An Interactive Search Technique for String Databases

Tamer Kahveci Ambuj K. Singh
Department of Computer Science
University of California, Santa Barbara, CA 9310 6
{tamer,ambuj } @cs.ucsb.edu

Abstract

The explosive growth of string databases makes similarity search a challenging problem. Current search tools
are non-interactive in the sense that the user has to wait a long time until the entire database is inspected. We
consider the problem of interactive searching, and propose a set of innovative k-NN (k-Nearest Neighbor) search
algorithms. We propose a new model for the distance distribution of a query to a set of strings. Using this
distribution, our first technique orders the MBRs (Minimum Bounding Rectangles) of an index structure based on
their order statistics. We also propose an early pruning strategy to reduce the total search time for this technique.
Our second technique exploits existing statistical models to define an order on the index structure MBRs. We also
propose a method to compute the confidence levels for the partial results. Our experiments show that our technique
can achieve 75% accuracy within the first 2.5-35% of the iterations and 90% accuracy within the first 12-45% of
the iterations. Furthermore, the reported confidence levels reflect the quality of the partial results accurately.

1 Introduction

With the growth of the Internet, the success of data-centric applications depends on how fast they allow access
to relevant results, rather than on how fast the entire result set is computed. This is especially true when the user
is interested in browsing through different data collections to decide on a subset of collections for targeting more
demanding and exhaustive queries.

The complexity and the volume of scientific databases have been growing rapidly. For example, the size of
the genome database of National Center for Biotechnology Information has doubled every 15 months [10], and
it is growing even faster in recent years. Hundreds of Megabytes of video data are recorded everyday by com-
panies like ABC, CNN, and CNET. AT&T generates upwards of 60MB of network flow information every day.
There are similar complex and large datasets generated on account of the Sloan Sky Survey [1], protein structure
databases [2], pathway databases [3], and physics experiment datasets [4]. It is obvious that supporting interactive
searches for such complex and voluminous datasets, although urgently needed, is a difficult task. One needs to
develop appropriate models for these novel datasets, so that statistics can be defined and used during interactive
querying.

In this paper, we focus on supporting interactive access to one such complex scientific dataset, that of genome
sequences. Genome databases are being used by researchers for drug design, medical care, phylogenetic analysis,
evolutionary analysis, personalized medicine, and many other applications. Searching genome databases is a
difficult problem for a number of reasons: i) There is an explosive growth in the size of genome databases. ii)
These databases are also distributed, requiring that meaningful data collections be identified before exhaustive
queries are posed [16]. iii) The similarity measures are complex. Therefore, CPU and memory demands of these
databases slow them down considerably for long queries. For example, comparing a mouse DNA sequence against

the entire human genome database can take days with currently available search tools. There is a need for new
index structures and search algorithms which can estimate the useful regions of a database fast and accurately, and
define good query execution plans when the data is distributed.

Our contribution is the development of two interactive substring search techniques for k-NN (k-Nearest Neigh-
bor) queries. The first technique approaches this problem by transforming the information from string space into
vector space through the use of frequency vectors (count of each letter in a string) [25]. The frequency vectors
are then clustered into MBRs (Minimum Bounding Rectangles). We identify a representative frequency vec-
tor for each MBR. Then, we estimate the distance distribution of the substrings contained in each MBR to the
query substrings using the representative frequency vector. Based on these distributions, we calculate the order
statistics [14]. The computation of this distribution is complicated by the fact that strings can use non-traditional
distance measures such as weighted edit distances.

Our k-NN algorithm hierarchically finds the next MBR of the index structure in ascending order of the mean of
their k" order statistics. Later, these MBRs are inspected iteratively using a highly optimized search tool, such as
BLAST [7], and the intermediate results are reported to the user. We reduce the total search time of this technique
by pruning the MBRs on the fly that do not contain results better than the ones found so far.

Our second technique uses available statistical theory for string databases [27] to estimate the score of the
maximal alignment. BLAST uses this theory to estimate the quality of a result once an alignment is determined.
We use the same model to predict which database blocks contain good results prior to the actual alignment.

We also develop a novel technique to estimate the quality of the partial results. At any intermediate step, this
technique computes the probability that an uninspected MBR does not contain any results better than the partial
results reported so far. Later, these probabilities are multiplied for all the uninspected MBRs. This value is then
reported as a confidence estimate.

The methods developed in this paper can be generalized to other novel scientific databases as long as we can
model the distance distribution (with respect to a given query) in each subspace (MBR) of a given dataset. Order
statistics can then be computed and interactive searches along with confidence estimates can be provided. This
general strategy and its specific deployment for genome databases (development of models and statistics for DNA
and protein sequences) are the two main contributions of this paper.

Experimental results on DNA and protein sequences show that our method reports results with high accuracy
within a reasonable time: Our techniques achieve 75% accuracy within the first 2.5-35% of the iterations and 90%
accuracy within the first 12-45% of the iterations. Our pruning strategy can prune up to 38% of the database.

The rest of the paper is as follows. Section 2 presents the background information on string searching and
existing index structures. Section 3 discusses the frequency vectors and distance distributions based on these
frequency vectors. Section 4 presents our first interactive substring search technique. Section 5 discusses our
second interactive substring search tool based on BLAST’s statistical model. Section 6 presents experimental
evaluation. We conclude with a brief discussion in Section 7.

2 Background
2.1 Background on string searching

A string s1 can be transformed into another string so by using three edit operations, namely insert, delete, and
replace, on individual characters of the string s;. The edit distance between two strings is generally defined as
the minimum number of edit operations to transform one string into the other. Figure 1(a) shows the edit distance
between DNA strings GTTCCTCTA and GTCCTACGA. Three edit operations are sufficient to transform one of
these strings to the other: insert T at the third position, delete A at sixth position, and replace G with T at eighth
position. A special case of edit distance, Gapless Edit Distance (GED) or Hamming Distance, can be defined as
follows.

GTTCCT-CTA GTTCCTCTA
* *

I D R *ox
GT- CCTACGA GTCCTACGA
(€ (b)

Figure 1. Alignment of DNA strings GTTCCTCTA and GTCCTACGA under (a) Edit distance (b) Gapless edit distance. The
symbols I, D, and R represent insert, delete, and replace operations respectively. The star symbol (*) represent the mismatching
characters in gapless alignment. The edit distance is three, while the gapless edit distance is four for this string pair.

Definition 1 Let ¢ and s be two strings of the same length. Let g[i] be the i** character of ¢. We define the Gapless
Edit Distance, GED(q, s), as the number of character pairs (g[], s[z]) for which g[z] # s[i].

Figure 1(b) depicts the Gapless Edit Distance between DNA strings GTTCCTCGA and GTCCTACGA. These
strings contain four mismatching characters: at the third, fifth, sixth, and eighth positions.

GED is an upper bound to the edit distance, and is widely used for statistical analysis. For example, BLAST,
a widely used genome search tool, uses GED to determine the probability of having a match of a certain score
for two random strings of prespecified lengths. This value is called the E-value of a match. Many computational
experiments [8] show that results developed based on GED also extend to edit distances. This is also confirmed
by analytical results [9]. We use GED in our analysis in Section 3.

Similarity between strings can also be computed based on scores. An alignment of strings s and s is obtained
by matching each character of s; to a character in s in increasing order. All the unmatched characters in both
strings are matched with space. Each character pair is assigned a score based on their similarity, and these values
are stored in a score matrix. Each gap incurs a (potentially large) gap open penalty for the first space and a
(smaller) gap extend penalty for all the spaces. The value of an alignment is defined as the sum of the scores of all
of their character pairs.

