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ABSTRACT
In this paper, we describe a novel execution environment that can
dynamically switch between garbage collection systems. As such,
it enables selection of the most appropriate allocator and collector
for a given application and underlying resource availability. Our
system is novel in that it is able to switch between a wide range
of diverse collection systems. It uses program annotations to guide
selection of the collection system. In addition, it can automatically
identify when to switch collectors when program execution behav-
ior warrants it, i.e., it is adaptive. Our system introduces little over-
head and accurately identifies the best collector for a wide range of
benchmarks and heap sizes.

1. INTRODUCTION
Garbage collection is a mechanism for automatic reclamation of

dynamically allocated memory. It simplifies the program devel-
opment cycle by eliminating the burden of explicit memory de-
allocation. However, garbage collection imposes a performance
overhead since it must identify and reuse memory that is no longer
accessible by the program, while the program is executing.

The performance of heap allocation and collection techniques
has been the focus of much research [10, 12, 9, 16, 1, 13, 31, 6].
The goal of most of this prior work has been to provide general-
purpose mechanisms that enable high-performance execution across
all applications. However, other prior research [5, 14, 33], has
shown that the efficacy of a memory management system (the al-
locator and the garbage collector) is dependent upon application
behavior and available resources. That is, no single collection sys-
tem enables the best performance for all applications and all heap
sizes. Our empirical experimentation as confirmed these findings
and, as such, we believe that to achieve the best performance, the
collection and allocation algorithms used should be specific to both
application behavior and heap size.

Existing execution environments enable application- and heap-
specific garbage collection, through the use of different configura-
tions (builds) of the execution environment. However, such sys-
tems do not lend themselves well to the next-generation of high-

performance server systems in which a single execution environ-
ment executes continuously while multiple applications and code
components are uploaded by users [32, 24, 19, 23, 15, 20]. For
these systems, a single collector and allocator must be used for
a wide range of available heap sizes and of applications, e.g., e-
commerce, agent-based, distributed, collaborative, etc. As such, it
may not be possible to achieve high-performance in all cases given
only a single garbage collection system.

In this work, we present the design, implementation, and eval-
uation of a virtual machine that can dynamically switch between
different garbage collectors. This dynamic switching functionality
enables us to use the collector and allocator that will provide the
best performance for the executing application and underlying re-
source availability. In addition, we can switch to a new collection
system at any time during an application’s lifetime. That is, our
system can dynamically adapt to changes in execution behavior or
the operating environment. If the memory usage characteristics no
longer warrant the use of the current collector, we switch to an-
other to improve performance. Similarly, if the amount of mem-
ory available to the virtual machine increases or decreases because
of changes in resource utilization by external processes, we can
change garbage collectors accordingly.

We implemented three mechanisms in our system to guide switch-
ing decisions. The first is through the use of off-line execution and
measurement of the application using multiple inputs. We then an-
notate the program to indicate which collection system to use given
different resource constraints. Our second approach to collector
discovery incorporates light-weight, on-line profiling to guide se-
lection. As the program executes, we monitor allocation and collec-
tor behavior and switch, i.e., it adapts, to a new memory manage-
ment strategy when our measurements exceed certain thresholds.
Finally, we supply the user with a library call so that users can ini-
tiate switching manually from within an application.

We implemented our techniques as an extension to an an exist-
ing, high-performance, server-oriented Java virtual machine: The
Jikes Research Virtual (JikesRVM) [2] from IBM T.J. Watson Re-
search Center. Our system is able to switch between four existing,
yet very different and efficient collection systems. In addition, our
system can be easily extended to include any number of other col-
lection systems.

Our system accurately identifies the best collector for a wide
range of benchmarks and heap sizes. Our empirical evaluation indi-
cates that the cost of switching is equivalent to a garbage collection.
In addition, the overhead that our system imposes on application
execution performance is small: Our adaptive garbage collection
switching system, degrades performance by 5%, on average, for
the programs that we studied. In addition, and perhaps more im-
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portantly, our system significantly reduces the negative impact of
selecting the “wrong” collector (by 17% on average).

This paper makes the following contributions:

• It describes a technique by which a virtual machine can ef-
ficiently switch between different collectors at run-time, and
provides empirical measurements of our implementation of
this technique, which show that it performs well.

• It shows that dynamic switching of collectors can be com-
bined with off-line profiling and explicit annotation-guided
collector selection to significantly improve performance by
adapting to available resources.

• It shows that dynamic, on-line profiling can be used to adapt
to changes in available resources or to phase shifts in the
application, leading to significantly increased performance.

• It shows that even using a simple on-line heuristic, dynamic
collector selection can achieve performance that is always
very close to that achieved by the best possible collector for
the available heap size.

The rest of this paper is organized as follows: Section 2 de-
scribes our system for dynamically switching between collectors.
Section 3 describes the different approaches we employ to dynam-
ically switch between collectors. Section 4 presents and discusses
our experimental results. Section 5 describes potential optimiza-
tions that are suggested by the experimental evaluation that should
further improve performance. Finally, Section 6 discusses related
work and is followed by our conclusions.

2. APPLICATION-SPECIFIC
GARBAGE COLLECTION

The next-generation of high-performance server systems must
enable continuous availability and high-performance if they are to
gain wide-spread use and acceptance. As such, these systems re-
quire a software execution environment that is also continuously
available. Due to the portability, flexibility, and security features
enabled by the Java programming language and its execution envi-
ronments, a number of high-end server systems now employ Java as
the implementation language for application and execution servers [32,
24, 19, 26]. These systems run a single virtual machine (VM) im-
age continuously so that applications and code components can be
uploaded and executed as needed by customers (for customization,
collaboration, distributed execution, etc.).

Given this model (single VM and continuous execution) and ex-
isting Java execution environments, a single, general-purpose col-
lector and a single allocation policy must be selected and used for
all applications. However, many researchers have shown that there
is no single combination of a collector and an allocator that en-
ables the best performance for all applications on all hardware and
given all resource constraints [5, 14, 33]. Figure 1 confirms these
findings. The graphs show the total execution performance of three
commonly used SPEC [29] benchmarks executed within the Jikes
Research Virtual Machine (JikesRVM) [2]. The y-axis is total time
in seconds and the x-axis is heap size in megabytes (MB). For
SPECjbb, the y-axis is the inverse of the throughput reported by
the benchmark; we report microseconds per operation to maintain
visual consistency with the execution time data of the other bench-
marks. For the data in all graphs, lower values are better.

