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Abstract
We consider the problem of finding similarities in protein

structure databases. Our techniques extract feature vectors

on triplets of SSEs (Secondary Structure Elements). Later,

these feature vectors are indexed using a multidimensional

index structure. Our first technique finds proteins similar to

a query protein in a protein dataset. This technique quickly

prunes unpromising proteins using the index structure. The

remaining proteins are then aligned using a popular align-

ment tool such as VAST. We also develop a novel statistical

model to estimate the goodness of a match using the SSEs.

Our second technique considers the problem of joining two

protein datasets to find an all-to-all similarity. Experimental

results show that our techniques improve the pruning time of

VAST 3 to 3.5 times while keeping the sensitivity similar.

Keywords: Protein structures, feature vectors,
indexing, dataset join

1 Motivation

The key problem in structural alignment of pro-
teins is to find the optimal correspondence between
the atoms in two molecular structures. It is not
known which atoms of one structure correspond
to the other. This makes an exhaustive search in-
tractable and heuristics are frequently employed.
The Root Mean Square Distance (RMSD) between
the aligned atoms of two aligned structures is typi-
cally taken as a measure of the quality of the align-
ment. Given a correspondence, the problem of op-
timally aligning two structures through rotation and
translation so that the RMSD is minimized can be
solved efficiently in time linear in the number of
atoms [5].

There are essentially three classes of algorithms
for structural alignment of proteins [7]. The first set
performs structural alignment directly at the level
of ��� atoms. The second group of algorithms first
uses the SSEs (Secondary Structure Elements) to

carry out an approximate alignment and then uses
the ��� atoms. The final group of algorithms uses
geometric hashing [22].

The simplest algorithm for structural align-
ment [9] uses dynamic programming to find the op-
timal correspondence. The DALI algorithm [10]
uses distance matrices to align proteins. The CE
algorithm [18] performs a combinatorial extension
of aligned fragment pairs. The Double Dynamic
Programming algorithm [21] and Iterative Dynamic
Programming algorithm [20] use two levels of dy-
namic programming.

Hierarchical algorithms are based on rapidly
identifying correspondences between small similar
SSE fragments of two proteins. The similarity of
two fragments is defined using length and angle
constraints. Fragment pairs that align well form the
seed for extensive atom-level alignments. A signif-
icant speedup can be obtained since the number of
SSEs is small and the 3-D structure within an SSE
is constrained by hydrogen bonding. This is fol-
lowed by a more detailed alignment of the atoms
themselves. We discuss the VAST algorithms be-
low. Other algorithms carrying out hierarchical
alignment are [3, 12, 14, 17, 19].

The VAST algorithm [13] carries out a hierarchi-
cal alignment beginning with SSEs. It begins with
a bipartite graph: vertices on one side consist of
pairs of SSEs from query protein and vertices on the
other side consist of pairs of SSEs from target pro-
tein. An edge is inserted between two pairs of SSEs
if they can be aligned well. A maximal clique is
found in this bipartite graph; this defines the initial
SSE alignment. This initial alignment is extended
to ��� atoms by Gibbs sampling. A nice feature of
the VAST program is its ability to report on the un-
expectedness of the match through a p-value. This
is computed by considering the size of the match,
the size of the proteins, and the quality of the align-



ment.
Geometric hashing based algorithms choose a set

of reference frames from each target protein and
place the other elements of the protein in a hash
table, based on each reference frame. The 3-D
Lookup algorithm [11] defines reference frames us-
ing SSEs. Nussinov and Wolfson [15] define refer-
ence frames based on ��� atoms. The space com-
plexity of this technique is cubic in the number of
elements considered for each target protein.

In this paper, we consider the problem of finding
similarities in protein structure datasets. Our tech-
niques can be used to prune uninteresting proteins
for a given query (or a set of queries) quickly. We
propose to extract feature vectors corresponding to
triplets of SSEs. Later, an R*-tree [6] is built on this
feature space using Minimum Bounding Rectangles
(MBRs). Our first technique, called PSI (Protein
Structure Index), finds high quality seeds by align-
ing the SSEs that are similar to a given query pro-
tein. The proteins that do not have high quality
seeds are pruned without further consideration. We
also develop a novel statistical model to compute
the p-value of a seed. This value defines the good-
ness of this seed. Our second technique, called
PSI-NLJ, finds the number of potentially similar
triplet pairs by searching the feature space for join
queries. Protein pairs that do not have enough sim-
ilar triplets are pruned from the actual join opera-
tion.

