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ABSTRACT
Large-scale cluster-based Internet services often host partitioned
datasets to provide incremental scalability. The aggregation of re-
sults produced from multiple partitions is a fundamental building
block for the delivery of these services. This paper presents the
design and implementation of a programming primitive – Data Ag-
gregation Call (DAC) – to exploit partition parallelism for cluster-
based Internet services. A DAC request specifies a local processing
operator and a global reduction operator, and it aggregates the local
processing results from participating nodes through the global re-
duction operator. Applications may allow a DAC request to return
partial aggregation results as a tradeoff between quality and avail-
ability. Our architecture design aims at improving interactive re-
sponses with sustained throughput for typical cluster environments
where platform heterogeneity and software/hardware failures are
common. At the cluster level, our load-adaptive reduction tree
construction algorithm balances processing and aggregation load
across servers while exploiting partition parallelism. Inside each
node, we employ an event-driven thread pool design that prevents
slow nodes from adversely affecting system throughput under high-
ly concurrent workload. We further devise a staged timeout scheme
that eagerly prunes slow or unresponsive servers from the reduction
tree to meet soft deadlines. We have used the DAC primitive to im-
plement several applications: a search engine document retriever, a
parallel protein sequence matcher, and an online parallel facial rec-
ognizer. Our experimental and simulation results validate the effec-
tiveness of the proposed optimization techniques for (1) reducing
response time, (2) improving throughput, and (3) handling server
unresponsiveness gracefully. We also demonstrate the (4) ease-of-
use of the DAC primitive and (5) the scalability of our architecture
design.

1. INTRODUCTION
Computer clusters are widely deployed to deliver highly scalable

and available online services [2, 7, 15, 17]. Well-known Web sites
such as Yahoo or MSN employ service clusters with thousands of
machines. The persistent data for cluster-based Internet services is
often partitioned and the aggregation of data produced from multi-
ple partitions is a commonly requested operation. For instance, an
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online discussion group service may partition data based on discus-
sion topics. To serve a client request looking for articles posted by
a particular author, the service cluster needs to perform searches on
all data partitions and aggregate the results before replying back to
the client. Similar examples that require parallel service invocation
and result aggregation can be found in an online auction service
where auction items may be partitioned based on categories; or in
an Internet search engine where data may be partitioned based on
their URL domains.

Supporting efficient data aggregation is not straightforward. Sev-
eral previous works on cluster-based service programming rely on
a fixed node to aggregate results [7, 21], which could quickly run
into scalability problems when a large number of partitions are in-
volved. On the other hand, it is desirable to provide a high-level
data aggregation primitive to aid service programming, and hide
the complexity of implementation details behind an easy-to-use in-
terface. A good implementation not only needs to optimize both
response time and system throughput, it also needs to consider het-
erogeneous environments caused by hardware difference, varying
network conditions, and non-uniform application data partitions.
Further more, it needs to handle node failures and unresponsive-
ness caused by hardware faults, software bugs, and configuration
errors.

This paper studies the programming support and architecture de-
sign of scalable data aggregation operations for cluster-based Inter-
net services as follows.

Programming support: We propose a service programming
primitive calledData Aggregation Call or DAC. The DAC primi-
tive models a data aggregation operation as the composition of two
types of basic operations performed at each individual partition.
(1) First, each participating partition performs a local processing
operation and produces an output dataset. (2) Second, all output
datasets are aggregated through repeated execution of a reduction
operation that merges two output datasets into one. Additional-
ly, the DAC provides two options specifically designed for online
services. The option ofaggregation quality guarantee provides a
means to let a DAC invocation return partially aggregated result-
s, which can improve overall system availability in the event of
node failures and system load spikes [6]. The option ofsoft dead-
line guarantee allows service programmers to specify a deadline
for each DAC invocation to improve user experience for services
demanding interactive responses.

Architecture design: Online services typically need to provide
interactive responses under heavy user traffic, thus the objective of
our architecture design is to improve response time with sustained
system throughput. Additionally, our design targets large-scale ser-
vice clusters where platform heterogeneity and node failures are
common. In this paper, we propose three techniques to achieve our
goal. (1) At the cluster level, we use a load-adaptive tree formation
algorithm that balances load across servers. (2) Inside each cluster



node, we use a highly concurrent event-driven request scheduling
scheme that prevents slow responding nodes from blocking work-
ing threads and adversely affecting system throughput. (3) To avoid
slow or failed nodes from delaying the completion of DAC request-
s, we introduce a staged timeout scheme that eagerly prunes out
slow or failed servers from a reduction tree.

The work described in this paper is a critical building block
in Neptune, a middleware system that provides replication sup-
port [21], and quality-aware resource management [19, 20] for s-
calable cluster-based network services. We have applied the DAC
primitive in the implementation and deployment of several appli-
cations: a search engine document retriever, a parallel protein se-
quence matcher, and an online parallel facial recognizer.

The rest of this paper is organized as follows. Section 2 gives
a brief overview of the Neptune clustering middleware. Section 3
describes the semantics of the DAC primitive. Section 4 discusses
our runtime support techniques for DAC. Section 5 presents the e-
valuation of the proposed DAC primitive and individual techniques
used in the DAC implementation. Section 6 discusses related work
and Section 7 concludes the paper.

2. NEPTUNE: CLUSTERING SUPPORT
FOR SCALABLE INTERNET SERVICES

The work described in this paper is part of theNeptune frame-
work – programming runtime support for building cluster-based
Internet services [21]. This section presents a brief background
overview of the clustering architecture of Neptune and its program-
ming environment.

2.1 Clustering Architecture
Neptune targets cluster-based network services accessible to In-

ternet users. Requests issued by remote clients enter service clus-
ters through protocol gateways such as Web servers or XML gate-
ways. Inside the service cluster, services are typically composed
by several service components. Persistent data for service compo-
nents are usually partitioned and replicated to provide incremental
scalability and high availability. We use the termService Instance
to denote a server entity that runs on a cluster node and manages
a data partition belonging to a service component. Neptune em-
ploys a functionally symmetric and decentralized clustering design.
Each service instance can elect to provide services (calledservice
provider) and it can also acquire services exported by other service
instances (calledservice consumer). This model allows multi-tier
or nested service architecture to be easily constructed.
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Figure 1: A prototype search engine service in Neptune

Figure 1 illustrates the architecture of a prototype document search
service supported by the Neptune middleware. In this example, the

service cluster delivers a search service to Internet users and busi-
ness partners through Web servers and XML gateways. Inside the
cluster, the main search task is decomposed into two parts and dis-
tributed to index servers and document servers. The data for both
components are partitioned and replicated. In Figure 1, there are
two index server partitions and three document server partitions,
and each partition has three replicas. The arcs labeled with1�–
4� in Figure 1 show a simplified work flow of serving a client re-

quest. 1� A search query arrives at one of the protocol gateways.
2� The protocol gateway contacts the index server partitions to re-

trieve the identifications of documents related to the search query.
3� The protocol gateway contacts the document server partitions

which translate the list of document identifications to human under-
standable descriptions.4� Finally, the protocol gateway compiles
the final results in HTML or XML format and returns them back to
the client. In the above work flow, the protocol gateway contacts
the service instances through theNeptune consumer module. On
the service provider side, the requests are received by theNeptune
provider module, which subsequently invokes the service-specific
handlers to process the requests.

