
Tabular Placement of Relational Data on MEMS-based Storage
Devices

Hailing Yu Divyakant Agrawal Amr El Abbadi

University of California at Santa Barbara
Computer Science Department

Santa Barbara, 93106
USA

{hailing,agrawal,amr}@cs.ucsb.edu

Abstract

Due to the advances in semiconductor manufac-
turing, the gap between main memory and sec-
ondary storage is constantly increasing. This be-
comes a significant performance bottleneck for
Database Management Systems, which rely on
secondary storage heavily to store large datasets.
Recent advances in nanotechnology have led
to invention of alternative means for persistent
storage. In particular, MicroElectroMechanical
Systems (MEMS) based storage technology has
emerged as the leading candidate for next genera-
tion storage systems. In order to integrate MEMS-
based storage into conventional computing plat-
form, new techniques are needed for I/O schedul-
ing and data placement.

In the context of relational data, it has been ob-
served that access to relations be enabled both
in row-wise manner as well as in column-wise
fashion. In this paper, we exploit the physical
characteristics of MEMS-based storage devices to
develop a data placement scheme for relational
data that enables retrieval in both row-wise and
column-wise manner. We demonstrate that this
data layout not only improves I/O utilization, but
results in better cache performance.

1 Introduction

Advances in Nanotechnology hold significant promise to
overcome many of the physical limitations of traditional
magnetic hard disks and transistor-based memory chips.
MicroElectroMechanical Systems (MEMS) are currently
being developed by various companies including IBM, HP,
Phillips, Seagate Technology and others [13]. MEMS are
devices that have microscopic moving parts made using
techniques similar to that used in semiconductor manufac-
turing. The IBM millipede project [13] promises to de-
liver by year 2005 a postage-stamp size memory card that

can hold several gigabytes of fast non-volatile memory.
And this project, according to the MEMS designers, only
scratches the surface, as the digital bits of future generation
MEMS-based storage devices will continue to shrink until
they are individual molecules or even atoms [13]. As mate-
rial scientists and mechanical engineers work feverishly to
develop more efficient MEMS-based storage devices, the
role of the computer science research is to effectively inte-
grate such devices into computer systems for different ap-
plications. The challenges are big and intriguing, but some
initial steps have been taken by various research groups,
notably the CMU CHIPS project, which has explored var-
ious operating systems issues such as request scheduling,
data placement, and others [11].

In this paper, we address the problem of integrating
MEMS storage devices from a database point of view.
Given the significant potential MEMS has for large and fast
non-volatile storage of data, databases can benefit tremen-
dously from such devices. Databases have always suffered
from the increasing gap between economically viable non-
volatile hard disks and expensive but fast transistor-based
in-memory chips. MEMS-based storage devices hold the
promise of providing a feasible compromise. More re-
cently, it has been established that the data layout on the
secondary storage in DBMSs plays a crucial role with re-
spect to cache performance [4]. Although many issues need
to be resolved before MEMS are completely integrated into
computer systems in general and database applications in
particular, we address, in this paper, a first step in that di-
rection, namely data placement, which is crucial for the
database problem.

The rest of this paper is organized as follows. Section 2
presents the MEMS-based storage structure. In Section 3,
we review the existing data placement techniques designed
for conventional hard disks. In Section 4, we describe our
Flexible Retrieval Model (FRM) for MEMS-based stor-
age devices and analyze the proposed approach. Section
5 demonstrates the effect of FRM scheme on cache and I/O
performance. In Section 6, we conclude with a discussion
of our results.

2 MEMS-based Storage Architecture

MEMS are extremely small mechanical structures formed
by the integration of mechanical elements, actuators, elec-
tronics, and sensors. These are fabricated on silicon chips
using photolithographic processes similar to those em-
ployed in manufacturing standard semiconductor devices.
As a result, MEMS-based storage can be manufactured at a
very low cost. They represent a compromise between slow
traditional disks and expensive storage based on EEPROM
technologies. Unlike traditional disks, MEMS-based stor-
age devices [5] do not make use of rotating platters due
to the difficulty in manufacturing efficient and reliable ro-
tating parts in silicon. The emerging paradigm for such
systems is that of a large-scale MEMS array which, like
disk drives, has read/write heads and a recording media
surface. The read/write heads are probe tips mounted on
micro-cantilevers embedded in a semiconductor wafer and
arranged in a rectangular fashion. The recording media is
another rectangular silicon wafer (called the media sled)
that can use conventional techniques for recording data.
This structure gives MEMS-based storage two-dimensional
characteristics.

Figure 1: The architecture of CMU CHIPS

MEMS-based storage devices are composed of tens
to thousands of recording heads and a recording media
surface. The recording heads (probe tips) form a two-
dimensional array and are fabricated on silicon chips. The
recording media, referred to as the media sled, is spring-
mounted above the probe tips array and can move in the X
and Y dimensions. There are several different approaches
for recording data. For example, IBM’s Millipede uses
pits in the polymers made by tip heating [9], while CMU
CHIPS adopts the same technique as data recording on
magnetic surface [3]. We now give an overview of the
CMU CHIPS project which is dedicated to next-generation
MEMS-based storage devices. To access data under this
model, the media sled is moved from its current position
to a specific position defined by(x, y) coordinates. After
the ”seek” is performed, the media sled moves in the Y di-
rection while the probe tips access the data. The design is
shown in Figure 1 (based on the CMU design [11]). The
media sled also moves in the Z direction to actuate the dis-
tance between the probe tips and the media sled. The X and

Y actuators provide the force for moving the media sled in
the X and Y directions while the spring provides the restor-
ing motion. These two actuators work independently.

Sweep area of one probe tip

N bits

M
 bits One tip region

M
 bits

N bits

One tip sector

Figure 2: The media sled id divided into rectangular re-
gions

The media sled is organized into rectangular regions at
the lower level. Each of these rectangular regions contains
M × N bits and is accessible by one tip. Each region
corresponds to a single probe tip, which can access data
in that region, as shown in Figure 2. Bits within a region
are grouped into vertical 90-bit columns calledtip sectors;
each tip sector contains 10 bits of sled positioning infor-
mation and 80 encoded data bits providing 8 data bytes.
Thus an 8-byte tip sector is the smallest accessible unit of
data in MEMS-based storage [5] and it is determined by the
(x, y) coordinates of the media sled and the corresponding
tip. The parameters of the devices are given in Table 1. Be-
cause of the heat-dissipation constraint, in the CMU CHIPS
model, not all tips can be activated simultaneously even
though it is theoretically feasible. The maximum number
of tips that can be activated concurrently is limited to 1280.
Each rectangular region stores2000 × 2000 bits. In this
paper, we design our data placement strategy based on this
model.