Figure 1(a) shows that for SPECjbb, the semispace (SS) collec-
tor, performs best for all but small heap sizes, for which the hybrid
generational/mark-sweep (GMS) collector is best. In Figure 1(b),
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Figure 1: Benchmark performance using different collection
systems and heap sizes in the JikesRVM. No single collector en-
ables the best performance for all programs and all heap sizes.
The collection systems that we used for these experiments are
Mark-sweep (MS), Semispace (SS), Generational Semispace
(GSS), and Hybrid Generational/Mark-sweep (GMS). The y-
axis is total time in seconds. For SPECjbb, the data is the in-
verse of the throughput reported by the benchmark; we report
microseconds per operation to maintain visual consistency with
the execution time data. The x-axis is heap size in MB. The
benchmarks are from the SpecJVM98 and SpecJBB suites.
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GMS is the best for a large number of small to medium sized heaps.
Semispace achieves similar performance to that of GMS for large
heap sizes. In Figure 1(c), Semispace performs best for heap sizes
greater than 26MB. Thereafter, MS outperforms all others. We
refer to the point at which the best-performing collection system
changes as the switch point.

To enable different allocation and collection algorithms to be
used for different applications and heap sizes, while enabling con-
tinuous execution of the VM, we have developed an execution en-
vironment that can dynamically switch between such algorithms.
Our goal is to improve performance of applications for which there
exist collection system switch points while not imposing signifi-
cant overhead. Our system is an extension of the JikesRVM from
the IBM T.J. Watson Research Center.

2.1 The JikesRVM and the JMTk
The JikesRVM [2] is an open-source, dynamic and adaptive opti-

mization system for Java that was designed and continues to evolve
with the goal of enabling high-performance in server systems. The
JikesRVM compiles (at runtime) Java bytecode programs at the
method-level, Just-In-Time, to x86 (or Power PC) code. The sys-
tem performs extensive runtime services, e.g., garbage collection,
thread scheduling, synchronization, etc. In addition, it implements
adaptive optimization by performing on-line instrumentation and
profile collection and then using the profile data to evaluate when
program characteristics have changed enough to warrant re-optimi-
zation of methods.

The JikesRVM (version 2.2.0+) implements the Java Memory
Management Toolkit (JMTk) that enables garbage collection and
allocation algorithms to be written and “plugged” into the JikesRVM.
The framework offers a high-level, uniform interface to the JikesRVM
that is used by all algorithm implementations. Throughout this pa-
per, we refer to the combination of an allocation policy and a collec-
tion technique as a collection system. This corresponds to a Plan in
the JMTk terminology. The JMTk allows users to implement their
own collection systems easily within the JikesRVM and to perform
an empirical comparison with other existing collectors and alloca-
tors. When a user builds a configuration of the JikesRVM, she is
able to select a particular collection system for incorporation into
the JikesRVM image. The selected collection system is specified
as a command-line argument to the JikesRVM build process.

Each collection system in the JikesRVM is implemented via a
Plan and Policy class. Each collection system is linked to a vir-
tual memory resource (VM Resource) which binds the allocation
region to particular virtual address ranges. In addition, the system
monitors (polls) the remaining free memory space and initiates col-
lection as needed. Collection proceeds according to the associated
policy. A policy consists of a set of classes that implement the type
of collector (mark-sweep, semispace, generational, etc.). The pol-
icy also provides implementation for the allocator in use (free-list,
bump-pointer, etc.).

The four collection systems that we consider in this work are
Semispace, Mark-sweep, Generational Semispace, and a Genera-
tional Mark-sweep Hybrid. These systems use a stop-the-world
collection technique and hence require that all mutators pause when
garbage collection is in progress.

The Semispace (SS) collection system consists of a virtual mem-
ory resource that maps the heap address range to a contiguous block
of memory, and a bump-pointer allocator that allocates memory in
contiguous chunks from the virtual memory resource. The virtual
memory space is divided into two half-spaces, equal in size: the
from and to semispaces. Memory is allocated from only one semis-
pace at any time, and hence, the usable virtual address space is half

of the total space. During a collection, live objects are copied from
the from-space to the to-space. At the end of the collection, the
roles of the semispaces are reversed. Semispace collection system
also includes a separate space for allocation of large objects. Large
objects are allocated by a sequential first-fit free list allocator and
collected by using the mark-sweep technique.

In the mark-sweep (MS) collection system, memory is allocated
from the mark-sweep space using free-list allocation, like that for
large object allocation. Collection is a two-phase process that con-
sists of a mark phase in which live objects are marked, and a sweep
phase in which unmarked space is reclaimed.

The generational semispace (GSS) collection system makes use
of well-known generational garbage collection techniques [3, 30].
Young objects are allocated in a variable-sized nursery space using
bump-pointer allocation. Upon a minor collection, the nursery is
collected and the survivors are copied to the mature space. Old ob-
jects in the mature space are collected by performing a semispace
copying collection. The mature space thus consists of a from-space
and a to-space. Objects promoted from the nursery are copied to
the from-space. The mature space is collected following a minor
collection as needed. This process is referred to as a major collec-
tion.

The generational mark-sweep (GMS) collection system also em-
ploys a generational model. As for GSS, there is a nursery which
holds young objects and a mature space which retains old objects.
However, the mature space is collected using a mark-sweep algo-
rithm and allocated using free-list allocation. In earlier versions of
the JikesRVM, this collector was previously referred to as the Wat-
son hybrid collector. On a minor collection, surviving objects from
the nursery are copied to the mature space. A major collection con-
sists of a minor collection followed by a mature space mark-sweep
collection.

The MS and GMS systems do not use a large object space by
default. All collection systems include a immortal space that holds
the JikesRVM system classes. Immortal space is allocated using
the bump-pointer technique and this space is never collected.

