
Using Transformation Techniques Towards Efficient Filtration of

String Proximity Search of Biological Sequences

Alireza Aghili, Divyakant Agrawal, Amr El Abbadi

{aghili, agrawal, amr}@cs.ucsb.edu

January 14, 2003

Abstract

The problem of proximity search in biological databases is addressed. We study vector

transformations and conduct the application of DFT(Discrete Fourier Transformation) and

DWT(Discrete Wavelet Transformation, Haar) dimensionality reduction techniques for DNA

sequence proximity search to reduce the search time of range queries. Our empirical results on a

number of Prokaryote and Eukaryote DNA contig databases demonstrate up to 50-fold filtration

ratio of the search space, up to 13 times faster filtration. The proposed transformation techniques

may easily be integrated as a preprocessing phase on top of the current existing similarity search

heuristics such as BLAST[1], PattenHunter[11], FastA[17], QUASAR[4] and to efficiently prune

non-relevant sequences. We study the precision of applying dimensionality reduction techniques

for faster and more efficient range query searches, and discuss the imposed trade-offs.

1 Introduction

Discovering the structure, function and evolutionary relationship of genes are the main goals of

genome sequencing research, where comparative analysis of homologous sequences is a crucial part

in the study of gene function, known as genomics. The behavior resemblance of two DNA sequences

of two different organelles or species to the same external exposure, may be used to infer functional

or structural similarities, or mutual inclusion in the same pathway or biological mechanism. Some of

the vast applications of proximity search include discovering the nature and functionality of human

genome, phylogenetic analysis, drug discovery, keyword search in databases, or user pattern analysis

1

in the context of network security, and many more. For instance, approximate sequence analysis

has assisted the detection of certain strains of the Escherichia coli(E.coli) bacteria responsible for

infant diarrhea and gastroenteritis. The researchers at the University of Chicago’s Howard Hughes

Medical Institute[16] discovered a protein molecule able to transmit a genetic trait without DNA

or RNA in yeast, which is able to string itself together into a long fiber, much like those found

in the brain in mad cow and human Creutzfeldt-Jakob diseases. In general, some of the typical

applications of sequence proximity search include[3]:

• Identification of highly conserved residues/motifs which are likely to correspond to essential

sites for the structure or function of the sequence.

• Phylogenetic analysis which relies on neighbor sequence search, at the protein or DNA level,

to predict mutations from which it is possible to retrace evolutionary relationships among dif-

ferent genetic sequences. Similarly, phylogenetic trees provide the information to reconstruct

the history of species and gene families.

The proximity search seeks the sequences close enough to a given query sequence either through

direct alignment[15, 18] or using other heuristics[1, 11, 17, 19]. The alignment of biological sequences

(pairwise or multiple alignment) is the operation to place nucleotide or amino acid residues in

columns inferring the closest common ancestral relationships. This is achieved by introducing gaps

(with predefined costs), to represent insertions or deletions (so called indels), into sequences. Hence,

an alignment is a hypothetical model of mutations on the residue level through edit operations

(Replacement, Insertions, Deletions). The best alignment usually refers to the one demonstrating

the most likely evolutionary scenario. Let S1, S2 ∈ Σ∗ to be finite ordered DNA sequences of

characters(bases) taken from the alphabet set Σ, where Σ = {A,C,G, T}. Each pair of characters

from Σ are assigned a replacement(substitution) score/cost and the substitution matrices[6, 8, 20]

providing such information are built based on the structure similarity and replacement likelihood

of the residues. For instance, at the DNA level, probabilities of substitution vary according to the

nature of the base pairs. Notably, transitions (substitutions between two purines, A and G, or

two pyrimidines, C and T) are generally more frequent than transversions (substitutions between

a purine and a pyrimidine). Hence, the optimal alignment of sequences S1 and S2, named S′
1 and

S′
2, is achieved by applying the minimum number of edit operations to transform S1 into S2, called

Edit Distance, or ED(S1, S2). The pairwise optimal alignment is based on dynamic programming

2

ensuring the maximal score (or the minimal cost) and requires O(pq)-time, and O(pq)-space, using

dynamic programing[15, 18] algorithm. An example of the described procedure is depicted in the

following example:

S1 A A C T C G A G A C C C

S2 A T C C G A G A G G T C C C

⇓ ———————————————–

S′
1 A A C T C G A G A - - - C C C

R D I I I

S′
2 A T C - C G A G A G G T C C C

where R, D, and I correspond to Replacement, Deletion and Insertion respectively. Computing

the optimal alignment of n sequences, each of length l requires o(2nln)-time and o(ln)-space. Unfor-

tunately, such an algorithm is neither practical nor scalable. Following is a summary of some of the

problems encountered in the sequence proximity search within the context of biological sequences:

• The quadratic computational complexity of the optimal alignment is so high, making it im-

practical.

• Due to the limitations on the current knowledge of mutations and their corresponding proba-

bilities, only approximate searches and heuristics[1, 11, 17, 19] have been practically applied

for comparison of sequences.

• Scalability is one of the most important issues to be addressed. Neither the Dynamic pro-

gramming algorithms nor the heuristics may practically be applied to a large number of

sequences(across species), each of which might be composed of billions of residues.