Neptune provides many reusable functionalities in the middle-
ware layer to ease service construction. (1)Naming, service lo-
cation, and load balancing: Service component partitions are ad-
dressed through location-transparent name pairs (service name, par-
tition ID). The Neptune consumer module automatically routes each
request to an appropriate node based on the service availability and
runtime workload. (2)Replication consistency: Neptune provides
several levels of consistency guarantees for consumer requests in-
volving data updates, and an application can choose the desired
level based on its service semantics. (3)Fault isolation and fail-
ure recovery: The Neptune provider module at each node peri-
odically announces a service availability, or heartbeat, message to
other nodes. Faulty nodes will be automatically detected by the
discontinuance of heartbeat messages. When a failed node recov-
ers, Neptune automatically performs data consistency maintenance
if necessary.

2.2 Neptune Programming Support
Neptune allows service programmers to concentrate on the func-

tional design of service components without being concerned with
the details of the underlying clustering architecture. The Neptune
service call interface hides the complexity of request routing and
network communication management behind a set of easy-to-use
function call interfaces. We briefly discuss how to implement an
online service in Neptune.

As mentioned before, each service provider exports certain func-
tionalities to service consumers through request/response sessions.
Inside each service provider, Neptune maintains a request queue
and a thread pool to handle requests concurrently, andapplication
programmers only need to specify a set of service-specific request
handlers. These handlers are compiled and encapsulated in a dy-
namic library module, and will be loaded into the Neptune runtime
system. The Neptune provider module process requests by calling
back the corresponding request handlers.

When a service instance seeks certain functionality from anoth-
er service instance, it uses the Neptune consumer module’s service
call interface to communicate with an appropriate service instance
acting as a service provider. Neptune supports two styles of inter-
actions between service consumers and service providers. In the
message-based scheme, a service consumer specifies the request
and response buffers in one function call, which bears some simi-
larity with RPC (Remote Procedure Call). This scheme is suitable
for interactions involving small amount of data. Thestream-based
scheme requires a service consumer to first establish a stream con-
nection between the service consumer and provider, and then in-



teracts with the service provider through the bidirectional channel.
This scheme allows the exchange of large amount of data without
pre-allocating buffering space.

A number of applications have been deployed on the Neptune
platform, including an online auction service, an online forum ser-
vice, and a persistent cache utility. Our experience with Neptune as
a service programming platform has been very positive and most of
these deployments were completed within a few days. In particular,
Neptune has been successfully used as the clustering middleware
at the Web search engine sites Teoma and Ask Jeeves since 2000.
As of Fall 2002, the system grows to over 900 multiprocessor ma-
chines.

3. DAC SEMANTICS AND
PROGRAMMING INTERFACE

In this section, we will first present the semantic design of the
Data Aggregation Call (DAC) primitive, followed by a description
of its programming interface. In the end, we will compare it with
the MPI reduction primitive.

3.1 The Basic DAC Semantics
A generic data aggregation operation over a set of partitions

can be viewed as a composition of two types of basic operations.
First, alocal processing operation (called a�LOCAL operator) is per-
formed on every participating partition, which processes the dataset
of that partition and produces an output dataset. Secondly, the out-
put datasets produced from all participating partitions are aggregat-
ed into one output dataset through repeated invocations of aglobal
reduction operation (called a�REDUCE operator). A�REDUCE opera-
tor takes in two source datasets and produces one output dataset.
For example, in Figure 1, the retrieval of matching document iden-
tifications from all partitions (the arcs labeled with2�) is a data
aggregation operation in which the�LOCAL operator selects a list
of document identifications related to a search query from a local
partition, and the�REDUCE operator sorts two lists of document iden-
tifications (based on their relevancy to the query) and merges them
into one list.

Algorithm 3.1: DAC(���LOCAL � �REDUCE� �LOCAL � �REDUCE)

Input: � � ���� ��� ���� ���: The set of� participating partitions.
Input: �LOCAL : The local processing operator.
Input: �REDUCE: The global reduction operator.
Input: �LOCAL : The input parameters for�LOCAL .
Input: �REDUCE: The input parameters for�REDUCE.
Returns: �: The result dataset of the data aggregation call.

// First, we apply the local processing operation on all partitions.
for 	� � to �

do �� � �LOCAL ���� �LOCAL �

// Second, we aggregate the output datasets ���� ��� ���� ���
// to the final result � through the global reduction operation.
� � ��
for 	� � to �

do � � �REDUCE��� ��� �REDUCE�

return ���

Figure 2: Specification of the basic DAC semantics.

Figure 2 specifies the basic semantics of the DAC primitive through
a sequential algorithm, which reflects the idea of the generic data
aggregation operation described in the previous paragraph. Note
that the sequential algorithm shown in Figure 2 is only meant to

specify the desired outcome of a DAC invocation, and a differen-
t algorithm (possibly a parallel algorithm) could be used for the
actual implementation.

The two operators of the input parameters for the DAC primitive,
�LOCAL and�REDUCE, deserve some further discussion. There is no
formal restriction for�LOCAL and it can be any operations performed
on a single partition. Typically, the�LOCAL operator involves the se-
lection of a sub-dataset from a data partition followed by a transfor-
mation that produces the output data from the selected sub-dataset.
On the other hand, we do assume the�REDUCE operator to be both
commutative and associative, which is generally the case in prac-
tice [4, 13, 18, 22]. As will be shown in the later sections, requiring
the�REDUCE operator to be commutative and associative allows us
to perform parallel reduction with limited synchronization.

3.2 Adding Quality Control to DAC
The specification in Figure 2 assumes that there is no cluster

node failures and the request demand is below the system capacity.
However, in a real clustering environment, cluster nodes could be
unavailable due to software or hardware problems. Additionally,
client request demand level could fluctuate dramatically and may
exceed system capacity. It is critical to provide prompt responses
for client requests under those situations.

The DAC primitive provides two additional input parameters to
allow service programmers to control the behavior of a data aggre-
gation operation in the event of node failures and system overload.

(1) Aggregation quality guarantee: For many online services,
partial aggregation results may still be useful. We define thequali-
ty of a partial aggregation result as the percentage of partitions that
have contributed to the partial result. Service programmers can
specify anaggregation quality guarantee (a percentage threshold),
and a partial aggregation result is only acceptable when its quality
exceeds the threshold. For a service that cannot tolerate any parti-
tion loss in an aggregation operation, we can specify the threshold
to be����. An aggregation quality guarantee below���� allows
the system to trade the quality of aggregation results for availability
(i.e., the number of successfully fulfilled requests), which is impor-
tant for large-scale network services [6].

(2) Soft deadline guarantee: Online service users typically de-
mand interactive responses. As a result, we allow service program-
mers specify a service-specificsoft deadline guarantee in a data
aggregation call. The deadline guarantee provides guidance for the
system to balance between the aggregation quality and the prompt-
ness of request responses. It also allows the system to eagerly abort
requests that stand a low chance of meeting the deadline. This
avoids wasting resources for serving these requests, which are like-
ly to be discarded by online users anyway. The deadline guarantee
is soft in the sense that the DAC may return with a response time
slightly over the specified deadline.

The aggregation quality and soft deadline guarantees essentially
make the semantics of the DAC primitive non-deterministic. Fig-
ure 3 shows the complete semantics of the DAC primitive, whose
non-determinacy is manifested in two places – the two possible ex-
ecution paths, and the non-deterministic subset of the contributing
partitions.

3.3 DAC Programming Interface
The DAC programming interface consists of two parts. On the

service consumer side, it specifies how to invoke a DAC request.
On the service provider side, it specifies how to write service han-
dlers (callback functions) that will be used by the Neptune run-time
system to fulfill DAC requests.

The C++ interface for DAC invocation is shown in Figure 4 (a
variation for stream-based calls is not presented due to the space
constraint). The first argument is an opaque Neptune client han-



Algorithm 3.2: DAC(���LOCAL � �REDUCE� �LOCAL � �REDUCE� 
� � )

Input: � � ���� ��� ���� ���: The set of� participating partitions.
Input: �LOCAL : The local processing operator.
Input: �REDUCE: The global reduction operator.
Input: �LOCAL : The input parameters for�LOCAL .
Input: �REDUCE: The input parameters for�REDUCE.
Input: 
: The aggregation quality guarantee (� � 
 � �).
Input: � : The soft deadline guarantee.
Returns: ���� ��: The status ( success or fail ), contributing par-
titions�, and aggregation result�.

