studied the file size distribu-
tions for three systems under non-interactive usage: 1) stor-
age for offline processing of a commercial search engine
at AskJeeves/Teoma (such as page crawling and parsing)
(Service-offline); 2) storage for online database generation
of the same company (Service-online). 3) a backup archive
server for a research lab at UCSB (Group archive);

The sizes and numbers of objects in these three systems are
shown in Figure 3. And the file size distributions for these
systems are shown in Figure 4. The x-axis in Figure 4 is the
percentage of total objects. The y-axis is the accumulated
size of the largest x% objects expressed as a percentage of
the total size. To make things easier to understand, Figure 3
further shows the knee points3 on the file size distribution
curves in Figure 4 and the percentages of objects accounting
for 90%, 95% and 98% of the total size. As we can see, the
following 10 − 90 rule is valid for all three systems: less
than 10% of the objects consume more than 90% of the disk
space.

A natural question is whether we can take advantage of this
observation in the design of the object placement and loca-

3A knee-point is measured as the point on a curve where the slope is
1.0.
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CH BLOOM DIFF

Storage Usage − + +
Data Migration Overhead − + +

Memory Overhead + − +
Bandwidth Overhead + − +

Figure 5: A comparison of three object placement and location schemes.

CH - consistent hashing; BLOOM - Bloom filters; DIFF - using CH for

small objects and BLOOM for large objects. A “+/−” means good/bad

or low/high overhead.

tion protocol. The answer is yes. As we can see, by apply-
ing consistent hashing for small objects and Bloom filters
for large objects, the weaknesses stated previously can be
effectively alleviated: For consistent hashing, since small
objects only take a small fraction of disk space, relocating
them will also consume much less network bandwidth in
comparison with a uniform strategy using only consistency
hashing. For the same reason, the wasted space due to un-
controllable storage usage under hashing can also be signif-
icantly reduced. For Bloom filters, since large objects are
much fewer and created/deleted much less frequently, the
memory and bandwidth consumption required by Bloom
filters can be significant reduced too. Figure 5 compares
the two schemes using only consistent hashing (CH) and
Bloom filters (BLOOM) with our differentiated approach
(DIFF) in terms of storage space usage, potential data mi-
gration overhead, and memory/bandwidth consumption. As
we can see, DIFF enjoys the strengths from both BLOOM
and CH while avoiding either scheme’s weaknesses.

The idea of differentiating small and large objects is also re-
flected in our choice of data redundancy schemes. For large
objects, we use a space-efficient erasure coding [23, 27]
scheme. For small objects, we use full content replica-
tion. Replication is not effective for large objects because it
will lead to low space utilization. Conversely, using erasure
coding for small objects will only have minor improvement
in terms of space utilization, but will significantly degrade



their write performance due to the heavy overhead of re-
computing erasure blocks4.

Finding the right threshold to distinguish between small ob-
jects and large objects is not easy. Ideally, it is the most
efficient to set the breakpoint at the knee point of the ac-
cumulated file size distribution curve, which is only known
after objects have been stored into the system. In Sorrento,
we choose the threshold to be 512KB5, and plan to study
how to adaptively set the threshold in the future.

4 Protocol Design and Implementation

4.1 Small Object Placement and Location

In this section, we first present an alternative consistent
hashing scheme called High-Dimension Consistent Hash-
ing or HDCH, and then describe our small object placement
and location protocol using consistent hashing.

High-Dimension Consistent Hashing

The basic idea of HDCH is similar to the original consistent
hashing scheme [18] (which we call Single-Dimension Con-
sistent Hashing or SDCH). The difference is that HDCH
establishes the distance relationship in a high-dimension
space. Our HDCH scheme works as follows: Objects and
providers are mapped to n-bit integers, which represent dis-
crete position values (called p-values) in an n-dimension
space with only two values (0 and 1) in each dimension.
Then we store objects to their closest providers in terms
of their Hamming distances6. For providers of the same
Hamming distance to an object, we choose the one with the
smallest XOR result to break the tie. Figure 6 illustrates the
HDCH scheme with n = 4 and 4 storage providers. In Sor-
rento, we use 32-bit p-values so that the distance calculation
can be efficiently done through integer arithmetic.

0 00 1

1 00 1 0 01 1 0 10 0 0 11 0

1 00 0 0 01 0 0 10 1 0 11 1

Object

Buckets

XOR Results

Hamming Distance 1 1 2 3

Object 0010 will be
hashed to bucket 0110.

Figure 6: An example of HDCH scheme: an object is hashed into a set

of 4 buckets with n = 4.

4Using erasure coding for large objects will show less degradation be-
cause large objects have a different access pattern consisting mostly reads.

5This choice is fairly typical for storage systems under non-interactive
use.

6The Hamming distance between two n-bit integers is the number of
bits they differ.