We extended the JikesRVM to switch between SS, MS, GMS,
and GSS at runtime. In the following section, we describe the
switching process.

2.2 Switching Between
Garbage Collection Systems

The JikesRVM Plan class implements the allocation and col-
lection strategies; the source-code implementation for this class is
stored in a sub-directory that corresponds to each individual collec-
tion system that is supported by the JikesRVM. For example, if a
user chooses to use the semispace collection system, she builds the
appropriate JikesRVM configuration that indicates this. The build
process copies the Plan class from the semispace sub-directory so
that it is used as the implementation for the Plan in the system. By
default, only one Plan class can exist in a JikesRVM image. The
only way to change Plans (to use a different garbage collector) is to
build another image using a different JikesRVM configuration.

Our extension to the JikesRVM requires that multiple collection
systems be included in a single system image. To enable this, we
implemented a generic Plan class, from which all specific collec-
tion system classes derive, e.g., SSPlan, MSPlan, GMSPlan, and
GSSPlan. Each of these plans are instantiated in a single image of
our system. Figure 2 shows the JikesRVM JMTk class hierarchy
before and after our extensions.

We inserted a global field called currentPlan into the class that
implements the collection system interface to the JikesRVM (VM I-
nterface). This field identifies the collection system that is currently
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Figure 2: Original and New (Dynamic Switch-Enabled)
JikesRVM JMTk Class Hierarchy

in use. At all times, an object instance of each collection system (a
plan instance) is available in our system. The current default allo-
cator that is used, depends on the current collection system. The
Plan class invokes a static allocation routine according to the col-
lection system indicated by currentPlan. When a switch occurs, the
instance of the appropriate collector becomes the global instance of
the system.

The immortal space and large object space within our system are
shared across all collection systems. Since the extant versions of
MS and GMS do not implement a large object space by default,
we extended both to do so. To support multiple collection sys-
tems, we require address ranges for all possible virtual memory
resources to be reserved. We try to make efficient use of the virtual
address space and to overlap as many address ranges as possible
(Figure 3). Note that these address ranges are mapped to physical
memory lazily (as it is needed), in 1 Megabyte chunks.

Switching between collection systems requires that all mutators
be suspended to preserve consistency of the virtual address space.
Since the JikesRVM collectors are all stop-the-world, the system
implements the necessary functionality to pause and resume mu-
tator threads. We extended this mechanism to implement switch-
ing. The JMTk VM Handshake class implements synchronization
across collector threads and suspension of all mutator threads. While
mutators are executing, the collector threads are blocked on the col-
lectorQueue. The collector threads are dequeued prior to the start
of a collection. The collector threads then perform the actual col-
lection work. When a collector switch is requested, we perform
these steps then switch from the old collection system to the new
system.

Our implementation, however, does not require garbage collec-
tion to be performed for all switches. For example, a switch from
MS to GMS or SS to GSS only requires that future allocations are
from the nursery area. As such, we only need to perform general
book keeping to record the current plan and no collection needs to
be performed. Similarly, when we switch from a generational col-
lector to a non-generational collection, we need only perform a mi-
nor collection in most cases. After the switch, we suspend collector
threads and resume the mutators, similar to the post processing that
happens after a regular collection.

Although the switching process is specific to the old and the new
collection systems (as described below), we provide an extensible
framework. Our implementation facilitates easy implementation
of switching from any collection system to any other, existing or
future, that is supported by the JikesRVM JMTk.

Mark-sweep (MS) to Generational Mark-sweep (GMS). In our
implementation, MS and GMS share the same free-list resource and
virtual address space (the mark-sweep space for MS and the mature
space for GMS). The switch from the MS collection system to a

Immortal
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Large Object
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High Semispace

Low Semispace
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Figure 3: Address Space Layout in the Switching System

GMS system does not require a collection. We need only to update
the currentPlan field to point to the GMS system. Thus, there is
no additional cost involved with the switch other than stopping all
mutators, updating a field, and resuming the mutator threads.

Generational Mark-sweep to Mark-sweep. To switch from the
GMS collection system to the MS system, we perform a minor col-
lection so that all live objects from the nursery are copied to the
mature space. We then set the currentPlan field to point to the MS
system. Thus, at the end of the switch, the nursery is empty and the
mature space is now the MS system’s mark-sweep space.

Semispace (SS) to Mark-sweep or Generational Mark-sweep.
To switch from the SS to the MS collection system or to the GMS
system, we perform a semispace collection. However, instead of
copying survivors to the empty semispace, we copy them to the
mark-sweep space.

Mark-sweep or Generational Mark-sweep to Semispace. For
the MS to SS switch, as we mark live objects in the mark-sweep
space, we forward them to the semispace resource. However, this
switch is more complex than the ones previously described. The
use of object forwarding during a Mark-sweep collection requires
us to maintain multiple states per object. We detail this process and
its implementation in Section 2.3.

Switching from a GMS to a SS collection system is similar to
the MS to SS switch. We perform a major collection and copy
survivors from the nursery as well as live objects from the mature
space to the semispace.

Semispace to Generational Semispace (GSS). In our implemen-
tation, the two half-spaces of the SS collection system are shared
with the GSS collection system. The cost of switching from the SS
collection system to GSS is similar to the cost of switching from the
MS collection system to the GMS system. No garbage collection
is required to effect the switch.

Mark-sweep/Generational Mark-sweep to Generational Copy-
ing. To change from the MS or the GMS collection system to the
GSS system, we need to perform steps similar to the MS/GMS to
SS switch. In fact, we share the same code, and hence we were
able to implement this switch with minimum additional program-
ming overhead.

Generational Copying to Mark-sweep/Generational Mark-swe-
ep. This switch is similar to that of SS to MS or GMS. However,
we need to copy over objects from the nursery to the shared free-list
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region, in addition to copying objects from the GSS mature space
to the shared region.

Unlike previous work, we are thus able to dynamically switch
between collection systems that use very different allocation and
collection strategies. We next describe details that are specific to
our implementation within the JikesRVM.