Example 1 The default scoring scheme for nucleotides in BLAST assigns +1 for a match, -3 for a mismatch, -5
for gap open, and -2 for gap extend. Consider an alignment that has 7 matches, 1 mismatch, and a gap of length
2. Under this scoring scheme, the score of this alignment is

7-(+1) +1-(=3)+((=5)+2-(-2)) =-5. O

Global alignment (or whole matching) of s1 and ss is defined as the the maximum valued alignment of s; and
s9. Whole-substring matching of s; and s5 is defined as the highest valued alignment of s and all the substrings of
s9. Local alignment [41] (or substring-substring matching) of s; and ss is defined as the highest valued alignment
of all the substrings of s; and so. Both global and local alignments can be determined in O(|s1| - |s2|) time and
space using dynamic programming [36, 41]. This complexity can be decreased to O(r - |s1]), where r is the edit
distance between these strings [34].

2.2 String alignment tools

FASTA [38] is a heuristic based program that finds similar substrings. It starts by finding exactly matching
k-tuples between two strings (k is typically 6 for DNA strings and 2 for protein strings). In the second step, the
score of the 10 best exact matches are determined by performing a gapless extension. Next, overlapping regions
are combined, and the substrings whose score is less than a given threshold are discarded. Finally, each of the
selected substrings are aligned using banded Smith-Waterman algorithm [41].

Unlike FASTA, BLAST [7] extends all the matches obtained in the first phase in both directions until the
similarity between the two substrings falls below some threshold. BLS2SEQ [43] utilizes the BLAST algorithm

for pairwise DNA-DNA or protein-protein sequence comparison. Mega-Blast [46] uses a greedy algorithm for
aligning DNA sequences instead of traditional dynamic programming techniques. SENSEI [42] extends the initial
seeds by 8 base pairs at a time and it can work in both 2 bits per base and 1 bit per base modes.

MUMmer [17] and REPuter [31] use suffix trees to find the maximal unique matches. QUASAR [13] counts the
number of common g-grams of subqueries and each of the database blocks using the suffix array [32] (A ¢-gram
is a string of length ¢.). Muthukrishnan and Sahinalp [33] proposed an index structure for approximate nearest
neighbor search based on suffix arrays and a partitioning of the pattern. However, both suffix trees and suffix
arrays [32] have two major disadvantages. First, they use extensive amount of memory [23]. Second, they are
good for exact matches, but slow for approximate matches.

Jagadish, Koudas, and Srivastava consider the problem of exact matching with wild-card for multidimensional
strings in [24]. The authors map all the strings to real space based on their lexical order. Later, these multidimen-
sional points are indexed using R-trees [19]. The strings within a data page are stored using elided tries for each
dimension. Other approaches to substring searching have also been proposed in [18, 22, 26, 35, 39, 37, 45]

2.3 Frequency vectors & MRS index structure

Let s be a string from an alphabet 3, where |3| = o. The frequency vector, f(s), of s is defined as the
o-dimensional vector whose entries are the number of occurrences of the letters in 3. The frequency vector of a
DNA string has 4 dimensions since the alphabet contains letters A, C, G, and T. The entries of frequency vectors are
sorted in an alphabetical order. For example, let ¢ = GTTCCTCTA be a DNA sequence, then f(q) = [1,3,1,4].
Similarly, the frequency vector for a protein string has 20 dimensions, and that for a text in English (ignoring
punctuation and spaces) has 26 dimensions.

The MRS index structure [25] maintains summary information for database strings at resolutions of powers
of two. At a given resolution, w, the summary is constructed by sliding a window of length w on the database
string. Each positioning of the window defines a frequency vector and a set of consecutive vectors defines an
MBR. The size of this set determines the capacity of an MBR. We will utilize the MRS index structure for our
search techniques because of its compactness and efficiency. However, our techniques will extend to other index
structures that cluster subsequences of database strings.

3 Freguency statistics

In this section, we develop a statistical model for comparison of strings using frequency vectors. In Section 3.1,
we consider the simple case where the frequency vectors of two strings are provided. We show how to approximate
the GED distribution for two frequency vectors using a normal distribution efficiently. Section 3.2 extends this
development to the GED distribution of a single frequency vector and an MBR corresponding to a collection
of frequency vectors. We represent each MBR using a single representative frequency vector and employ order
statistics to approximate the GED distribution for an MBR.

3.1 GED distribution for two vectors

At the time of a database search, the query string is known but only the frequency vectors for database strings
are available in the index structure. Therefore, in order to plan the interactive query, we need to determine the
distribution of GED between two frequency vectors.

Each frequency vector, v defines an equivalence class, S, of the set of strings whose frequency vectors are
equal to v. For example, if v = [3,0,0, 1], then S, = {AAAT, AATA, ATAA, TAAA}. Let v = [v1, va, ..., v, be

a frequency vector, then the size of the equivalence class defined by v is Qi)

H(m!) '

It is easily shown that

mins{GED(q, s)|s € S,} > 0, and

maxs{GED(q, s)|s € Sy} < max{|q|, > vi}.

The above inequalities bound the extreme values of {GED(q, s)|s € Sy}.

In order to plan queries and compute statistics, we need to know the distribution of {GED(q, s)|s € S,}. Using
the Central Limit Theorem [14], one can prove thatthe GED has normal distribution as follows: Let the random
variable X; represent the GED achieved by aligning the i** letters of both strings for 1 < i < |s|. The GED of an
alignment can be calculated as the sum of the values of all X;s for that alignment. Since the sampling rate of all
the letters is fixed and determined by the frequency vector of that string, the X ;s are iid (independent and identical)
random variables. Therefore, from Central Limit Theorem, we conclude that the distribution of the GED between
a query string and the strings in the equivalence class of a frequency vector can be approximated using normal
distribution for large |s| (i.e. |s| > 10). Hence, one can compute this approximation if the mean and variance of
the distribution are known.

Theorem 1 shows that the mean of this distribution can be computed efficiently in O(o) time, where ¢ is the
alphabet size.

Theorem 1 (Mean): Let ¢ be a string from alphabet ¥ = {a1,a9,...,a5}. Let z = [z1,z9,...,2,] be the
frequency vector of g, and y = [y1, ¥2, .., Y| b€ a frequency vector, where Y-7_; y; = |q|. Let p14 4 be the mean of
the GED distribution between ¢ and the strings in S, then
Dy TiYi
Py = || — =57
Proof:

Let X; be a random variable whose distribution is defined by the number of matching characters of letter «; in all
alignments of g with s € S,,. Let P(X; = k) be the probability that the random variable X; takes the value &, then

GO < b < mi
P(X,L = k‘) = C!|;§| 0<k< mzn{xiayi}a
0 otherwise.

where C7! is n choose m. Let i x, be mean of X;, then
px, =S k- PG = b)

z; ~lal—=z;
= Tk S
q
I
z;—1 ~lal—=z;
k—1 Cy-—k
=Xz
? la
la
2ol '
_ v yi—1
lal
c
— ZTiYi

— g -
The mean of the number of matching characters in all alignments of ¢ with s € S, is the mean of X; + X5 +

...+ X,. As a result of this,
Bay =gl — Xhk=1kx;

Do Ty

= lgl = =55

O

Unlike the mean, the computation of the variance of the sum of n random variables involves calculation of

covariance. Theorem 2 develops a lower bound to the variance of the GED distribution between a string ¢ and the
strings in S, for a given frequency vector v.