Execution path 1.

�
// Request cannot be fulfilled due to node failures
// or resource constraint.
return �� fail �nil �nil ��

Execution path 2.

����������
���������

// Request fulfilled within or close to the deadline � .
�� a subset of � with � (� � 
� �) partitions
for 	� � to �

do �� � �LOCAL ���� �LOCAL �
� � ��
for 	� � to �

do � � �REDUCE��� ��� �REDUCE�
return �� success � �� ���

Figure 3: The complete DAC semantics. The non-determinacy of the
semantics is manifested in two places. (1) the two execution paths;
(2) the non-deterministic subset �.

dle which links to the states of a Neptune client (service consumer)
and is obtained during the instantiation of a Neptune client. The
classNeptuneCall specifies a registered request handler on a Nep-
tune service provider (such as the name and version of the handler).
The classNeptuneData maintains structured and typed data in a
platform-independent manner.

bool NeptuneDAC(
// Input parameters:
NeptuneCltHandle & h, // Neptune client handle
char * svc_name, // service name
set<int> & partitions, // participating partitions
NeptuneCall & local, // local processing operator
NeptuneCall & reduce, // global reduction operator
NeptuneData & prm_local, // parameters for local
NeptuneData & prm_reduce, // parameters for reduce
double aqg, // aggreg. quality guarantee
double deadline, // soft deadline guarantee
// Output parameters:
NeptuneData & result, // aggregation results
set<int> & ctrb_parts // contributing partitions

);

Figure 4: The C++ interface for the DAC primitive.

On the service provider side, a service library provides the imple-
mentation of two callback functions corresponding to the two oper-
ators specified in the DAC interface. The functions are required to
take thetypedef interfaces shown in Figure 5. For both interfaces,
the first parameter is an opaque Neptune service handle which links
to the states of a Neptune service instance. Note that the interfaces
shown in Figure 5 pass input and output data in a message-based
style through theNeptuneData objects.

3.4 Comparing DAC with MPI Reduce
DAC is similar to the MPIreduce primitive conceptually. As a

matter of fact, the design of the DAC programming interface has

// local processing operator interface definition
typedef bool op local(

// Input parameters:
NeptuneSvcHandle & h, // Neptune service handle
int part_id, // partition ID
NeptuneData & parameters, // request parameters
// Output parameters:
NeptuneData & result // local processing result

);

// global reduction operator interface definition
typedef bool op reduce(

// Input parameters:
NeptuneSvcHandle & h, // Neptune service handle
NeptuneData & src1, // reduction input source 1
NeptuneData & src2, // reduction input source 2
NeptuneData & parameters, // request parameters
// Output parameters:
NeptuneData & result // reduction output

);

Figure 5: The C++ typedef interfaces for operator callback func-
tions. A local processing operator is required to have the type
op local, and a global reduction operator is required to have the
type op reduce.

been influenced by the MPI reduce primitive [10, 22]. An MPI re-
duce operation aggregates data from participating MPI nodes to a
root node through a reduction operator. However, MPI is mean-
t to be applied for scientific computation domain rather than for
service programming purposes, which is the main source for the
differences between these two primitives.

First, MPI reduce does not tolerate node failures and if any of
the participating MPI node fails, the MPI reduce operation will al-
so fail. Second, MPI programs are less restrictive on interactive
responses and MPI reduce does not require deadline guarantee. Fi-
nally, MPI relies on a procedure programming model while Nep-
tune uses a stateless request-driven model. As a result, service pro-
grammers must specify an additional local processing operator in a
DAC invocation.

4. RUNTIME SUPPORT
There are two objectives in the runtime system design for DAC:

(1) To minimize the service response time with sustained through-
put in both homogeneous and heterogeneous environments. (2) To
minimize the impact of node failures and unresponsiveness. This
section first presents an overview of our architecture design. A
load-adaptive tree formation scheme is introduced after a discus-
sion of several different reduction tree formation schemes. Then
we present our node-level concurrency management scheme and
techniques for handling failures and unresponsiveness.

4.1 Architecture Overview
Figure 6 shows the overall system architecture. Upon receiving a

DAC invocation, the DAC client module constructs a reduction tree
and assigns participating service instances to tree nodes. It then
multicasts this information with the actual request to all participat-
ing providers. All service providers then perform the local pro-
cessing operation, and cooperate together to aggregate data from
the bottom of the tree to the root. Specifically, each provider ag-
gregates the local processing results with datasets returned from its
children. Once it finishes aggregating data from all its children (or
if it does not have any child, or the request times out), it then sends
the local aggregation results to its parent (or sends back the final re-
sult to the original service consumer if it is the root). This process
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continues until the final result reaches the service consumer.
On top of this architecture, our runtime system design targets two

issues: (1) How to build a global reduction tree to exploit partition-
level parallelism? (2) How to efficiently serve highly concurrent
service requests on each provider? We address the first issue in
Sections 4.2 and 4.3. The second issue will be studied in Sec-
tion 4.4.

4.2 Reduction Tree Formation Schemes
In this section, we present three reduction tree formation schemes,

as illustrated in Figure 7.
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Figure 7: Tree formation schemes: (a) Base (b) Flat (c) Hierarchical.

(1) The baseline scheme (Base): The first scheme is the base-
line scheme that performs data aggregation when there is no special
support from the runtime system. As shown in Figure 7 (a), in the
Base scheme, a service consumer initiates invocations on all partic-
ipating partitions, collects results from these partitions, and aggre-
gates these results. The main problem of this approach is that the
service consumer is responsible for all aggregation work and may
quickly become the bottleneck when request demand increases.

(2) Flat tree with delegated roots (Flat): In the second scheme,
as shown in Figure 7 (b), a service consumer delegates the aggre-
gation work to a service provider, and chooses different delegated
roots for different DAC requests. This allows the system to handle
high request demand without saturating either the service consumer
or any of the service providers. However, the response time of this
Flat scheme is not satisfactory because aggregation work is serial-
ized on a root node.

(3) Hierarchical tree with delegated roots (Hierarchical): As
shown in Figure 7 (c), the third scheme improves from the Flat
scheme by replacing the flat reduction tree with a hierarchical tree.
A balanced hierarchical tree with appropriate width and depth can

Tree Formation Scheme Response Time Throughput

Base � �

Flat � �

Hierarchical � �

Figure 8: A qualitative comparison of the three schemes.

improve response time by parallelizing the aggregation work on all
non-leaf nodes. This is inspired by the tree-based reduction designs
used in MPI [3, 10]. We further extend the previous work by inves-
tigating the dynamic formation of a reduction tree for each service
call. The tree formation must be load-aware so that the total amount
of work for local computation and aggregation is evenly distributed.
This allows the response time to be minimized while maintaining
sustained throughput. We present the details in the next section.

Figure 8 summarizes the performance differences of the above
three tree formation schemes. A check mark “�” means the method
performs well for achieving the specified objective while a “�”
represents the opposite. The Hierarchical scheme performs best
in terms of both response times and throughput, while the Base
scheme performs worst.