Table 1: Parameters of MEMS-based storage devices from
CMU CHIPS

number of tips 6400
simultaneously active tips 1280

tip sector size 8 bytes
servo overhead 10 bits per tip sector

bits per tip region (M ×N) 2000× 2000

X axis settle time 0.125ms
Average turnaround time 0.06ms

Because the MEMS-based storage devices have very
different characteristics from disk devices, from the operat-
ing system point of view, the algorithms for I/O scheduling,
data layout, and failure management techniques designed
for traditional disks need to be revisited. Prior approaches,
which are for integration of MEMS-based storage devices
into computing systems, have focused on mapping MEMS-
based storage devices into disk-like devices [8]. The results

showed that stand-alone MEMS-based storage devices im-
prove the overall application run time by a factor of 1.9 to
4.4 [11]. However, as a result of this mapping, MEMS-
based storage devices lose the two-dimensional property,
thus further performance gains from this property are lost,
especially for data-intensive applications, such as DBMSs.
To integrate MEMS-based storage into DBMSs, data place-
ment schemes, such as relational data placement and index
structure placement, need to be re-examined. In this paper,
we focus on relational data placement and show that by
treating MEMS-based storage as a two-dimensional stor-
age for placing relational data, the gap between the main
memory and secondary storage can be reduced notably.
The idea is based on the observation that most queries in
relational DBMSs need only a subset of attributes; and
hence I/O time is wasted retrieving unnecessary attributes
by mapping MEMS-based storage to one-dimensional de-
vices. In a recent presentation at the first Biennial Con-
ference on Innovative Data Systems Research(CIDR’03),
Michael Stonebraker [12] made a case for multiple data or-
ganization for relational data so that it is compatible with
both OLTP and OLAP workloads. In particular, he ob-
served that due to the update characteristics of OLTP trans-
actions, relations need to be accessed in a row-wise man-
ner. In contrast, since in OLAP queries, only a subset of
attributes are of interest, the I/O system should facilitate
data retrieval on a column-wise manner. Therefore, we pro-
pose a data placement scheme (Flexible Retrieval Model)
for relational DBMSs. In this new scheme, data in rela-
tions are modeled as two-dimensional when they are stored
on MEMS-based storage devices. This facilitates the re-
trieval of only the relevant subsets of the relations.

By mapping MEMS-based storage into disk-like struc-
ture, the existing data placement techniques, such as N-ary
Storage Model (NSM) [10], Decomposition Storage Model
(DSM) [6], and Partition Attributes Across (PAX) [4], can
be easily adapted to MEMS-based storage. NSM stores
data record-by-record in each disk page. For any query,
disk pages are read into memory as units. However, most
queries use only a subset of attributes, and hence, NSM has
poor I/O utilization. In order to decrease the I/O overhead,
DSM was proposed. DSM partitions a relation into sub-
relations, each attribute corresponding to a sub-relation. A
query loads only those sub-relations, which are needed to
process the query, into memory. However DSM does not
perform well for queries that involve multiple attributes
from a relation because of the expensive join operation
that must be performed to combine the decomposed at-
tributes of a relation. PAX was proposed recently to im-
prove the cache utilization by reorganizing records in one
disk page. Each page is divided into mini-pages, and each
mini-page stores values of one attribute in the page. Ex-
periments show that PAX performs better than NSM under
most conditions, however, PAX [4] does not reduce the I/O
cost when compared to NSM. In fact, no method has been
proposed to combine these factors of I/O time and cache hit
ratios into one data placement policy for disk-like storage

devices. Our data placement strategy for placing relations
on MEMS-based storage mainly considers reducing the I/O
time, but at the same time, it also performs well in reducing
the processor and main memory gap. Our theoretical analy-
sis and experimental results show that the new strategy can
result in significant improvements for relational DBMSs.

3 Background
Existing data placement techniques for MEMS-based stor-
age basically adapt disk-based techniques by mapping
MEMS-based storage devices into disk-like devices. Fur-
thermore, these data placement techniques are designed for
general file systems. Our focus in this paper is to exploit
the two-dimensional characteristics of MEMS-based stor-
age devices for the placement of relational data. For this
purpose, we first describe the mapping from MEMS-based
storage to disks, then we review the existing relational data
placement scheme.

3.1 Mapping MEMS-based Storage into Disk-like De-
vices

Cylinder 0

L
og

ic
al

 b
lo

ck
 0

Track 2Track 1 Track 3Track 0

Figure 3: The definitions of cylinders, tracks, and sectors
in MEMS-based storage

The media sled is logically divided into rectangular re-
gions as shown in Figure 2. Each region containsM × N
bits, and data is accessible by tip sectors (or sectors, as de-
fined in Section 2). Using the disk terminology, acylinder
is defined as the set of all bits with identicalx offset within
a region; i.e., a cylinder consists of all bits accessible by all
tips when the sled moves only in the Y direction [8]. For
example, Cylinder 0 is shown in Figure 3 and is highlighted
by four ellipses. In theory, all tips can be activated simulta-
neously to access data, however due to the power and heat
considerations, only a subset of them can be activated si-
multaneously. Thus cylinders are divided into tracks. A
track consists of all bits within a cylinder that can be read
by a group of concurrently active tips. In Figure 3, four
out of sixteen tips can be activated concurrently, and each
cylinder contains 4 tracks. Track 0 to Track 3 of Cylinder
0 are shown in Figure 3. Tracks are composed of multi-
ple sectors. Sectors on MEMS-based storage are tip sec-

tors, which contain less data than sectors of disks. Sectors
can be group into logical blocks. In [8], each logical block
is 512 bytes and striped across 64 tips. Therefore, by us-
ing the MEMS-based storage devices in Table 1, there are
up to 20 logical blocks that can be accessed concurrently
(1280 concurrent tips/64 tips = 20). Data is organized in
terms of logical blocks on MEMS-based storage. During
a request, only those logical blocks needed are accessed.
Having mapped the MEMS-based storage into disk-like,
we review the existing data placement scheme for relational
database systems.

3.2 Review of existing data placement scheme

Traditionally, relational DBMSs use the N-ary Storage
Model (NSM) [10] to store records in a relation in slot-
ted disk pages, where each disk page has the same size.
NSM organizes records sequentially on disk pages. At the
end of each page, an offset table is used to locate the be-
ginning of each record, to handle variable-length records.
The initial part of a relation (StudentGrade) with four at-
tributes is illustrated in Table 2. Figure 4 depicts an NSM
page layout containing the first four records of the relation
StudentGrade, whereP1 to P4 are pointers pointing to the
beginning of data records 1 to 4 respectively. Therefore,
a record in a page can be accessed by following its corre-
sponding pointer at the end of each page.

Table 2: RelationStudentGrade

attributes name perm ID age grade

char(16) int(8) int(8) int(8)

record1 Mary 572 19 86

record2 John 582 18 90

record3 Bob 511 18 80

record4 Jane 537 20 91

In general, only a few attributes of each record are
needed to answer most queries. For example, consider the
following SQL query:

SELECTname
from StudentGrade
wheregrade > 90;

(1)

In this query, only attribute values corresponding to
name and grade need to be retrieved from theStudent-
Graderelation. However, due to the record-by-record lay-
out of a relation in NSM, all records of the tableStudent-
Gradewill be retrieved. Furthermore, if all of these records
move from the memory to the CPU L1/L2 cache, the cache
will be polluted due to unnecessary parts of each record.
In this example, the attribute valuesperm IDandagewill
be loaded into the cache. This results in poor utilization of
the cache capacity which leads to a high number of cache
misses.