Theorem 2 (Variance): Let g be a string from alphabet ¥ = {a1, a9, ...,a,}. Let z = [z1,z9,...,z,] be the
frequency vector of ¢, and y = [y1, y2, -.-, Y»| be a frequency vector, where >"7_, y; = |g|. Let og,y be the variance
of the GED distribution between ¢ and the strings in S, then

2 TiYs (2i—1)(yi—1) x5y
Oqy 2 Y= (gt (L == — 5g)).

Proof:
Let X;, P(X; = k) and p x, be defined as in proof of Theorem 1. Let a?Q be variance of X;. Then

2 olal—=
_ ZkZ Ck Cyrk .2
= cla HXx;
im1 plal-a
le_ . —z;
— R e Wi 7. 2
=2k ol Bx;

:/“LXi.(T_H)Q)'

Let X = X + Xo + ... + X, then ok = 3, 0%, +2- 2, Xic; Cov(X;,Y)). Hence, 0% > 3, 0%

If ¢ is a constant number, then the variance of the random variable Y; = ¢ + X; is equal to the variance of X;.
Therefore, we conclude that the variance of the number of mismatching characters is equal to that of matching
characters since g is fixed. Hence,

or, > Xi0%,
= Syl - (14 B)

o (Tl | (i—D(yi=1) _ 3y
i=1(Iqﬁ/ 1+ lg[—1 \qg\l))-

O
The lower bound of Theorem 2 can be calculated in O(c) time. Unlike the formula for the mean in Theorem 1,
this is a lower bound since it ignores the covariance between random variables X ;. Covariance corresponds to the
dependency between random variables. Our experimental results show that the covariance between the random
variables defined in the proof of Theorem 2 is much smaller than the mean, making the approximation very close
to its actual value.
The following corollary summarizes the development so far.

Corollary 1 Let g be a query string. Let » be a frequency with equivalence class S,. Let s be a string randomly
drawn from S,,, then

_ (d—L;q,v)z
P(GED(q,s) = d) =~ \/271_% e oy
where s, is the mean and o7 , is the variance of the GED distribution. O

Example 2 Assume that a query string of length 30 has frequency vector ¢ = [12, 10, 3,5]. Let two strings have
frequency vectors s; = [11,11,4,4] and s = [6, 5,9, 10]. We would like to predict which of these strings is more

.25
s2=16,5,9, 10]
—
0.2f
s1=[11, 11, 4, 4] \
15F
0.1p
.05F
q=[12, 10, 3, 5]
0 | | | |
0 5 10 15 20 25 30
GED

Figure 2. The GED distribution for two strings with frequency vectors s; = [11,11,4,4] and s, = [6, 5,9, 10] with respect to a
query string whose frequency vector is ¢ = [12, 10, 3, 5].

similar to the query string without knowing the actual strings. Intuitively, the obvious answer is that s; is more
similar, because its counts for each character is similar to that of query. Figure 2 displays the GED distribution
for each of these strings computed as in Corollary 1. Since the mean of the distribution of s; is smaller than that
of s, this figure confirms that s, is probably closer to g.

The distance distribution in Corollary 1 is formulated for string databases. For other types of scientific databases,
one needs to develop a formula for the distance distribution between two objects by using their signatures. This
formula depends on the type of the database and the signature used to represent the data objects.

3.2 GED distribution of a query to an MBR

So far, we considered the distribution of the distance between a query string and a database frequency vector.
Now, we consider the distribution of the distance between a query and a set of database frequency vectors, specif-
ically those contained in an MBR of an index structure. This approximation poses two problems. First, it requires
knowing the GED distributions of all frequency vectors contained in the MBR. Second, an MBR does not store
the individual frequency vectors contained in MBRs. It only maintains their span.

These two problems are resolved by choosing a representative frequency vector for each MBR and assuming
that an MBR contains a number of iids based on the representative frequency vector.

The representative frequency vector of an MBR has to be the vector which is closest to the rest of the vectors
in the MBR. Furthermore, the sum of the entries of this vector must be equal to w, where w is the resolution of
the MBR. This vector is found in two steps as follows: First, the centroid of the MBR is calculated as the average
of the lower and higher coordinates of the MBR. Later, this centroid is projected onto the plane which contains
frequency vectors for resolution w. Formally, the representative frequency vector of an MBR is defined as follows.

Definition 2 Let L and H be the lower and higher end points of an MBR, B, of resolution w, then the represen-
tative frequency vector of B, vpg, is

L+H
vp = LtH _ (5 W)
2 [IN113

- N,

where N = [1,1,...,1] and W = [w, 0,0, ..., 0]. O

Once the representative frequency vector of an MBR has been chosen, its GED distribution with respect to the
given query can be estimated as explained in Section 3.1. If the MBR contains ¢ frequency vectors at resolution
w, then the GED distribution of the query to the MBR is approximated by assuming [¢/w] iids at the represen-
tative frequency vector. This is justified since the MBRs of the MRS index structure contains ~c/w independent
substrings.

The GED distribution between a frequency vector and a set of iid frequency vectors can be calculated using
order statistics. The k*» order statistics is defined as follows.

Definition 3 Let X4, Xo, ..., X, be iid random variables, where n is a positive integer. Let the sequence Y7, Y5,
..., Yy, be the values these random variables take sorted in ascending order. The k** member of this sequence (i.e.,
Y} is defined as the k*"-order statistics of this sequence.

The extreme values Y; and Y,, are also called the MIN and MAX values of this sequence. Note that, the k'"-
order statistics, Yy, is actually a random variable. It is shown in [14] that the cumulative density function of this
variable can be calculated as

P(Yp <d)=37" CF-P(X <dy - (1-P(X <d)"~,
and the probability density function can be computed as

P(Yi=d) =
k-Cr-P(X <d)*1-(1-P(X<d)" % P(X=d),

where X is a random variable having the same distribution as X;s (1 <1 < n).
Let M}, be the number of X;s (1 < ¢ < mand 0 < k) which takes value less than or equal to k, then it is proven
in [14] that

P(Mp<m)=3" Cp-P(X <d) - (1-P(X <d))".

Using these formulas for order statistics, one can achieve the combined GED distributions for all the frequency
vectors in an MBR.

The distance distribution between a query object and a set of data objects can be formulated for any type
of database similarly. Such a generalization requires changes in two steps: 1) The representative for a set of
data objects must be chosen based on data type and the clustering algorithm used. 2) An appropriate distance
distribution function needs to be employed for a data object pair as discussed in Section 3.1.

4 Using frequency statisticsfor interactivity

In this section, we discuss how to achieve interactivity using the statistical model we built on frequency vectors
in Section 3. We utilize available non-interactive substring search tools, and make them interactive. We employ
BLAST and the classic Smith-Waterman technique as the non-incremental search tools in this paper. This is
because BLAST is the industrial standard and is highly optimized to work efficiently. Smith-Waterman algorithm
is also widely used in both string alignment and pattern matching problems. Note that our techniques can be used
with other search tools to make them interactive as well.

4.1 Local statistics-based interactive search: LIS

Our interactive search technique uses statistical information about the database substrings to improve the quality
of the partial results. We call this technique the Local statistics-based Interactive Search (LIS) technique. LIS
provides the user partial results along with confidence intervals. As the user waits longer, the results and the
confidence intervals are updated iteratively to achieve more precise results.

LIS takes a query string and an update rate as input. The update rate parameter affects the sensitivity and the
interactivity of the algorithm. We will elaborate on this parameter later in this section. The estimator defines an
ordering of the MBRs of the MRS index structure. Database substrings are then searched iteratively in this order,
and results are reported to the user along with confidence intervals.