The rest of the paper is organized as follows: Section 2, discusses the background and related

work, followed by the motivation and terminology in section 3. Section 4, studies the proposed

transformation techniques and their integration. Section 5 demonstrates a concise empirical per-

formance analysis and the simulation results. Finally, section 6 concludes the work.

2 Background, Related Work

In a typical application of range query, given a protein or DNA query sequence Q and range r,

it is compared with all the sequences in the database, in search for sequences which are at most

3

r edit operations far from query Q. However as mentioned before, because of the quadratic time

involved, the dynamic programming[18, 15] algorithms may not be directly or practically applied

for this purpose. Several heuristics[1, 11, 17, 4] have been proposed to speed up the homology

search procedure, which are not efficient for range query over large datasets. These heuristics need

to inspect the entire database while only a very small part of it might actually be of interest. The

rest of this section highlights the recent research addressing the similar problem.

Multi-Resolution index Structure(MRS)[10] is a technique based on Haar wavelet, designed to

speed-up range queries. It uses a sliding window of size |w|, moving over the query sequence and

for each possible location, extracts the first and second Haar wavelet coefficients of the |w|-sized
subsequences/windows. Hence each window is mapped to a point in <2. Furthermore, every c trail

of windows is represented with a single Minimum Bounding Rectangle(MBR). The trail of MBRs

are subsequently processed at different resolution levels, based on different values for |w|. Given a

range query (Q, r), the query is first divided into the maximum 2i-sized postfix segments, with the

assumption that the query sequence is originally of length 2j for some j ≥ i, and furthermore, each

segment is searched within the respective resolution level. However, i) the lower bound provided

by their Frequency Distance(FD) function is not tight enough for score and ED estimations and

using more coefficients, MRS does not guarantee a better precision, contrary to what is expected

from a distance preserving transformation, ii) the focus of the work is on the performance of the

index structure and does not analyze the filtration efficiency of using wavelet transformation on

biological data.

Chavez and Navarro[5] translate the problem of approximate string search into a range query

or proximity search in a metric space. The technique is based on picking k pivots randomly, and

mapping each sequence with a k-dimensional vector(only keeping min and max distances), further

using triangle inequality to prune non-relevant sequences using Suffix Tree[2] as index structure.

No empirical analysis is conducted to evaluate this approach on real biological data. SST[7] uses

overlapping sliding windows of size w over the database sequences and maps them into a <4w
-

dimensional frequency vectors. After that, SST uses k-means clustering algorithm, hierarchically

clustering database sequences. Given a query Q, it is first divided into non-overlapping windows,

pruning the database windows which are farther from the given query range, and finally studying

the effect of window size on search time, and error rate of input data on true positive/negative

4

rates. Finally, authors in [21] provide a concise study of DFT/DWT transformations, but only in

the context of time-series databases.

In this work, we study the effectiveness of different edit distances, and the application/integration

of DFT/DWT for the purpose of sequence proximity search specially in the context of biological

databases.

3 Motivation, Terminology

Definition 1 Let T = T1, . . . , TN be a sequence database over the alphabet Σ. Let Ti,j denote a

subsequence of Ti starting at index j, for 1 ≤ i ≤ N and 0 ≤ j < |Ti|, where |Ti,j | ≤ |Ti| − j. Given

a query pattern Q ∈ Σ∗ and a range r, a Range query is the problem of finding the Result set

R(Q, r) as the set of all the subsequences Ti,j in T such that ED(Q,Ti,j) < r, where ED corresponds

to the Edit Distance.

One way to solve the Range query problem is as follows: Given a query pattern Q, compare

all sequences stored in the database against Q using ED, either through direct application of dy-

namic programming[15, 18] or other popular heuristics[1, 11, 17, 4], and determine the set R(Q, r).

Although this approach is correct, it is not practical/scalable for two reasons. First, sequence

databases may involve a large number of very large sequences(e.g. Chr22 as the smallest human

chromosome[14] that consists of approximately 35 million base pairs) resulting in severe perfor-

mance penalty. Secondly, the prohibitive computational cost of alignment or even heuristic-based

sequence comparison makes it impractical, specially when |R(Q, r)| is very small, compared to the

total number of subsequences in T .

A solution could be mapping the sequence similarity(using Edit Distance(ED) for RED(Q, r))

problem into a numerical/vector difference(using Frequency Distance(FD) for RFD(Q, r)) problem

to benefit from much more time/space-efficient numerical methods in the literature. One way

is to use a mathematical transformation to map the sequence domain(of sequences Si) into a

vector/frequency domain(of frequency vectors f(Si)), and use an appropriate frequency distance

function to estimate the edit distances of the sequence domain. If the right transformation is

applied, then Parseval Theorem implies that Frequency Distance is less than or equal to Edit

Distance, or for short FD(f(Si), f(Sj)) ≤ ED(Si, Sj) (Distance preserving transformation), with

5

the equality holding when all the transformation coefficients are used in the frequency distance

calculations. This property is the main driving force behind using transformation. Furthermore:

• The calculation of distance in the frequency domain(FD), is much more time/space-efficient

compared to the calculation of the distance in the original sequence domain(ED).