Mary 572

18

18

20

86

90

91

John

Bob

582

511

537

P4 P2 P1P3

Jane

19

80

Page Header

Figure 4: An NSM page layout for RelationStudentGrade

To optimize the I/O utilization, the Decomposition Stor-
age Model (DSM) [6] was proposed. Instead of placing
all record attributes in one page, DSM vertically partitions
a relation into sub-relations based on the number of at-
tributes. For a given relation withk attributes, DSM cre-
atesk sub-relations corresponding to each attribute. Each
sub-relation has two attributes, a logical record number and
an attribute value from the relation. Each sub-relation is
organized into pages in the same way as NSM. Figure 5
shows how DSM partition the relationStudentGrade. Each
sub-relation is accessed when the corresponding attribute
is needed. Hence, for aggregate queries, DSM performs
very well. However, if multiple attributes are involved in a
single query, DSM needs to execute expensive join opera-
tion for the needed sub-relations [4]. In particular, for the
example query considered above, the system will fetch the
sub-relations corresponding toname andgrade. Before
the query can be executed, the two sub-relations need to be
composed by performing a join operation, which in general
has a large performance penalty. Because of this drawback,
most DBMSs use the NSM data placement strategy. In our
experiments, we will not consider DSM further.

Mary
John Bob Jane

572
582 511 537

19
18 18 20

86
90 80 91

sub−relation R1 sub−relation R2

sub−relation R4sub−relation R3

1 2
3 4

1 2
3 4

1 2
3 4

P2

1 2
3 4

P2

page header page header

page header page header

P4 P3 P1 P4 P3 P2 P1

P1P3P4P1P2P3P4

Figure 5: Placing the data of the relationStudentGradein
DSM pages

When considering predicate evaluations under modern
database workloads, NSM does not perform well. This
is because, when a query needs only a fraction of the at-
tributes, NSM loads useless data into the cache and pol-
lutes the cache. Hence, NSM is not cache-friendly. Opti-
mizing cache utilization and performance (i.e., bringing as

much useful data as possible into cache) is becoming in-
creasingly important for modern DBMSs. Based on this
observation, Ailamaki, et al., proposed Partition Attributes
Across (PAX) [4] recently. Within each page, unlike NSM,
PAX groups all values of each attribute into a mini-page.
A page is divided into mini-pages based on the number of
attributes. So PAX stores the same data as NSM in each
page. An example is shown in Figure 6. PAX optimizes
inter-record spatial locality in the cache for each attribute
in a page. Therefore, when only a subset of attributes is in-
volved in the queries, PAX would not pollute the cache with
values of unused attributes in queries, PAX has better cache
utilization than NSM. Even though DSM can achieve sim-
ilar cache utilization, DSM needs to spend a large amount
of CPU time to join the involved attributes in queries [4].
For this reason, even though DSM can save I/O time, ex-
perimental results showed that DSM performs worse than
NSM and PAX when multiple attributes are needed during
query processing.

Page Header Mary John

Bob Jane

572 582 511 537

19 18 18 20

86 90 80 91

P1P2P3P4

P1P2P3P4

P1P2P3P4

P1P2P4 P3

Figure 6: An PAX page layout for RelationStudentGrade

All of these three data placement strategies are in the
context of a single page. Data on disks are mapped to a
single dimension as required by disk structures. So if the
MEMS-based storage devices are adapted to disk-like de-
vices, relations in DBMSs will lose their two-dimensional
property. During predicate evaluation, when only a sub-
set of the attributes is needed, both NSM or PAX bring
values of all attributes in a page into the memory. Conse-
quently, a large amount of memory is used to store unnec-
essary data. Since unnecessary data is retrieved from disk
in NSM and PAX, I/O utilization is poor. To address this
problem, we propose a new strategy for placing relational
data on MEMS-based storage devices. In the new data lay-
out, we bring in only the needed data into the memory for
query processing by exploring the two-dimensional physi-
cal characteristic of the media sled in MEMS devices. This
approach can optimize cache performance as well as im-
prove the I/O utilization by exploiting the physical property
of MEMS-based storage devices.

4 New data placement for MEMS-based
storage devices

In this section, we first describe our new data placement
scheme, Flexible Retrieval Model (FRM) for MEMS-based
storage devices. Then we show how to retrieve data from
MEMS where FRM is used for the data layout. Finally we
analyze FRM on the basis of I/O utilization, memory usage,
and cache performance in comparison to NSM and PAX.

4.1 Data Layout

Since MEMS-based storage devices are not commercial-
ized yet, there is no standard specification. In this paper,
we use the CMU CHIPS [3] as our physical device model.
The parameters are given in Table 1. In this model, only
20% (1280 out of 6400) of the total tips can be activated
simultaneously because of power and heat-dissipation con-
straints. This places a constraint on the maximum number
of records that can be retrieved simultaneously by a given
query from a relationR that is stored on a MEMS-based
storage device. MEMS-based storage is organized into log-
ical blocks. Given the parameters in Table 1 and assuming
that the logical block size is 512 bytes, there are 20 logi-
cal blocks which can be retrieved simultaneously. In each
logical block, the number of records isb512/Sc, whereS
is the size of a record inR in bytes. For example, given
the relationStudentGradein Table 2,b512/40c = 12, then
240 records (20 logical blocks× 12 records/logical block)
can be retrieved concurrently. However, if only a subset of
the attributes is involved in a query, for example, attributes
perm IDandgrade, the ideal goal will be that all the 1280
tips are used to retrieve the values corresponding toperm
ID andgrade. For this case,1280 ∗ 8/16 = 640, i.e., 640
records can be retrieved simultaneously. Thus I/O utiliza-
tion increases by more than a factor of 2 (640/240=2.67)
in terms of the number of records retrieved from the rela-
tion StudentGrade. Based on this observation, we propose
FRM, where data can be accessed by tip sectors instead of
logical blocks, thus it is possible to maximize the number
of concurrent tips on the data relevant to the query.