/*INPUT q :querysequence
k : number of nearest neighbors
R :rootofthe MRS index structure.
Let W be the set of resolutions available in the index structure. */
AlgorithmL1S(q, k, R)

e Forallw e W, w < |q|
g = centroid of the MBR that covers the frequency vectors of all substrings of ¢ of length w.

e M := 0; // initialize heap
e HEAP-INSERT(M, R, 0); // insert root node to heap
e While M #£ 0

1. B := EXTRACT-MIN(M);
2. If Bisa leaf level MBR then
(@) Search g in the string contained in B;
(b) Update results found so far and the confidence level, and report to the user;
3. else [* The Estimator starts here */
For all children B; of B
- Mi = 00,
— v := representative vector of MBR B;;
- Forallw € W, w < |q|
(@) pq,» := mean of GED(qw, Sv);
(b) o7, := variance of GED(qu, S»);
(¢) M;+= (k" order statistics(gu , Sy))w;
HEAP-INSERT(M, B;, M;);

Figure 3. Pseudocode of LIS.

Figure 3 presents the pseudocode of LIS. The algorithm takes a query string ¢, number of nearest neighbors &
and the root of the MRS index structure as input. The algorithm starts by constructing an MBR that covers the
frequency vectors of all possible query substrings of length w, for all resolutions in the MRS index structure that
is less than |g|. Later, the centroid of these MBRs are determined. These centroids represent the query string at
different resolutions. The algorithm maintains a min-heap which initially contains only the root node. Later, the
MBRs in the min-heap are extracted one at a time (step 1). If current MBR is a leaf node, then ¢ is aligned with
the string in that MBR (step 2.a). The results are then updated, and reported to the user along with confidence
level (step 2.b). Confidence level exhibits how confident the user should be with the current partial results. We
will discuss the computation of the confidence levels later in this section. If the current MBR is not at leaf level,
then LIS goes into estimator mode (step 3). The estimator iteratively inspects all the children of the current node.
At each iteration, the corresponding database region is inspected at all possible resolutions; mean and variance

| Dataset | Size | Index Size | Num. of Random I/Os |

chr. 18 | 4.2M | 17M (135K) 3.4M (4.2K)
chr. 21 | 34M | 138M (IM) 33M (34K)

Table 1. The sizes of the index structures and the number of random disk 1/Os for chromosome 18 and chromosome 21 (human
genome) for R-tree and the MRS index structure. The values for the MRS index structure are shown in parentheses.

of the GED distribution are evaluated for each resolution as presented in Theorems 1 and 2 (Steps 3.a and 3.b).
Using these values, the expected value of the £** order statistics is then computed based on the formulas presented
in Section 3.2 and accumulated by multiplying with a weight of %(Step 3.c). Finally, this MBR is inserted into
min-heap along with the expected value of the k** order statistics.

Step 2 takes O(logn) time per MBR. Steps 3.a through 3.c can be computed in O(c) time, where o is the
alphabet size. The for loop is iterated once per MBR. Therefore, the complexity of Step 3 (except last line) is
O(N - o), where N is the number of MBRs. Heap insertion can take up to O(logn) time per MBR. Therefore,
step 3 takes O(N - log N) time. Let D be the size of the database and ¢ be the box capacity, then the time
complexity of LIS (except the actual search phase in step 2.a) is O(2 - (log(£) + 0)).

Confidence intervals are computed based on the results discovered so far and the GED distributions of the
uninspected MBRs as follows. Let d;, be the distance to the & closest string reported so far. P(Y; > d,) for an
MBR represents the probability that that MBR does not contain any match whose distance is less than dj. This
value can be easily computed for each uninspected MBR using the formulas given in Section 3.2. Later, these
results are multiplied to find the probability that the & closest distance in the remaining MBRSs is not better than
the k** closest distance found so far. We define the confidence formally as follows.

Definition 4 Let dj, be the distance to the k%" closest string reported so far, where k > 0 is an integer. Let By,
By, - - -, B, be the uninspected MBRs. Let Pg, (Y7 > dj) represent the probability that B; does not contain any
match whose distance is less than dy, for 1 < i < r, then the confidence is defined as

confidence = IT}_, Pp, (Y1 > dy).

The update rate parameter is a real number in the interval [%, 1]. It defines the number of MBRs searched per
iteration. Two extreme cases for update rate are % and 1. If update rate is % then only one MBR is processed
per iteration. For small update rates, LIS has higher interactivity; the initial results are reported to the user faster,
and the results are updated more frequently. On the other hand, the confidence in the results is lower. If the update
rate is 1, then the technique converges to traditional non-interactive search techniques (i.e. the entire database is
searched before reporting any result).

Currently, we have a beta-version of LIS with BLAST running atht t p: / / amazon. cs. ucsb. edu: 8080/
sequence. php. A snaphot of this fron page of this server is given in Figure 4 The user selects a target dataset
among a set of DNA datasets and enters a query. The beta-version of the program considers moderately sized
queries (i.e. queries that have 4K to 10K nucleotides.). This is because we employed only a small subset of
index structures on the online version for now. Furthermore, moderately sized queries are sufficient to observe the
difference in response time of the interactive and the non-interactive versions of BLAST. Interested readers are
welcome to compare the original version of BLAST (by NCBI) and our interactive version of BLAST.

4.2 Analysisof LIS

We utilize the MRS index structure to cluster the frequency vectors of database substrings for several reasons.
1) The size of the MRS index structure is very small (typically 1-2 % of the database size.). 2) The index structure

10

Sequence alignment — HMozilla 1,0,0 1=
Cile Edit View Go Bookmarks Tools Window Help

% htipi/famazon.cs.ucsb.edu:8080/sequence.php €, Search d
o Yo 8 J o

& Home S3Bookmarks % YWebMail % Contact % People % Yellow Pages % Download 53Channels

2SB Bioserver
equence alignment

rquence alignment | Whole genome alignment | Expression arrays | Pathways |

arget sequence: [Homo Sapiens chromosarme 21 |

BCGTTCTIGCAATGCCAGCAGARRRRAGAARARATCCARATCTGARAGCATGCGTGTGTTATGAGAAGCCTGGAARRAGGCGATTI

Uery sequence:

C1 I I¥]

Use sample guery

_AST version: [Interactive BLAST (UCSB) -
Submit Reset form

is request was served by node atom0?,

= oF Document: Done (0.033 secs) E=EIET

Figure 4. A snapshot of our LIS program on UCSB Bioserver.

stores information at multiple resolutions. 3) Since the MBRs of the index structure are generated by sliding
a window on the database string, the union of all the substrings contained in an MBR are located in a single
contiguous block in the database string. Therefore, reading the contents of an MBR does not require more than
one random disk seek. Using R-tree [19] or some other similar multidimensional indexing techniques [11, 12,
15, 21, 29, 40, 44] has two major drawbacks. First, pointers to the corresponding substrings must be stored along
with the frequency vectors in the index structure. As a result of this, the size of the index structure increases
dramatically. Second, postprocessing incurs a high amount of random disk 1/O since the frequency vectors in an
MBR can correspond to database substrings in any order. Table 1 displays the dramatic difference between R-tree
and the MRS index structure for two datasets.

The presented technique scales to large datasets since statistics are maintained at varying resolutions (corre-
sponding to different window sizes), and for a given resolution, the order statistics are inspected hierarchically.

One possible way to improve LIS is to use the average of the frequency vectors instead of the centroid as the
representative of an MBR. In our experiments, we had the same results when we used the average of the frequency
vectors as the representative. Using the average of the frequency vectors has one disadvantage over centroid: The
space requirement of the MRS index structure increases by 50% since one more value is stored per dimension
for each MBR. Therefore, we will use the centroid as the representative. Other ordering techniques based on
MINDIST (i.e. minimum distance to the MBRs), or distance to the centroid, or MAXDIST did not perform as well.