• Range queries are much more efficiently evaluated in the frequency domain. For instance,

suppose having a query pattern frequency vector f(Q), range r and a set of frequency vectors

f(S1), . . . , f(Sn), then all the frequency vectors(and in turn sequences) f(S1≤i≤n), where

FD(f(Q), f(Si)) > r may be pruned from the answer set without the need to investigate

further (to calculate the original ED), at a very low cost. This would dramatically reduce

i) the computational cost [10] and, ii) the required amount of search space RFD(f(Q), r), for

a given range query (Q, r), where RED(Q, r) ⊆ RFD(f(Q), r). However, a very important

requirement is to guarantee that the ratio |RFD(f(Q),r)|
|RED(Q,r)| ≥ 1, not to incur any false negatives,

while being as small as possible for the better filtration ratio.

Following definitions introduce the steps in transforming the original domain(set of sequences)

to frequency domain(set of vectors):

Definition 2 Let S = s1, . . . , sn be a sequence over the alphabet Σk = {α1, . . . , αk}, then the

frequency vector of S, called f(S) is defined as: f(S) = [f1, . . . , fk], where fi(≥ 0) corresponds to

the occurrence frequency of αi in S, and
∑k

i=1 fi = |S| = n. Similarly, ξsi
is defined to be a |Σ| × 1

vector where the entry corresponding to αi ∈ Σk, for i ≤ k, is 1 and all other entries filled with 0,

or in other words:

ξsi
=



















f1

f2

...

fk



















, where ∀i ≤ k, fi =











1 αi

0 otherwise.

For instance, let S = AGGTTGCAATTA be a sequence over Σ4 = {A,C,G, T}, then f(S) =

[4, 1, 3, 4], and ξT
s1

= [1, 0, 0, 0], ξT
s2

= [0, 0, 1, 0], . . ., ξT
|S| = ξT

12 = [1, 0, 0, 0], respectively.

6

Definition 3 Let S = s1, . . . , sn be a sequence from the alphabet Σk, Frequency-Quantization of S,

called SF = [s1, . . . , sn] is a sequence of |Σ|×1 vectors si, one for each ordered base of the sequence,

where si = ξsi
, for 1 ≤ i ≤ n.

Let S be the same sequence as given above, then

SF =



















1 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0

0 1 1 0 0 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 1 1 0



















.

Following definitions, capture two of the famous distance preserving transformations which we

deployed in our study.

Definition 4 The kth-level Haar Wavelet Transformation(DWT)[10] of a frequency-quantized se-

quence S, $k(S), for 0 ≤ k ≤ log2n, is defined as $k(S) = [vk,0, vk,1, . . . , vk, n

2k
], where vk,i =

[αk,i, βk,i], for

αk,i =











f(ci) k = 0

αk−1,2i + αk−1,2i+1 0 < k ≤ log2n,

βk,i =











0 k = 0

αk−1,2i − αk−1,2i+1 0 < k ≤ log2n,

where for k = log2n: αlog2n,0 = f(S[0 : n − 1]) and βlog2n,0 = f(S[0 : n
2 − 1]) − f(S[n

2 : n − 1])

represent the first and second Haar wavelet coefficients, respectively.

For instance, for the same S as given above, the 3rd-level DWT of S: $3(AGGTTGCAATTA) =

{α3,0, β3,0} = {[4, 1, 3, 4], [−2,−1, 3, 0]}, represents the set of first and second wavelet coefficients.

Definition 5 The n-point Discrete Fourier Transformation(DFT) of a sequence S = [St], for

t=0,. . . ,n-1 is defined to be a sequence X of n complex numbers xf of |Σ| × 1 vectors, for f =

0, . . . , n − 1, and is given by

xf = 1√
n

∑n−1
t=0 Ste

−j2πft

n , f = 0, 1, . . . , n-1,

7

where j =
√
−1 is the imaginary unit. The original sequence S can be restored by the inverse

transform:

St = 1√
n

∑n−1
f=0 xfe

j2πft

n , t = 0, 1, . . . , n-1,

where xf is a complex number and its real and imaginary parts are |Σ| × 1 vectors.

Let S′ = ACCT , the first and second DFT coefficients of S ′ are calculated as: X0(S
′) =

[12 , 1, 0, 1
2] and X1(S

′) = {[12 , −1
2 , 0, 0], [0, −1

2 , 0, 1
2]}, respectively.

Meanwhile, There is one question to be answered: What would be the proper FD distance to

deploy in the frequency domain to provide a better/tighter approximattion of the Edit Distance of

the original space?

Within the context of frequency transformations in multi-dimensional indexing, Lp-norm(p > 0)

distance measures are usually the popular choice for frequency distance function. However, this

choice is very much application-dependent. Hence, we decided to run exhaustive experiments on

DNA sequences using L1-norm, L2-norm, (FD1, FD2)[10] distance functions, to analyze the accu-

racy level of each of them. We should use the FD which demonstrates a tighter bound estimate of

the ED in the original domain, or in other words ”more precisely” reflecting the similarity/distance

across the sequences.