In a MEMS-based storage device, the smallest accessi-
ble unit is a tip sector, which is determined by the(x, y)
coordinates of the media sled and a tip number. The me-
dia sled has 6400 tips which are divided into80 × 80 tip
regions, where each tip corresponds to one tip region. In
the FRM scheme, a relation R is striped across the vari-
ous tip regions. We first determine how many tip sectors
each attribute field needs, and distribute the attribute over
tip sectors with the same(x, y) coordinates of the consec-
utive (neighboring) tip regions. For example, in our case, a
tip sector is 8 bytes and if an attribute needs 32 bytes, then
this attribute is placed on 4 tip sectors with the same(x, y)
coordinates in four consecutive tip regions. Based on this,
we can determine the number of tip sectors with the same
coordinates in consecutive tip regions a single record in a
relation will occupy. Hence in the relationStudentGrade,
based on the size of its attributes (16 + 8 + 8 + 8 = 40),

row5

row6

row3

row7

row4

row8

row1

row2

Attribute1 Attribute 2 Attribute 3

column 1 column 2 column 3

Figure 7: An example of FRM

a record occupies 5 tip sectors with the same coordinates
in consecutive tip regions. For maximum concurrency, we
then place subsequent records on the remaining tip sectors
with the same coordinates in the same row without split-
ting a record over two different rows (hence, there may be
some columns left if there is not enough space to store a
whole record), and then repeat this placement scheme row
by row, all of tip sectors with the same(x, y) coordinates.
In our example, in an80× 80 MEMS device, we can place
6400/5 = 1280 records at the same(x, y) coordinates of
the 6400 tip regions. To have better understanding of how
FRM works, we give the formal description of FRM in the
following two steps.

Step 1: For each relation, allocate tip sectors for its
attributes to guarantee that each row of consecutive
tip regions with the same coordinates contain multiple
entire records.

Given a relationR, we use the following formulas to
determine how many tip sectors a single attribute needs and
how many records can be stored in a row of tip regions.
(Note, when we say a row of tip sectors, we always mean a
row of consecutive tip sectors with the same coordinates.)

An attributei of sizeSi needs to be stored on an integer
multiple of tip sectors. In our model a tip sector is of size 8
bytes, hence attributei needsdSi/8e, call thisTi. Hence a
record needs

n =
nr∑

i=1

Ti.

tip sectors, wherenr is the number of attributes inR. The
number of records that can now be stored in a row of tip
regions is:

recordsInRow = bTr/nc.
whereTr is the number of tip regions in a row, in our case
80.

An example is shown in Figure 7. In this example, there
is a relation with three attributes, the size of each attribute is
8 bytes. We are trying to place this relation in4×4 MEMS-
based storage. Based on Step 1, each row of tip sectors with
the same coordinates can only hold one record. A row of
tip sectors highlighted with circles/rectangles contains one
record of this relation respectively.

Step 2: Allocate a new row of tip sectors to a relation.

In FRM, the data is placed in terms of a unit of a row
of tip sectors with the same coordinates, (for simplicity, we
use “a row of tip sectors” to denote “a row of tip sectors
with the same coordinates”). We next describe how to al-
locate a new row of tip sectors to a given relation R. Based
on the property of MEMS-based storage, all the tip sec-
tors with the same(x, y) coordinates have the potential to
be activated simultaneously, we will choose the row of tip
sectors which has the same coordinates as the previously
allocated row as the new one. For example, in Figure 7,
row 1 is allocated to record 1, then we will allocate row
2 to record 2 (The row numbers are given for the conve-
nience of description). However, if there is no row of tip
regions with the same coordinates as the last allocated row
available, we will consider the physical movement prop-
erty of MEMS-based storage. Based on the data provided
in [7], in order to decrease seek time (time for moving
media sled from one position to another), we should first
consider a new row which has the samex coordinate, and
y coordinate offset by one from the previously allocated
row. For example, in Figure 7, row 5 has the samex coor-
dinate as row 4, andy coordinate differs by one with that
of row. Thus we allocate row 5 for record 5. If there is no
such rows available, which means the media sled has to be
moved in theX direction, then we will allocate a new row
which has the samey coordinate, butx coordinate differs
by one from the previously allocated row. The algorithm is
given in Appendix A.

4.2 Data Retrieval

Having described how to place the records by rows of tip
regions, we now explain how to retrieve the data. Based
on the property of MEMS-based storage, all the rows of tip
regions with the same coordinates have the potential to be
accessed concurrently. However, due to the constraint that
only part of the tips can be activated simultaneously, the
rows of tip regions may need to be accessed multiple times
to retrieve all the useful data. There are two cases to con-
sider. If the number of tips (Na) for the involved attributes
is smaller than the maximum number of concurrent tips,
these tips can be activated simultaneously to retrieve the
needed data at the rows of tip sectors at the same coordi-
nate. In this case, the media sled first moves in Y direction
to read all of the rows with differenty coordinate, then it
moves in X direction and turns around to read the next col-
umn of rows of tip sectors1. However, ifNa is larger than

1Tip sectors can be read in both directions.

the maximum number of concurrent tips, then the number
of retrievals for the rows of tip regions with one coordinates
is equal todNa/the number of maximum concurrent tipse.
The algorithm is given in Appendix B. For example, in Fig-
ure 7, assume that the maximum concurrent tips number is
four. If only Attribute 1 is involved in a query, to read the
values of attribute 1 in row 1 to 4, we first activate four tips
at row 1 to 4 in column 1; then move the media sled up and
down to retrieve the values of Attribute 1. If Attribute 1&2
are involved in a query, to read values of attribute 1&2 at
row 1 to row 4, we need to first activate tips at row 1&2
and column 1&2, then move the media sled up and down
to retrieve all the values of Attribute 1&2 at these four tip
regions (the solid lines in Figure 7 shows the media sled’s
movement). Next, the tips at the row 3&4 and column 1&2
are needed to be activated to retrieve the values of Attribute
1&2 at these four tip regions, the dashed lines show the me-
dia sled’s movement at this part. Without introducing more
seek time, we move the media sled in the reverse direction
of the solid line direction instead of moving the media sled
back to the start position.

4.3 Analysis of FRM

The data placement scheme affects the data flows from sec-
ondary storage to main memory, and from main memory to
cache. Hence, we focus on evaluating and analyzing FRM
in terms of memory usage, I/O performance, and cache uti-
lization. As discussed before, one of the primary savings
is achieved in terms of memory usage. Because the new
data placement scheme is relation conscious, which allows
retrieval of only that data which is explicitly needed for
a query, the smaller the number of attributes involved in
queries the more memory is saved for other data. The I/O
time savings are due to the fact that we maximize the con-
current tips to retrieve only the necessary data. In other
words, more records are retrieved at each access. On the
other hand, since the existing data placement techniques
are based on disk pages or logical blocks which are stor-
age access units, data in a complete disk page or a logical
block has to be retrieved together. Hence, a lot of mem-
ory and I/O time can potentially be wasted to retrieve the
unrelated data in disk pages or logical blocks.