Although we use the MRS index structure for clustering the frequency vectors, our theory can be extended to
other index structures and other kinds of datasets by modifying three steps of LIS: 1) Cluster data blocks using an
appropriate technique. 2) Find small signatures for each block. A signature must represent all the objects in the
corresponding block. 3) Predict the distance distribution between two objects using only their signatures.

4.3 Reducing the search cost of LIS
LIS ranks database substrings according to their similarity to the given query string in the frequency domain.
These substrings are then examined in the computed order, thus potentially finding better results earlier. However,

LIS still has to search the whole database in order to ensure the absence of false dismissals. The total search
time of LIS can be reduced by pruning the lower ranking substrings that do not contain any result better than the

11

k*"-NN found so far. We propose to prune low quality substrings in two steps:

1. Let Sj be the score of the k%" best match found so far. An upper bound, L, on the length of the &** best
match is estimated. Define w to be the minimum resolution available in the MRS index structure, for which
w > L.

2. An upper bound, Supper, to the score of the best alignment between the query and database substrings
contained in the next uninspected MBR at resolution w is computed. If Sypper < Sk, then this MBR is
pruned. Otherwise, it is inspected for alignments.

These two steps are inserted at the beginning of the for loop in Step 3 of the LIS algorithm in Figure 3. The
resulting method is called LIS-prune Next, we discuss the implementation of Steps 1 and 2. Step 1 is based on the
following lemma:

Lemma 1l An alignment of length n with a non-negative score in BLAST’s default scoring scheme contains at
most /3 indels (insert/delete). Similarly, such an alignment contains at most n/4 mismatches.

The proof of Lemma 1 follows from BLAST’s default scoring scheme for matches, mismatches, and indels (see
Example 1). This lemma implies that the total length of the alignment (including gaps) is at most ~33% more
than the number of matches. Let S be the score of an alignment in BLAST’s default scheme. If we approximate
the number of matches of an alignment as the score of the alignment, then the total length of the alignment is at
most S - 4/3. This length provides us the appropriate resolution at which to carry out Step 2 of pruning?.

Once we know the resolution at which to inspect the MBRs for pruning, we examine each unprocessed MBR
B. We compute an upper bound to the score of the best alignment (in the affine gap model) of a query string ¢ to
the strings contained in B. This computation is shown in Figure 5. The algorithm takes a frequency vector v and
a box B as input. It starts by finding the number of mismatches (Steps 1 and 2). Later, the scores for matches and
mismatches are computed (Steps 3 and 4), and the cost of insertions/deletions are added (Steps 5 and 6). Note that
the algorithm assumes a single gap for all insertions and deletions in order to maximize the score. In the worst
case, 3 - o + 7 integer additions, 5 integer multiplications and o + 1 integer comparisons are sufficient to compute
SCORE,(v, B), where ¢ is the alphabet size. For DNA strings this number is 19 integer additions, 5 integer
multiplications, and 5 integer comparisons regardless of the length of the strings.

5 Using BLAST statistics model for interactivity

The LIS method is based on the statistics of the distribution of the distance (in the frequency domain) between a
query and the set of substrings within an MBR. In this section, we will explore a different way to compute statistics
and support interactivity. Instead of examining the distribution of substrings within an MBR, we will examine the
frequency of different letters (of a given alphabet) within an MBR and use existing BLAST theory [27] to estimate
the expected score between a query and a database string with a specified alphabet distribution.

5.1 BLAST statistics model

Let ¥ = {1, a9,---,a,}. Assume that the letters are sampled with probabilities {p1, p2, ..., ps} in the data
string, and {q1, g2, ..., ¢» } in the query string. Let the score of a match of «; and «; be s(«;, ;) such that

1. 3 pipjs(ai, aj) <0,

2. maz; j{s(c,a;)} > 0.

1A similar reasoning can be made to estimate an upper bound on the length of an alignment in any other scoring scheme.

12

* w is the resolution of used to find the score. */
[* v is o dimensional integer point. */
/* B is o dimensional integer box of lower and higher coordinates B.L and B.H. */
Procedure SCORE. (v, B)
1. inc:=dec := sum :=0;
2. forii=1too
o ifu[i] < B.L[i] then
inc += B.L[i] — v[i];
sum += B.L[i];
o else if B.H[i] < v[¢] then
dec +=v[i] — B.H[i];
sum += B.H[i];
o else sum +=v[3];

3. Scorelnc:=
(min{sum,w} — inc) - Spatch™ 1€ - Smismatch:
4. ScoreDec :=
(min{sum,w} — dec) -Syatch + dec - Spismatch:
5. if w < sum then
Scorelnc +=
Sgap_open - (sum —w — 1)+ Sgap_edend;
6. else if sum < w then
ScoreDec +=
Sgap_open - (w — sum — 1)+ Sgan extend:

7. return men{Scorelnc, ScoreDec};

Figure 5. Procedure SCORE,, (v, B) for computing the best score of the alignment between a string = and a set of strings X,
where w is the resolution used to compute the score, v is the frequency vector of s, and B is the MBR that covers the frequency
vectors of the strings in X’.

These conditions must be satisfied for any valid scoring scheme. If first condition is not met, then the best matching
substring of two random string would always tend to be the whole sequence [28]. The second condition implies
that there are at least two letters with a positive score match.

Let f(A) = ¥, ; pipje**(@2i). BLAST uses the unique positive solution, A* to the equation f(X) = 1 in the
statistical computation [27]. Karlin and Altschul [27] show that the expected value for the score of the maximal
alignment of two strings can be approximated as

In(mn)

5
where m and n are the lengths of the two compared strings. Finding this expected value requires the computation
of A*. We propose to use a direct solution technique based on the following properties:

a) f(0)=1, b)f(0) <0, c)f(0)>0,

where f" and f" are the first and second derivatives of f. These three conditions imply that f is a convex function.
One of the solutions of f(A) = 1 is obviously at A = 0, and the other root is positive. We define g(\) = f(A) — 1,
and use the Newton-Raphson Method [20] to find the positive root of g(A\) = 0. In our experiments, this method
converged in a few iterations.

13

5.2 GIS: Interactivity using BLAST statistics

Here, we develop our second interactive search technique based on BLAST statistics [27, 28]. We call this
technique Global statistics-based Interactive Search (GIS). Similar to LIS, GIS partitions the database strings into
overlapping blocks of length w + ¢ — 1 with an overlap of w — 1 letters between consecutive blocks, where w is the
window length and c is the box capacity of each block. Each block in this partitioning corresponds to the union of
all the substrings contained in an MBR of the MRS index structure. We store the frequency of all the letters for
each partition separately.

The score of the maximal alignment for each partition s; is approximated by M Since the length of

substrings in all the partitions are fixed (i.e. |s;| = w+ ¢ — 1 is fixed), M becomes larger when A7 is smaller.
Given a query string ¢, GIS works in 3 steps: '

1. Compute X} for ¢ and the substring s; in partition ¢ using the Newton-Raphson method, for all :.
2. Sort A} in ascending order.

3. Search the partitions s; in ascending A} order using an efficient search tool like BLAST. Report intermediate
results to the user for each partition.

The first step of this algorithm calculates A} for each ¢ and s; using the Newton-Raphson method. Usually, this
method converges to solution within a negligible error in less than 10 iterations. Therefore, the time complexity
of this step is O(n), where n is the number of partitions. The sorting step takes O(n logn) time. Therefore, the
total time complexity of the preprocessing step is O(nlogn).