2.3 Implementation Details
There are four primary implementation strategies that we em-

ployed to make our system compatible with the existing JikesRVM
infrastructure and to make it as efficient as possible. They are,
maintaining multiple states for forwarded objects in a mark-sweep
collected space, unmapping unused memory, inlining of allocation
routines, and using a single, shared write barrier implementation.

As mentioned in the previous section, to switch from a collec-
tion system that uses a mark-sweep space to a collection system
that uses a contiguous semispace, we need to maintain state for the
mark-sweep process as well as for the process of forwarding ob-
jects to the semispace. In the JikesRVM, the mark-sweep collector
requires two bits in the object header: the mark bit to mark live
objects and the small object bit to indicate that the object is a small
object. The use of the small object bit is specific to the free-list im-
plementation in the JikesRVM. Since memory allocation requests
are aligned on a 4-byte boundary in the JikesRVM, the lowest two
bits in an object’s address are always 0. Hence, the mark bit and
the small object bit can be encoded as the lowest two bits in the
object’s status word, which is stored in the object header.

The copying process uses two additional states. An object is
marked as being forwarded while it is being copied. After it is
copied, the object is marked as forwarded and a forwarding pointer
to the object’s new location is set in the old object’s header. The
being forwarded state is necessary to ensure synchronization be-
tween multiple collector threads. These two states are stored in
the status word of each object, along with the forwarding pointer.
Thus, the lowest two bits in the object’s status word have different
purposes depending on the collector that the JikesRVM is config-
ured with, while building the boot image. For example (Figure 4),
if the JikesRVM is built with the mark-sweep collection system,
the value 0x2 indicates that the object is a small object. However,
if instead, the semispace collector is used, this state indicates that
the object has been forwarded to the to-space during a collection.
Similarly, if the lowest two bits are set, it signifies that the object is
a small object and has been marked live by the mark-sweep collec-
tor; the same state indicates to a semispace collector thread that the
object is currently being forwarded by another thread.

Since we forward marked objects to the semispace, we need to
support all four distinct states, along with the space required for
the forwarding pointer. To account for the two additional bits re-
quired, we use a technique known as bit-stealing [7]. The object
header stores a pointer to its Type Information Block (TIB). In the
JikesRVM, TIBs store information about the object’s class (includ-
ing the virtual method table). A TIB is defined to be aligned on
a 4-byte boundary. Hence, we can use the two lower-most bits of

the word that points to the TIB, to mark the being forwarded and
forwarded states during the copying process.

The second feature we implemented is memory unmapping. The
reference JikesRVM implementation uses on-demand memory map-
ping of the virtual address space. To use physical memory effi-
ciently, we unmap the memory mapped space that we won’t use
when we switch to a new collection system. For example, when we
switch from the SS collection system to the MS collection system,
we can free memory mapped to the semispace. However, we do not
unmap memory from a region that is shared by the old and the new
collection systems.

A third mechanism that we use to improve the efficiency of our
system is the use of static methods to avoid dynamic dispatch where
possible. Allocation in our switching system occurs via a static rou-
tine, Plan.alloc in the Plan class. This routine performs a check on
an integer value representing the allocator to use (a switch...c-
ase). We maintain a global integer field called CURRENT DEFA-
ULT ALLOCATOR, which indicates the current default allocator to
use. Plan.alloc invokes the appropriate allocation routine based on
the value of CURRENT DEFAULT ALLOCATOR. Plan.alloc(...)
can be inlined into the program to reduce the overhead of function
calls for allocation (new instructions). The individual allocation
methods are not inlined into Plan.alloc since the particular method
can change dynamically. The reference JikesRVM implementation
contains only a single plan and as such, all allocation routines can
be inlined.

A second source of overhead, other than our inability to inline
each of the individual allocation routines, which is necessarily in-
troduced by our system is a universal write barrier. Write barriers
are used to record pointers for generational collectors [8, 17] since
heap areas are independently collected. Cross-generation (old-to-
young) pointers must be tracked so that they can be traced during
collection of the young (nursery) heap space. Such tracing avoids
collecting objects that are only reachable from the older genera-
tions. Since our system can switch at any time to a generational
garbage collector, we must always insert write barriers. However
to make this process as efficient as possible, we use a single, shared
write barrier for all collection systems. In our system, the nursery
always occupies the highest virtual address range. Hence, we re-
quire only a single check to determine if the young object reference
is in the nursery. We inline this check into instructions that store
the young object reference into an object field or an array.

We discuss the impact of these different sources of overhead us-
ing empirical data in our results section (Section 4). In addition, we
offer solutions that reduce both inlining and write-barrier overhead
in Section 5.

3. GARBAGE COLLECTOR DISCOVERY
By implementing functionality to switch between collection sys-

tems while the JikesRVM is executing, we can now select the “best-
performing” collection system for each application that executes
using our system. We identify each application-specific collection
system using three methods: user initiated switching and off-line
and on-line program profiling.

To enable user controlled switching between collection systems,
we implemented a library call (VM Interface.switchGC(System.G-
CName)) that can be invoked from a user program that forces the
current collection and allocation strategies to switch from one col-
lection system to another. The call is similar to the currently avail-
able System.gc() which forces a garbage collection regardless of
whether the heap is exhausted. The System.GCName parameter
represents the new collection system. Upon invocation of VM Inter-
face.switchGC(System.GCName), the mutators pause, the current

5



collection system changes over the new system, and the mutator
threads resume. We next detail our off-line and on-line profile
mechanisms.

3.1 Annotation-guided Selection
Our next mechanism for determining when to perform a switch,

is application annotation of collection systems as identified by off-
line profile information. We annotate programs with collection sys-
tem identifiers, i.e., those used to invoke the VM Interface.switchG-
C(System.GCName) library call, that are available within the Jikes-
RVM. If an annotated identifier is not available, the default Jikes-
RVM collection system is used. We specify (possibly multiple)
collection systems for a number of heap size ranges. We insert an-
notations into bytecode programs using an annotation language and
a highly compact encoding that we developed in prior work [21].