Based on the memory hierarchy, there are two bottle-
necks: secondary storage and main memory, main memory
and processors (cache misses). We have shown that FRM
alleviates the first bottleneck. Next we are going to analyze
cache performance of FRM. In FRM, after retrieval of data
from MEMS-based storage into memory, the records are
organized into the similar way as NSM. Because the basic
access unit of MEMS-based storage is a tip sector, the re-
trieved data is organized by rows of tip sectors in memory.
Thus, the data is placed in NSM-like manner in the mem-
ory pages. However, it can achieve better cache utilization
than NSM. In FRM, because a relation is placed in two di-
mension, retrieving the data of a subset of attributes is sup-
ported. For a query, only the data of the involved attributes
are brought into the memory, and then into the cache. If

all tuples are processed, all data brought into cache will be
used due to the intra-record spatial locality. The data in the
cache for the example query (2) is shown in Figure 8.

SELECTperm ID
from StudentGrade
wheregrade > 90;

(2)

Page Header 86 572

90 582 80

91 537

86 572 90 582

80 511 91 537

Page in Memory Cache

511

P1P2P3P4

Figure 8: FRM approach page layout and cache utilization

In fact, FRM has similar cache performance as PAX ex-
cept that PAX minimizes data cache miss delays by mak-
ing use of the inter-record spatial locality. If all attributes
are involved in projection queries, NSM, PAX, and FRM
have the same cache performance, because none of them
bring useless data into the cache. When considering se-
lection range queries, all of these three approaches cause
cache pollution. NSM may bring useless data into cache
when the predicate is not satisfied or some values of non-
selected attributes are brought into cache with the neces-
sary data. PAX pollutes cache when data of some unsat-
isfied records are brought into the cache along with some
satisfied records. FRM causes cache pollution when the
predicate fails, the values of some other attributes of the
record pollute the cache. Because FRM does not contain
data of useless attributes, FRM would not pollute the cache
with the values of uninvolved attributes. Thus, FRM al-
ways performs better than NSM in terms of cache utiliza-
tion.

5 Evaluation of FRM

In this section, we conduct a set of experiments to evalu-
ate the cache performance and analyze the I/O utilization
and memory usage of FRM in comparison to NSM and
PAX. First we analyze FRM performance on I/O utiliza-
tion and memory usage. Then we evaluate FRM’s cache
performance. For our evaluation, we generated a dataset
with 1.28 million records, and each record consists of six-
teen 8-byte attributes. Ailamaki, et al. [4], used a similar
data setting for evaluating PAX. In particular, the authors
used a relation with eight 8-byte attributes containing 1.2
million records.

The queries we conducted are the variations of the fol-
lowing range selection query:

SELECTA1, A2, . . . , An

from R
whereA1 > Bound;

(3)

whereAi are attributes in the relationR. Because the FRM
approach does not retrieve useless attributes in queries, its
cache performance would not be affected by the relative
positions ofAi (i = 1, . . . , n) in queries. We know that
PAX is also not affected [4], while NSM is significantly
impacted. In our experiments, we give NSM advantage by
always posing queries over physically adjacent attributes.

5.1 Memory Utilization

In general, given a relation withn attributes and a query
which involvesm attributes (wherem ≤ n), the memory
space saving in FRM approach is

(the size of m attributes/the size of n attributes)×M,

whereM is the memory space used for NSM and PAX ap-
proaches. In Figure 9 we show the result for the relation
R. For example, if queries forR involve one attribute, the
FRM approach saves93.75% ((1 − (1 × 8)/(16 × 8)) ×
100%) of the memory space used by NSM and PAX meth-
ods. NSM and PAX have identical memory requirements,
since the storage access unit is a disk page or a logical
block, and they need to retrieve the same set of pages, with
the same content (the difference between the two is the or-
ganization within each page).

0
20
40
60
80

100
120
140
160
180

1 3 5 7 9 11

13

15

The selected attributes in queries

co
ns

um
ed

 m
em

or
y

(M
B

)

NSM PAX FRM

Figure 9: Comparison of Memory Space Usage in
NSM/PAX/FRM

5.2 I/O Performance

In MEMS-based storage devices, we have the following
time equations [7]:

timeservice = timeseek + timetransfer.

Since all data for a relation are placed continuously in stor-
age device, we have

timeseek = timetrackswitchtime

= timesettletime + timeturnaround.

In the NSM and PAX models, the number of records in
a page or a logical block is the same, so they have the same
I/O time. The I/O time corresponding to different queries
for a relation does not vary, because the data is accessed
based on logical blocks. However, in our FRM model, the
records of a relation are placed by the unit of tip sectors,
each attribute is striped over multiple tip sectors. Thus,
based on the property of MEMS-based storage (multiple
tips can be activated concurrently), subsets of attributes of a
relation can be accessed. Due to the constraint of maximum
concurrent tips, the I/O time may be different correspond-
ing to different queries. Given relationR, we perform a
theoretical I/O time analysis for NSM, PAX, and FRM.

First, we compute the I/O time for NSM and PAX. For
a realistic comparison of the three approaches, for NSM
and PAX, we assume pages are stored on a MEMS-based
storage device with the same characteristics as the one used
for FRM. However, for NSM and PAX, the MEMS-based
storage device is treated as though it simulates a disk [8].
We therefore need to calculate the transfer and seek time
for returning the disk pages or logical blocks to answer
a given query. As we mentioned before, NSM and PAX
have the same I/O time due to the page-based access. Each
page size or logical block size is 512 bytes which can be
stored in 64 tip sectors. The number of the maximum con-
current tips is 1280. Hence each access can, at most, re-
trieve 20 logical blocks. The number of records in rela-
tion R is 1,280,000 and each record is16 × 8 bytes. SoR
populates 320,000 pages, which can be retrieved in 16,000
(320, 000/20) transfers. Each access can be done in 0.129
ms [7]. The total oftimetransfer for retrieving relationR
is

timetransfer = 16, 000× 0.129 = 2064 ms.

Next, we compute thetimeseek. In each tip sector, there
are2000 × 2000 bits. Because some bits are used for er-
ror correction, each column can have twenty-two 8-byte tip
sectors. The tip regions are arranged as80× 80 tips. Thus
each column of tip regions can have 1760 (80 × 22) tip
sectors. The relationR populates16, 000 × 1280 tip sec-
tors. Because the number of the maximum concurrent tips
is 1280, and data is accessed in Y direction, we can use the
first 16 (16× 80 = 1280) column tip regions forR. So the
number of columnsnc in a tip region is

nc = d16, 000× 1280/(1760× 16)e = 728.

Moving the media sled from one column to the next
needs some time to turn around and settle the media sled.
From Table 1, the time for turning and settling is 0.275 ms
(0.215 + 0.06). So the total seek time is

timeseek = 728× 0.275 = 200.2 ms.

