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Abstract

Data cube computation and representation are pro-
hibitively expensive in terms of time and space. Prior work
has focused on either reducing the computation time or con-
densing the representation of a data cube. In this paper,
we introduce Range Cubing as an efficient way to compute
and compress the data cube without any loss of precision.
A new data structure, range trie, is used to compress and
identify correlation in attribute values, and compress the
input dataset to effectively reduce the computational cost.
The range cubing algorithm generates a compressed cube,
called range cube, which partitions all cells into disjoint
ranges. Each range represents a subset of cells with the
identical aggregation value as a tuple which has the same
number of dimensions as the input data tuples. The range
cube preserves the roll-up/drill-down semantics of a data
cube. Compared to H-Cubing, experiments on real dataset
show a running time of less than one thirtieth, still gener-
ating a range cube of less than one ninth of the space of
the full cube, when both algorithms run in their preferred
dimension orders. On synthetic data, range cubing demon-
strates much better scalability, as well as higher adaptive-
ness to both data sparsity and skew.

1 Introduction

Data warehousing is an essential element for decision
support technology. Summarized and consolidated data
is more important than detailed and individual records
for knowledge workers to make better and faster deci-
sions. Data warehouses tend to be orders of magnitude
larger than operational database in size since they con-
tain consolidated and historical data. Most workloads are
complex queries which access millions of records to per-
form several scans, joins and aggregates. The query re-
sponse times are more critical for online data analysis ap-
plications. A warehouse server typically presents multi-

dimensional views of data to a variety of analysis appli-
cations and data mining applications to facilitate complex
analyses. These applications require grouping by differ-
ent sets of attributes. The data Cube was proposed[7]
to precompute the aggregation for all possible combi-
nation of dimensions to answer analytical queries effi-
ciently. For example, consider a sales data warehouse:
(Store, Date, City, Product, Price). At-
tributes Store, Date, City and Product are called
dimensions, which can be used as grouped by attributes.
Price is a numeric measure. The dimensions together
uniquely determine the measure, which can be viewed as
a value in the multidimensional space of dimensions. A
data Cube provides aggregation of measures for all possi-
ble combinations of dimensions. A cuboid is a group-by of
a subset of dimensions by aggregating all tuples on these
dimensions. Each cuboid comprises a set of cells, which
summarize over tuples with specific values on the group-
by dimensions. A cell a = (a1, a2, ..., an,measuresa)
is an m − dimensional cell if exactly m values among
a1, a2, ..., an are not ∗. Here is an example:

Example 1 Consider the base table given below.
Store City Product Date Price

Gateway NY DESKTOP 12/01/2000 $ 100
CompUSA NY DESKTOP 12/02/2000 $ 100
CompUSA SF LAPTOP 12/03/2000 $ 150

Staple LA LAPTOP 12/03/2000 $ 60

The cuboid (Store, ∗, ∗, ∗) contains three
1 − dimensional cells: (Gateway, ∗, ∗, ∗),
(CompUSA, ∗, ∗, ∗), and (Staple, ∗, ∗,
∗). (CompUSA, NY, ∗, ∗) and (CompUSA, SF,
∗, ∗) are 2 − dimensional cells in cuboid (Store,
City, ∗, ∗).

The data cube computation can be formulated as a pro-
cess that takes a set of tuples as input, computes with or
without some auxiliary data structure, and materializes the
aggregated results for all cells in all cuboids. A native rep-
resentation of the cube is to enumerate all cells. Its size is
usually much larger than that of input dataset, since a table
with n dimension results in 2n cuboids. Thus, most work is
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dedicated to reduce either the computation time or the final
cube size, such as efficient cube computation[9, 4, 17, 12],
cube compression[13, 10, 15]. These cost reduction are
all without loss of any information, while some others like
approximation[3, 2], iceberg cube[6] reduce the costs by
skipping “trivial” information. The approaches without los-
ing information can be classified into three categories (Fig-
ure 1) in terms of how the data is compressed before and
after the computation.