Figure 1, shows the average distance comparison resulting from running an All-Pair-All exhaus-

tive frequency sequence comparison[18] on the contig sequences of Alu, Mitochondria, Escherichia

coli(E.coli), Y east and Drosophila[14]. All the contigs are first transformed into frequency do-

main using wavelet transformation and then the distance across the extracted vectors for the first

and second coefficients are calculated using the mentioned distance functions. L1-norm empiri-

cally demonstrates a tighter bound(higher distance), compared with (FD1,FD2)[10] and L2-norm

on all the databases. Higher the FD, a better estimate of ED is achieved, while FD ≤ ED by

Parseval Theorem. For any two frequency vectors X,Y : L1-norm as the desired frequency dis-

tance is defined as L1(X,Y) =
∑

j |xj − yj|, and may be expressed as the minimum number of

increment/decrement(±1) operations needed(on the entries) to transform vector X into vector Y ,

which is a lower bound on the original domain’s ED distance. L1-norm is also expected to have a

lower computational cost compared with the others.

8

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

x 10
5

0.5

1

1.5

2

2.5

x 10
4

Max Sequence Length

A
ll−

P
ai

r−
A

ll
A

ve
ra

ge
 D

is
ta

nc
e

L1−norm distance
FD2 distance
FD1 distance
L2−norm distance

Figure 1: Average distance comparison resulted from contig DNA databases of Alu, Mitochondria,
Escherichia coli(E.coli), Y east and Drosophila[14], using L1-norm, L2-norm and (FD1, FD2)[10].

4 Transformation procedure

We perform the process in two different stages(depicted in Figure 2), offline and online, as follows:.

• Preprocessing phase(Offline): Given the database of sequences T = {T1, T2, . . . , Tn}, ∀ Ti ∈
Σ∗:

1. Let Ts be the sequence with the minimum length, say m. Choose the window size |w| to

yield an optimal total number of blocks on that sequence as j = θ(m/logΣN)[12, 13], for

database size N . This optimal j has been suggested for pattern partitioning, however

the length of the pattern might not be known in advance, so we restrict the maximum

size of the pattern by the size of the minimum sequence in the database, to be able to

benefit from the optimal partitioning.

2. Slide the window on each of the original DNA sequences Ti, and extract the correspond-

ing |w|-sized blocks. Partition each Ti on the starting positions of 0, |w|
2 , 2|w|

2 , . . . into

a total of |Ti|−|w|+1

b |w|
2

c
blocks. Let bi,j denote the block extracted from sequence Ti, at

position j, where 1 ≤ i ≤ n, and 0 ≤ j < |Ti| − |w|.

3. Perform Frequency-Quantization(Def. 3) on each of the subsequences/blocks bi,j, ex-

tracting bF
i,j,

9

4. Use the desired DFT/DWT transformations on each of the Frequency-Quantized blocks

bF
i,j, and calculate the corresponding transformed vector X(bF

i,j) or $(bF
i,j) coefficients in

the frequency domain.

5. Extract and store only a few coefficients(at most three) to represent the original subse-

quence/block. For the case of DFT , we keep the highest energy-concentrated-coefficients

as, first, last and the second[21]. For the DWT , we keep the first and second coefficients,

in which the energy of the sequence is expected to be mostly concentrated.

6. Build an offline index structure as follows: For each of the sequences in the database,

Ti, keep a list of block vectors contained in that sequence. We keep only an index for

the location of the extracted block, and the corresponding fixed-size frequency vector(s),

which are at most two for DWT , and three for DFT . The higher precision might be

achieved by choosing more coefficients, as needed, which is a built-in feature in our im-

plementation.

• Query processing(Online): Given a query pattern Q ∈ Σ∗ and range r:

1. Slide the |w|-sized window on the pattern sequence Q, partitioning it into non-overlapping

segments of length |w|, for a total of j ′ = b|Q|/|w|c partitions. Let Ql denote the parti-

tion of Q starting at index l, where 1 ≤ l ≤ |Q| − |w| + 1.

2. For each of the extracted partitions Ql:

– Perform Frequency-Quantization(Def. 3) on Ql partition/block, and calculate QF
l ,

– Use DFT/DWT transformations on the Frequency-Quantized blocks QF
l , and ex-

tract the corresponding X(QF
l) or $(QF

l) coefficient vectors,

10

Q

S
1
 S
2

S
n

DFT / Wavelet

Blocking Phase

DFT / Wavelet

Blocking Phase

Pruning Phase

Sequence Database

Query Pattern

on
lin

e

of

fl
in

e

Figure 2: The transformation procedure.

– Search each of the coefficient block vectors, bF
i,j, stored in the offline index, and

prune all the subsequences/blocks which,

∗ DFT : FD(X(QF
l), X(bF

i,j)) > r
j′

, or

∗ DWT : FD($(QF
l), $(bF

i,j)) > r
j′

.

3. Calculate ED only for the candidate result set(those not pruned), to find the subse-

quences Si, where ED(Q,Si) < r.

5 Performance Analysis

5.1 Implementation

We compared the application of the transformation techniques with two other approaches. The

first one so called String is the q-gram indexing method used by QUASAR[4], and the second one

so called Vector, is a more space efficient(trading for time) version of String for the inverted table

index structure that is used in the approach.