The main advantage of HDCH over SDCH is that HDCH
exhibits more consistent behavior for clusters with variable
scales, while the SDCH scheme is less effective for small
to medium-scale clusters because it relies on statistical ran-
domness to achieve the evenness of object distribution. To
give some intuition on this conclusion, consider an extreme
case where there are only two providers and calculate the
size of the controlling neighborhood for each provider un-
der both schemes7, because the chance for an object to be
hashed to a specific provider is proportional to the size of
that provider’s controlling neighborhood. Under HDCH,
each provider controls exactly 50% of the total mapping
space regardless of the p-values of both providers; while
under SDCH, such a case rarely happens when the scal-
ing factor κ is far less than the total number of positions
in the space8. The above statement has been verified with
our experimental study, which also shows that both HDCH
and SDCH are competitive when the number of providers
is large. It is our on-going work to analyze the HDCH algo-
rithm from a theoretical point of view.

Placing and Locating Small Objects Using Consistent
Hashing

Our small object placement and location protocol is sum-
marized on three aspects as follows:

(1) Provider P-value Generation. A provider’s p-value is
generated by hashing the provider’s network address. The
hash function is based on MD5 and we modified it to guar-
antee the p-values for two different providers are always
different.

(2) Object Placement. To determine the set of the replica
locations of a newly created small object, the aggregator
hashes the object GUID to a sequence of p-values, which
will in turn be used to select storage providers though
HDCH. The sequence of p-values are generated through it-
erative execution of MD5 hashing. Figure 7 illustrates how
a sequence of 32-bit p-values are generated: First, the ob-
ject’s GUID is taken as the initial seed, and an MD5 digest
is calculated from the seed. The 16-byte digest is then split
into 4 p-values. This same MD5 digest will be used as the
hashing seed in the next round if more p-values are needed.

x GUID )MD5(xy = )MD5( yz = ……

1k 5k
4k3k2k 6k 7k 8k

Figure 7: An illustration on p-value sequence generation.

Suppose we want to replicate an object k times, the ag-

7The size of a controlling neighborhood for a certain provider is nat-
urally defined as the number of positions that are closer to that provider
than other providers in the mapping space. If m providers are of the same
closest distance to a position, that position is counted as 1/m toward each
of the m providers’ controlling neighborhood.

8Since each position is represented by an n-bit number internally, the
number of positions in [0, 1] that may be mapped to by an object is in fact
finite and at most 2n.



Notation Type Description

PVALSEQGEN CLASS The p-value sequence generator.
CH(v, A) FUNCTION Consistent hashing function – mapping key v

to a node a ∈ A (A is a set of providers).
PAR-CHK(o, A) FUNCTION Check providers in A in parallel and return its

subset that host o.
GUID(o) FUNCTION The GUID of object o.

k CONSTANT The replication degree.
c CONSTANT The scaling factor to tolerate hash collisions.

Figure 8: Notations for small object algorithms.

gregator will first generate c × k p-values from the GUID,
where c is a small integer whose purpose will be apparent
by the end of this paragraph. The aggregator then tries to
hash each of the c × k p-values to a provider in the same
order as they are generated till k distinctive providers are
found or all c × k p-values are attempted. The reason we
need to introduce the scaling factor c is that multiple p-
values might be hashed to the same provider. The chance
that all c × k p-values are hashed to the same provider de-
creases exponentially with regard to the value of c × k. In
Sorrento, we choose c = 3.

(3) Object Lookup. Locating small objects is similar to
placing them. Again, c× k p-values are generated from the
object GUID. The aggregator divides these p-values into c
batches. Each time it hashes k p-values to a number of (at
most k) providers, and then confirms the existence of the
object on these providers in parallel. We try p-values in
batches rather than sequentially so as to avoid overload-
ing a particular provider. In a rare situation when one or
more newly joined providers changes the consistent hash-
ing results and renders existing object replicas inaccessible
through the above process, the aggregator will perform an
exhaustive search by querying the object through multicast.

Figure 9 shows the algorithms to calculate the set of replica
locations (REP-SET), and to lookup an object (LOOKUP). The
notations are listed in Figure 8.

4.2 Large Objects Placement and Location

Large objects are placed through a usage-based policy and
their locations are tracked individually through Bloom fil-
ters. We summarize the protocol as follows:

(1) Object Placement. Our usage-based large object place-
ment policy aims at balanced share of storage usage on dif-
ferent providers. To select a provider as the owner of an ob-
ject, an aggregator first filters out providers that have insuf-
ficient space to hold the object. Then it filters out providers
that have less-than-average amount of free space. Finally,
each of the remaining providers has a probability of being
chosen as the object owner proportional to its amount of
available space.

Algorithm 4.1: REP-SET (o, P )

input: o: object; P : the set of live providers.
returns: A subset of P .
comment: Calculate the subset of P where o should be hosted.