Experimental results show that PSI classified
more than 88 � of the superfamilies correctly. More
than 98 � of our results concurred with those of
VAST. PSI ran 3 to 3.5 times faster than VAST’s
pruning step.

As the sizes of experimentally determined [1]
and theoretically estimated [2] protein structures
grow, there is a need for scalable searching tech-
niques. Our algorithm presented here can iden-
tify promising matches quickly through the con-
struction of memory-efficient index structures. This
tradeoff of query time for a one-time index con-
struction cost is highly desirable in current environ-
ments where databases change rather slowly, and
queries are frequent. We envision that the presented
techniques will be used as a preprocessor in combi-
nation with existing structure alignment techniques

that work well for modest database sizes.
The rest of the paper is organized as follows.

Section 2 discusses index construction on the pro-
tein structure dataset. Section 3 discusses our
search algorithm. Section 4 explains the statistical
model used to evaluate the seeds. Section 5 presents
the experimental results. Section 6 discusses our
technique for joining datasets. We end with a brief
discussion in Section 7.

2 A novel index for protein structures

Our construction of index structure is proceeds
in four steps: 1) SSE approximation, 2) triplet con-
struction, 3) feature vector extraction, and 4) multi-
dimensional index structure construction

Let � � �����	�
���
�
�������
���
� be the set of protein
structures in the dataset. We discuss these steps in
more detail below.

SSE Approximation
Let ����� be a protein structure, where �����

����� , ����� , ������� is the SSEs of � . Let �! #" = �%$�&(')� , $�&(' � ,
����� , $�&*' +,"-� be the residues that constitute ��& . Here,
$�&(' . corresponds to the /1032 residue in �
& . We start
by splitting �! #" into two equal sized sets as � � #" =
�%$�&(')� , ����� , $ &(' +4"35-� � , and � � ," = �%$ &(' +4"*5-�768� , ����� , $�&*' +,"-� .
We define 9�� and 9:� as the centers of masses of the
residues in � � #" and � � #" . A line segment approxima-
tion to �
& is achieved by extending the line segment; 9
�	�
9:�=< by half of the Euclidean distance between 9��
and 9	� in both directions. Figure 1(a) illustrates an> -helix with eight residues, and Figure 1(b) depicts
the line segment approximation to this > -helix. A
similar procedure is performed for ? -strands.

Triplet construction
For each �
& , we consider the SSEs whose mid-

points to the midpoint of ��& are at most 50 ˚@ . Of
these SSEs in the local neighborhood, we consider
(at most) four closest ones. The number of nearest
neighbors is restricted to four in order to limit the
number of triplets and the size of the index struc-
ture. Since residues that are close spatially are more
valuable for structural similarity [7], the distance to
the nearest neighbors is limited to 50 ˚@

Let AB�B�%C��	�DC����DC�E��DC�F�� be the four closest SSEs
to ��& . Every pair of SSEs C�G , C�.!�HA forms a triplet
with ��& . Therefore, the number of triplets for ��& is

2



r2

r3r1

r4

r5

r6

r7

r8

c1 c2

(a)

c1 c2

d/2 d/2d/2 d/2

(b)

Figure 1. (a) An � -helix, amino acids ��� , ����� , ��� , and the center of masses ��� and ��	 of two subsets of these amino acids.

(b) Line approximation to the sample � -helix.
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Figure 2. The extraction of feature vector for triplet
���
 , ��� , ����� .

� � ���
� , where ���� is defined as � choose � . Since� A ���

4, �
& introduces at most � F� = 6 triplets. If the
dataset contains � SSEs, then the total number of
triplets for the entire dataset is bounded by 6 � . Our
experiments show that the total number of triplets
for the entire PDB [1] is approximately 3.8 times
the total number of SSEs.