Thus, the I/O time of NSM and PAX for relationR is
2264.2 ms, as shown in Figure 10.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10111213141516

The number of involved attributes

T
h

e
I/O

 t
im

e
in

 m
ill

is
ec

o
n

d

NSM/PAX

FRM

Figure 10: Comparison of I/O time for NSM/PAX/FRM

Now, we compute the I/O time for FRM. For re-
lation R with sixteen 8-byte attributes, we store 5
(80 tip regions in a row/16) tuples per row of tip sec-
tors with the same coordinates. Hence, all the rows of
the tip sectors with the same coordinates can store 400
(80 rows× 5 records per row) records. Hence, we need
3200 (1, 280, 000 total records/400) these kind of rows
with the same coordinates. Based on Step 2, since there are
22 tip sectors in each column of a tip region, the number
of columns used in a tip region is 146 (d3200/22e). Based
on these parameters, if one attribute is involved in a query,
there are80 rows× 5 records per row tip sectors allocated
for this attribute in all the rows with the same coordinates.
(which is smaller than maximum concurrent tips number,
1280), then these tips can be activated concurrently. Each
access can read 400 records. There are 3200 accesses and
each access takes 0.129 ms. Thus we have

timetransfer = 3200× 0.129 = 412.8 ms,

timeseek = 146× 0.275 = 40.15 ms.

Thus, if only one attribute needs to be retrieved, the I/O
time of FRM is 452.95 ms. The same I/O time can
be achieved when two or three attributes are involved in
queries, because the number of tips that need to be acti-
vated to retrieve the data of these attributes is still smaller
than 1280 (which leads to a flat line segment in Figure
10). However, if four attributes are involved in a query,
the total number of tips for the four attributes is80 rows×
4 attributes×5 records in a row, which is larger than 1280;
then we need to access every rows-of-tip-sectors with the
same coordinates twice to retrieve the data (however, there
is no extra seek time to be considered as we explained in
Section 4.3). The corresponding transfer time is412.8× 2,
and seek time is40.15×2. By doing the similar analysis for
all kinds of projection queries, we get the results in Figure
10. From Figure 10, we can see that FRM performs much
better than NSM and PAX in terms of I/O time especially
when the projectivity is low; i.e., only a few attributes are
needed to process the query.

5.3 Cache Utilization Analysis

In the main memory, the data placement scheme only af-
fects the data flow from main memory to processor, which
is evaluated by cache misses. Thus, we conducted exper-
iments to compare the cache behavior of NSM, PAX, and
FRM. First we describe our experimental setup, then we
report the results of our experiments based on different se-
lectivity and projectivity.

5.3.1 Experiment Setup

The experiments were conducted on a system with Pentium
II Celeron433× 2 processors.This computer has two-level
caches. The L1 cache is 16KB with 32 bytes long cache
line. A cache miss at this level results in a 20-ns penalty.
The L2 cache is 128KB with 32 bytes long cache line. The
cache miss penalty at this level is 200 ns. We collected
this information by using the calibrator provided by Ste-
fan Manegold [1]. In the experiments, we counted the L1
and L2 data cache misses using PAPI [2], which provides a
programming access to the hardware performance counters
available in most microprocessors.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1
0
0
%

9
0
%

8
0
%

7
0
%

6
0
%

5
0
%

4
0
%

3
0
%

2
0
%

1
0
%

Selectivity

L
2
 d

a
ta

 c
a
c
h

e
 m

is
s
 n

u
m

b
e
r

NSM PAX FRM

Figure 11: Data cache penalty of NSM/PAX/FRM with one
selected attribute

We use relationR and query (3) described at the be-
ginning of this section. In order to verify the cache per-
formance for each approach, we simulated selection and
projection queries on relationR which was resident in the
memory during our experiments. In projection queries, we
vary the number of attributes involved, and those attributes
that are involved in the query are physically adjacent to
each other to favor NSM.

5.3.2 Experimental results for selection queries

We executed query (3) by varying the number of attributes,
and changed the value ofBound to control the selectiv-
ity. Figure 11 shows the results of NSM/PAX/FRM L2
data cache miss number with one attribute involved (The
L1 cache miss number is almost the same as the L2 one,
and cache miss penalty of L1 cache is much smaller than
L2 cache miss. Thus we only show the L2 cache miss num-
ber in the result figures). Since only one attribute,A1, is

involved in the query, every record is examined to check
if value(A1) > Bound. When accessing every record,
NSM brings the values of four attributes of this record into
a cache line,75% space of a cache line is wasted because
the values of other three attributes are useless for this query.
However, PAX and FRM (FRM contains only one attribute
A1) bring the value of attributeA1 into cache. Because
there is only one attributeA1 in this query, the query has
to check the value ofA1 in every record; selectivity has
no effect on these three approaches. This analysis is sup-
ported in Figure 11, which shows that FRM and PAX per-
form three times better than NSM (the minor difference be-
tween PAX and FRM is due to the implementation).

For Figure 12, we evaluated query (3) with two at-
tributes. As explained, the relative position of the two se-
lected attributes does not affect the cache performance of
FRM and PAX. To simplify the analysis of NSM, we select
attributeA2 with attributeA1. Because the value ofA1 and
A2 in one record can be in one cache line, the cache perfor-
mance of NSM does not change compared to the query with
one attribute (as shown in Figure 11), the result is shown in
Figure 12(a). Without considering the selectivity, FRM and
PAX have similar cache performance, because both of them
do not pollute the cache whereas NSM brings two useless
attributes’ values in each cache line. Thus, PAX and FRM
incur50% less cache penalty than NSM. However if the se-
lectivity is not100%, PAX and FRM may pollute the cache
too. We analyze this by examining the placement of data
in cache lines for the two models. In Figure 12(b),Ai,j is
a value of attributeAi of thejth record. From this figure,
we can see that FRM pollutes the cache because all val-
ues of attributeA2 are brought into cache with the values
of A1, thus the cache performance of FRM does not vary
with the selectivity. In the PAX approach, some values of
attributeA2 are not brought into cache if the corresponding
values of attributeA1 are not satisfied. In Figure 12(b), as-
sume the four values ofA1 (A1,1, A1,2, A1,3, A1,4) are not
satisfied, then none of the corresponding values ofA2 are
brought into cache. So in this query, FRM has more cache
pollution than PAX and does not change with different se-
lectivity.

From Figure 12 we may conclude that PAX has better
cache utilization than FRM at lower selectivities. But this
is not always the case. PAX also pollutes the cache un-
der some conditions. Figure 13(a) shows the cache per-
formance of a query with13 attributes involved; we ob-
serve that PAX does not perform as well as NSM and
FRM. In this query,A1 to A13 are the selected attributes.
As described previously,Ai,j is a value of attributeAi

of the jth record. Figure 13(b) shows the cache behav-
ior of NSM/PAX/FRM. WhenA1,1 is evaluated, the val-
ues of attributeA1 of the next three records are brought
into one cache line withA1,1. AssumeA1,1 satisfies the
condition, then the values of the other twelve attributes,
Ai,1(i = 2, . . . , 13), of this record need to be accessed.
Each access of the attributeAi,1(i = 2, . . . , 13) will bring
the other three values of the same attribute into cache line

based on the layout of PAX mini-pages, as shown in Figure
13(b) (i.e., the next three records are brought into cache
with the recordAi,1). If any value ofA1,j(j = 2, 3, 4)
does not satisfy the qualifier, the cache will be polluted by
the values of the other twelve attributes in the correspond-
ing record. NSM, on the other hand, does not bring any
value of other records even though it pollutes the cache
with the data of the three unselected attributes, as shown
in Figure 13(b). For FRM, it brings the data of the 13 se-
lected attributes into the cache, and it also bring the part
of the data of the next record. In both of NSM and FRM,
if a record does not satisfy the qualifier, the cache will be
only at most polluted with the values of the three other in-
volved attributes of the record. In general, the degree of
cache pollution depends on the size of selected attributes,
projectivity, selectivity, and the size of the cache line.