PVALSEQGEN.SETSEED(GUID(o))
Q← φ
for i← 1 to c× k

do

�����
����

v ← PVALSEQGEN.GETNEXTPVALUE()
q ← CH(v, P )
Q.INSERT(q)
if |Q| = k

then return (Q)
return (Q)

Algorithm 4.2: LOOKUP(o, P )

input: o: object; P : the set of live providers.
returns: A subset of P .
comment: Find a subset of P that host o.

PVALSEQGEN.SETSEED(GUID(o))
for i← 1 to c

do

�����������
����������

Q← φ
for j ← 1 to k

do

��
�

v ← PVALSEQGEN.GETNEXTPVALUE ()
q ← CH(v, P )
Q.INSERT(q)

R← PAR-CHK(o, Q)
if R �= φ

then return (R)
comment: Rare case: no replica found through HDCH.
Return results of exhaustive search using multicast.

Figure 9: Algorithms used by aggregators to place/locate small objects.

(2) Setting Parameters for Adaptive Bloom Filters. The
false positive rate of a Bloom filter is affected by its size and
the number of hash functions used to set each key. Bloom
showed that the space/false-positive trade-off reaches opti-
mal when the percentage of set bits is close to 50% [6]. Ad-
ditionally, assuming perfectly random hash functions, the
false positive rate of a Bloom filter can be calculated as ρj ,
where ρ is the percentage of set bits and j the number of
hash functions per key. Based on these two conclusions, we
statically choose j such that 1

2j is close to a pre-determined
upper limit of false positive rates. In Sorrento, we use 6
hash functions. The initial size (number of bits) of a Bloom
filter is chosen as 2jN , where N is the number of objects.
During the runtime, the size of a Bloom filter is dynami-
cally adjusted so that the percentage of set bits is controlled
in the range of 20 − 50%. If the percentage of set bits is
lower than 20%, we shrink the size of the filter by half; if
the percentage of set bits is higher than 50%, we double the
size of the filter.

(3) Handling Packet Losses. Providers send out incre-
mental updates of Bloom filters to aggregators periodically
through multicast. Each update packet contains a list of bit-
set and bit-clear records corresponding to the object addi-
tions and deletions occurred in the previous interval. Oc-
casionally, when an aggregator detects that the size of a
Bloom filter has been changed, it will request a complete
copy of the Bloom filter explicitly from the provider. Prop-
agating incremental updates through multicast is efficient;
however, packets could be silently dropped in multicast and



over time, the slave copy of a Bloom filter might be quite
different from the corresponding master copy. Our solu-
tion toward this problem is two-fold. First, each bit-set or
bit-clear record will be multicast twice in consecutive up-
dates. This way, occasional packet drop could be tolerated.
In the second part of the solution, we break down the whole
bit array of a Bloom filter into small chunks, and include a
number of chunks in every update packet. The idea is to re-
fresh the whole bit array gradually at a controlled pace. Ad-
ditionally, we prioritize modified chunks over unmodified-
modified chunks and send out different chunks at variable
frequencies. Such a chunked refreshing scheme is aimed at
tolerating a sudden burst of multiple packet drops. In Sor-
rento, the size of each chunk is 128 bytes.

Combining Two Protocols Together.
Our object placement and location protocol is a combina-
tion of the two protocols described in Section 4.1 and 4.2.
The access of a logical object always starts with a lookup of
the meta object (small object) through consistent hashing.
If the actual data are stored in content objects, the Bloom
filter-based large object location protocol will be invoked.

4.3 Automatic Redundancy Restoration and Ob-
ject Relocation

The differentiated protocol described in Section 4.1 and 4.2
maps objects to the current set of live providers, which
means newly added nodes and resources are automatically
integrated to the system. The next question is how to sup-
port automatic redundancy restoration using the differenti-
ated protocol. In this section, we first present a description
of the tasks involved in automatic redundancy restoration,
then we show our basic approaches and several optimiza-
tions.

The main task of automatic redundancy restoration is to ex-
amine the redundancy levels of accessible logical objects,
discover those with damaged redundancy and restore them.
The meaning of damaged redundancy actually differs be-
tween small and large objects (recall that we use full content
replication for small objects and erasure coding for large
objects). For a small logical object, this means that one
or more providers in the replica location set (calculated by
the REP-SET algorithm in Figure 9) do not actually own that
object; and for a large logical object, this means that one
or more fragments of the object are no longer accessible.
Typically, an object’s redundancy is damaged by provider
failures. Additionally, we treat the relocation of a small ob-
ject caused by provider additions as a special case of re-
dundancy restoration. This is because immediately after
its arrival, the new provider effectively takes over another
provider as the new owner of that small object based to
the changed hashing result, which practically reduces the
redundancy degree of the small object and requires object
relocation.