Since BLAST statistics is limited to a small subset of scoring schemes, extending GIS to arbitrary types of
databases requires a new statistical model. This can be done in three steps: 1) Split the data space into bins and
map objects to bins. 2) Define a score for each bin pair (this scoring scheme must satisfy the requirements of
BLAST s statistical model). 3) Find the frequency of each bin for each data block.

6 Experimental results

We used two classes of string datasets in our experiments:

e DNA dataset contains chromosome 02 (chr-02), chromosome 18 (chr-18), chromosome 21 (chr-21), and
chromosome 22 (chr-22) from homo sapiens database and the genetic code of E.Coli [6]: chr-18 and E.Coli
datasets contain more than 4M base pairs, and the other datasets contain more than 30M base pairs.

e Protein dataset contains all the proteins in the SWISSPROT database [5]. We created one large protein
dataset by appending all the sequences, resulting in a single sequence of length approximately 68M . The alphabet
here contains 20 letters.

We downloaded the source code of BLAST, and implemented the MRS index structure for window sizes w =
{256, 512, 1024, 2048}, and box capacity ¢ = 1000. We used BLAST for alignments of DNA strings and the
standard Smith Waterman algorithm for alignments of protein strings. We implemented LIS, LIS-prune and GIS
as discussed in Section 4 and Section 5.

We extracted four query sets from chr-18 dataset for |¢| = {500, 1000, 2000, 4000} and three query sets from
chr-22 dataset for |¢| = {1000, 2000, 4000} each containing 100 queries. Later, we generated Six new query
sets from each of these query sets by modifying these queries with 5%, 10%, 20%, 30%, 40% and 50% mutation
probability using three edit operations (i.e. insert, delete, and modify). We generated two query sets from the
protein dataset for |g| = {256, 512}. Later, we created three more query sets by modifying these queries with

14

mutation rates 5%, 10% and 20%. We performed k-NN queries for various values of & using these query sets on
a 1.4 GHz AMD Athlon MP+ computer with 1 GB memory.

We used BLAST’s default scoring scheme for DNAs in our experiments: score of +1 for a match, -3 for a
mismatch, -5 gap open, and -2 gap extend (see Example 1). For protein dataset, we use the standard pattern
matching constants: +1 for a match, and -1 for mismatch, insert, and deletes.

We calculate the accuracy of the partial results for £-NN queries as the sum of the scores of the & best matches
found so far divided by the sum of the scores of the actual best & matches. Formal definition of accuracy is as
follows.

Definition 5 Let Sy, So, ---, Sk be the best k£ scores found so far, where k£ > 0 is an integer. Let ST, S5, ---, S

be the actual best & scores, then we define the accuracy as
k .
Accuracy = ;,gﬁ O
i S
Intuitively, the accuracy shows how good the current results are with respect to the actual results.
We set the update rate to 1/V in our experiments, where N is the number of MBRs. In other words, we process

one MBR at each iteration.
6.1 Varying the mutation rate

Our first experiment set inspects the performance of GIS and LIS for varying proximity of query strings to
database. We use the query sets generated from chr-18 in this experiment set. We generate a larger dataset, namely
chr-18/E.Coli by appending two dissimilar datasets chr-18 and E.Coli, and perform queries on this dataset. The
purpose of this experiment is to see whether our techniques can distinguish the distant regions in E.Coli from the
homologous regions of chr-18.

Figures 6(a) to 6(b) show the average score found by LIS, LIS-prune, and GIS on 1-NN queries at different
iterations for 5%, 10%, 20%, and 30% mutation rates of |¢| = 4000 query set. Since chr-18 and E.Coli datasets
have approximately same number of base pairs, they have similar number of MBRs. As evident from these
figures, all of our techniques find the optimal results before half of the database is inspected. This means that, our
techniques can distinguish the distant regions in E.Coli from closer regions in chr-18. This is more evident for
smaller mutation rates (i.e. when the query strings are closer to chr-18). As the mutation rates increases to 50%,
our techniques find optimal results later. This is because for high mutation rates, the query strings are not close to
one of the datasets anymore. Hence, all datasets have similar results.

For small mutation rates, the graphs are more steep at the beginning. This means that our techniques work
better when the query string is close to a subset of the database. However, even for high mutation rates, like 20 or
30%, our techniques can find high scoring results before 30% of the database is inspected.

Although there is no clear winner among these three techniques, GIS finds high scoring results slightly faster
than LIS and LIS-prune on the average. LIS and LIS-prune overlap for mutation rates greater than 10%.

Table 2 summarizes the number of iterations performed by LIS, LIS-prune, and GIS to achieve accuracies of
0.75 and 0.9 for various mutation rates of the query set. For all mutation rates, all the techniques can obtain 0.9
accuracy after 25-31% of the MBRs are inspected, and 0.75 accuracy after 15-24% of the MBRs are inspected.

6.2 Varying number of NN

Our second experiment set evaluates our techniques for different number of nearest neighbors. In this experi-
ment, we used the |¢g| = 4000 query set from chr-18 dataset and modified it with 5% mutation rate. We performed
queries on chr-18/E.Coli dataset.

Table 3 displays the number of iterations performed to achieve an accuracy of 0.75 and 0.9. Both LIS and GIS
can achieve 0.75 accuracy after only 31-35% of the MBRs are inspected for all values of k. As the number of

15

Score

Score

1800

1600
1400
1200
1000
800
600
400 |-

200

0
0 1000 2000 3000 4000 5000 6000
Number of Iterations

(a) 5% mutation

300

7000 8000

9000 10000

0 L L L L L L

0 1000 2000 3000 4000 5000 6000
Number of Iterations

(c) 20% mutation

7000 8000

9000 10000

Score
.
@
3

100 Fif}
400 b

Score

s ——

LIS-prune
GIS -------

L n n m mn m n L
00 10000 22000 38000 44000 SHOOD GEOD TouD 8000 9000 10000
NNumiteeraifi teeeations
(b) 10% mutation

IS ——

LIS-prune
[

. \

0

1000 2000

3000 4000 5000 6000 10000

Number of Iterations

7000 8000 9000

(d) 30% mutation

Figure 6. The score found by LIS, LI1S-prune, and GIS at different iterations for query set generated from chr-18 on chr-18/E.Coli

dataset.

Mutation Ratio (%)

5] 10] 20] 30] 40] 50

2095 2123 1866 1771 1903 1766

LIS | (2588) | (2719) | (2739) | (2537) | (2758) | (2917)
LIS- 2096 2140 1866 1771 1903 1766
prune | (2560) | (2719) | (2739) | (2537) | (2758) | (2917)
1846 1613 1759 1362 1583 1857

GIS | (2401) | (2347) | (2431) | (2236) | (2834) | (2811)

Table 2. The number of iterations for LIS, LI1S-prune, and GIS to achieve 0.75 and 0.9 accuracy for various mutation rates. The
number of iterations for non-interactive techniques is 8863. The results for accuracy = 0.9 are shown in parenthesis.