Figure 1. Classification of recent works on
cube computation

The Apriori-like algorithm[1] and the Bottom-UP Com-
putation (BUC)[4] approaches are the most influential
works for both iceberg cube and full cube computation.
They compute a data cube by scanning a dataset on disk
and generate all cells one by one on disk. BUC is espe-
cially targeted for sparse datasets, which is usually the case
with real data. The performance deteriorates when applied
to skewed or dense data.

Han et al. [9] devise a new way for cube computation by
introducing a compressed structure of the input dataset, H-
Tree. The dataset is compressed by prefix sharing to be kept
in memory. It also generates cells one by one and does well
on dense and skewed dataset. It can be used to compute
both iceberg cubes and full cubes, and is shown to outper-
form BUC when dealing with dense or skew data in iceberg
cube computation. Xin et al. [16] will publish a new method
called star-cubing to traverse and compute on the star-tree,
which is basically an H-Tree without side links, to further
improve the computational efficiency.

Another set of work mainly aims to reduce the cube size.
It also scans the input dataset, but generates a compressed
cube. Sismanis et al. [14] use the CUBEtree or compressed
CUBEtree to compress the full cube in a tree-like data struc-
ture in memory, by utilizing prefix sharing and suffix coa-
lescing. It requires the memory to accomodate the com-
pressed cube. Some work[15][10] condenses the cube size
by coalescing cells with identical aggregation values. Wang
et al. [15] use “single base tuple” compression to gener-
ate a “condensed cube”. Lakshmanan et al. [10] propose

a sematics-preserving compressed cube to optimally col-
lect cells with the same aggregation value. The compressed
cube computation is based on BUC algorithm, whose time
efficiency is comparable to BUC[4]. Furthermore, they in-
dex the “classes” of cells using a QC-tree[11].

However, these works are all not designed to reduce both
computational time and output I/O time to achieve the re-
duction on overall speed-up. As observed in most efficient
cube computation works[16, 4, 12], the output I/O time
dominates the cost of computation in high dimension and
high cardinality datasets since the output of a result cube is
extremely large, while most compression algorithms focus
on how to reduce the final cube size.

In this paper, we propose an efficient cube computation
method to generate a compressed data cube, which is both
sematics-preserving and format-preserving. It cuts down
both computational time and output I/O time without loss
of precision. The efficiency of cube computation comes
from the three aspects:(1)It compresses the base table into
a range trie, a compressed trie, so that it will calculate cells
with identical aggregation values only once. (2)The trav-
esal takes advantage of simultanous aggregation, that is, the
m − dimensional cell will be computed from a bunch of
(m + 1) − dimensional cells after the initial range trie is
built. At the same time, it facilitates Apriori pruning. (3)
The reduced cube size requires less output I/O time. Thus,
we reduce the time cost not only by utilizing a data struc-
ture to efficiently compute the aggregation values; but also
by reducing the disk I/O time to output the cube.

The motivation of the approach comes from the ober-
vation that real world datasets tend to be correlated, that
is, dimension values are usually dependent on each other.
For example, Store “Starbucks” always makes Product
“Coffee”. In the weather dataset used in our experi-
ments, the Station Id will always determine the value
of Longitude and Latitude. The effect of correlated
data on the corresponding data cube is to generate a large
number of cells with the same aggregation values. The basis
of our approach is to capture the correlation or dependency
among dimension values by using a range trie, and generat-
ing a range representing a sequence of cells each time.

1.1 Related Work

We will give an overview of those works most related to
our approach.

1. H-Cubing and Star-Cubing
H-Cubing and Star-Cubing both organize input tuples in

a hyper-tree structure. Each level represents a dimension,
and the dimension values of each base tuple are populated
on the path of depth d from the root to a leaf. In an H-
Tree, nodes with the same value on the same level will be
linked together with a side link. A head table is associated
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with each H-Tree to keep track of each distinct value in all
dimensions and link to the first node with that value in H-
Tree. The data structure is revised in an incoming paper[16]
as a star tree, which excludes the side links and head tables
in an H-Tree. Also a new traversal algorithm is proposed to
take advantage of both simultanous aggregation and prun-
ing efficiency. Moreover, it prunes the base table using a
star table before it is loaded into the start tree to accelerate
the computation of iceberg cubes. The efficiency of the new
star cubing algorithm lies in its way to compute the cells in
some order of cuboids, so that it can enjoy both the shar-
ing of computation as Array Cube[17] and similar pruning
efficiency as BUC.