We accomplish the task of automatic redundancy restora-
tion through two means. The first one is called on-demand
restoration and is invoked by aggregators during the normal
process of object location. When an aggregator discovers
that the redundancy of an object requested by an application
is damaged, it restores the redundancy either by replication
(small objects) or by reconstructing the damaged fragment
through erasure coding (large objects).

The second part is called proactive introspection and is car-
ried out periodically by object relocators on providers (Fig-
ure 2). During each proactive introspection session, an ob-
ject relocator walks through the whole object catalog. For
each locally stored logical object, it attempts to access the
object (including all replicas or external fragments) through
the integrated aggregator module9. If not all object replicas
or external fragments are available, it will attempt to restore
them in the same way as on-demand restoration. It is rare
but possible that different relocators attempt to restore the
same object at the same time. This could result in some
communication overhead; however, data integrity will not
be compromised because of our version-based consistency
model.

A problem with such a simple algorithm for proactive in-
trospection is that to discover whether a logical object’s re-
dundancy is damaged or not, a relocator may need to query
some providers to confirm that they do have a specific phys-
ical object (called object-existence queries). The cost of one
or more network transactions per object is prohibitively ex-
pensive in practice. In the rest of the section, we devise two
optimizations upon this basic proactive introspection algo-
rithm, which would bound the number of network transac-
tions in one proactive introspection session by the number
of providers, and that no network transaction is required if
no provider joins or leaves the system since the last session.

1) Batching Queries. Our first optimization is to batch the
object-existence queries for the same provider in one net-
work transaction. Typically, all queries for a same provider
during an introspection session can be aggregated in one
UDP request. So the total number of network transactions
would be bounded by the total number of providers. How-
ever, batching queries does not reduce the number of object-
existence queries. Additionally, proactive introspection will
generate constant load of network transactions during each
session even though no provider leaves or joins the system.

2) Query Result Caching. In our second optimization,
we try to cache the results from previous queries and reuse
them to avoid contacting providers for authoritative answers
as long as the cached results are valid. A cached result re-
mains valid if the authoritative provider stays alive since the
result has been cached. Node failures are detected through
epoch numbers. Every time a provider restarts, it incre-
ments its epoch number which is maintained on persistent

9An object relocator can directly access the information kept in the
aggregator module through function calls.



storage. Epoch numbers are included in control packets dis-
seminated by providers, and a provider failure can be de-
tected by the change of the epoch number 10.
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Figure 10: An illustration of using query result cache to relocate a small

object in the presence of node failures and recoveries.

Due to space constraint, we only present an illustration in
Figure 10 of how query result caching works. There are to-
tally 3 providers p1, p2, p3 and the activities shown in Fig-
ure 10 are initiated by the relocator on p2. The relocator
performs the proactive introspection periodically (at time
t1, t4, t6, t8 and t9). All activities are related to a small ob-
ject which is only hosted by p2 initially and has a speci-
fied replication degree of 2. The figure is relatively self-
explanatory and we provide some rationales behind the ac-
tions taken in each session as follows:

At t1, the object is replicated to p1 to meet the specified re-
dundancy requirement. At t4, although p1 is in the query
result cache for that object, the relocator must confirm the
object’s existence again since p1 suffers a failure between
t1 and t4, which might cause the object no longer accessi-
ble from p1. At t6, p1 is down, so the relocator removes p1

from the cache and replicates the object to p3 to maintain
the object’s redundancy. At t8, p1 is up again but the relo-
cator has no knowledge whether p1 might have the object
any more, so it queries p1 and only finds that p1 does have
the object. At t9, all providers in the candidate set are in the
cache, and there is no node joins or leaves since t8, so no
action is needed.

By batching multiple queries for the same provider in one
network transaction and caching query results, the overhead
of proactive introspection is significantly reduced. Fig-
ure 11 (a) summarizes the time complexity of the overhead
of proactive introspection (excluding actual data copying
cost) before and after the optimization. Figure 11 (b) pro-
vides an estimation of the actual cost after the optimizations
for a specific setting of a 1000-node cluster, where an in-
trospection session only takes about 8.9 seconds with the
majority cost on the local computation of candidate sets.

10In Sorrento, disk failures are generalized as a type of node failures.
When a provider detects a disk failure, it also increments the epoch num-
ber. So a disk failure is manifested as if the provider suffers a failure and
recovers immediately.

(a) The time complexity of proactive introspection.
(P - # of providers; N - # of objects in the local store; k - replication degree; l - #
of providers that join/leave the system since the last scan.)

Candidate set
calculations

UDP requests Obj existence
verifications

Before optimization N kN kN

After optimization N min(P, kN) klN
P

(b) The actual cost breakdown for a specific setting.
The values of the parameters are: P = 1000, N = 50000,
k = 4, l = 10. The per-operation cost is measured from a Pentium
III 1.2GHz PC, and the time of a UDP request is measured as the
round-trip delay of a 1.4KB UDP packet across a 100 BaseT link.