16

Number of NN (k)

1] 2 | 4] 8
2095 1992 2167 2807
LIS (2588) | (2819) | (3254) | (4372)
2095 1933 2196 2798
LIS-prune | (2560) | (2637) | (3209) | (4336)
1846 1842 2336 3085
GIS (2401) | (2338) | (3057) | (3790)

Table 3. The number of iterations for LIS, LIS-prune, and GIS to achieve 0.75 and 0.9 accuracy for various number of nearest
neighbors. The number of iterations for non-interactive techniques is 8863. The results for accuracy = 0.9 are shown in parenthesis.

nearest neighbors increases, the number of iterations required by LIS to achieve a certain accuracy increases. This
is because of two reasons. First, the size of the result set increases with the number of nearest neighbors. Second,
as k increases, the scores of the best £ matches in the resulting set contains many alignments of similar score. This
means that the results become indistinguishable. As a result of this, our techniques can not distinguish the align-
ments. Note that this is an intrinsic problem for any k-nearest neighbor algorithm in very high dimensions [30].
However, this increase in the number of iterations is not abrupt.

— LIS
— - LIS—prune
M - — GIs B

I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Iterations

Figure 7. The score found by LIS, LIS-prune, and GIS at different iterations for query set generated from chr-22 on chr-18 dataset.

6.3 Comparison of distant strings

Our third experiment set inspects the performance of GIS and LIS when the query strings are much different
from the database string. We use the query sets generated from chr-22 and search the chr-18 dataset in this
experiment.

Figure 7 shows the average score and the accuracy of LIS, LIS-prune, and GIS on 1-NN queries for |g| = 4000
query set for different number of iterations. We do not report the results for different length query sets separately
here since they all had the same pattern. The maximum score in this experiment is slightly more than 90. This
means that the length of the best matching substring is approximately 2.3% of the query length for this dataset. In

17

Mutation Ratio (%) 5 10 20 | 30| 40 | 50
Pruning Ratio (%) | 38.9 | 17.3 | 12.1 | 0.0 | 0.0 | 0.0

Table 4. The percentage of database pruned for various mutation rates.

Number of NN (k) 1 2 4 8
Pruning Ratio (%) | 38.9 | 38.9 | 37.5 | 175

Table 5. The percentage of database pruned for various number of NN.

this experiment, both GIS and LIS achieved high scores extremely fast. Both techniques obtained 75% accuracy
within the first 100 iterations. Since the total number of iterations to search the entire database is approximately
4300, both techniques can report 75% accurate result after processing only 2.5% of the database, and 90% accurate
result after processing 12-27% of the database.

6.4 Evaluation of pruning rate

Unlike LIS-prune, both LIS and GIS search the entire database to ensure that there is no better result. LIS-
prune reduces total search time by pruning (potentially) low scoring regions of the database. Table 4 shows the
percentage of database pruned by LIS-prune during the experiments in Figure 6. As can be seen, LIS-prune prunes
a huge percentage of the total search space for small mutation rates. For example, the total run time of LIS-prune
is 64% less than both LIS and GIS when the mutation rate is 5%.

Table 5 lists the percentage of database pruned by LIS-prune during the experiments in Table 3. The amount
of database pruned reduces slowly as the number of NN (k) increases. Even when k = 8, LIS-prune is 21% faster
than both LIS and GIS.

6.5 Evaluation of confidence levels

Figure 8 shows how the confidence of LIS changes over iterations for 1-NN queries for the |¢| = 4000 dataset.
LIS achieves 90% confidence after performing only 30% of the iterations. Another important point is that the
confidence of LIS corresponds closely to its accuracy in Figure 6(a). That is, LIS can accurately report the user the
quality of the partial results with respect to the final results before all the final alignments are found. We observed
the same property in other experiments too. This experimentally substantiates the theoretical developments of
Sections 3.1 and 3.2: the theoretical computation of accuracy (Figure 8) matches to the observed accuracy in
experiments (Figure 6(a)). This is very important, because the user can estimate the score of the best matches of
the final alignment at intermediate steps by inspecting the partial results and the confidence intervals.

6.6 Increasing the alphabet size

In this experiment we evaluate the quality and performance of LIS, LIS-prune, and GIS for larger alphabet size.
We run queries on the protein dataset for this experiment. The alphabet size is 20 in this experiment.

Figure 9 plots the average score found during various iterations for the query set |g| = 256 with 10% and 20%
modification. We do not plot the results for other query lengths and mutation rates since they have similar behavior.
The experiments show that both LIS and LIS-prune are better than GIS. LIS-prune is slightly better than LIS since
it prunes some of the data blocks in advance. For 20% mutation rate, LIS and LIS-prune achieved 75% accuracy
after only 31% of the data is processed. On the other hand GIS processes 66% of the dataset to achieve the same

18

|
0 1000

6000

I I I I
4000 5000 7000 8000

Number of Iterations

I I
2000 3000 9000

Figure 8. The confidence of LIS for 1-NN queries for the experiment in Figure 6(a).

T T
LIS,eps=10% ——
LIS-prune,eps=10%
GIS.eps=10%
LIS,eps=20% -~
LIS-prune,eps=20% ——
ok GIS,eps=20%

......
-

L L L L
30000 40000 50000 60000

Number of Iterations

L L
10000 20000 70000

Figure 9. The score found by LIS, LIS-prune, and GIS on protein dataset for || = 256, and mutation rates 10% and 20%.

Mutation Ratio (%)

0] 5] 10] 20
|g| =256 | 63.9 | 29.6 | 11.8 14
lgf=512 | 70.1 | 736 | 69.6 | 50.1

Table 6. The percentage of database pruned for various query lengths and mutation rates.

19

quality. This means that BLAST’s statistical model fails to predict the high scoring regions for larger alphabets
while our model still works well.

Table 6 lists the percentage of data blocks pruned by LIS-prune for all the query sets. As the mutation rate
increases, the amount of pruning drops. This is because the queries become more distant as the mutation rate
increases. The alignments usually have lower score for distant queries. Therefore, the amount of error tolerance
for pruning increases as the mutation rate increases. The amount of pruning is much better for || = 512 query sets.
This can be explained as follows. The data space contains O(|¢|? 1) possible locations for frequency vectors [26],
where o is the alphabet size. Therefore, as |g| increases, the ratio of the volume of the MRS index structure to the
volume of the data space drops dramatically. As a result of this, the probability that a given random query point
happens to be far from an MBR increases. This property also implies that the LIS-prune technique works better
for large alphabets.

7 Discussion

In this paper, we considered interactive substring searching for k-NN queries. We defined a new model, based
on frequency vectors, for the analysis of the distance distributions between a query and a set of strings based on
their frequency vectors. We presented formulas to compute this distribution in O(o) time, where o is the alphabet
size.

We proposed two novel interactive substring search techniques called LIS and GIS. LIS organizes the database
as a set of MBRs with the help of the MRS index structure. The MBRs of the index structure are reordered
based on the order statistics of their representative frequency vectors at various resolutions. These MBRs are
then searched iteratively using any traditional string search tool. The partial results are reported at each iteration
along with their confidence intervals. Later, we reduced the total run time of LIS by pruning the unpromising
MBRs. This technique is called LIS-prune. GIS considers the average frequency of all the letters in each MBR. It
employs BLAST s statistics model to predict the maximal score for each MBR, and ranks the MBRs based on this
prediction.

The strategy used by LIS can be extended to other novel scientific databases in three steps: 1) The distance
distribution between a pair of objects is determined using their signatures. 2) Database is organized into clusters
using an appropriate index structure. 3) A representative for each cluster is defined based on the underlying
distance function.

GIS can also be extended to arbitrary types of databases in three steps: 1) Split the data space into bins and map
objects to bins. 2) Define a score for each bin pair (this scoring scheme must satisfy the requirements of BLAST’s
statistical model). 3) Find the frequency of each bin for each data block.