2. Condensed Cube and Quotient Cube
Condensed cube[15] is a method to condense the cube

using the notion “single tuple cell”, which means that a
group of cells will contain only one tuple and share the same
aggregation value as the tuple’s measure value. Quotient
cube generalizes the idea to group cells into classes. Each
class contains all cells with the identical aggregation values.
Both of them extend the BUC algorithm to find “single tu-
ple cells” or “classes” during the bottom-up computation of
a full cube.

Our approach integrates the benefits of these two cat-
egories of algorithms to achieve both computational effi-
ciency and space compression. It compresses base table
without loss of information into a compressed trie data
structure,called range trie, and computes and generates the
subsets of cells with identical aggregation values together
as a range. The cube computation algorithm enjoys both
sharing of computation and pruning efficiency for iceberg
cube.

The rest of paper will be organized as follows: Section 2
provides some theoretical basis of our work. Section 3 de-
scribes the range trie data structure and construction proce-
dure, followed by section 4 showing how the range cube is
represented. Section 5 presents the range cubing algorithm.
Section 6 analyzes the experimental results to illustrate the
benefits of the proposed method. We conclude the work in
Section 7.

2 Background

We provide some notions needed later in this section. A
cuboid is a multi-dimensional summarization of a subset of
dimensions and contains a set of cells. A data cube can be
viewed as a lattice of cuboids, which contains a set of cells.

Now, we define the “�” relation on the set of cells of a
data cube.

Definition 1 If a = (a1, a2, ..., an) is ak − dimensional
cell and b = (b1, b2, ..., bn) is an l − dimensional cell in
an n-dimensional cube, define the relation “�” between a
and b:

a � b iff k ≥ l and ai = bi ∀ bi 6= ∗ and 1 ≤ i ≤ n.

If Scells is the set of cells in a cube, (Scells,�) is a partially
ordered set as shown in the next lemma.

Lemma 1 The relation “�” on the set of cells in a cube is a
partial order, and the set of cells together with the relation
is a partially ordered set.1

The proof is to show the relation “�” on the set of cells
is reflexive, antisymmetric, and transitive. It is straightfor-
ward.

Intuitively, cells a � b means that a can roll-up to b and
the set of tuples to compute the cell a is a subset of that to
compute the cell b.

Example 2 Consider the base table in Figure 2(a). Fig-
ure 2(b) is the lattice of cuboids in the data CUBE of our
example.

From the definition of the containment relation “�”,
(S1,C1,∗, ∗) � (S1,∗,∗,∗). Also (S1,∗,P1,∗)
� (S1,C1,P1,∗) � (S1,C1,P1,D1).

Then we introduce the notion of range which is based on
the relation “�”.

Definition 2 Given two cells c1 and c2, [c1, c2] is a range
if c1 � c2. It represents all cells, c, such that c1 � c � c2.
we denote it as c ∈ [c1, c2].

Then in the above example, the range [(S1,∗,P1,∗),
(S1,C1, P1,D1)] contains four cells: (S1,∗,P1,∗),
(S1,C1,P1,∗), (S1,∗, P1,D1), and
(S1,C1,P1,D1). Moreover, all four cells in the
range have identical aggregation value. So it means that we
can use a range to represent these four cells without loss of
information.

Lakshmanan et al. [10] developed a theorem to prove
the sematic-preserving property of a partition of data cube
based on the notion convext partition.

Definition 3 The Convex[5] Partition of a partial ordered
set is a partition which contains the whole range [a, b] if and
only if it contains a and b, and a � b.

If we define a partition based on “range”, then it must
be convex. As we will show later, a range cube is such a
convex partition consisting of a collection of “ranges”.