The String, uses a block addressing scheme as follows: Each of the contigs of the database,

and the pattern sequence, are partitioned into blocks of fixed size |w|(as calculated in the previous

section), for a total of B blocks in database, and a counter Cbi
is associated with each block bi of the

database, respectively. For the q-gram of size q, an index structure of size |Σ|q is maintained(q = 3).

Each entry corresponds to a unique q-gram, followed by a list of blocks containing that particular

11

q-gram. All the q-grams of the blocks of a pattern are inspected(consecutive q-grams of the blocks

overlap in q−1 bases), and the counter Cbi
is incremented whenever a search for that q-gram reports

”existing” in the bi. After processing all the blocks and the corresponding q-grams of the pattern,

each counter Cbi
(where 0 < i ≤ B) indicates how many unique q-grams(ignoring the positional

information) from Q are contained in that block bi, of the database. Thereafter, all the block

counters are stored in an array of size |T |/B, and the blocks bi, whose counters Cbi
contain(share)

less than max(|Q|, |bi|)+1− (r+1) · |q| of q-grams with the pattern, are pruned from the candidate

set[9, 4]. We used a uniform blocking method across all different methods. Note that String q-

gram method is an approximate method, in contrary with dynamic programming algorithm, and

potentially suffers from false positives.

The second approach called Vector, is very similar to the String method. However, the index

structure saves on the total amount of space needed to keep for each block. Accordingly, for each

block bi, the corresponding frequency vector(Def. 2) f(bi) is calculated. Each f(bi) is mapped into

an integer as follows: Let f(b) = [f1, f2, f3, f4], then the corresponding identifier for bi, called Ibi
,

is defined as

Ibi
=

4
∑

k=1

fk−1|bi||Σ|−1.

The same identifier translation was used to map each q-gram to an integer. This would decrease

the number of entries in the index structure exponentially(for q � 3) which would be of size q |Σ|.

Each q-gram/block vector υ is mapped into an integer value Iυ, where |υ| ≤ Iυ ≤ |υ||Σ|. However,

this is not a 1-to-1 mapping, therefore only the nonzero entries are kept. The rest of Vector process

is exactly like String. However, as expected, it is supposed to incur more false positives, on average,

compared with String, due to the degeneracy of our mapping and loss of the positional information

during translation.

We also implemented a third improvement, called Tuple. Each of the blocks are stored as a

|Σ|q-dimensional frequency vector(zero entries might be neglected), where each entry i corresponds

to the quantity of the unique q-gram qi in that block. As for the index structure, we would not

need any space to keep for the q-gram index as in String [4], while the block transformed vectors

already include its containing q-gram information and the corresponding counters per q-gram is

implied by each entry. This technique provided exactly the same result as String, however was

12

much more time-efficient. Hence, it is not included in our pruning graphs but is included in our

timing comparison table(Table l).

For a database of N sequences, containing B blocks, String constitutes (N+ B
2)(int) = O(B)(int)

space(B � N), meaning linear in space. However its computational cost is O(|Q|B). Similarly,

Vector has the same computational complexity, however, being exponentially more space-efficient

(only for q � 3) at the cost of more false positives on average. The amount of saved space would

be approximately equal to

lim
q→∞

|Σ|q
q|Σ| .

Tuple is O(|Σ|q · B)-space and O(B)-time which is linear in total number of blocks. We could as

well use a tree-based approach[7] and reduce the search time to O(logB). With regards to all of

the above methods, we also incorporated different blocking and q-gram partitioning methods:

• Incremental partitioning: Each of the consecutive q-grams/blocks of length t, overlapping by

t − 1 residues,

• HalfOverlap partitioning: Each of the consecutive q-grams/blocks of length t, overlapping by

t/2 residues, and

• non-overlapping partitioning.

On both of q-gram and block partitioning, more the q-gram/blocks extracted, we observed

higher computational cost, better filtration ratio, tighter FD bound and a smaller candidate set.

This choice is a trade-off between cost versus precision. However, due to the limitation of the

space, we did not include those results in this study. We implemented all the desired algorithms

and transformations using Java, and ran our simulations on a PIII-800Mhz with 1GB of main

memory.

5.2 Considerations

Following observations should be expected regarding any transformation technique:

• Frequency Distance(FD) should be a fair approximation to the original Edit Distance(ED).

• More representative coefficients chosen in the frequency domain, then a higher precision on

the real distance approximation and more filtration efficiency, is to be observed.

13

6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

70

80

90

100

Query Range

C
an

di
da

te
 D

at
ab

as
e

(%
)

String
Vector
Wavelet(L1, 1st)
Wavelet(L2, 1st)
Wavelet(L1, 1st+2nd)
Wavelet(L2, 1st+2nd)
DFT(L1, 1st)
DFT(L2, 1st)
DFT(L1, 1st+2nd+Last)
DFT(L2, 1st+2nd+Last)

Figure 3: The resulting candidate answer set as a function of query range on Alu database.

• Less the FD, a more compact space is to be observed. This property relies upon the fact that

a decrease in FD value, would result in sequence vectors being located closer to each other in

frequency space. We could as well store a trail of quantized vectors as a Minimum Bounding

Rectangle(MBR), in which case, the number of MBRs needed to store the sequence vectors

of the data in frequency domain will be minimized, at the cost of less efficient filtration ratio.