Feature vector extraction
Let � �
& , �
G , �
. � be a triplet. We start by splitting

each SSE in this triplet into 16 equi-length intervals
by placing 15 points on its line segment approxima-
tion. Later, we select the five points in the middle
of each SSE to represent that SSE. Figure 2 depicts
this. The black points are the points selected for
each SSE in this triplet. The pair of SSEs, � ��& ,
�
G!� , contributes three values to the feature vector:

1) �#"$�8& G = minimum distance between all pair
of black points from ��& and �
G .

2) � �&% & G = maximum distance between all pair
of black points from ��& and �
G .

3) '�& G = the angle between the line segment ap-
proximations of �
& and �
G .
Figure 2 shows these values for ��& and �
G . Since
each triplet consists of three pairs, the feature vec-

tor of each triplet contains 9 values.
We choose the middle points of SSEs because

their distances to the rest of the points are minimal.
Therefore, they represent the SSEs better than other
points. The reason that we choose five points can be
explained intuitively as follows. If a small number
of points are used, then the feature vectors would be
very sensitive to small shifts of the SSEs. If a large
number of points are used, then the intervals of a
feature vector would span a large interval causing
large amounts of overlap. Our experimental results
show that using one-third of the points is better than
other schemes.

Index structure construction
For each triplet, we construct an object with fol-

lowing fields:
1) The nine dimensional feature vector.
2) Start location on the residue list for each SSE

in the triplet.
3) Number of residues of each SSE in the triplet.
4) The PDB id of the protein to which the triplet

belongs.
Here, the first item contains nine double values, the
second and third items contain three integer values
each, and the fourth item contains five characters.
Once the objects for all the feature vectors are cre-
ated, we build an R*-tree [6] on these objects to
index them according to their feature vectors.

3 Our search technique
Our pruning based on SSEs consists of three

steps.
Step 1: Similar triplets of dataset proteins and

query protein are computed and stored.
Step 2: A Triplet Pair Graph (TPG) is con-

structed on the similar triplet pairs.
Step 3: A bipartite graph is constructed using

3



the TPG. The largest matching in this graph defines
the initial alignment seed.

3.1 Finding similar triplets

Let � be the given query protein. We start by
extracting all the feature vectors of � as discussed
in Section 2. Each feature vector corresponds to a
triplet. For each feature vector, we execute a range
query on the R*-tree of dataset proteins to find the
triplet pairs, one from query protein and the other
from dataset proteins, that are similar to each other.

Algorithm RANGE-QUERY �������	��

Let � � �	� 	 �
��� be the SSEs in ��� in increasing length order.
Let � � 	 ��� � ����� 	 � be the corresponding angles.
Let � be a queue.

1. ����� 
 �	� � 
 = ��� ��� ( ����� � �"! �"#%$ ��&"' � �"! �"# ); for all &(�") ;

2. ���+*�
 = 10 , ;

3. QUEUE-INSERT( �-�
� ); // initialize queue

4. While �/.021
(a) ��3�4 0 EXTRACT-QUEUE( � );

Let 5 � ��5 	 ��56� be the SSEs in ��3 in increasing
length order.
Let * � 	 �
* � �%�
* 	 � be the corresponding angles.

(b) If ( 7 ��& '8� � ! � #9$ ����� 
 �	� � 
:�������;� � ! � #=< ���>� 
 �
� � 
@?
overlaps with 7 �A& ';B � ! B # �
���C�DB � ! B # ? ) AND ( � 
 �FE
���+*�
 contains * 
 � ) for all &(�") then

i. If ��3 is an MBR thenG Insert all children of �
3 into � ;
ii. else // i.e. ��3 is a triplet.

G If (0.5 
IHKJ@L%M	N�O�P B��>QHRJ@LSM(N�O�P � ��Q 
 2) for all & then

– T=�+���S�
��3U
 :=
TRIPLET-PAIR-SCORE( �
�V�
��3 );

Figure 3. Range query algorithm.

Figure 3 shows the range query algorithm used
to find similar triplets. The algorithm takes the fea-
ture vector of a query triplet, W�X , and the root node
of the R*-tree, � , as input. It starts by computing
error thresholds for lengths and angles (Steps 1 and
2). A queue is initialized by inserting the root node
(Step 3). While the queue contains more items, an
item is extracted from the queue (Step 4.a). If the
difference between the query vector and the item is
less than the error thresholds then the item is pro-
cessed (Step 4.b). If the item is an MBR, then all
its children are inserted into the queue (Step 4.b.i).