Cost category Time/op (µs) # Ops Sub-total (ms)
Candidate set
calculations

40 200000 8000

UDP requests 825 1000 825
Obj existence
verifications

20 2000 40

total time (ms) 8865

Figure 11: The overhead of proactive introspection.

In Sorrento, providers schedule proactive introspection ses-
sions once a day, so such a small overhead is insignificant
for the overall system performance.

5 Protocol Evaluation

The protocol described in this paper has been fully imple-
mented, which is part of the Sorrento prototype under de-
velopment at UCSB. The overall objective of the evaluation
is to demonstrate the effectiveness and scalability of our dif-
ferentiated object placement and location protocol:

1) The effectiveness of our differentiated protocol will be
demonstrated by comparing it with two uniform strategies:
a) consistent hashing-based object placement and location;
b) usage-based object placement with Bloom filter-based
tracking. We will analyze their space utilization, data mi-
gration cost, and memory/bandwidth consumption to vali-
date our conclusion. (Section 5.2)

2) We will also demonstrate the scalability of this protocol
in terms of the overhead for protocol invocation and proto-
col state maintenance. We will show that our protocol has
very low overhead when varying the number of providers,
the number of objects stored in the cluster and client request
rates. (Section 5.3)

Due to space constraint, we could not present detailed eval-
uations on other techniques used in our protocol, such as
the comparison between the original consistent hashing
(SDCH) and HDCH; the usage-based large object place-
ment policy; the effectiveness of chucked and redundant re-
freshing of Bloom filters to tolerate packet losses; and the
effectiveness of proactive introspection.

Since we do not have a hardware infrastructure to deploy
the kind of large-scale storage clusters described in this pa-
per at UCSB, we have developed a fairly sophisticated sim-
ulator to aid our evaluation. A description of the simulator



is presented in Section 5.1. For several timing-dependent
metrics such as the service time for an object location re-
quest, we evaluate them through experiments in which dif-
ferent processes on different machines are used to imitate
aggregators and providers. The detailed settings of these
experiments will be discussed within specific contexts. All
protocol-specific functions in the following simulations and
experiments are directly linked to the same set of library
modules which export the protocol interface. All experi-
ments and simulations are conducted on a cluster of 40 dual
Pentium III 1.2GHz Linux PCs connected with a Fast Eth-
ernet switch.

5.1 Simulator Design

The simulator models the environment where a storage
cluster serves object creation, deletion or location requests
generated by clients. We first present the detailed simula-
tion model. Then we discuss how client requests and ob-
jects with different sizes are generated to mimic realistic
application workload.

Simulation Model. The main objective of this simulator is
to model the system behavior related to object placement
and location activities, thus disk operations or data trans-
fers over the network are not modeled. The performance
data we collect from the simulator include disk space usages
and memory/bandwidth consumptions. Our main assump-
tion is that client request load will not saturate the system,
which is generally true in practice – a storage system is typ-
ically saturated due to insufficient disk/network bandwidth
instead of high object placement/location request rates.

The work flow of the simulator is as follows. All client re-
quests are combined as if they come from a single client
that is able to generate requests as fast as specified. Addi-
tionally, all requests go through a single aggregator which
serves each client request upon its arrival. Subsequently,
each request will trigger other events representing the in-
teractions between aggregators and providers during object
placement and location operations. Each provider handles
these events right after they are received. All providers
multicast control information periodically. We simplify
the modeling of network delays or request service times
as fixed constants whose values are taken from real mea-
surement, since we do not rely on the simulator to collect
timing-dependent metrics.

The simulator maintains the following system states. Each
provider has a pre-configured storage capacity, its master
Bloom filter and object catalog. Each aggregator maintains
a provider table. The simulator can dump a snapshot of the
system state information at any time during a simulation.

The protocol invocation and state maintenance components
in the simulator are directly linked to the protocol imple-
mentation modules. Thus they function in the same way
as real situations. The simulator runs as a single process,

Name Description

P Number of providers.
V Each provider’s storage capacity.

rc, rd, rl Object creation, deletion, and lookup request rate.
I Control information multicast interval.
T Simulation duration.
N Initial number of objects.

Figure 12: The parameters of the simulator.

and is able to simulate up to 80 million objects and 2500
providers. Figure 12 summaries the parameters of the sim-
ulator.

Request Generation. Simulations are driven by a client
request generator module which generates object creation,
deletion or lookup requests based on either Poisson pro-
cesses or from the Sprite traces [5, 25]. Due to space con-
straint, we only present the simulation results where request
arrivals are modeled as Poisson processes and our extended
study showed that the results obtained by using Sprite traces
are similar. To reflect the fact that small objects are created,
deleted or located more frequently than large objects, we set
the chance for a small object being chosen as the target of
a request 10 times higher than that for a large object. Since
the number of small objects is an order of magnitude higher
than that of the large objects, this means that the number
small object requests is two orders of magnitude higher than
large object requests.