• The calculation of FD should be, computationally, as cheap as possible, and keeping a mini-

mum number of coefficients, should satisfy achieving a resonably efficient filetration.

• Filtration Ratio(FR) is to be maximized(incurring no false negatives), however the efficiency

of pruning depends on: i)the structure of sequences, ii) Query sequence, and iii) Query range.

5.3 Simulation Results

Let ◦, � and ? denote the use of 1st, (1st + 2nd) and (1st + 2nd + Last) coefficients of the trans-

formed sequences, respectively. Figures 3-5, demonstrate the result of running String, Vector and

application of DFT/DWT transformation techniques for the choice of different coefficients on Alu,

Mitochondria, and Escherichia coli(E.coli) contig databases[14] for a random query pattern of

length 16, as the query range varies from 4 to 14.

Let B denote the total number of blocks in the database. Vertical axis shows the fraction of

the database that is left for further investigation(those not pruned), that is |RFD(f(Q),r)|
B

%, and

horizontal axis shows the corresponding query range. In Figure 3, as expected Vector gives more

14

4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

70

80

90

100

Query Range

C
a
n
d
id

a
te

 D
a
ta

b
a
se

 (
%

)

String
Vector
Wavelet (L1, 1st)
Wavelet (L1, 1st+2nd)
Wavelet (L2, 1st)
Wavelet (L2, 1st+2nd)
DFT (L1, 1st)
DFT (L1, 1st+2nd+Last)
DFT (L2, 1st)
DFT (L2, 1st+2nd+Last)

Figure 4: The resulting candidate answer set as a function of query range on Mitochondria database.

Species String Vector Tuple DWTL1,� DWTL2,� DFTL1,? DFTL2,?

Alu 4.67 5.09 5.5 4.62 4.5 5.21 6.92
Mitocondria 1921.7 3209.9 176.74 152.3 152.6 175 236.2
E. coli 534.7 929 259.59 221.3 224.9 289 369.9

Table 1: The timing comparison(in seconds) of running 11 different range queries on the described
techniques, for three contig datasets[14], for a random query of length 16.

false positives, and DFTL1,? demonstrates the best filtration, for (23.37)−1 ≤ FRAlu ≤ (0.07)−1

incurring no false negatives for the inspected query range. On the other hand, DWTL1,� gives

suspicious false negatives compared with String, which indicates that it does not have a very good

performance. We investigate this behavior later in the section. A similar behavior is observed

in Figure 4, DFTL1,? gives the best filtration with no false negatives, for (47.13)−1 ≤ FRMito ≤
(17.54)−1, but DWTL1,� incurs suspicious false negatives as before. Figure 5, depicts the best

expectations, no false negatives of any kind on any of the transformations. Again DFTL1,? gives the

best estimates with (29.21)−1 ≤ FRE.Coli ≤ (0.02)−1. In all the figures, using more coefficients(or

L1 over L2) leads to more efficient filtration, validating our study in Figure 1.

Table-1 shows the timing comparison, resulting from running 11 different range queries(4-14)

on three real datasets. Compared with String and Vector q-gram methods, transformation always

works faster(including the offline index construction overhead), and gets even more explicit as the

dataset grows, for a 11-13 times faster run, while very closely approximating the String q-gram

15

4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

70

80

90

100

C
an

di
da

te
 D

at
ab

as
e

(%
)

Query Range

String
Vector
Wavelet (L1, 1st)
Wavelet (L1, 1s+2nd)
Wavelet (L2, 1st)
Wavelet (L2, 1st+2nd)
DFT (L1, 1st)
DFT (L1, 1st+2nd+Last)
DFT (L2, 1st)
DFT (L2, 1st+2nd+Last)

Figure 5: The resulting candidate answer set as a function of query range on Escherichia coli(E.coli)
database.

6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

Query Range

T
ru

e
P

os
iti

ve
 R

at
e(

T
P

R
)

di
ffe

re
nc

e
(%

)

Alu
Mitochondria
E.coli

Figure 6: True Positive Rate(TPR) of DFTL1,? compared with String q-gram method on Alu,
Mitochondria and E.coli datasets.

method. Figure 6 shows the distribution of True Positive Rate(TPR) of DFTL1,? compared with

String, on the very same range queries as investigated earlier. For instance, joining the results of

Figures 3-6 and Table-1, for the case of Mitochondria dataset, DFTL1,? may effectively prune up to

100 − (17.54)−1 ' 99% of the database, for 1921.7
175 ' 9% of the total time needed for String q-gram

method, while incurring no false negatives. However, as we mentioned before, the transformation

application is unfortunately very much data dependent. Therefore, we ran the experiments on

a much wider range of environments and inspect the performance improvements. Figures 7-9,

demonstrate the results of producing 100 random query patterns Q, (8 ≤ |Q| ≤ 64), and performing

the range queries for 1 ≤ r ≤ |Q|, however due to space limitations, only the results for pattern

16

sizes of length 16 and 64 are shown. For all the datasets and on all the experiments, it can be

observed that the DFTL1,? transformation does not produce any false negatives up to the range

query r ≤ |Q| − ε, for ε ≤ 3, however due to the blocking method used in String method, more

false positives are expected[4], meaning that what has been seen as false negative for DFTL1,?

might not be false negative after all. So apparently, we may effectively use the transformation

as a preprocessing phase to prune irrelevant sequences for proximity ranges not very close to the

query pattern’s length(r ≤ |Q| − ε). Within this domain, DFTL1,? performs very well. This

questionable behavior needs further investigation. For this purpose, we investigated every single

candidate block produced by String, DFTL1,? and DWTL1,� on a random portion of Alu database,

for some random query patterns of length 16, and performed a range query of 14, which had caused

the suspicious behavior on all the datasets, and inspected the corresponding precision and recall.