We discover the best-performing collection systems by repeat-
edly executing the program off-line for a number of heap sizes
and program inputs and recording the systems that enable mini-
mum program execution times. Since the best-performing collec-
tion system may depend on the underlying architecture (memory
size, cache levels, cache sizes, register count), we can also incor-
porate different architectures as part of our profile collection and
annotation. For this work, we focus solely on the x86 architecture
that we describe in Section 4.1 (Experimental Methodology).

If the collection system indicated by our program annotations is
incorrect (due to differences in application behavior across inputs),
we will identify this case using on-line profiling and automatically
correct our choice using adaptive garbage collection.

3.2 Adaptive Garbage Collection
Our final mechanism for collection system discovery is on-line

instrumentation and profiling similar to that which is implemented
by the JikesRVM adaptive optimization system [4]. We monitor
execution behavior while the program is running, to predict which
collection system will enable the best application performance. We
use a simple heuristic in which the system identifies when the heap
has reached 60% of its capacity. It then checks the available heap
size and if it is larger that 90MB, it switches to GSS. Otherwise it
uses GMS. We determine this threshold using empirical data from
a large number of benchmarks and inputs. We found that the best
performing collector for small heap sizes is consistently GMS. For
large heap sizes, the best performing collector is commonly GSS.
We plan to consider other heuristics and runtime information that
can be exploited to guide selection of a garbage collection system
as part of future work. As an initial attempt, our simple heuristic
performs quite well (as we will show in Section 4) for the programs
that we studied.

Dynamic switching between collection systems also enables us
to identify additional switching opportunities. That is, we continue
to monitor application execution characteristics to determine how
well our initial choice of the collection system performs and to de-
termine when and if will be profitable (in terms of execution perfor-
mance) to switch again. That is, as the behavior of the application
changes, we can switch between collection systems to adapt and
improve program performance.

3.3 Considering System Characteristics
Using each of the mechanisms above for collection system dis-

covery, we can consider a wide range of resource and system char-
acteristics to identify when a particular system is best. Three such
characteristics are heap size, the JikesRVM configuration, and avail-
able virtual memory resources.

As shown previously in Figure 1, the best-performing collection

Program Description
201 compress SpecJVM98 compression utility, input 100
209 db SpecJVM98 database access program, input 100
228 jack SpecJVM98 Java parser

generator based on the Purdue Compiler
Construction Tool set, input 100

213 javac SpecJVM98 Java to bytecode compiler, input 100
202 jess SpecJVM98 expert system shell benchmark:

Computes solutions to rule based puzzles, input 100
222 mpegaudio SpecJVM98 audio file decompression

tool that conforms to the ISO MPEG
Layer-3 specification, input 100

228 mtrt SpecJVM98 multi-threaded ray tracing
implementation, input 100

JavaGrande JavaGrande Forum benchmark suite
using input section3/AllSizeA

OptComp The JikesRVM non-adaptive, optimization system
executing benchmark 213 javac, input 100

SPECjbb Transaction processing application
with a single warehouse as input

Table 1: Benchmark Descriptions

system can be different for a single application given different heap
sizes. As such, we must identify, for a number of common heap
sizes, which collection system to select. The available heap size is
dependent upon the underlying system resources (which are highly
varied for Internet-computing) as well as on other applications shar-
ing the same resources. For example, if multiple programs have
been uploaded and are being executed concurrently within the same
Java execution environment, the heap space available for use by a
particular application may be significantly less than if the program
was executing in isolation.

Memory usage characteristics are also dependent upon the build
configuration of the JikesRVM. If the adaptive optimization system
(AOS) is in use, only those methods identified as “hot” are com-
piled with optimization. Hot methods are identified using on-line
instrumentation and monitoring of execution performance. When
adaptive optimization is not in use (via a non-adaptive configura-
tion), no instrumentation is performed, no additional data struc-
tures are needed to log profile data, and all methods are optimized
upon first use. Each method optimized uses significant memory for
storing analysis data and intermediate representations of the code.
Non-adaptive configurations can be used when compilation over-
head is not an issue, i.e., the program executes for a long period of
time. In our results section, we report our findings and switching
results that we obtained using both JikesRVM configurations (with
and without compilation).

The collection system configuration also impacts performance.
For example, any collector can implement a separate large object
space. For some applications, use of a large object space improves
performance. For others, it degrades performance. For example
using the semispace collector for the SpecJVM98 benchmarks and
the default heap size, using a large object space improves perfor-
mance for 201 compress benchmark by 5% and degrades perfor-
mance for all other SpecJVM98 and SPECjbb benchmarks by 8%
on average. We can annotate this information with each benchmark
so that the large object space is used only when we predict, given
off-line measurement, that it will improve execution speeds.

4. EVALUATION
To empirically evaluate the efficacy of switching between garbage

collectors dynamically, we performed a series of experiments using
our system and a number of benchmark programs. We first describe
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Switching Cost (ms)
(GC cost on diagonal)

SS MS GMS GSS

SS 150 152 150 52
MS 150 140 51 151

GMS 140 20 19 170
GSS 19 140 140 19

Table 2: Time in milliseconds to perform a switch from a col-
lection system in the first column to the one in the first row. The
diagonal shows the time for a collection in the reference system.
The heap is empty (1.4MB/500MB heap) when the collection or
switching is performed.

these benchmarks and our experimental methodology with which
we generated our results.

4.1 Experimental Methodology
We gathered the results that follow by repeatedly executing bench-

mark programs on a dedicated 2.4GHz x86-based single-processor
Xeon machine (with hyperthreading enabled) running Debian Linux
v2.4.18. In addition, we used the JikesRVM version 2.2.0 with jli-
braries R-2002-11-21-19-57-19. We experimented with both the
Fast and Adaptive JikesRVM configurations. In the Fast configu-
ration, all methods executed are optimized upon initial invocation.
With the Adaptive configuration, all methods are initially compiled
without optimization and then monitored (instrumented and pro-
filed) to identify methods that account for a large portion of exe-
cution time. These “hot” methods are then optimized. We report
numbers using the Fast configuration for brevity; however, the im-
pact of dynamic switching is similar for either system.