To illustrate the quantitative performance differences of these
three schemes, we consider the following special case. Suppose
the local processing time and the binary reduction time are� and
� respectively on on all servers (homogeneous environment). Al-
so suppose the number of partitions in every DAC request is�.
The optimal throughput for the Flat and Hierarchical schemes is

�
���������

. This is achieved when there is no node idling. On the

contrary, the optimal throughput for the Base scheme is���
�

�
��
� �
�

�
and the consumer becomes the bottleneck when the total aggre-
gation work outweighs its local service work, i.e.�� � �. In
terms of minimum service latency, the Base and Flat schemes are
in the order of���� while the Hierarchical scheme is in the order
of ��	
� ��.

4.3 Load-Adaptive Tree (LAT) Formation
As has been mentioned before, the goal of the hierarchical tree

formation scheme is to minimize the response time with sustained
throughput. In a concurrent environment, it is more important to
balance load in the sense that the response time is dependent on
the slowest node that has the maximum request queue length. Fur-
thermore, extreme imbalance of load can lead to idleness of some
nodes, which in turn deteriorates the throughput. Thus, the goal
is further broken down into two parts: (1) To reduce the load im-
balanceness when there is high load variation on different nodes.
(2) To minimize the response time when load is well balanced. To
achieve the above two objectives, we design a hierarchical reduc-
tion tree by considering the following two factors: (1) theshape
of the tree; (2) themapping of servers (service providers) to tree
nodes.

Tree shape: We want to control the tree shape for two reasons:
(1) The outdegree of a node reflects the aggregation work assigned
to the node. Thus, it can be leveraged to balance load. On the
other hand, it also means the aggregation operations are serialized
on that node. Thus, it affects the response time. (2) The height of
the tree affects the length of the critical path. Thus, it also affects
the response time. For this reason, when load is balanced, we want
to avoid a deep tree to improve the response time.

Node mapping: Once the shape of a reduction tree is deter-
mined, the next step is to map the actual servers to the tree nodes.
There are two methods to designate service providers to tree nodes:
a random approach and a load-aware approach. In the random ap-
proach, the mapping from the actual service providers to the tree



nodes is purely random and it is unaware of the current system s-
tatus. Further more, we introduce a load-aware node placement
method. We map the service providers to the tree nodes according
to their workload. Busy service providers will be mapped to tree
nodes with few children nodes. The load-aware approach has two
advantages. First, it can be more effective in balancing workload
among service providers, especially in a heterogeneous environ-
ment, where some servers can be faster than others. Second, un-
responsive or slow servers are mostly placed in the leaf nodes and
their impact on throughput can be effectively controlled as will be
discussed in Section 4.5.

The load-adaptive tree algorithm: Based on the above discus-
sion, we use two heuristics to guide our algorithm design. (1) The
leaf nodes in a reduction tree do not perform aggregation, and thus
servers with heavy workload are placed in leaf nodes. On the other
hand, partitions with less workload will be placed in interior nodes.
Particularly, one would place the root, which does the most aggre-
gation work, at the server with the lightest workload. (2) When all
servers are similarly loaded, the response time is normally deter-
mined by the longest path. So longer path should be assigned with
partitions with relatively less load.

Our load-adaptive tree formation algorithm dynamically construct-
s a reduction tree for each DAC request based on the runtime load
information on all nodes. It consists of four steps:

(1) Runtime information collection: First, we collect the cur-
rent load on each server, and estimate the costs of the binary aggre-
gation and service operation on each server. These information are
used in subsequent steps.

(2) Assigning aggregation operations to nodes: There are���
aggregation operations to be distributed among� nodes. The as-
signment is done in a way that less loaded servers will do more
aggregation (larger outdegree). This can be accomplished step by
step by assigning an aggregation operation to the least-loaded serv-
er. Figure 10 (a) illustrates this process with an example that as-
signs 7 aggregation operations to 8 servers. Numbers on the aggre-
gation boxes represent the algorithm steps. For example, at the first
step, one aggregation is assigned to server	. In the end, server	
is assigned 4 operations.

(3) Tree construction: Then we build a load-adaptive tree in the
lexicographical breadth-first order. The server that is assigned the
most aggregation operations is placed to the root and this place-
ment determines the out degree of the root ( i.e. a set of unmapped
child nodes for the root) . Then the following steps are repeated:
the server with the most aggregation operations among the remain-
ing unplaced servers is placed to the unmapped tree node with the
smallest depth. A tie is broken by first placing a server with the
higher estimated load. Figure 10 (b) illustrates a LAT derived from
Figure 10 (a).

(4) Final adjustment: A final step is to ensure that the tree
height is controlled by	
� �. We check all subtrees in a breadth-
first order and if the root degree of any subtree of size
 is less
than	
�
, we replace this subtree with a load-aware binomial tree,
which is built as follows: (1) Sort tree nodes in the descending or-
der of their outdegrees, and break ties by using the increasing order
of node depths (the root has depth 0). (2) Sort servers based on
their workload in ascending order (the least loaded partition first).
(3) Match servers with the tree nodes one by one following the
above sorted order.

The complete algorithm is summarized in Figure 9, whose time
complexity is��� 	
� ��.

The above load-adaptive tree construction ensures the following
two properties1: (1) If node	 is less loaded than node�, then

1In the following discussion, we use the termnode to denote both a certain node in
the reduction tree and the server assigned to that node.

1. Collect the current load on each server. And estimate the costs of a
binary aggregation operation and service operation on each server.

2. For� nodes, there are� 	 � aggregations. We assign them one by
one to� servers by repeating the follow steps�	 � times.


 Find the least-loaded server with one additional aggregation
assigned.


 Assign one aggregation operation to this server and adjust the
load estimation on this server.

3. Map servers to tree nodes and form a tree shape based on the above
assignment:

(a) First, we map the server with the largest aggregation opera-
tions as the root and setup its unmapped child nodes.

(b) Repeat the following steps n-1 times until all servers are
mapped.


 Pick up an unmapped server with the largest aggrega-
tion. If there is a tie, pick up one with the largest total
workload.


 Map this server to an unmapped tree node with the s-
mallest tree depth.

4. Scan all nodes in the tree to ensure the tree height is controlled by
��	 �: Examine each subtree and if the out degree of the root of
each subtree is less than��	� where� is the number of nodes in
the subtree, replace this subtree with a load-aware binomial tree.

Figure 9: LAT: Load-adaptive tree formation algorithm.

node	 will be assigned more children than node�. (2) If node	
and node� is of the same depth from the root, and node	 is less
loaded than node�, then the depth of the subtree rooted from	
is larger than the depth of the subtree rooted from node�. That
means the algorithm tries to assign less loaded nodes to a longer
path.

(a) (b)

C
B

F

A

E
HG

D
1
3
4

2

67

A

B D G H

CF E

5

Figure 10: Constructing an 8-node load-adaptive tree: (a) Assign 7
aggregation operations to 8 servers ( white boxes - the current work-
load, stripe boxes - service operation costs, gray boxes - reduction op-
eration costs, numbers show the order of assignments). (b) The result
load-adaptive tree.

4.4 Node-level Concurrency Management
Our initial design allocates one thread to execute the local pro-

cessing operation; and after its completion, this thread will be blocked
and waiting for results from other partitions to be aggregated. When
all threads in the fixed-size thread pool are blocked, no further re-
quests can be served even though the system is not busy at all. This
can cause a dramatic pile-up of requests. The situation could be al-
leviated by increasing the thread pool size. However, a large num-
ber of concurrent threads could also degrade system performance
substantially [27].

Motivated by previous works on event-driven design for dealing
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Figure 11: State machine of event-driven aggregation: (A) Local pro-
cess initiated. (B) Request partially processed. (C) Results ready to be
sent to the parent.

with high concurrency in Web and network services [27, 16], our
solution is to introduce an event driven mechanism for aggregation.
When a thread needs to wait for results from child nodes, the sys-
tem registers its interested events and releases this thread resource.
Figure 11 shows the state machine of our event-driven design. The
states are defined as follows: (1)State A: A new request is received
and the local processing is initiated. (2)State B: The request is
partially processed and is pending for results from its children to
be aggregated. (3)State C: The request is completed locally (i.e. it
has aggregated results from all its children), or is timed out; and is
ready to be sent to the parent.