Otherwise, if the ratio of the lengths of the line ap-
proximations of corresponding SSEs is less than 2,
then the triplet pairs are considered similar. For
each similar triplet pair, a similarity score is cal-
culated (Step 4.b.ii). We discard the SSE pairs if
their lengths are not similar. The constants in length
compatibility check affect the sensitivity and speed
of the algorithm. They are set to 0.5 and 2 based
experimental results. The similarity score for triplet
pairs is based on RMSD distance between the mid-
points of SSEs of corresponding triplets.

3.2 Constructing Triplet Pair Graph

The range query on the R*-tree finds similar
pairs of SSE triplets. Each such pair defines a map-
ping of three query SSEs to three SSEs in a target
protein. Longer mappings of SSEs can be found
by merging the results of all the pairs. We cap-
ture the correlation between SSE pairs by building
a Triplet Pair Graph (TPG) on similar triplet pairs.
The vertices of TPG correspond to triplet pairs and
the weight of a vertex indicates the unexpectedness
of the match.

Definition 1 Let Y be the set of triplet pairs, then
the Product Graph, TPG( Y ) = Z#A �U[]\ , where A is
the set of vertices and [ is the set of edges such that

1) C�& � A if C%& �^Y ,
2) _�& G �`Z,C%&-�DC�G�\ �a[ if the triplet pairs C�& and

C�G have two common SSE pairs.
3) the weight of the vertex C�& is defined asb & = 1- (number of triplets in the dataset that align

to the query triplet in C�& )/(total number of triplets in
the dataset).

We run Depth First Search (DFS) algorithm on
the TPG to find the Largest Weight Connected Com-
ponent (LWCC). The number of nodes of the TPG
is bounded by cdZ � �e\ , where � and � represent
the number of target and query SSEs respectively.
Since each triplet pair can introduce at most three
edges to the TPG, the number of edges is also
bounded by cdZ � �e\ . Therefore, the space complex-
ity of the TPG is cfZ � �e\ . Since the time complex-
ity of DFS is cfZ
[]\ , the LWCC is found in cfZ � �e\
time.
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3.3 Finding initial seeds

The largest weight connected component of the
TPG corresponds to the most similar subset of SSEs
of target proteins and the query SSEs. We find an
alignment of the SSEs by inspecting this subset.
We start by constructing a bipartite graph on the
LWCC. The bipartite graph is defined as follows:

Definition 2 Let Y be a set of triplet pairs. Let ���
be the LWCC of the TPG of Y . The bi-partite graph
of � � is defined as Z#A���� A �
�S[ \ , where

1) A � is set of the query SSEs that appear in at
least one of the query triplets in � � ,

2) A � is set of the target SSEs that appear in at
least one of the target triplets in � � , and

3) the weight of the the edge between �
& � A �
and � G � A � is the sum of the scores of the triplet
pairs that contain the SSE pair � ��&�� G�� in ��� .
Unlike TPG, the bipartite graph consists of two dis-
joint vertex sets. The vertices in one set correspond
to the query SSEs in the LWCC. The vertices in
the other set correspond to the target SSEs in the
LWCC. The weight of an edge indicates the qual-
ity of the alignment of the corresponding pair of
vertices. We run a largest weight bipartite graph
matching algorithm [8] on the final bipartite graph
to find a mapping of the vertices in the two sets that
maximize the sum of edge weights. The resulting
mapping defines a seed for each target protein.

4 Evaluating seeds

Each seed defines an alignment of the query pro-
tein to a target protein in the feature space. In this
section, we develop a statistical model and propose
a formula to calculate the p-value of a seed. The
p-value of a seed corresponds to the probability of
having a seed at least as good as the given one in
a randomly distributed space. Therefore, small p-
values correspond to unexpected matches.

Each seed is represented with seven numbers: the
number of > -helices and ? -strands in query and tar-
get proteins (4), the number of SSEs aligned of each
type (2), and the RMSD between the aligned SSEs.
We define the p-value of a seed below.

Definition 3 Assume that two proteins have � � and
��� > -helices, and �
� and �
� ? -strands respectively.