We measured the impact of switching both on application perfor-
mance alone and application performance with the JikesRVM com-
pilation overhead. To measure the impact of switching on applica-
tion performance in isolation, we executed the benchmarks through
a harness program. The harness repeatedly executes the programs;
the first run includes program compilation and latter runs do not
since all methods have been compiled following the initial invo-
cation. To evaluate the performance impact of our system on the
JikesRVM compiler itself, we also use it as one of our benchmarks.
The other applications we examine are from the SpecJVM98, the
SPECjbb200, and the JavaGrande [18] benchmark suites. We pro-
vide a description of the benchmarks and the inputs that we used in
this study in Table 1.

4.2 Results
The first set of results that we present show the overhead of

switching alone. We compare the time for a switch with the time
for a collection in the baseline system. We performed these exper-
iments with an empty heap (1.4MB of data in a 500MB heap); this
enables us to isolate the overhead due to switching. Table 2 shows
these results. The data in the table shows the time in milliseconds
to perform a collection system switch. A switch is made from the
collection system of a given row to that of a column. The diagonal
shows the time for a collection in the reference system. The col-
lection performed by the generational collectors (GMS and GSS)
is a minor collection in which only the nursery is collected. These
results indicate that the cost of a switching is very similar to the
cost of a collection.

We next present results that show the efficacy of switching. The
results are shown in Figures 5 and 6 for a number of benchmarks.

Program Annotated GC Selector
201 compress if (heapsize ≥ 50MB) GSS else GMS
209 db if (heapsize ≥ 30MB) SS else MS
228 jack GMS for all heap sizes
213 javac GSS for all heap sizes
202 jess GMS for all heap sizes
222 mpegaudio SS for all heap sizes
228 mtrt if (heapsize ≥ 40MB) GSS else GMS

JavaGrande if (heapsize ≥ 72MB) GSS else GMS
OptComp if (heapsize ≥ 118MB) SS else GMS
SPECjbb if (heapsize ≥ 150MB) SS else GMS

Table 3: Annotated garbage collection selection decisions for
each benchmark

Benchmark Compilation Times (sec)
input1 input2

Reference Switch Reference Switch
201 compress 1655 1302 1655.5 1306.5
202 jess 3572 2781 3595.5 2822.5
209 db 1906 1508 1891 1483
213 javac 6210 5671 6313.5 5877
222 mpegaudio 2349.5 2067.5 2346.5 2052.5
227 mtrt 2252.5 2008 2256.5 2011
228 jack 6347 4211 6343 4211.5

JavaGrande 2758 2631.5 2682.5 2628
SPECjbb 13014 8566.5 12978 8594.5

Table 4: Compilation overhead introduced by JikesRVM dy-
namic compilation and optimization.

The x-axis is heap size in megabytes and the y-axis is total time
(in milliseconds) for program execution. For SPECjbb, the y-axis
is microseconds/operation which is the inverse of the throughput
reported by the benchmark; we report this metric to maintain visual
consistency with the execution time data, i.e., lower numbers are
better.

Each graph shows the performance of each of the garbage collec-
tion systems that we studied: MS, SS, GSS, and GMS. In addition,
each shows the performance of our annotation-guided (+ GCAn-
not) and adaptive (X GCAdapt) collection system. The results in-
dicate that our system is able to track the best performing collector
and switch to it. For cases in which there is no cross-over between
collectors, e.g., 201 compress, 202 jess, 228 mtrt, 213 javac,
our system maintains performance similar to that of the reference
system.

For annotation-guided collector selection (GCAnnot), we ran the
programs off-line using a number of inputs and identified what col-
lectors to use for different heap sizes. The collectors chosen are
listed in Table 3. For adaptive selection, we use the heuristic de-
scribed previously: For heap sizes larger than 90MB, the GSS col-
lection system is switched to, once residency exceeds 60%. If the
heap size is less than 90MB, then GMS is used. In general, this
simple heuristic works quite well. However, 209 db shows how
the performance that results from having perfect information (an-
notation) diverges from that of adaptive collector selection. The
adaptive system tracks GSS, but it is not the best-performing col-
lector in this case. However, the overhead introduced by our system
does not cause noticeable degradation over using the GSS collector
in the reference system.
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The overhead introduced by our system is low for most bench-
marks. However, 228 jack shows significantly more overhead due
to switching than for other benchmarks. We believe that this is due
to loss of inlining opportunities for allocation sites. Since our sys-
tem must dynamically check the type of collection system in use
prior to deciding which allocation routine to invoke, we are unable
to freely inline such sites. We discuss other possible sources of as
well as solutions to such overhead in the next section.

Interestingly, our inability to inline allocation routines can also
have a positive effect on program performance. For some pro-
grams, e.g., the JikesRVM Optimizing compiler benchmark, switch-
ing enables performance that exceeds that enabled by all reference
collectors. The improvement we achieve is due to reduced compila-
tion overhead. The optimizing compiler aggressively inlines meth-
ods, including those for allocation. As a result, a large amount of
time is spent repeatedly optimizing inlined code. This can be seen
in Table 4 which shows the time in milliseconds for compilation in
the reference system and our switching system. The overhead of
our system is significantly lower for such cases because allocation
sites cannot be inlined.

Table 5 shows the average difference between the data presented
in the graphs in Figures 5 and 6. Columns two and three show the
percent degradation that our GCAnnot (column 2) and GCAdapt
(column 4) imposes over the best-performing collection system. In
parentheses, we show the average absolute difference in millisec-
onds; for SPECjbb the value in parenthesis is the inverse through-
put difference in microseconds per operation. The third and the
fifth columns show similar data for the average percent and ab-
solute improvement over the worst-performing garbage collection
system on average, across the heap sizes for which we have GCAn-
not and GCAdapt switching data.

Note that the data in this table does not compare our system
against a single JikesRVM collection system; instead, we are com-
paring our system against the best- and worst-performing collec-
tion system for individual heap sizes. For example, for large heap
sizes for the SPECjbb benchmark, the SS system performs best.
For small heap sizes, GMS performs best. To compute the per-
cent degradation that our system imposes for each configuration
(GCAnnot and GCAdapt), we compute the performance difference
between our system and the SS collection system for large heap
sizes, and our system and the GMS system for small heap sizes. We
compute the average percent and absolute improvement in the same
way; however, we compare our system with the worst-performing
collector for individual heap sizes.