Figure 12 shows the node-level architecture for aggregation. It
also shows the stages corresponding to the states in Figure 11.
When a request comes in, it is placed in a request queue. When it
gets its turn to be served, the service function is located in the ser-
vice library and a thread or a thread-attached process2 is launched
to serve the request. The thread also establishes connections to
child nodes based on its position in the reduction tree.

When the service operation is done, the local result from the ser-
vice operation along with the interested socket events of established
connections are placed into an aggregation pool. There is a dedi-
cated thread in the aggregation pool watching on all the registered
events. When an event occurs, it will be placed into an event queue
along with the partial result. There is also a thread pool associated
with the event queue. Events are served in the similar manner as
requests. If not all results are received from the child nodes, the
partial result is again placed back into the aggregation pool for fur-
ther process. Otherwise, the aggregated result will be delivered to
the parent node.

Notice that we assign higher priorities to threads serving the
event queue than those serving the request queue so that an ag-
gregation thread can quickly aggregate the result and deliver it to
the parent. This improves the mean response time.

Event
Queue

Service
Thread Pool

Aggregation
Thread Pool

Request
Queue

State A State B

Incoming
requests

Local partitions

Partial Results

System Area Network

State C

Figure 12: Node-level aggregation architecture.

The above procedure is completely transparent to service pro-
grammers. A service programmer does not need to care about the
complicated and error-prone procedures of event registrations and
2A thread-attached process is a process paired with a thread. The process executes
the request while the thread collects the result from the process. This achieves fault
isolation without modification of the service library.

dispatches. All is done in the DAC runtime system module. A
service programmer only needs to provide a service function and
aggregation function as stated in Section 3. This achieves the ef-
ficiency of the event-driven model while keeps simplicity of the
thread programming model.

4.5 Handling Unresponsiveness and Failures
This section discusses methods to exclude faulty and unrespon-

sive or slow nodes in data aggregation. If a hardware or software
component stops working completely, the availability managemen-
t of Neptune using heartbeats makes each node quickly aware of
failures. Subsequent DAC invocations will exclude these faulty n-
odes gracefully from the reduction tree. When services are repli-
cated, failed partitions can be excluded while replicas can be used
to achieve fault tolerance. Unresponsive nodes may appear normal
with periodic heartbeats, and thus may not be directly detected by
the Neptune consumer module. When unresponsive nodes are in-
cluded in a reduction tree, they will not only prolong the overall
response time, they could also become the bottleneck and signifi-
cantly reduce the system throughput.

Our load-adaptive reduction tree design and event-driven request
processing is able to alleviate the problems caused by node unre-
sponsiveness to a certain degree. The load-adaptive tree places un-
responsive servers in the leaf nodes since they often have the high-
est observed workload, and thus limit the scope of their adverse
effects. The event-driven design helps the handling of unrespon-
sive nodes by releasing thread resources from being blocked by
unresponsive nodes. Therefore, an aggregation node can continue
serve other requests although the previous requests are blocked by
unresponsive nodes.

We now present a third technique calledStaged Timeout which
imposes different soft deadlines on different aggregation nodes to
further minimize the impact of unresponsive nodes. We assign a
shorter deadline for a node that is closer to the bottom of the tree.
In this way, when a node is timed out, its parent still has ample
time to pass the partial aggregation results (excluding the results
from the failed child) back to the root. The deadline assignment
is done in a recursive fashion and can be calculated from the root
to the bottom of the tree. Initially, the root of the reduction tree is
assigned the same deadline as specified in the DAC request. The
deadline for node� with parent can be recursively calculated as
�� � �� � ��� � Æ, where�� is the deadline of node, and
�� is the rank of node� among its siblings. We rank all siblings of
a common parent based on the sizes of subtrees rooted from these
sibling nodes (in ascending order). In the formula,Æ is a constant
to cover various overheads.

In the staged timeout scheme, when there are� unresponsive
nodes, we will lose exactly� partitions in the final aggregation re-
sults. On the contrary, in theuniform timeout scheme where all
nodes have the same deadline as the root,� unresponsive nodes

will cause���
�
���� ���� � �� �� �

�
partition losses. When�

is small, the amount of partition loss under the uniform timeout
scheme is about twice as much as that under the staged timeout
approach.

4.6 Other Implementation Issues
(1) Determining Server Workload: Several previous research-

es use the request queue length on each node as the load index [5,
28]. We extend it to consider the aggregation work associated with
each request. We calculate the load for each request in the queue
as�� � �� � � �, where� is the mean service time,� is the mean
aggregation time and� is the number of aggregation operations
associated with this request. The summation of request cost (��)
represents the load index of this server. In terms of aggregation



and local service cost, we approximate it using CPU consumption
acquired through the Linux/proc file system.

(2) Dealing with Staled Workload Information: Workload in-
formation is disseminated periodically through multicast. Mul-
ticasting information at a high frequency is prohibitively expen-
sive [20], which means that the load information could sometimes
become stale. It is generally acceptable for coarse-grain services.
However, for fine-grain services, using staled load information could
lead to flocking effect, i.e. all service requests tend to be directed
to the least loaded server between consecutive workload announce-
ments. In our implementation, we use a controlled random correc-
tion method for load prediction. First, each node still collects the
load information from the multicast channel. Second, the Neptune
daemon at a consumer randomly polls load information from a few
nodes for every service invocation. For other nodes, we take the
staled load information as the base and apply a random correction
to it. The deviation of the randomness increases along with the
staleness of the received load information.

(3) Reducing Network Overhead: In our implementation, a
service consumer use multicast to disseminate the reduction tree
information along with the actual request to the service provider-
s. We implement a reliable multicast using the reduction tree as
the acknowledgment tree. We also use a TCP connection cache to
avoid frequent expensive TCP connection set-ups and tear-downs.

5. EVALUATION
The DAC primitive and the runtime support techniques proposed

in this paper have been fully integrated in Neptune. Subsequently,
we have implemented or optimized several online services using
the DAC primitive. We will describe these applications and our
evaluation settings in Section 5.1.

Our system evaluation seeks to answer three questions. (1) How
easy is it to use DAC to program services (Section 5.2)? (2) How
effective is the proposed architecture to reduce response time with
sustained throughput? Particularly, we extended our evaluation to
access the ability of the system to handle heterogeneous cluster en-
vironments and node failures or unresponsiveness (Section 5.3 to
Section 5.5). (3) Is the system scalable (Section 5.6)?

5.1 Evaluation Settings
The majority of the evaluation is done through experiments, ex-

cept for the evaluation of system scalability, in which we use sim-
ulations for large-scale settings beyond the actual hardware config-
uration. We describe the (I) applications, (II) hardware platform,
(III) workload settings, and (IV) simulation model for our evalua-
tion as follows:

(I) Applications: (1) Search engine document retriever (RET).
The RET service is a prototype document index searching com-
ponent for a search engine. It scans through a number of docu-
ment index partitions and returns an aggregated list of document
identifications that are the most relevant to a certain query. This
is essentially the same as the example we discussed in Section 3.1.
(2) BLAST protein sequence matcher (BLAST). The BLAST service
is based on NCBI’s BLAST [1] protein sequence matching pack-
age, and uses the DAC primitive to speed up the lengthy match-
ing process over a partitioned protein database. (3)Online facial
recognizer (FACE). The FACE service reassembles the case where
cameras at airport security check-points take pictures of passen-
gers, and compare them at real time against an image database of
wanted criminals. The similarity between two facial images is cal-
culated using the eigenface algorithm [24]. The image database
is partitioned and we use DAC to facilitate fast response, which
is very critical to avoid delaying passengers. (4)Microbenchmark
(MICRO). In addition to the above three applications, we also im-

plemented a microbenchmark application, in which we use CPU
spinning with different lengths for local processing and global re-
duction operations. An advantage of using this microbenchmark
is that we can control service granularities and isolate application-
specific artifacts.