Let 	 be the seed with � > matches and � ? matches
having an RMSD of 
 , then the p-value of 	 is de-
fined as

p-value( 	 ) = The probability that a random
alignment of these two proteins contains at least �> -helices and at least � ? -strands within distance

 .

Consider an example seed with five > -helices in
query protein and four > -helices in target protein.
For simplicity, each SSE is represented by a point in
3-dimensional Euclidean space. Assume that three> -helices are aligned with RMSD = 
 . We assume
that the distance between any two aligned SSEs is
not greater than the RMSD of the seed. Figure 4
illustrates this example in 2-D. Here, black circles
represent query SSEs, and black rectangles repre-
sent target SSEs. The circles around query SSEs
represent the 
 -distance region around query SSEs.
We compute the p-value using the following obser-
vation: If a target SSE is aligned to a query SSE,
then it must be located in the sphere around that
query SSE. Only three SSEs are aligned in Figure 4.

Given two input proteins, we build a binary prob-
ability tree. Figure 5 depicts a probability tree for
��� = 5, and � � = 4, where ��� and ��� represent the
number of > -helices in the proteins. The nodes at
the / 032 level show the contribution of the /�032 SSE
to the alignment after the contributions of the first
/ -1 SSEs are computed. For example, the numbers
1 and 0 at the first level correspond respectively to
the cases when the first SSE of the target protein
is aligned to (or not aligned to) a query proteins
SSE. The weights on the edges show the probabil-
ity of the event for the child node. The value � &
is the probability that a randomly selected point is
within one of the " spheres where each sphere has
radius equal to given RMSD value (i.e. the prob-
ability of success.). Therefore, ��� is equal to the
ratio of the volume of a sphere to the volume of
the whole search space. For simplicity, we assume
that spheres are non-overlapping. Hence, � & = " � � � .
The value of ��& , the probability of failure, is simply
equal to 1-� & .

The probability corresponding to a node in the
tree can be calculated as the multiplication of the
weights of all the edges on the path from the root
node to that node. For example, probability of the
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Figure 5. The probability tree for the alignment of a query protein with

five � -helices and a target protein with four � -helices. The probabilities

of the circled nodes are accumulated to find the probability of aligning
three � -helices.

leftmost leaf node is ����� � F�� � E
� � � .
The probability of having an alignment of at least

/ SSEs for the given proteins is calculated as the
sum of the probabilities of the nodes with value / ,
and which do not have an ancestor of value / . For
example, in Figure 5, the probability of aligning at
least three > -helices is the sum of the probabilities
of the nodes in circle. All the values in the proba-
bility tree can be calculated simultaneously using a
simple dynamic programming strategy.

The p-value of a seed can be calculated as the
multiplication of the probabilities of the alignment
of > -helices and ? -strands.

5 Experimental Evaluation

We used single domain chains as the target
dataset in our experiments. We created a dataset���! #"

of all the protein chains that contain only
one domain according to VAST and SCOP classifi-
cations. We only considered proteins that are mem-
bers of one of the following SCOP classes: all > , all
? , > + ? and > / ? . In the end, the dataset

�$�% #"
con-

tained 12138 protein chains. We identified the su-
perfamilies (according to SCOP classification) that
have at least 10 representatives in

�$�! #"
. There are

180 such superfamilies. Another set
�&�('

of size
1800 is created by including 10 proteins from each
of these superfamilies. We also identified all folds

that have at least 10 representatives in
�$�! #"

, and
formed another set,

�)"*'
, by choosing 10 proteins

from each of these 138 folds. The query set,
�&+

,
used in our tests is formed by choosing a random
chain from each of the 180 superfamilies in

�$�!'
.��+

is large enough to sample
�)�% #"

since it con-
tains one protein from each superfamily. These 180
proteins in

�)+
has been shown in Table 1. The

tests are run on an 1.6 GHz AMD computer with
1GB memory.