In some cases, e.g., 202 mpegaudio, GCAdapt performs bet-
ter than GCAnnot despite the fact that GCAnnot uses perfect in-
formation from off-line profiles to guide selection. This is due to
differences in the amount of data we collected for each of the con-
figurations as well as to the time at which the switching occurs. For
the latter, in the annotation-guided system, when an application is
loaded for the first time we perform a switch, possibly requiring
a collection. In the adaptive system we wait until the heap reaches
60% capacity before switching. This difference in timing can cause
both the application and the garbage collection process to behave
differently resulting in different timings for different heap sizes.

In columns two and four (Degradation over Best), some values
are negative. In these cases, the performance of our switching sys-
tem is better than that of of all JikesRVM reference configurations
on average, i.e., our system improves performance over the best-
performing collection system. As we described previously in this
section and in Section 2.3, we believe that this is due to the com-
bined effect of missed inlining of allocation sites and to our use
of static collection system method invocations that avoid dynamic

dispatch used in the reference system. We are currently investigat-
ing the individual impact of each of these differences, and plan to
report on them in the final version of this paper.

Our annotation-guided switching system, GCAnnot, degrades
performance of the best-performing collection system by 0.31%
on average across benchmarks. In addition, this system improves
performance by 19% over the worst-performing JikesRVM garbage
collection system. The adaptive switching configuration, GCAdapt,
degrades performance of the best-performing collector by 5% on
average. GCAdapt achieves an improvement of over 17% on av-
erage. That is, our system imposes very little overhead (5%), even
when we do not have perfect information (profile data communi-
cated via annotations) to guide selection of the best-performing
garbage collector. In addition, our system can significantly reduce
(17%) the negative impact of selecting the “wrong” collector for a
given application and heap size.

5. OPTIMIZATIONS
In the work presented so far, we are able to dynamically switch

between collectors to achieve performance that is always within a
few percent of the performance achieved with the best-performing
collector. However, we would like to avoid paying even this small
penalty.

The key to achieving this goal is to use the adaptive optimization
subsystem of the JikesRVM [4]. The performance penalties we
incur are due to two sources: write barriers which are not needed
by all collectors, and loss of inlining due to dynamic dispatch to
allocation code.

In the adaptive system, all methods are initially compiled without
optimization (using the “baseline” compiler). Only when a method
is discovered to be “hot” is it compiled with the optimizer. As a
result, the vast majority of all methods are never compiled with the
optimizer.

Therefore, we can specialize the optimized methods for the cur-
rently running collector, and on switching collectors we can if nec-
essary invalidate the optimized code and recompile it incremen-
tally. While we will pay a small performance cost for the recom-
pilation, this should be easily amortized by any but very short-
running applications.

On the other hand, the baseline compiler will continue to com-
pile methods in a generic fashion that will allow them to run with
any of the collectors (that is, with write barriers always included
and dynamic dispatch to the appropriate allocation routine). There-
fore, the majority of the methods (those compiled with the baseline
compiler) will not need to be recompiled on a collector switch.

5.1 Write Barriers
Currently, the GMS and GSS collectors share the same genera-

tional write barrier, while the MS, and SS collectors do not require
a write barrier. Therefore, when running with MS or SS collection
systems, the optimized code can be generated without write bar-
riers. On a switch to GMS or GSS, the optimized code must be
invalidated and will eventually be recompiled as it is once again
determined to be “hot”.

When running GMS or GSS, the optimized code must be com-
piled with write barriers. However, on a switch to MS or SS, the
optimized code can be invalidated lazily: the presence of the write
barriers in the optimized code is wasteful, but will not cause a cor-
rectness problem.

5.2 Inlining of Allocation Methods
The GMS, GSS, and SS collectors all share a common bump-

pointer contiguous allocation method. Therefore, we can switch
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Figure 5: Performance Results. For each benchmark, data for the reference system is shown (SS, MS, GMS, GSS). In addition, the
data demarked with (+) and (x) show the efficacy of annotation-guided garbage collection system selection and adaptive garbage
collection, respectively. In all cases, our two mechanisms accurately identify the best collector to use and switches to it.
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Figure 6: Performance Results, continued. For each benchmark, data for the reference system is shown (SS, MS, GMS, GSS). In
addition, the data demarked with (+) and (x), show the efficacy of annotation-guided garbage collection system selection and adaptive
garbage collection, respectively. In all cases, our two mechanisms accurately identify the best collector to use and switches to it.

Average Difference Between Best & Worst GC Systems at Each Heap Size Measured
GCAnnot GCAdapt

Degradation Improvement Degradation Improvement
Benchmark over Best over Worst over Best over Worst
201 compress 5.52% (378ms) 0.60% (80ms) 7.84% (524ms) 0.97% (99ms)
202 jess 9.22% (256ms) 38.87% (2220ms) 8.82% (245ms) 39.18% (2212ms)
209 db 4.04% (745ms) 12.87% (2906ms) 12.80% (2358ms) 7.27% (1632ms)
213 javac 5.79% (380ms) 23.50% (2408ms) 7.64% (484ms) 17.40% (2556ms)
222 mpegaudio -2.33% (-144ms) 9.53% (633ms) -13.83% (-849ms) 20.63% (1374ms)
227 mtrt 12.71% (497ms) 17.40% (1421s) 15.48% (594ms) 1.38% (163ms)
228 jack 11.88% (476ms) 15.29% (865ms) 12.62% (499ms) 10.32% (528ms)

OptComp -7.85% (-1388ms) 43.02% (10687ms) -11.89% (-1939ms) 45.80% (11376ms)
JavaGrande -7.19% (-5440ms) 17.84% (13916ms) 5.60% (3406ms) 10.45% (81300ms)
SPECjbb 3.63% (4.63 usecs/op) 16.03% (26.45 usecs/op) 1.79% (2.29 usecs/op) 18.41% (29.07 usecs/op)
Average 0.31% 19.49% 4.69% 17.18%

Table 5: Average Performance Differences (Absolute Error) between the Garbage Collection Switching System and the Reference
System. Column 1 shows the average percent degradation over the best-performing collection system a each heap size for which we
collected GCAnnot (annotation-guided switching) data. In parenthesis is the average absolute difference. Column two shows the
average percent improvement over the worst-performing collector at each GCAnnot data point. Columns four and five and show
the same data for the adaptive switching system, GCAdapt. On average, our annotation-based and adaptive GC switching system
degrades performance by 0.31% and 5%, respectively, on average. In addition, each of these systems significantly reduces (19% and
17%, respectively) the negative impact of selecting the “wrong” collector for a given application and heap size.
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between any of these collectors without changing the allocation
code. It is only the MS collector which allocates directly into a
segregated free list data structure.