(II) Hardware platform: All the experimental evaluations were
conducted on a rack-mounted Linux cluster with 30 dual 400 Mhz
Pentium II nodes (with 512MB memory) and 4 quad 500 Mhz Pen-
tium II nodes (with 1GB memory). Each node runs RedHat Linux
(kernel version 2.4.18), and has two Fast Ethernet interfaces. All n-
odes are connected by a Lucent P550 Ethernet switch with 22 Gb/s
backplane bandwidth.

(III) Workload settings: Due to space constraint, our experi-
mental evaluations mainly focuses on two of the four applications –
RET and MICRO. Our extended study showed that results obtained
from these two applications are quite representative. For RET, the
service data are partitioned into 28 partitions (24 on dual-CPU n-
odes and 4 on quad-CPU nodes), each of which is between 1GB to
1.2GB (and cannot be completely fit in memory). The evaluation
is driven by a trace obtained fromhttp://www.ask.com/,
which contains query terms and timestamps3. The trace contain-
s only uncached queries and exhibits little temporal locality. We
proportionally adjust request arrival intervals to generate desired
request demand. The RET service is fairly coarse grained and the
observed maximum throughput of RET is below 20 req/sec on a
dual-CPU node. Therefore, we choose the settings of MICRO to
represent a fine-grain service. The spin times for the local process-
ing operation and global reduction operation follow the exponential
distribution, with their means being�
� and�
� respectively.
We also model the request arrival as a Poisson process for MICRO.
The soft deadline guarantees for both services are set to be 2 sec-
onds.

(IV) Simulation model: Our simulator is in fact a by-product of
our architecture design and has been extensively used to aid choic-
es of various design alternatives (such as reduction tree schemes or
staged timeout policies). The simulation model closely reassem-
bles the real situation of the MICRO service. Request arrival is
modeled as a Poisson process. Each service node is modeled as a
multi-processor node with two non-preemptive FIFO task queues
(one for reduction operations and one for local processing oper-
ations). In the following simulations, all servers have been con-
figured with 2 processors. The service and reduction time follow
exponential distributions. We assume in our simulation that the
network not be saturated and thus treat the delays of TCP and UDP
packets in a switched network as constants, which are measured as
����� and����� respectively.

5.2 Ease of Use
We evaluate the ease-of-use of DAC through the amount of pro-

gramming effort on the data aggregation parts of the four applica-
tions we have implemented. For this purpose, we first implemented
(or ported) the four applications under Neptune and used a client-
side loop to perform data aggregation over a set of partitions. We
then let a graduate student, who has moderate familiarity with Nep-
tune but has never used the DAC primitive before, optimize the data
aggregation loop using DAC. We report the code size change after
the optimization, and the amount of time spent on the optimization
(including the debugging time). The results are shown in Figure 13,
in which we also list the original code sizes of the applications. As
we can see, little effort is required to optimize data aggregation
operations using DAG. Specifically, the code size increase ranges
from 70 to 300 lines, and it takes at most two days to learn the DAC
primitive, revise the code, and debug them. These results demon-

3IP addresses are filtered out for privacy reasons.



strated that DAC is easy to learn and use.

Service Code Size Code Size Change Programming Effort

RET 2384 lines 142 lines 1.5 days
BLAST 1060K lines 307 lines 2 days
FACE 4306 lines 190 lines 1 day

MICRO 400 lines 77 lines 3 hours

Figure 13: Ease-of-use of the DAC primitive.

5.3 Tree Formation Schemes
In this section, we compare the impact of different tree formation

schemes on system performance. Particularly, we demonstrate that
the load-adaptive tree formation scheme performs the best to reduce
response time with sustained throughput, for both homogeneous
and heterogeneous environments.

We compare among 4 tree formation schemes. (1)Base: the
baseline scheme where data aggregation is performed by the ser-
vice consumer. (2)Flat: all participating nodes form a flat tree
whose root is randomly picked. (3)Binomial: all participating
nodes form a binomial tree and they are assigned to tree nodes ran-
domly. (4)LAT: our load-adaptive tree formation scheme.

We first show the results under a homogeneous setting with 24
dual-CPU nodes. Figure 14 and Figure 15 show the system through-
put and response time respectively as functions of the incoming
request rate. Each figure contains two graphs corresponding to
the MICRO and RET services respectively. As we can see, for
both services,Base performs the worst because all requests flow
through the same root, and overwhelm the root node. As a re-
sult, the throughput ofBase quickly drops to close to zero and the
response time increases to the deadline. For the remaining three
schemes, they perform similarly when the request demand is low;
and when the request demand is high,Flat performs the worst and
LAT performs the best for both throughput and response time. Ad-
ditionally, the advantage ofLAT is more evident in terms of re-
sponse time over the other two schemes. Specifically, for MICRO,
the response time ofLAT is up to����� better thanBinomial and
����� better thanFlat; for RET, the response time ofLAT is up
to ����� better thanBinomial and����� better thanFlat. These
results confirm that our load-adaptive tree shape design is effective
to reduce response time with sustained throughput.
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Figure 14: System throughput under different tree formation schemes
in a homogeneous environment.

We further compare the tree formation schemes in a heteroge-
neous setting with 20 dual-CPU nodes and 4 quad-CPU nodes. The
goal of this experiment is to show thatLAT is even more effective
to balance load and reduce response time in heterogeneous envi-
ronments. We did not show the results forBase, which performs
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Figure 15: Response time under different tree formation schemes in a
homogeneous environment.

too poor to make it relevant to this study. The results are shown in
Figure 16 (throughput) and Figure 17 (response time). As we can
see,LAT again outperformsBinomial andFlat for both through-
put and response time. Particularly, the throughput differences be-
tweenLAT and the other two schemes become more evident than
the results in a homogeneous setting (Figure 14). This is due to
the fact thatLAT is able to make use of the extra processing pow-
er in the quad-CPU nodes by assigning more workload to those
nodes. Specifically, for MICRO, the throughput ofLAT is up to
��� better thanBinomial and���� better thanFlat; for RET,
the throughput ofLAT is up to���� better thanBinomial and
���� better thanFlat. Additionally, the response time differences
betweenLAT and the other two schemes are also enlarged. This is
becauseLAT is more effective to balance load on all nodes, and
thus reduces the latency of the critical path in a reduction tree,
which is determined by the most loaded node. Specifically, for
MICRO, the response time ofLAT is up to����� better thanBi-
nomial and���� better thanFlat; for RET, the response time of
LAT is up to���� better thanBinomial and����� better than
Flat. These results confirm that our load-adaptive tree shape design
is even more effective in a heterogeneous setting.
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Figure 16: System throughput under different tree formation schemes
in a heterogeneous environment.

In summary, ourLAT tree formation scheme is effective to min-
imize response time with sustained throughput. And its advantage
becomes more evident in a heterogeneous environment.