5.1 Quality comparison

Our first experiment set inspects the quality of
the seeds found using the feature vectors. We clas-
sify the query protein into one of the superfamilies
using the / best results in feature space as follows.
The logarithms of the p-values of the seeds of the
results in each superfamily are accumulated. The
query protein is classified as the superfamily that
has the largest magnitude of this sum. Figure 6
shows the percentage of query proteins correctly
classified for different number of nearest neigh-
bors, using � �!' . As can be seen from the figure,
more than 86 � of the proteins are classified cor-
rectly using the first two neighbors. The quality in-
creases slightly for 3-NN, but the percentage drops
for larger number of results. Even for 20-NN, more
than 76 � of the proteins are classified correctly.
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Query ids Queries
1-10 1lh1 1c2n 1ret 2bby 1wjc-A 2spz-A 2lef-A 1b67-A 1rcp-B 1i4z-B

11-20 1fr0-A 1dps-I 2cyk 1unk-B 1adr 1tn4 1mj2-B 1fk1-A 1ihf-B 1b4f-B
21-30 1qck-A 2ygs-A 1hg4-B 1kvw 1i77-A 1wiu 1egj-A 1ej8-A 2msp-A 1do6-A
31-40 1g43-A 1hu8-B 1g1o-D 3pcn-N 1bqk 1gmi-A 1cov-3 1hdf-A 1shs-A 1slu-A
41-50 1bd9-A 1cx1-A 1jh5-C 1dmz-A 7cel 4hck 2vub-A 2pdz-A 1i4k-S 1pto-E
51-60 1vqi 1mjx-B 1gus-C 7i1b 1ba7-B 1inc 3hvp 1i7a-A 1ief-B 1acd
61-70 2iza 1dyw-A 1bnu 1bwu-P 1hg8-A 1thj-C 1cax-F 1hjg-A 1qaw-B 1a6x
71-80 2f3g-B 1kdf 1a5l-B 1f39-A 1hg3-D 1cw2-A 1g4s-A 1d3g-A 1az2 2xyl
81-90 1ez2-B 1fxq-B 1dxf-A 1xic 1ptd 1dhr 1dkd-C 1b2s-D 1tyf-L 1c2y-P

91-100 1f1j-B 2chf 1fln 1xze 1d0i-C 1i7s-D 1gn8-A 1cd5-A 1dts 1jh8-A
101-110 1sud 5cev-A 1qca 1jf8-A 1ypt-A 1aiu 1kc6-B 1a5v 1vfn 1a2z-C
111-120 8cpa 1jlj-B 2hpa-B 1upu-D 1bhq-2 1kpg-A 1h6j-B 1din 1mas-A 1drf
121-130 1rk2-D 1jdi-A 7icd 1qui 4rnt 205l 1au0 1bxi-B 1rbg 1e1s-A
131-140 1ejr-A 1qg7-B 1azq-A 3rhn 1lfd-C 1doy 1c78-A 1igd 1gd3-A 1e3v-A
141-150 1ayz-B 2emd 1fkg 1jc4-A 1eyp-A 2ci2-I 1ec6-B 1frk 2nck-R 1fj7-A
151-160 1f9f-B 1fe4-B 1rcx-S 1dch-C 1xxb-F 2cht-E 1otf-D 1icr-B 4aig 1bkl
161-170 2hpr 1b9l-A 1i1d-A 1hqz-8 1fil 1byw-A 1ga7-A 1b5m 1i5c-B 1qmr-A
171-179 1f7l-A 1g3i-R 1aha 1prt-G 1bnl-A 1fzd-B 1gu9-C 1jya-A 1is8-K 1lep-E

Table 1. The PDB ids of queries used in our experiments.

Figure 6. The percentage of proteins correctly classi-
fied using seed for different number of NN.

Ankerst et al [4] built an index structure on 3-D
shape histograms and considered the similar prob-
lem of protein classification. Their accuracy is sim-
ilar to ours. However, their approach is based on
considering ��� atoms. We can do as well by con-
sidering SSEs and using smaller index structures.

We also tested PSI to see how it performs as a
pruning technique for an existing alignment tool
such as VAST. For each protein in

�$+
, we first

ran VAST on
�)�('

, and saw how many proteins
are returned in the answer set. We also ran PSI for
the same protein on

�)�('
to obtain a candidate set.

Later, we ran VAST on this set. We compared these
two results to check whether PSI has pruned pro-
teins that VAST considers relevant. The results are
shown on Figure 7. As we can see from this figure,
running the VAST on the whole dataset or on the
pruned dataset does not change the result set size

Figure 7. The size of the result set obtained by VAST
and PSI+VAST for various SCOP classes.

significantly. According to this test, PSI has a re-
call (or sensitivity) of 98.2 � .