On the inspected configurations, String, DFTL1,? and DWTL1,� filtrations, reduced the database

size to 7.75%, 14.08% and 1.41%, respectively. DWTL1,� produced false positives, in addition to a

couple of false negatives! This would need further investigation on a larger scale. However, DFTL1,?

caught all the actual k -distant blocks of the database. Thereafter we inspected the recalls. String

depicted a better performance which was expected, by producing less false positive compared with

DFTL1,?. However, DFTL1,? did not miss any actual k -distant block, while DWTL1,� generated

false negatives and misses the correct result. Both DFTL1,? and String resulted in a precision of

1, not missing any correct result, in contrary with DWTL1,�. These results are depicted in Figures

10-13. The calculation of the distance in String was based on the difference on the number of shared

q-grams, however, we used the frequency vector difference for DFT and DWT . For this reason,

none of the sets of false positives produced by DFT and String were subset of one or another. The

intersection of the results produced by them, consisted of all the k -distant blocks in addition to a

few false positives.

6 Conclusion

In this paper, we studied the application of Fourier(DFT) and Haar Wavelet(DWT) transforma-

tions on biological sequences and evaluated the specific problem of range query. Transformation

methods (e.g. DFT), may be applied to prune most of the non-desired sequences, and reduce the

real search problem to only a fraction of the database, as a preprocessing phase for any of the

17

known heuristic approaches like BLAST[1], PatternHunter[11], QUASAR[4], FastA[17], and even

the dynamic programming sequence alignment[18, 15]. Our results show that applying the trans-

formation technique, a high accuracy and faster database pruning is achieved, when the behavior

of the studied transformations is taken into account before applying the appropriate range query.

The filtration ratio is very much data dependent and no generalization on the min/max filtration

ratio or true positive rates can be suggested. However, the empirical results show a promising per-

formance behavior, specially on DFTL1,?, incurring no false negatives, high filtration ratio, while

being considerably faster than the q-gram method. We plan to explore these observations on a

larger scale in our future work.

References

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. J. Lipman. Basic local alignment search tool. J. Mol. Biol.,

215:403–410, 1990.

[2] A. Apostolico. The myriad virtues of subword trees. Combinatorial Algorithms on Words, NATO ISI Series,

Springer-Verlag, pages 85–96, 1985.

[3] A. D. Baxevanis and B. F. Francis Ouellette. Bioinformatics: A Practical Guide to the Analysis of Genes and

Proteins. Wiley Interscience, second edition, April 2001.

[4] S. Burkhardt, A. Crauser, P. Ferragina, H.P. Lenhof, E. Rivals, and M. Vingron. q-gram based database searching

using a suffix array (quasar). In RECOMB, pages 77–83, 1999.

[5] E. Chavez and G. Navarro. A metric index for approximate string matching. In LATIN, pages 181–195, 2002.

[6] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins. Atlas of Protein

Sequence Structure. National Biomedical Research Foundation, Washington, DC, 5:345–352, 1978.

[7] E. Giladi, M. G. Walker, J.Z. Wang, and W. Volkmuth. Sst: an algorithm for finding near-exact sequence

matches in time proportional to the logarithm of the database size. 18(6):873–877, 2002.

[8] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci.,

89:10915–10519, 1992.

[9] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in static texts. Proc. MFCS’91,

16:240–248, 1991.

[10] T. Kahveci and A.K. Singh. Efficient index structures for string databases. VLDB, pages 351–360, 2001.

[11] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology search. Bioinformatics,

18(3):440–445, March 2002.

[12] G. Navarro and R.A. Baeza-Yates. A hybrid indexing method for approximate string matching. J. of Discrete

Algorithms, 1(1):205–239, 2000.

18

[13] G. Navarro, R.A. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for approximate string matching.

IEEE Data Engineering Bulletin, 24(4):19–27, 2001.

[14] NCBI. National center for biotechnology information(ncbi) website. http://www.ncbi.nih.gov/.

[15] S. B. Needleman and C.D. Wunsch. General method applicable to the search for similarities in the amino acid

sequence of two proteins. J. of Mol. Biol., 48:443–453, 1970.

[16] University of Chicago’s Howard Hughes Medical Institute. New type of dna-free inheritance in yeast is spread

by a madcow mechanism. http://www.uchospitals.edu/news/1997/19970530-prion-fibers.html, May 1997.

[17] W. R. Pearson. Using the fasta program to search protein and dna sequence databases. Methods Mol Biol,

25:365–389, 1994.

[18] R. Smith and M. S. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147:195–197,

1981.

[19] J. D. Thompson, D. G. Higgins, and T. J. Gibson. Clustal w: improving the sensitivity of progressive multiple

sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic

Acids Res., 22:4673–4680, 1994.