5.3.3 Experimental results for projection queries

In this section, we discuss experiments conducted to eval-
uate the relationship between cache performance and pro-
jectivity. In the first experiment, as shown in Figure 14,
selectivity is set to100% and the number of involved at-
tributes is varied; PAX and FRM have similar cache per-
formance, because both of them do not bring useless data
into cache and maximize the cache utilization. For PAX
and FRM, the number of cache misses is proportional to the
number of attributes involved in queries and the number of
records inR. Both PAX and FRM exhibit linear increase in
the cache penalty as the number of attributes is increased.
However, NSM exhibits a stepwise behavior. In Figure 14,
each step demonstrates that accessing each record results
in one more data cache miss than before. For example, let
us analyze the first step where the number of selected at-
tributes is changed from 4 to 5. In this query, when the
value ofA1 in each record is examined (there is one cache
miss), the next three attributes’ values are brought into one
cache line with the value ofA1 in the same record. So,
if only the first four attributes are involved in the query,
there is only one cache miss per record, which results in
the flat segment from 1 to 4 of NSM curve. However if
the query involves the first five attributes, when the pro-
gram accesses the fifth attribute value, which is not in the
cache (because each cache line can only hold the first four
attributes values), one more cache miss will result for this
record. Hence, the cache miss penalty of the query with
five attributes examined is twice of the cache miss penalty
of the query with four attributes.

In real DBMSs, most queries involve both selection and
projection operations. From section 5.2, we saw the rela-
tion between selectivity and cache performance with given
projectivity. In the following we explore the effects of pro-
jectivity on cache performance of NSM/PAX/FRM with a
given selectivity.

We conducted an experiment with selectivity set to50%
as shown in Figure 15. The result shows that when the
query involves six attributes or fewer, PAX and FRM have
fewer data cache misses than NSM. However, when the

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

10
0%

90
%

80
%

70
%

60
%

50
%

40
%

30
%

20
%

10
%

Selectivity

L2
 d

at
a

ca
ch

e
m

is
s

nu
m

be
r NSM PAX FRM

(a)

A A

A

The cache behavior of FRM The cache behavior of PAX

A A

A A

A A A
1,1 2,1 1,2 2,2

1,3 2,3 1,4
A

2,4

1,1 1,2
A

1,3 1,4

(b)

Figure 12: Data cache penalty of NSM/PAX/FRM with two selected attributes

0

1000000

2000000

3000000

4000000

5000000

6000000

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

Selectivity

L
2

d
at

a
ca

ch
e

m
is

s
n

u
m

b
er

 NSM PAX FRM

(a)

A13,1 A13,2 A13,3 A13,4

A11,1A12,1 A12,1A10,1

A13,1 A13,1 A14,1 A15,1 A16,1

Cache behavior of NSMCache behavior of FRM Cache behavior of PAX

A A A A

AAAA

A10,1 A11,1

A A A

A

A A A A

AAAA A A A A

AAA

A A A A

1,1 2,1 3,1 4,1

5,1 6,1 7,1 8,1

A9,1

1,2 2,2 3,2

1,1 2,1 3,1 4,1

5,1 6,1 7,1 8,1

9,1

1,1 1,2 1,3 1,4

2,1 2,2 A2,3 2,4

3,1 3,2 3,3 3,4

(b)

Figure 13: Data cache penalty of NSM/PAX/FRM with 13 selected attributes

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The number of attributes in queries

L2
 d

at
a

ca
ch

e
m

is
s

nu
m

be
r

NSM PAX FRM

Figure 14: Data cache penalty of NSM/PAX/FRM with se-
lectivity = 100%

projectivity is increased, NSM and FRM have better cache
utilization than PAX. In order to better understand the ef-
fect of NSM/PAX/FRM on cache performance, we set se-
lectivity to be10% and vary the projectivity; the results are
shown in Figure 16. When both the selectivity and the pro-
jectivity are low, PAX has better cache performance than
FRM and NSM. However, when we increase the projec-

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The number of attributes in queries

L
2

d
at

a
ca

ch
e

m
is

s

n
u

m
b

er

NSM PAX FRM

Figure 15: Data cache penalty of NSM/PAX/FRM with se-
lectivity = 50%

tivity, the cache performance of PAX becomes worse than
FRM.

5.3.4 Discussion

Based on the analysis and experimental results, we con-
clude that NSM and PAX require the same I/O time and

0

500000

1000000

1500000

2000000

2500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
The number of attributes in queries

L
2

d
at

a
ca

ch
e

m
is

s
n

u
m

b
er

 NSM PAX FRM

Figure 16: Data cache penalty of NSM/PAX/FRM with se-
lectivity = 10%

memory resources for all queries. In FRM, the fewer the
number of attributes involved in the queries, the more I/O
time and memory space are saved. In terms of cache uti-
lization, all these three methods are sensitive to query se-
lectivity and projectivity. When selectivity and projectivity
are very low, PAX has better cache performance than FRM.
However, under this condition, FRM saves more I/O time
compared to PAX. Time savings by memory access is much
smaller than the savings by I/O time. Let’s take a look
at an example. In Figure 16, PAX outperforms FRM by
150 milliseconds when the number of involved attributes is
four 2. However, in this case, FRM saves 1358.3 millisec-
onds more than PAX for I/O time. Thus, by accounting for
both I/O savings and cache performance, FRM outperforms
NSM and PAX.

6 Conclusion
MEMS-based storage devices are being developed to alle-
viate the storage/memory bottleneck. Most research up-to-
date has been conducted from an operating system centric
point of view [8]. In order to integrate MEMS-based stor-
age devices into traditional computing environment, this
approach advocates simplifying the usage of such novel
devices by mapping them to a disk-like setup. Although
beneficial in the short term, this approach may not be able
to fully exploit some of the intrinsic properties of MEMS-
based storage, especially from a database point of view.
MEMS-based storage devices are two-dimensional in na-
ture and present a unique opportunity for storing two-
dimensional relational databases. In this paper, we pre-
sented a first attempt to approach the data placement prob-
lem for MEMS-based storage devices in a manner that ex-
ploits potential properties of relational databases. Our de-
velopment shows that in terms of I/O utilization, the Flex-
ible Retrieval Model (FRM) is very beneficial and results
in significant performance improvements when compared
to existing placement techniques for relational data. It is
also cache-friendly by retrieving only the relevant values

2Given the complexity of converting cache misses to real system time,
we use an estimation. The value is computed by multiplying data cache
misses number with each cache miss penalty, which is larger than the real
one without consideration of system architectures.

required for evaluating a query; in this way it further pushes
some of the ideas earlier developed in PAX [4] by not
only avoiding cache pollution, but also memory pollution.
As our performance results also show, there is still room
for improvement. We plan to explore other cache-friendly
techniques for MEMS-based storage devices that can fur-
ther benefit from the PAX approach, thus further avoid-
ing unnecessary cache pollution in some cases. In conclu-
sion, we believe this work represents a significant first step
towards the incorporation of an important and significant
storage device into the DBMS architecture. We also be-
lieve that our approach may have some impact on the early
stages of architectural design of MEMS-based storage de-
vices.