Therefore, under any of the bump-pointer allocator collectors,
we can generate optimized code which inlines the allocation method.
If we switch to the MS collector, any optimized method which per-
forms allocation must be invalidated. Similarly, if we are running
under the MS collector, we can inline the allocation method and
must invalidate methods that invoke allocation on a switch to any
of the other collectors.

5.3 Evaluation
The final paper will include an implementation of the dynamic

invalidation technique and measurements of its relative performance
improvement, and of how close it comes to achieving the perfor-
mance of “oracular” collector selection.

6. RELATED WORK
There is a small body of related work both showing that differ-

ent garbage collectors are better for different applications, and that
switching collectors dynamically can be effective.

Lang and Dupont [22] built a hybrid system that combines mark-
and-sweep with mark-and-compact collection. The entire heap is
collected using mark-and-sweep, and a certain (rotating) region is
compacted.

Sansom [27] describes a collector for the Spineless Tagless G-
machine that switches between a semi-space copying collector and
a sliding-compacting collector. The motivation is to allow the pro-
gram to continue to run when the heap residency exceeds 50%,
which would consume an entire semispace. He describes the trade-
off curve between the two curves analytically, and presents some
preliminary performance results for synthetic benchmarks showing
that the crossover point occurs between 25% and 30% heap resi-
dency.

Printezis [25] describes a system that dynamically switches be-
tween using mark-and-sweep and mark-and-compact for its old
generation (the two collectors share a young generation). The old
space is structured in such a way that switching between mark-and-
compact and mark-and-sweep does not require reformatting the
heap (it just requires creating the free list structures). After grow-
ing the heap, the collector switches to mark-and-compact, since
it can use the newly obtained free region to perform fast bump-
pointer allocation; then it switches back to mark-and-sweep, which
has faster old space collection. The collector also switches to mark-
and-compact when fragmentation is detected, in an attempt to re-
duce memory requirements.

Fitzgerald and Tarditi [14] performed a detailed study compar-
ing the relative performance of applications using several variants
of generational and non-generational semispace copying collectors
(the variations had to do with the write barrier implementations).
They showed that over a collection of 20 benchmarks, each collec-
tor variant sometimes provided the best performance. On the basis
of these measurements they argued for profile-directed selection of
garbage collectors. However, they did not take variations in input,
required different prebuilt binaries for each collector, and only ex-
amined semispace copying collectors.

Attanasio et al [5] compared the performance of different garbage
collectors in the IBM JikesRVM across a variety of heap sizes, and
showed that there was significant performance differences across
applications and heap sizes. Like Fitzgerald and Tarditi’s work,
this provides experimental justification for building a system that is
capable of switching collectors dynamically. Note that their mea-
surements were for a different set of collector implementations (the

“Watson” collectors, as opposed to the “JMTk” collectors mea-
sured in this paper), so are not directly comparable to our mea-
surements.

Zorn [33] used traces from medium-sized Common Lisp pro-
grams to comparatively evaluate mark-and-sweep and semispace
copying collectors, both augmented with multiple generations. He
found that the mark-and-sweep collector was slightly slower, but
used significantly less memory.

Smith and Morrisett [28] implemented a mostly-copying con-
servative collector for an SML compiler that compiled to C code,
and compared it to the widely used Boehm-Demers-Weiser collec-
tor [11]. Their primary goal was to show the efficacy of their new
algorithm, rather than to comparatively evaluate the two collectors.
For a collection of small ML benchmarks, they found that their
algorithm yielded overall application speeds within 20% of those
provided by the BDW collector.

7. CONCLUSIONS
Garbage collection is a mechanism that greatly simplifies the

program development cycle. In addition, it plays an increasingly
important role in next-generation Internet computing and server
software technologies. However, the performance of collection sys-
tems is largely dependent upon application execution behavior and
resource availability. In addition, the overhead introduced by se-
lection of the “wrong” collection system can be significant. As
such, it is important to identify strategies that enable improved per-
formance given a wide range of diverse application domains, e.g.,
e-commerce, agent-based, distributed, collaborative, etc.

To this end, we present a system that can switch between garbage
collection systems without having to restart and possibly rebuild
the execution environment (as is required by extant systems). Our
system switches collection strategies while the program is execut-
ing. Our system enables application-specific collection policies
that are also specific to the underlying resource availability.

Our implementation is quite flexible and efficient since virtual
memory resources are shared across collection systems. In addi-
tion, very different collection systems can reside in a single system
and can be switched to very efficiently. Users of the system can
annotate their programs (or such annotation can be automated) to
indicate which collector should be used during execution. More-
over, our system can determine automatically and accurately which
collector should be used. Our empirical evaluation shows that the
switching system we describe degrades performance by only 5%
on average over the best-performing collection system for a partic-
ular heap size, over the range of heap sizes studied. In addition, our
system significantly improves performance (17% on average) over
the worst collection system at each heap size. That is, our system
automatically avoids “bad” garbage collection system selection de-
cisions.

As part of future work, we plan to investigate other techniques
for automatically identifying switch points. We plan to consider the
frequency of collections, allocation rates, and memory hierarchy
behavior to guide adaptive selection of collection and allocation al-
gorithms. In addition, we plan to identify opportunities in which
we can reduce the overhead of switching, e.g., using dynamic re-
compilation to enable aggressive inlining of allocation sites and
more efficient write-barrier implementation.
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