5.2 Performance comparison

We compared the runtime performance of PSI
with VAST’s pruning step. VAST first finds seeds
using SSEs of the query and protein. Then it com-
putes p-values corresponding to these seeds. Fi-
nally the promising proteins (based on p-values)
are considered for the expensive � � alignment step.
Since PSI aims to optimize the initial pruning, we
considered the runtime of only the first two steps of
VAST. For all proteins in

�$+
, we ran PSI and VAST

on
���! #"

. The results for each protein are shown in
Figure 8. As can be seen, PSI is faster then VAST
for all the proteins. Figure 9 shows a class-wise
summary of these results. For all classes, PSI is
significantly faster than VAST. But speedup is the
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Figure 8. Runtime comparisons of VAST prune tech-
nique and PSI for each query protein. Target set is sin-

gle domain protein chains.

greatest for > / ? proteins. This can be explained us-
ing Figure 7. The > / ? proteins have more neighbors
on the average. Because of that, VAST needs to in-
spect more seeds in these cases. However, PSI only
considers the parts of proteins that are candidates
for a similarity, and finds the seeds in linear time
w.r.t. the number of SSEs in the proteins.

Our last experiment considers the effect of in-
creasing the database size on the running time of
the programs. For this, we added several copies of
the same dataset,

�)�% #"
, as indicated in Figure 10.

This led to a linear increase in the number of rel-
evant proteins as well as the number of irrelevant
proteins for each query. As expected, the running
times increase linearly for our technique as well as
for VAST’s pruning step. We observed a similar
behavior with

�)"*'
dataset.

Our index structure takes 55 MB of memory
and can be constructed in 28.5 minutes for

�&�! #"

dataset. The memory overhead is negligible for cur-
rent PCs and the time overhead is a one time cost.

6 Joining protein structure datasets

So far, we discussed how to find proteins simi-
lar to a single query protein. Here, we extend these
techniques to answer join queries on protein struc-
ture datasets. Given two protein datasets � and � ,
the join of � and � is defined as the set of protein
pairs ( $ , � ), where $ � � , � � � , and $ and � are
similar. We represent this set using JOIN( � �:� ). If

Figure 9. Run time comparisons of VAST prune tech-

nique and PSI for various SCOP classes. Target set is
the ������� dataset.

Figure 10. Increase in running time of the techniques

with a growth of the protein database.

� = � , then this is called a Self Join. This prob-
lem is harder than searching a single query protein
since it involves finding similarity to all the pro-
teins in the query dataset. A structure alignment
tool such as VAST can answer join queries by com-
paring every $ with every � . But this will lead to
a very slow computation. For example, the prun-
ing step of VAST for self joining

�$�! #"
takes more

than two weeks on a 1.4 GHz computer with 1GB
memory. In this section, we will discuss how to ac-
celerate join queries by using the feature vectors of
the proteins.
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6.1 Using feature vectors for join queries

In Section 3, we showed that feature vectors can
be used to prune uninteresting regions of the dataset
for a given query. We will employ a similar prun-
ing technique to the classic Nested Loop Join (NLJ)
algorithm [16]. Therefore, we call this technique
PSI-NLJ.

We start by extracting the feature vectors of every
protein in each dataset as explained in Section 2.
Later, we create an MBR for the feature vectors of
each protein. For a given query JOIN( � , � ), we fill
half of the available memory with the MBRs and
the feature vectors of the proteins from � . Simi-
larly, the other half of the memory is used to store
the MBRs and the feature vectors of the proteins in
� . Next, we compare all pairs of MBRs of � and �
that are in the memory according to three different
pruning criteria:

P1 (Angle test): Prune if the angles differ by
more than 10 � .

P2 (Interval test): Prune if the min-max inter-
vals differ by more than 20 � of the length of the
intervals.