3 Range Trie

A range trie is a compressed trie structure constructed
from the base table. Each leaf node represents a distinct
tuple like star tree or H-Tree. The difference is that a range

1some papers[10] regard it a lattice of cells, but it is not unless we add
a virtual empty node� all base nodes
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Store City Product Date Price

S1

S1

S2
S2
S2

S3

C1

C1

C1
C3

C2

C3

P1

P1
P1

P2

P2

P3

D1

D2

D2
D2
D2

D1

$ 100

$ 50

$ 200
$ 120
$ 40

$ 250

(a) the base table

(*,*,*,*)

(store, *, *, *) (*, city, *, *) (*, *, product, *) (*,*, *, date)

(store, city, *, *) (store, *, product, *) (store, *, *, date) (*, city, product, *)(*, city, *, date)(*, *, product, date)

(*, city, product, date )(store, *, product, date)(store, city, *, date)(store, city, product, *)

(store, city, product, date)

(b) the lattice of cuboids derived from the base table in (a)

Figure 2. The example for cells and cuboids for a base table

trie allows several shared dimension values as the key of
each node, instead of one dimension value per node. The
subset of dimension values stored in a node is shared by
all tuples corresponding to the leaf nodes below the node.
Therefore, each node represents a distinct group of tuples
to be aggregated.

Two types of information are stored in a range trie: di-
mension values and measure values. The dimension values
of tuples determine the structure of a range trie, and are
stored in the nodes along paths from the root to leaves. The
measure values of tuples determine the aggregation values
of the nodes. A traversal from the root to a leaf node reveals
all the information for any tuple(s) with a distinct set of di-
mension values represented by this leaf node. Each node
contains a subset of dimension values as its key, which is
shared by all tuples in its sub-trie. Consequently, its aggre-
gation value is that of these tuples.

Consider a range trie on an n-dimensional dataset, or-
dered as A1, A2, ..., An. The start dimension of the range
trie is defined as the smallest of these n dimensions, which
is A1. The smallest of all dimensions appearing in node
i and its descendants is chosen as the start dimension of
node i. So, if the key of a node i in the range trie is the
values on a subset of the dimensions, (Ai1, Ai2, ..., Aik),
where i1 < i2 < ... < ik, the start dimension of node i is
the smallest one Ai1. In the example shown in Figure 3(c),
the start dimension of the range trie is Store and the start
dimension of the node (S1, C1) is Store.

Each node can be regarded as the root of a sub-trie de-
fined on a sequence of dimensions appearing in all its de-
scendants. That is, node (S1, C1) is the root of a sub-trie
defined on dimensions (Product, Date) of two tuples.
We have the following relationship between the start dimen-
sion of a range trie and that of a node. We assume the key
of the root of a range trie is empty. If it is not empty, we
exclude those dimensions appearing in the root from the di-
mensions of the range trie. Since the dimension values in
the root are common to all tuples, they are trivial to be con-

sidered.

Proposition 1 The child nodes with the same parent node
have the same start dimension. The start dimension of a
range trie is the start dimension of its first level child node.

Figure 3(c) shows a range trie constructed from the table
in Example 2. The dimension order is Store, City,
Product, Date. Two data tuples are stored below the
node (S1, C1,$150): (P1, D1,$100) and (P2,
D2, $50). For simplicity, we omit the aggregation values
for each node. The number in each node is the number of tu-
ples stored below the node. The start dimension of the node
(P1, D1) is Product, which is the smallest dimension
among all the dimensions left. These two child nodes of the
sub-trie rooted at (S1, C1) has the same start dimension
Product, but distinct values P1 and P2.

We now present a formal definition of a range trie.

Definition 4 A range trie on dimensions Ai1, Ai2, ..., Ain
is a tree constructed from a set of data tuples. If the set
is empty, the range trie is empty. If it contains only one
tuple, it is a tree with only one leaf, whose key is all its
dimension values. If it has more than one tuple, it satisfies
the following properties:

1. Inheritance of ancestor Keys: If the key of the
root node is (aj1, ..., ajr), all the data tuples stored
in the range trie have the same dimension values
(aj1, ..., ajr).

2. Uniqueness of Siblings’ start dimension values: Chil-
dren have distinct values on their start dimension.

3. Recursiveness of the definition: Each child of the root
node is the root of a range trie on the subset of dimen-
sions {Ai1, ..., Ain} - {Aj1, ..., Ajr}.

We can infer the following properties of a range trie from
its definition:
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1. The maximum depth of the range trie is the number of
dimensions n.

2. The number of leaf nodes in a range trie is the num-
ber of tuples with distinct dimension values, which is
bounded by the total number of tuples.