Object Generation. We use the file size distribution mea-
sured from a storage system used in the AskJeeves/Teoma
search engine (the Service-offline curve from Figure 4) to
generate objects with random sizes. However, the size dis-
tributions captured in Figure 4 are for logical objects, and
some conversion must be done. For a logical object smaller
than 512KB, we generate 4 physical replicas. For a logical
object larger than 512KB, we divide it into Fd data frag-
ments and then create Fr redundancy fragments through
erasure coding. The values of Fd and Fr are calculated by
the following formulas, where S is the object size:

Fd = max
��

log2
�

S
256KB

��
,
	

S
200MB


�
; Fr = max (2, [0.2Fd])

The idea is to generate larger fragments for larger logical
objects and limit each fragment within 200MB. Addition-
ally, the space overhead of redundancy fragments is set at
20% and each large logical object must have at least 2 re-
dundancy fragments. After the conversion, physical objects
above 512KB consist 5.5% of total objects and consume
95.8% of total size.

5.2 Effectiveness of the Differentiated Protocol
Design

We first evaluate the effectiveness of the differentiated
protocol design (DIFF) through simulation. We com-



(a) Evaluation metrics and methodologies.
Metric Meaning Methodology

EffSpace The percentage of
effectively usable
space

Keep creating objects until a provider
runs out of space, and measure the per-
cent of space used by created objects.

MigData The percentage of
data to be migrated
when we add a
provider

Create a set of objects, save each
provider’s catalog. Calculate offline the
objects that must be migrated to the
newly added node.

Memory Memory consumed
by the provider table

Calculated during simulation when the
system is in a stable state (rc = rd).

Bandwidth Bandwidth used by
all control info up-
dates

Calculated during simulation when the
system is in a stable state (rc = rd).

(b) The settings of the simulator parameters.
Name Value Name Value

P 100 V 100GB
rc 100 req/sec rd 100 req/sec
rl 1000 req/sec I 1 second
T 100 seconds N 10 Million

(c) The results.
Metric HDCH BLOOM DIFF

EffSpace 73.7% 99.9% 98.8%
MigData 1.00% 0 0.042%
Memory 1.2KB 15.0MB 630KB

Bandwidth 3.20KB/s 142KB/s 7.42KB/s

Figure 13: Effectiveness of the differentiated protocol design.

pare our protocol with the schemes using only HDCH
(HDCH) or Bloom filters with usage-based object place-
ment (BLOOM). Essentially, we want to validate the
“+/−” signs in Figure 5 with quantitative results. We com-
pare these three schemes in terms of storage utilization, data
migration overhead, and memory/bandwidth consumption.
We summarize the definitions and evaluation methodolo-
gies of the metrics in Figure 13 (a).

The settings of the simulator parameters are shown in Fig-
ure 13 (b). In the measurement of EffSpace, the number of
objects N is not bounded and we keep creating objects un-
til some provider runs out of space. In the measurement of
MigData, the request rates are not used because the simula-
tor stops immediately after it creates N objects and dumps
all providers’ object catalogs.

The evaluation results are shown in Figure 13 (c). We can
see that DIFF improves the EffSpace from 73.7% of HDCH
to 98.8%, and is comparable with BLOOM which places
objects purely based on usage. In terms of MigData, DIFF
reduces the amount of migrated data by 24 folds comparing
with HDCH, from 1% (15GB) to 0.042% (638MB). The
reason for both improvement lies in the fact that the imbal-
anced storage usage and the data migration under HDCH is
caused by the uncontrollable object placement of consistent
hashing. By applying consistent hashing for small objects
which consist only 4.2% of the total space, DIFF effec-
tively confines the extent of the imbalanced storage usage
and data migration within a much smaller scale. Overall,
the percentage of usable space and data migration overhead
are significantly improved system-wide.

Secondly, DIFF reduces the memory/bandwidth consump-
tion by 24 and 19 folds respectively comparing with

BLOOM. The reason lies in the fact that the memory and
bandwidth consumption under BLOOM is roughly pro-
portional to the number of objects and the object cre-
ation/deletion rates. By only using Bloom filters to track
the locations of large objects, which are much fewer and are
created/deleted much less frequently, DIFF is able to sig-
nificantly reduce the management overhead. Note that the
results are only for a modest-sized cluster with 100 nodes.
Even though the overhead for BLOOM (15MB memory and
142KB/s as shown in Figure 13 (c)) seems fine with to-
day’s commodity hardware; however, they will reach more
than 100MB and 1MB/s respectively for large-scale clus-
ters with several thousand nodes.