Our experimental results show that the proposed techniques achieve high accuracies quickly. In our experiments
on DNA strings, (although there was no clear winner) GIS found high scoring results slightly faster than LIS. Both
techniques achieved 75% accuracy within the first 2.5-35% of iterations. In our experiments on protein strings,
LIS and LIS-prune were much better than GIS. LIS and LIS-prune achieved 75% accuracy within the first 31%
of the iterations while it took 66% of the iterations for GIS. Our pruning strategy eliminated up to 38% of the
database in these experiments.

Our techniques work better when the query string is similar to a subset of the database. These types of queries
have many important applications, like determining the alignment of ESTs. Even when the queries are modified
with high mutation rates, both of our techniques can find high scoring results after inspecting only 30% of the
database.

The confidence value computed by LIS corresponds closely to its accuracy. This confirms the precision of the
approximation formulas derived in the paper. Highly accurate confidence value provided by LIS enables user to
predict the score of the final alignments even after the first few iterations.

In summary, the explosive growth of the scientific databases and the complexity of computing similarities makes

20

traditional non-interactive search tools undesirable since the user has to wait a long period of time to get the results.
The methods presented in this paper provides the user instant response for string databases. These strategies can
also be easily extended to other types of databases to make them interactive. Furthermore, the statistical models
developed in this paper enable better query planning when the data is distributed.

We are currently building a web server which enables interactive queries. Our initial tests on the web server
show that our techniques reduce the response time of queries on human chromosome database from minutes to a
few seconds. In the future, we would like to test our algorithms on other types of databases. We also would like to
develop a query execution plan for complex queries which involve more than one type of database.

References

[1] http://www.sdss.org.

[2] http://www.rcsh.org/pdb.

[3] http://ecocyc.org.

[4] http://lwww-unix.griphyn.org/projinfo/physics/astro.php.

[5] ftp://ftp.expasy.ch/databases/swiss-prot.

[6] ftp:/Mtp.ncbi.nih.gov.

[7] S. Altschul and W. Gish. Basic local alignment search tool. J. Molecular Biology, 1990.

[8] S. Altschul and W. Gish. Local alignment statistics. Methods in Enzymology, pages 460-480, 1996.

[9] R. Arratia and M. Waterman. A phase transition for the score in matching random sequences allowing
deletions. Ann. Appl. Prob., pages 200-225, 1994.

[10] D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, B. Rapp, and D. Wheeler. GenBank. Nucleic Acids
Research, January 2000.

[11] B. Berchtold, C. Béhm, and H. Kriegel. The pyramid technique: Towards breaking the curse of dimension-
ality. In SIGMOD, pages 142-153, 1998.

[12] B. Berchtold, D. Keim, and H. Kriegel. The X-tree: An index structure for high dimensional data. In VLDB,
1996.

[13] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivalsd, and M. Vingron. g-gram based database
searching using a suffix array (QUASAR),. In RECOMB, Lyon, April 1999.

[14] E. Castillo. Extreme Value Theory in Engineering (Statistical Modeling and Decision Science Series). Aca-
demic Press, New York, 1988.

[15] K. Chakrabarti and S. Mehrotra. The hybrid tree: An index structure for high dimensional feature spaces. In
ICDE, pages 440-447, February 1999.

[16] S. Davidson, G. Overton, V. Tannen, and L. Wong. BioKleisli: A digital library for biomedical researchers.
Int. J. on Digital Libraries, 1(1):36-53, April 1997.

[17] A. Delcher, S. Kasif, R. Fleischmann, J. Peterson, O. White, and S. Salzberg. Alignment of whole genomes.
Nucleic Acids Research, 27(11):2369-2376, 1999.

21

[18] E. Giladi, M. Walker, J. Wang, and W. Volkmuth. SST: An algorithm for searching sequence databases in
time proportional to the logarithm of the database size. In RECOMB, Japan, 2000.

[19] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD, pages 47-57, 1984.
[20] R. Hamming. Numerical Methods for Scientists and Engineers. Dover Pubns, 2 edition, April 1987.

[21] J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized search trees for database systems. In VLDB, pages
562-573, Ziirich, September 1995.

[22] X. Huang and W. Miller. A time-efficient, linear-space local similarity algorithm. Adv. Appl. Math, 12:337-
357, 1991.

[23] E. Hunt, M. P. Atkinson, and R. W. Irving. A database index to large biological sequences. In VLDB, pages
139-148, Roma, Italy, September 2001.

[24] H. V. Jagadish, N. Koudas, and D. Srivastava. On effective multi-dimensional indexing for strings. In
SIGMOD, 2000.

[25] T. Kahveci and A. Singh. An efficient index structure for string databases. In VLDB, pages 351-360, Roma,
Italy, September 2001.

[26] T. Kahveci and A. Singh. MAP: Searching large genome databases. In PSB, pages 303-314, January 2003.

[27] S. Karlin and S. Altschul. Methods for assessing the statistical significance of molecular sequence features
by using general scoring schemes. Proc. Natl. Acad. Sci., 87:2264-2268, March 1990.

[28] S. Karlin and S. Altschul. Applications and statistics for multiple high-scoring segments in molecular se-
guences. Proc. Natl. Acad. Sci., 90:5873-5877, June 1993.

[29] N. Katayama and S. Satoh. The SR-tree: An index structure for high-dimensional nearest neighbor queries.
In SIGMOD, pages 369-380, 1997.

[30] N. Katayama and S. Satoh. Distinctiveness-sensitive nearest-neighbor search for efficient similarity retrieval
of multimedia information. In ICDE, pages 493-502, Heidelberg, Germany, April 2001.

[31] S. Kurtz and C. Schleiermacher. REPuter - fast computation of maximal repeats in complete genomes.
Bioinformatics, 15(5), 1999.

[32] U. Manber and E. Myers. Suffix arrays: A new method for on-line string searches. SIAM Journal on
Computing, 22(5):935-948, 1993.

[33] S. Muthukrishnan and S. C. Sahinalp. Approximate nearest neighbors and sequence comparison with block
operations. In STOC, Portland, Or, 2000.

[34] E. Myers. An O(ND) difference algorithm and its variations. Algorithmica, pages 251-266, 1986.
[35] E. Myers. A sublinear algorithm for approximate keyword matching. Algorithmica, pages 345-374, 1994.

[36] S. Needleman and C. Wunsch. A general method applicable to the search for similarities in the amino acid
sequence of two proteins. J. Molecular Biology, 48:443-53, 1970.

[37] J. Ogasawara and S. Morishita. Practical software for aligning ESTs to human genome. In CPM, pages 1-16,
2002.

22

[38]

[39]

[40]

[41]

[42]
[43]

[44]
[45]

[46]

W. Pearson and D. Lipman. Improved tools for biological sequence comparison. In Proc. Natl. Acad. Sci,
volume 85, pages 2444-2448, 1988.

P. Pevzner and M. Waterman. A fast filtration algorithm for the substring matching problem. In CPM, pages
197-214, Padova, Italy, 1993.

T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for multi-dimensional objects.
In VLDB, pages 507-518, Brighton, England, 1987.

T. Smith and M. Waterman. Identification of common molecular subsequences. J. of Molecular Biology,
March 1981.

D. States and P. Agarwal. Compact encoding strategies for DNA sequence similarity search. In ISMB, 1996.

T. Tatusova and T. Madden. BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences.
FEMS Microbiol. Lett., pages 247-250, 1999.

D. White and R. Jain. Similarity indexing with the SS-tree. In ICDE, pages 516-523, 1996.

H. Williams and J. Zobel. Indexing and retrieval for genomic databases. TKDE, 14(1):63-78, Jan-
uary/February 2002.

Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning DNA sequences. J. of
Computational Biology, 7(1-2):203-214, 2000.

23