5.4 Event-driven Aggregation
In this section, we evaluate the effectiveness of the event-driven

aggregation mechanism. We compare our system (ED) with a mod-
ified scheme in which worker threads will be blocked while waiting
for results from their children. We call the second schemeNoED.
We run the MICRO service on 24 dual-CPU nodes. The results are
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Figure 17: Response time under different tree formation schemes in a
heterogeneous environment.

shown in Figure 18 (throughput) and Figure 19 (response time). As
we can see from Figure 18, when the incoming request rate is low,
both ED and NoED performs similarly. However, when the re-
quest rate grows beyond a certain point, the throughput forNoED
plunges. This is because it takes longer to serve each DAC re-
quest when the request demand increases, which will cause worker
threads on each node to be blocked for a longer time. When the re-
quest demand grows beyond a certain point, some nodes might even
become idle because all threads are blocked waiting for respons-
es from their children. This further reduces the system’s capacity
to process DAC requests, and could eventually lead to deadlock.
Deadlocks are not released until the 2-second deadline is reached.
Additionally, from Figure 19, we can see that the response time
underNoED also increases dramatically after the plunging point.
These results demonstrate that the event-driven aggregation design
improves the system concurrency and is critical to maintain system
throughput under heavy load.
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Figure 18: System throughput with/without event-driven aggregation.

5.5 Handling Node Unresponsiveness
The goal of this experiment is to show that our proposed archi-

tecture design is effective to handle node unresponsiveness. The
techniques employed in the architecture design can be broken down
into two categories according to their roles in the handling of node
unresponsiveness. The first category consists of the load-adaptive
tree formation scheme and the staged timeout policy. The load-
adaptive tree formation scheme assigns unresponsive servers to leaf
nodes. In addition to that, the staged timeout policy causes these
unresponsive leaf nodes to be timed out earlier and thus excludes
them from the reduction tree. Over all, the combination of these
two techniques essentially prunes the unresponsive nodes eagerly
from the reduction tree, thus we call itEager-Pruning or EP. With-
out EP, an unresponsive node could cause multiple node timeouts
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Figure 19: Response time with/without event-driven aggregation.

as discussed in Section 4.5. The second category consists of the
event-driven request processing scheme. Event-driven design pre-
vents threads on healthy nodes from being blocked by its slow or
unresponsive children. We call the second categoryEvent-Driven
or ED. Without ED, an unresponsive node would block a worker
thread on its ancestor nodes until the timeout period expires.

We evaluate the effectiveness of these techniques by comparing
four schemes: (1) No Eager-Pruning and no Event-Driven (None).
(2) Eager-Pruning without Event-Driven (EP only). (3) Event-
Driven without Eager-Pruning (ED only). (4) Eager-Pruning and
Event-Driven (EP+ED). Note thatEP+ED corresponds to the real
implementation. In schemes with no Eager-Pruning, we use the bi-
nomial tree scheme with random node assignment, and all nodes in
a reduction tree have the same timeout value.

Different schemes may exhibit different capability to retain ag-
gregation qualities in the event of node unresponsiveness (i.e. to
minimize the partition losses from the final results). To reflect this
fact, we use the metric ofquality-aware throughput instead of the
plain throughput metric. The quality-aware throughput is defined
as a weighed throughput where the weight is the aggregation qual-
ity for each request. For example, a request that returns the aggre-
gation result of��� of the total partitions will be counted as���
toward the quality-aware throughput.

We run the MICRO service with 24 dual-CPU nodes, and mea-
sure the quality-aware throughput over a period of 60 seconds.
Each data point is measured as the quality-aware throughput over
the past two seconds. During the whole period, two nodes become
unresponsive and then recover. The first node becomes unrespon-
sive at second 10 and recovers at second 30; and the second node
becomes unresponsive at second 20 and recovers at second 40. The
effect of node unresponsiveness is emulated by increasing the pro-
cessing time or reduction time of each request by 5 folds. The
incoming request rate is at 45 req/sec, which corresponds to���
system capacity level.
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The experimental results are shown in Figure 20. As we can see,
all schemes perform similarly when there is no node failure (be-
fore second 10). Right after the first node failure, the quality aware
throughput of all schemes plunges (second 12). This is caused by
the transient effect that all nodes are waiting for results from the
unresponsive node until the 2-second timeout period expires. Af-
ter second 12,None performs the worst among the four schemes
because it suffers a high percentage of partition losses in each re-
quest and exhibits low concurrency without using either EP or ED.
EP only improves fromNone during the period when only one n-
ode is unresponsive (second 14 to 24), this is because EP places
the only unresponsive node as the direct child of the root node,
and thus limits the adverse effect of the unresponsive node (i.e. it
blocks only one worker thread on the root node). When the sec-
ond node fails, the unresponsive nodes quickly cause more work-
ing threads to be blocked and lead to very low concurrency. On the
other hand, bothED only andEP+ED maintains high concurren-
cy through event-driven request processing, and thus can achieve
much better throughput even when two nodes become unrespon-
sive. EP+ED outperformsED only by limiting the losses to only
the unresponsive nodes and thus improving the quality of processed
requests.

The four schemes also exhibit different behaviors when both n-
odes recover.ED only and EP+ED has a throughput surge due
to the residual effect that all old requests pending for timeout now
suddenly complete. On the other hand, the quality-aware through-
put of None andEP only remain at a low level. This is caused by
the fact that during the node unresponsiveness, the task queues in
both healthy nodes and unresponsive nodes grow excessively long;
and it takes a long time to clean up these already expired requests.

In conclusion, our architecture design is effective to handle node
unresponsiveness by eagerly pruning unresponsive nodes and using
event-driven request processing to avoid unresponsive nodes from
blocking worker threads.

5.6 Scalability Study
In this section, we verify the scalability of our architecture de-

sign. We first compare the experimental results with simulation re-
sults under small-scale settings and show that the simulation results
closely conform to the experimental results. Then we use simula-
tion to access the scalability of our architecture design under large-
scale settings.

Figure 21 shows the simulation results and experimental results
for the MICRO service for small-scale settings with 4 to 24 parti-
tions. We measure the system throughput and response time with
the request rate at 30 req/sec (corresponding to��� system capac-
ity level). As we can see, the predicted throughput closely matches
the experimental results; and the predicted response time differs
from the experimental results by only a small constant. The latter
is mainly due to the fact that the simulator omits some minor over-
head. This provides us with high confidence to rely on simulations
to predict the scalability of our architecture design.

Figure 22 shows the large-scale simulation results. We vary the
number of nodes from 4 to 512. We measure the system through-
put, and the response times under���, ���, ���, ��� and���
demand levels. As we can see, the maximum throughput varies lit-
tle when the number of nodes increases, and is very close to the
ideal throughput4 Additionally, the response time grows logarith-
mically with the increase of the number of nodes. These results
prove that our architecture is indeed scalable to a large number of
nodes.

4The ideal throughput� can be calculated by ��

���������
, where� is the number

of partitions,� the number of processors per node, and� and� the service times for
the local processing operation and the global reduction operation respectively.
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5.7 Evaluation Summary
In summary, our evaluation found out: (1) The DAC primitive

is easy to learn and use to implement data aggregation operations.
(2) TheLAT tree formation scheme is able to deliver low response
time and high throughput in both homogeneous and heterogeneous
environments, in comparison with other tree formation schemes.
(3) The event-driven request processing is effective to sustain through-
put under system overload. (4) The combination of load-aware tree
formation, event-driven request processing, and staged timeout pol-
icy is able to sustain throughput in the event of node unrespon-
siveness. (5) Our architecture design is scalable to sustain system
throughput with logarithmic increase of response time for data ag-
gregation over a large number of partitions.

6. RELATED WORK
This work is a continuation of our previous research on Neptune:

a cluster-based software infrastructure for aggregating and replicat-
ing partition-able network services [19, 21]. It is closely related to
a group of studies on building cluster-based network services, such
as TACC [7], MultiSpace [9], and Ninja [26]. For instance, TACC
supports the transformation, aggregation, caching, and customiza-
tion for the construction of scalable Internet services [7]. The de-
sign of Neptune coincides with these systems in several aspects in-
cluding the single program multiple connection model and implicit
concurrency principle. Our work described in this paper comple-
ments these systems with efficient programming and runtime sup-
port for data aggregation operations. Although such support is cur-
rently built as part of the Neptune middleware system, the tech-
niques are equally applicable to other software infrastructures for
supporting cluster-based Internet services.