In conclusion, our differentiated protocol takes advantage
of both HDCH and BLOOM schemes, makes effective use
of available storage, and maintains low management over-
head.

5.3 Evaluation of Protocol Scalability

In this section, we present a detailed evaluation of the over-
head of our differentiated object placement and location
protocol in relation to various scaling parameters. By do-
ing so, we seek to verify whether our protocol is able to
meet the scalability target to support a storage cluster with
several thousand nodes and millions of objects. Note that
because of our local request routing design, the overhead
associated with protocol invocation and state maintenance
is mainly on the aggregator side.

Small Object Placement and Location.

First we evaluate the overhead of our consistent hashing
scheme. The metric we use is the average service time
for an aggregator to place or locate a small logical object.
The service time is measured through a standalone program.
To place an object, the program calculates a set of candi-
date providers to host the object replicas (through REP-SET()

in Figure 9) and then contacts the providers sequentially.
To locate an object, the program invokes the object loca-
tion protocol (through LOOKUP() in Figure 9). The paral-
lel object existence checking is implemented through asyn-
chronous network operations. The providers are imitated by
P dummy UDP echo servers spread on 30 machines. The
responses returned by these dummy providers are ignored
by the program. The results are shown in Figure 14.

As we can see, the service time for both object placement
and location grows with the number of providers because
for each provider, HDCH needs to perform a Hamming dis-
tance calculation. However, the total service time is dom-
inated by the network operations, and the service time in-
crease is only modest. Additionally, object placement is
more costly than object location, because each placement
request actually creates 4 object replicas. Overall, for a
2500 node cluster, it only takes 1.4ms or 3.8ms to locate
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Figure 14: Service time for small object placement and location.

(a) Evaluation metrics.
Metric Parameter

(a) Object lookup time. P
(b) Bandwidth. P
(c) Bandwidth. rc (Note: rc = rd)
(d) Memory. N

(b) Default simulator parameters.
Name Value Name Value

P 1000 V 100GB
rc 25 req/sec rd 25 req/sec
rl 0 req/sec I 1 second
T 100 seconds N 5 Million

Figure 15: Evaluation settings for the overhead of Bloom filters.

or place an object.

Large Object Tracking.

The evaluation of the overhead introduced by Bloom filters
is quite complicated. First of all, there are three metrics we
would like to measure: object location service time, mem-
ory and bandwidth consumptions. Secondly, each metric
could depend on three parameters: number of objects, num-
ber of providers, and object creation/deletion rate. Due to
space constraint, we only present four of the nine possi-
ble combinations which are the most interesting to observe.
These four combinations are summarized in Figure 15 (a).

To measure the object location service time, we augment
the simulator such that in the middle of the simulation, it
calls a special subroutine which serves 10000 object loca-
tion requests and reports the average time for each lookup.
For each object location request, the subroutine uses the
slave Bloom filters stored in the aggregator to select a can-
didate set of providers and then contacts them over the net-
work. As in the previous experiment, the dummy UDP echo
servers are used to imitate providers. The other metrics are
directly reported by the simulator.

We made a few changes to reduce the complexity of the
simulation. We modify the request generation module such
that it only generates large objects requests. Addition-
ally, no object location requests are generated. Note that
these changes will not affect the evaluation results because
only large objects are managed by Bloom filters and that
the absence of lookup requests will not change the met-
rics we are interested in. All simulation settings are taken
from Figure 15 (b) except for the scaling parameters. Note

that the values of N , rc and rd in Figure 15 (b) are only
for large objects. Based on statistical estimation, this set-
ting corresponds to a large cluster with 90 million mixed-
sized objects and a high object creation or deletion rate of
4500 req/sec.

The evaluation results are shown in Figure 16. We can
see that the object lookup service time increases with the
number of providers, because each object location involves
the linear scan of the array of Bloom filters. Secondly,
the bandwidth consumption grows with either the number
of providers or the object creation request rate. It is un-
derstandable because when more objects are created, more
changes to the Bloom filters need be propagated to aggre-
gators. When there are more providers, more periodical up-
date packets will be generated, and each update packet will
incur a constant overhead (such as the packet headers). Fi-
nally, the amount of memory consumed by Bloom filters
grows proportionally with the number of objects.

Regardless of the linear increases of these metrics in re-
sponse to the increases of various parameters, it is important
to note that the overhead of object location using Bloom
filters is fairly low. For example, an object location re-
quest takes only 1.8ms to complete with 2500 providers.
Additionally, the bandwidth consumption never exceeds
50KB/s, which is insignificant for a Fast Ethernet connec-
tion. Finally, Bloom filters only consume 15MB memory to
track 10 million large objects, which can be easily accom-
modated on a desktop PC.
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Figure 16: The overhead of Bloom filters.