P3 (Length test): Prune if the ratio of the length
of the corresponding SSEs is more than two.
If an MBR pair can not be pruned after the above
tests, we perform the same tests on the individual
feature vector pairs within these MBRs. In this
case, we perform one more pruning test:

P0 (Type test): Prune, if the SSEs of a triplet
pair are not of the same type (e.g. prune if one
triplet is > - > - > , and the other triplet is > - ? - ? .).
Note that all these pruning steps are also used in
single-protein search (see Section 2). For a pro-
tein pair, if the number of triplet pairs that remain is
larger than some threshold

�

� & � then we use VAST
to find the alignment between them. The default
value for

�

� & � is 1. Once we process all the protein
pairs in the memory, we read another block of un-
processed MBR set from both datasets and repeat
the process.

Constructing the MBRs and extracting the fea-
ture vectors take cdZ � � �

+
� � � \ time and space, where� � �

and
� � �

are the sizes of the datasets. This is a
one-time cost. The pruning step takes cdZ � � � � � � � \
time. However, it is still much faster than VAST
since the search is done in feature space. One can

Pruning Number of protein pairs compared
Test ��� "���� � ��� "	�
� � ��� "���� E
P0 73.7M (1.4M) 73.5M (1.4M) 73.5M (1.3M)
P0-P1 59.3M (1.1M) 52.7M (1.0M) 47.6M (0.9M)
P0-P2 40.9M (0.7M) 30.1M (0.5M) 23.5M (0.4M)
P0-P3 17.7M (0.3M) 8.1M (0.1M) 4.4M (68.1K)

Table 2. The number of protein pairs that need to

be compared after pruning steps P0 to P3 of PSI-NLJ
for the self join of the � ����� dataset. VAST requires

82.1M pairwise comparisons for the same dataset. The

numbers in parenthesis show the same value for the self
join of the ����� dataset. VAST requires 1.6M pairwise

comparisons for � ��� .

also improve the amortized run time complexity of
PSI-NLJ by building an R*-tree on the resulting
MBRs.

6.2 Experimental evaluation

Table 2 shows the number of protein pair com-
parisons made for self join of

�$�! #"
and

���!'

datasets after various pruning steps of PSI-NLJ.
As

�

� & � increases, PSI-NLJ prunes more candidate
pairs. This is expected since the pruning criteria
becomes more stringent. Consecutive rows of this
table show the amount of pruning obtained by each
pruning test. Let us consider the default case (i.e.�

� & � = 1) for
�)�! #"

dataset: type test prunes 10 �
of the candidates, angle, interval, and length tests
prune additional 17.5 � , 22.4 � , and 28.2 � of the
candidates. This means that the length test has the
highest contribution to the pruning process. The ra-
tio of the initial candidate set size to pruned candi-
date set size after all pruning tests is approximately
4.3.

We found the actual run time of VAST’s pruning
step for self joining of

�)�('
. It took 14,313 sec-

onds to complete this query. PSI-NLJ computed the
same join in only 4,096 seconds where the pruning
step of our algorithm constitutes 29 seconds of this
time. The remaining 4,067 seconds are spend for
VAST’s pruning on the remaining set. This is con-
sistent with the results we obtained in Table 2.

7 Discussion

In this paper, we considered the problem of sim-
ilarity searching in protein structure datasets. Our
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techniques can be used to prune unpromising pro-
teins for a given query (or a set of queries) quickly.

We proposed to extract feature vectors of the
triplets of SSEs. Later, an R*-tree is built on this
feature space. Our first technique, called PSI, finds
high quality seeds by aligning the SSEs of dataset
proteins to a given single query protein. The pro-
teins that do not have high quality seeds are pruned
without further consideration. We also developed
a novel statistical model to compute the p-value
to a seed. This value defines the goodness of this
match. Our second technique, called PSI-NLJ finds
the number of potentially similar triplet pairs by
searching the feature space for join queries. Pro-
tein pairs that do not have enough similar triplets
are pruned from the actual join operation.

According to our experimental results on the
PDB, PSI classified more than 88 � of the super-
families correctly. More than 98 � of our results
concurred with those of VAST. PSI ran 3 to 3.5
times faster than VAST’s pruning step.

Protein structure search is an important emerg-
ing application. The explosive increase of the size
of the structure databases and the complexity of the
search algorithms makes faster techniques impera-
tive. The techniques presented in this paper are an
important step in this regard, and will be widely ap-
plicable in structural similarity field.
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