A number of message or stream-based service programming
paradigms are supported in the Tuxedo system [25]. However,
Tuxedo does not provide direct programming or runtime support



for data aggregate operations. Event-driven request processing has
been studied in Flash [16] and SEDA [27]. Flash specifically target-
s the construction of efficient Web servers and SEDA requires ap-
plication developers to explicitly program in an event-driven mod-
el. In either case, significant additional effort may be needed for
supporting new applications. Our design takes advantage of the the
semantics of the DAC primitive and encapsulates the state machine
transition design inside the infrastructure. Thus our DAC primitive
exposes an easy-to-use interface and at the same time it can achieve
the efficiency offered by the event-driven concurrency managemen-
t.

MPI [22] also supports data reduction operations and several pre-
vious works have studied tree-based MPI reductions [10, 11, 12,
23]. In addition, parallel data aggregation has been studied in scien-
tific computation research [4], where multiple datasets are mapped
to multiple processors and all processors perform aggregations on
local sub datasets in parallel. Our DAC primitive targets service
programming domain and differs from the MPI reduce primitive
significantly. MPI reduce does not tolerate node failures, nor does
it consider the provision of deadline guarantees. Additionally, MPI
targets scientific computation domain where the number of concur-
rent reduction operations on each MPI node is typically very small.
In comparison, the performance objective for supporting the DAC
primitive is to reduce response time with sustained throughput, par-
ticularly under high concurrent load conditions. Finally, previous
tree-based MPI reduction studies mainly focus on static tree shapes.
In contrast, our load-adaptive tree formation scheme dynamically
constructs the reduction tree using runtime load information.

Data aggregation has also been studied in distributed database re-
search [18] and recently for wireless ad-hoc sensor networks [13].
These studies focus on SQL-based data aggregations while our DAC
primitive targets more general aggregation operations. Previous s-
tudies have proposed and evaluated various load balancing policies
for cluster-based distributed systems [8, 14, 20, 28]. These studies
targets at load balancing for service accesses each of which can be
fulfilled at a single node or a single data partition. These results can
not be directly used for supporting data aggregation operations that
involve significant inter-node communication and synchronization-
s.

7. CONCLUDING REMARKS
This paper presents the design and implementation of the Data

Aggregation Call (DAC) primitive to exploit partition-based par-
allelism in Internet services to support scalable data aggregation
operations. Our architecture design leverages load information and
hierarchical tree shapes to improve response time with sustained
throughput in both homogeneous and heterogeneous environments.
Furthermore, several techniques are developed to handle unrespon-
sive nodes. We have successfully implemented several real appli-
cations with the DAC primitive. Our experimental and simulation
results demonstrate the ease-of-use of the DAC primitive, the effec-
tiveness of proposed techniques, and the scalability of our architec-
ture design.

8. REFERENCES
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman.

Basic Local Alignment Search Tool.Journal of Molecular Biology,
215:403–410, 1990.

[2] D. Andresen, T. Yang, V. Holmedahl, and O. Ibarra. SWEB: Towards
a Scalable WWW Server on MultiComputers. InIEEE IPPS,
Honolulu, HI, Apr. 1996.

[3] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient Collective
Communication on Heterogeneous Networks of Workstations. In
ICPP, 1998.

[4] C. Chang, T. Kurc, A. Sussman, U. Catalyurek, and J. Saltz. A
hypergraph-based workload partitioning strategy for parallel data
aggregation. InSIAM PPSC, Portsmouth, Virginia, Mar. 2001.

[5] D. Ferrari. A Study of Load Indices for Load Balancing Schemes.
Technical Report CSD-85-262, EECS Department, UC Berkeley,
Oct. 1985.

[6] A. Fox and E. A. Brewer. Harvest, Yield, and Scalable Tolerant
Systems. InProc. of HotOS-VII, Rio Rico, AZ, Mar. 1999.

[7] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-Based Scalable Network Services. InACM SOSP, Saint
Malo, Oct. 1997.

[8] K. K. Goswami, M. Devarakonda, and R. K. Iyer. Prediction-Based
Dynamic Load-Sharing Heuristics.IEEE Trans. on Parallel and
Distributed Systems, 4(6):638–648, June 1993.

[9] S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler. The
MultiSpace: An Evolutionary Platform for Infrastructural Services.
In USENIX Annual Technical Conf., Monterey, CA, June 1999.

[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-performance,
Portable Implementation of the MPI Message Passing Interface
Standard.Parallel Computing, 22(6):789–828, Sept. 1996.

[11] N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, and
J. Bresnahan. Exploiting hierarchy in parallel computer networks to
optimize collective operation performance. InIPDPS, Cancun,
Mexico, May 2000.

[12] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F.
Bhoedjang. MagPIe: MPI’s collective communication operations for
clustered wide area systems. InACM PPoPP. ACM, May 1999.

[13] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a
tiny aggregation service for ad-hoc sensor networks. InOSDI,
Boston, MA, Dec. 2002.

[14] M. Mitzenmacher. On the Analysis of Randomized Load Balancing
Schemes. InProc. of the 9th ACM Symposium on Parallel Algorithms
and Architectures, pages 292–301, Newport, RI, June 1997.

[15] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-Aware Request Distribution
in Cluster-based Network Servers. InACM ASPLOS, San Jose, CA,
Oct. 1998.

[16] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An Efficient and
Portable Web Server. InUSENIX Annual Technical Conf., Monterey,
CA, June 1999.

[17] Y. Saito, B. N. Bershad, and H. M. Levy. Manageability, Availability,
and Performance in Porcupine: a Highly Scalable, Cluster-based
Mail Service. InACM SOSP, Charleston, SC, Dec. 1999.

[18] A. Shatdal and J. F. Naughton. Adaptive parallel aggregation
algorithms. InACM SIGMOD, San Jose, CA, USA, May 1995.

[19] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated Resource
Management for Cluster-based Internet Services. InOSDI, Boston,
MA, Dec. 2002.

[20] K. Shen, T. Yang, and L. Chu. Cluster Load Balancing for Fine-grain
Network Services. InIPDPS, Fort Lauderdale, FL, Apr. 2002.

[21] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner, and
H. Zhu. Neptune: Scalable Replication Management and
Programming Support for Cluster-based Network Services. In
USITS, San Francisco, CA, Mar. 2001.

[22] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.
MPI: The Complete Reference. MIT Press, 1996.

[23] H. Tang and T. Yang. Optimizing Threaded MPI Execution on SMP
Clusters. InProc. of 15th ACM International Conference on
Supercomputing, Naples, Italy, June 2001.

[24] M. Turk and A. Pentland. Eigenfaces for recognition.Journal of
Neuroscience, 3(1):71–86, 1991.

[25] WebLogic and Tuxedo Transaction Application Server White Papers.
http://www.bea.com/products/tuxedo/papers.html.

[26] J. R. von Behren, E. A. Brewer, N. Borisov, M. Chen, M. Welsh,
J. MacDonald, J. Lau, S. Gribble, and D. Culler. Ninja: A
Framework for Network Services. InUSENIX Annual Technical
Conf., Monterey, CA, June 2002.

[27] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. InACM SOSP, Banff,
Canada, Oct. 2001.

[28] S. Zhou. An Experimental Assessment of Resource Queue Lengths
as Load Indices. InProc. of the Winter USENIX Technical Conf.,
pages 73–82, Washington, DC, Jan. 1987.