In conclusion, our differentiated protocol incurs low over-
head in terms of protocol invocation (service time) and pro-
tocol state maintenance (memory/bandwidth) to scale up to
several thousand providers and millions of objects. These
results clearly demonstrate the feasibility of our protocol to
support large-scale storage clusters.



6 Related Work

Our work is in large part motivated by previous work on
distributed file systems [4, 16, 19, 24] and cluster-based
storage systems [2, 15, 21]. Previous studies mainly fo-
cus on infrastructural support of unifying distributed stor-
age resources and have not addressed adequately how ob-
jects should be placed and located efficiently in response
to node additions and departures. Xfs [4], Swarm [15], Ze-
bra [16], and Petal [21] organize available storage resources
as a group of RAIDs or volumes, which share the same set
of limitations as SAN systems.

Slice [2] proposes a software architecture in which storage
request traffic is intercepted by a light-weight µproxy rout-
ing filter. Slice distributes objects through a combination of
hashing and logical-to-physical node mapping table (called
routing table). Such a scheme is more flexible than vol-
ume maps. However, it introduces its own set of limitations
and does not completely solve the problem. For example,
the centralized management of the routing table could be
a single-point of failure. Additionally, if a node recovers
from a transient failure, it needs to be mapped to the same
set of logical servers as it was before the failure; otherwise,
old objects stored on that node would not be located.

OceanStore [20] is a global-scale storage system and ob-
jects are cached anywhere in the system and are located
through a combination of attenuated Bloom filters and
Tapestry [17]. However, their goal is to provide secure and
highly available data access over the WAN, and thus has a
different set of design constraints and assumptions. For ex-
ample, the top priorities in OceanStore are security and how
to deal with unstable end-to-end network bandwidth; while
we assume a trusted environment and nodes are connected
with a high-bandwidth low-latency network. Additionally,
OceanStore assumes that data objects are cacheable any-
where in the network; while we have to deal with very large
data objects that must be fragmented to fit onto physical de-
vices.

Our differentiated object placement and location protocol
relies on the different characteristics of small and large ob-
jects, which have been studied by Baker et al. [5] and Vo-
gels [35]. Previous researches such as Slice [2], Swift [7]
and Zebra [16] have used it to differentiate I/O operations
for small and large objects. However, to our knowledge,
none have taken advantage of it to optimize object place-
ment and location operations.

Consistent hashing was proposed by Karger et al. [18] and
has been applied in Chord [32]. Our HDCH is a variation
of the basic approach and exhibits more consistent behav-
ior for variable scales. High dimension topologies can be
found in architecture researches such as hypercube network,
and has also been adopted by CAN [29] in wide-area in-
dex distribution to facilitate request routing for peer-to-peer

systems. In comparison, our HDCH design emphasizes on
balanced object distribution and maintaining stable hashing
results in the event of node additions or departures.

Bloom filters have been used in SummaryCache [11],
OceanStore [20] and PlanetP [10]. All these studies ex-
change filter updates through reliable point-to-point com-
munications over a WAN. In this work, we multicast filter
updates over a LAN and devise techniques to tolerate packet
losses.

Proactive introspection is inspired by the idea of introspec-
tive replica management used in AT&T Radar [28] and
OceanStore [20]. Our proactive introspection is tightly cou-
pled with the object location protocol and we have demon-
strated how it can be efficiently performed.

7 Conclusions and Future Work

This paper presents the design and implementation of an
differentiated object placement and location protocol for
large-scale storage clusters. We use high-dimension con-
sistent hashing to place and locate small objects. For large
objects, we combine a usage-based placement scheme with
Bloom filter-based tracking. The main advantage of this
protocol is that it is able to flexibly place objects to live
storage nodes and make effective use of storage resources.
It is also scalable with very low management overhead in
comparison with uniform strategies. The effectiveness and
scalability of the protocol is validated with a combination
of simulations and experiments.

Our work has leveraged techniques from previous re-
search on distributed storage systems such as Slice [2] and
OceanStore [20], and complements the existing work by
targeting at the manageability problem of large-scale stor-
age clusters in response to frequent node additions or de-
partures. Based on this protocol, a storage cluster can auto-
matically integrate available resources and repair damaged
data redundancy.

The protocol described in this paper is part of the Sor-
rento project, with the goal of making storage clusters self-
organizing and minimizing human administration. Much
future work remains. We plan to study how to adaptively
distinguish small and large objects. We also plan to inves-
tigate how to support automatic resource scheduling, tun-
ing and QoS guarantees. We will analyze the performance
impact and possible optimizations for version-based consis-
tency model and erasure coding-based redundancy scheme
in the context of self-organizing storage systems. Finally,
we plan to conduct a detailed study of workload character-
istics of storage clusters used by new data-intensive appli-
cations.
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