[20] David Wheeler. Weight matrices for sequence similarity scoring. http://www.techfak.uni-

bielefeld.de/bcd/Curric/PrwAli/nodeD.html, May 1996. Department of Cell Biology, Baylor College of

Medicine, Houston, Texas.

[21] Y. Wu, D. Agrawal, and A. El Abbadi. A comparison of dft and dwt based similarity search in time-series

databases. CIKM, pages 488–495, 2000.

19

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of length 64, on Alu

String
Vector
Wavelet(L1,1)
Wavelet(L1,all)
Wavelet(L2,1)
Wavelet(L2,all)
DFT(L1,1)
DFT(L1,all)
DFT(L2,1)
DFT(L2,all)

4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of length 32, on Alu

String
Vector
Wavelet(L1,1)
Wavelet(L1,all)
Wavelet(L2,1)
Wavelet(L2,all)
DFT(L1,1)
DFT(L1,all)
DFT(L2,1)
DFT(L2,all)

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of length 16, on Alu

String
Vector
Wavelet(L1,1)
Wavelet(L1,all)
Wavelet(L2,1)
Wavelet(L2,all)
DFT(L1,1)
DFT(L1,all)
DFT(L2,1)
DFT(L2,all)

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of length 8, on Alu

String
Vector
Wavelet(L1, 1)
Wavelet(L1, all)
Wavelet(L2, 1)
Wavelet(L2, all)
DFT(L1, 1)
DFT(L1, all)
DFT(L2, 1)
DFT(L2, all)

Figure 7: Random query patterns of various length, and range queries on Alu.

20

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of length 64, on E.coli

String
Vector
Wavelet(L1, 1)
Wavelet(L1, all)
Wavelet(L2, 1)
Wavelet(L2, all)
DFT(L1, 1)
DFT(L1, all)
DFT(L2, 1)
DFT(L2, all)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of length 32, on E.coli

String
Vector
Wavelet(L1, 1)
Wavelet(L1, all)
Wavelet(L2, 1)
Wavelet(L2, all)
DFT(L1, 1)
DFT(L1, all)
DFT(L2, 1)
DFT(L2, all)

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Query range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of length 16, on E.coli

String
Vector
Wavelet(L1, 1)
Wavelet(L1, all)
Wavelet(L2, 1)
Wavelet(L2, all)
DFT(L1, 1)
DFT(L1, all)
DFT(L2, 1)
DFT(L2, all)

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of length 8, on E.coli

String
Vector
Wavelet(L1, 1)
Wavelet(L1, all)
Wavelet(L2, 1)
Wavelet(L2, all)
DFT(L1, 1)
DFT(L1, all)
DFT(L2, 1)
DFT(L2, all)

Figure 8: Random query patterns of various length, and range queries on Escherichia coli(E.coli).

21

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of lenght 64, on Mitochondria

String
Vector
Wavelet(L1, 1)
Wavelet(L1, all)
Wavelet(L2, 1)
Wavelet(L2, all)
DFT(L1, 1)
DFT(L1, all)
DFT(L2, 1)
DFT(L2, all)

4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

ia
da

te
 D

at
as

et
 (%

)

Random queries of length 32, on Mitochondria

String
Vector
Wavelet(L1, 1)
Wavelet(L1, all)
Wavelet(L2, 1)
Wavelet(L2, all)
DFT(L1, 1)
DFT(L1, all)
DFT(L2, 1)
DFT(L2, all)

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of length 16, on Mitochondria

String
Vector
Wavelet(L1,1)
Wavelet(L1,all)
Wavelet(L2,1)
Wavelet(L2,all)
DFT(L1,1)
DFT(L1,all)
DFT(L2,1)
DFT(L2,all)

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Query Range

Ca
nd

id
at

e
Da

ta
se

t (
%

)

Random queries of length 8, on Mitochondria

String
Vector
Wavelet(L1,1)
Wavelet(L1,all)
Wavelet(L2,1)
Wavelet(L2,all)
DFT(L1,1)
DFT(L1,all)
DFT(L2,1)
DFT(L2,all)

Figure 9: Random query patterns of various length, and range queries on Mitochondria.

22

0

2

4

6

8

10

12

14

16

C
an

d
id

at
e

d
at

as
et

 (
%

)

String
 DFT (L1,all)
 Wavelet (L1,all)

Selected methods

Figure 10: Resulting candidate percentages of the Alu database for String, DFTL1,?, and DWTL1,�.

0

10

20

30

40

50

60

70

C
an

d
id

at
e

b
lo

ck
s

String
 DFT (L1,all)
 Wavelet (L1,all)

Selected methods

Actual K-distant blocks
 False Positives

Figure 11: Resulting candidate block distribution of String, DFTL1,?, and DWTL1,�.

0.545

0.107

0

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

al
l

String
 DFT (L1,all)
 Wavelet (L1,all)

Selected methods

Figure 12: Resulting recalls for String, DFTL1,?, and DWTL1,�.

23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

String
 DFT (L1,all)
 Wavelet (L1,all)

Selected methods

Figure 13: Resulting precisions for String, DFTL1,?, and DWTL1,�.

24