References
[1] A cache-memory and tlb calibration tool. 2001.

http://www.cwi.nl/ manegold/Calibrator/calibrator.shtml.

[2] Performance application programming interface. 2001.
http://www.ece.cmu.edu/research/chips.

[3] CMU CHIP project. 2002.
http://www.lcs.ece.cmu.edu/research/MEMS.

[4] A. Ailamaki, D.J. DeWitt, M.D. Hill, and M. Skounakis. Weaving
relations for cache performance.In proceedings of the 27th Confer-
ence on Very Large Databases, pages 169–180, September 2001.

[5] L. Richard Carley, Gregory R. Ganger, and David F. Na-
gle. MEMS-based integrated-circuit mass-storage sys-
tems. Communication of the ACM, 43(11), November 2000.
http://www.lcs.ece.cmu.edu/research/MEMS/.

[6] G.P. Copeland and S. F. Khoshafian. A decomposition storage
model.Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 268–279, May 1985.

[7] J. Griffin, S. Schlosser, G. Ganger, and D. Nagle. Model-
ing and performance of MEMS-Based storage devices.Pro-
ceedings of ACM SIGMETRICS, pages 56–65, June 2000.
http://www.lcs.ece.cmu.edu/research/MEMS/.

[8] J. Griffin, S. Schlosser, G. Ganger, and D. Nagle. Operating systems
management of MEMS-based storage devices.Symposium on Op-
erating Systems Design and Implementation(OSDI), October 2000.
http://www.lcs.ece.cmu.edu/research/MEMS/.

[9] P.Vettider, M.Despont, U.Durig, W.Haberle, M.I. Lutwyche,
H.E.Rothuizen, R.Stuz, R.Widmer, and G.K.Binnig. The
”millipede”-more than one thousand tips for future afm storage.IBM
Journal of Research and Development, pages 44(3):323–340, May
2000.

[10] R. Ramakrishnan and J. Gehrke.Database Management Systems,
2000. WCB/McGraw-Hill and2nd edition.

[11] Steven W. Schlosser, John Linwood Griffin, David F. Na-
gle, and Gregory R. Ganger. Designing computer sys-
tems with MEMS-based storage. ASPLOS, November 2000.
http://www.lcs.ece.cmu.edu/research/MEMS/.

[12] Michael Stonebraker.Placement of Relational Data on Secondary
Storage, 2003. The Gong Show: First Biennial Conference on Inno-
vative Data Systems Research.

[13] P. Vettiger and G. Binnig. The nanodrive project.Scientific Ameri-
can, pages 47–53, January 2003.

Appendix A The Algorithm for Data Layout

In this appendix, we give the algorithm for placing the re-
lational data on MEMS-based storage as follows.

Begin
The number of tip regions of a MEMS-based storage is
Tr × Tc;
Tr is the number of tip regions in a row;
Tc is the number of tip regions in a column;
Relation R with attributesA1, A2, Ai, . . . , Anr ;
The size of each attribute isSi, i = 1, . . . , nr;
The number of records isnumberOfRecords;
The size of one tip sector isStip;
The number of tip sectors for each attribute isTi;
The number of tip sectors for a record isn;
the number of tip sectors in a row allocated for R is
sectorInRow;
The number of records in a row isrecordsInRow;

Ti = dSi/Stipe;
n =

∑nr

i=1 Ti;
sectorInRow = bTr/nc × n;
recordsInRow = bTr/nc;

Move the media sled to the initial position with coordi-
nates(xstart, ystart);
x = xstart, y = ystart;
moveDirection = down;
repeat

AllocatesectorInRow×Tc tip sectors which the co-
ordinates(x, y) for R;
leftRecordsNumber = numberOfRecords−Tc×
sectorInRow;
if moveDirection = down then

y = y + 1;
if y is out of range of movement of the media sled
then

y = y − 1, x = x + 1;
Move the media sled to the position(x, y), and
turn it around;
moveDirection = up

end if
else

y = y − 1;
if y is out of range of movement of the media sled
then

y = y + 1, x = x + 1;
Move the media sled to the position(x, y), and
turn it around;
moveDirection = down

end if
end if

until leftRecordsNumber ≤ 0
Done.

Appendix B The Algorithm for Data Re-
trieval

We describe the data retrieval algorithm in this appendix.
We use the same names for the same parameters used in
Appendix A, thus, we will not repeat their definitions in
this algorithm.

Begin
Given a query Q;
The number of tip sectors in all rows with the same co-
ordinates for the involved attributes isNa;
The number of maximum concurrent tips isNc;
Move the media sled to the initial position
(xstart, ystart);
x = xstart, y = ystart;
moveDirection = down;
leftRecordsNumber = numberOfRecords
if Na ≤ Nc then

repeat
Activate all these tips and access the data;
leftRecordsNumber = numberOfRecords −
Tc × sectorInRow;
if moveDirection = down then

y = y + 1;
if y is out of range of movement of the media sled
then

y = y − 1, x = x + 1;
Move the media sled to the position(x, y), and
turn it around;
moveDirection = up

end if
else

y = y − 1;
if y is out of range of movement of the media sled
then

y = y + 1, x = x + 1;
Move the media sled to the position(x, y), and
turn it around;
moveDirection = down

end if
end if

until leftRecordsNumber ≤ 0
else

numberOfAccess = dNa ≤ Nc;
Divide the rows of tip sectors with the same coordi-
nates intonumberOfAccess parts;
repeat

repeat
Activate the next part of tips in the rows;
leftRecordsNumber =
numberOfRecords− Tc × sectorInRow;
if moveDirection = down then

y = y + 1;
if y is out of range of movement of the media
sledthen

y = y − 1, x = x + 1;
Move the media sled to the position(x, y),
and turn it around;

moveDirection = up
end if

else
y = y − 1;
if y is out of range of movement of the media
sledthen

y = y + 1, x = x + 1;
Move the media sled to the position(x, y),
and turn it around;
moveDirection = down

end if
end if

until leftRecordsNumber ≤ 0
Turn around the media sled, letmoveDirection
equal its opposite;
numberofAccess = numberOfAccess− 1;

until numberOfAccess = 0;
end if
Done.