3. Because siblings have distinct values on their start di-
mension, the fan-out of a parent node is bounded by the
cardinality of the start dimension of its child nodes.

4. Each interior node has at least two child nodes, since
its parent node contains all dimension values common
to all child nodes.

5. Each node represents a set of tuples represented by the
leaf nodes below it, and we will show later that the set
of tuples is used to compute a sequence of cells.

A range trie captures data correlation by finding dimen-
sion values that imply other dimension values. We now for-
malize the notion of data correlation in the following.

Definition 5 We take the input dataset as the scope. When
any tuples in the scope with the values ak, ..., al on the di-
mensions Ak, ..., Al always have the values as, ..., at on
the dimensions As, ..., At, it means that ak, ..., al imply
as, ..., at, denoted as (ak, ..., al)→ {as, ..., at}.

It is clear to see that if ak, ..., al imply as, ..., at, then any
superset of ak, ..., al will imply as, ..., at. According to
this notation, we have (S1) → {C1} and (S1, P1)
→ {C1, D1} in the example.

Lemma 2 Given a node with the key (ai1, ai2, ..., air),
where ai1 is the start dimension value of the node, the start
dimension values of the node and its ancestors imply the
dimension values ai2, ... and air.

The intuition is that the dimension values in a node are im-
plied by the dimension values of its ancestors and its start
dimension value. The dimension values of its ancestors are
implied by the ancestors’ start dimension values. So all the
start dimension values of the node and its ancestors imply
the dimension values in the node. In the range trie of our ex-
ample(Figure 3), (S1, P1)→{D1} since the node (P1,
D1) has the start dimension value P1 and it has an ances-
tor (S1, C1) whose start dimension value is S1. Also,
(S1) → {C1} because S1 is the start dimension value of
the node (S1, C1) and it has no ancestors.

Thus, the set of dimension values implied by (S1, P1)
is {C1, D1}, since (S1) → {C1} leads to (S1, P1)
→ {C1} also. In general, given a node in a range trie,
say, there exist k dimensions on the node and its ancestors,
among which there are l start dimensions, we can get from
Lemma 2 that the set of l start dimensions jointly implies
those k − l non-start dimensions.

Lemma 2 shows that a range trie identifies data corre-
lation among different dimension values.Lemma 3 explains
that data correlation captured in a range trie reveals cells
sharing identical aggregation values.

Lemma 3 Suppose we have an n-dimensional range trie,
given any node, it has k dimensions existing on the node and
its ancestors, that is, with dimension values ai1, ai2..., aik
on the dimensions Ai1, Ai2..., Aik. Among these, l dimen-
sions are the start dimensions of the node and its ances-
tors, say Ai1, Ai2..., Ail, where l ≤ k . Let c1 be a
k−dimensional cell with dimension values ai1, ai2, ..., aik
on the dimensions Ai1, Ai2..., Aik and c2 be an l −
dimensional cell with dimension values ai1, ai2..., ail on
the dimensions Ai1, Ai2..., Ail. Any c such that c1 � c �
c2 will have the same aggregation value as c1 and c2.

The intuition is straightforward. As we learned before,
the set of start dimension values (ai1, ai2...ail) imply
those non-start dimension values (ai(l+1), ai(l+2)...aik).
The set of tuples used to compute the aggregation
value of cell c2 are those having dimension val-
ues (ai1, ai2...ail). According to Definition 5, all
tuples with dimension values (ai1, ai2...ail) have the
dimension values (ai(l+1), ai(l+2)...aik) on dimensions
Ai(l+1), Ai(l+2)..., Aik. So, for any cell c, c1 � c � c2, the
set of tuples to compute the aggregation value is the same
as that to compute the aggragation value of c2.

In our example in Figure 3(c), all cells between (S1,
∗, P1, ∗) and (S1, C1, P1, D1) have identical
aggregation values.

3.1 Constructing the Range Trie

This section will describe the range trie construction al-
gorithm. It is done by a single scan over the input dataset
like H-Tree. Each tuple will be propagated downward from
the root till a leaf node. However, in an H-Tree or a star tree,
each dimension value will be propogated on one node in or-
der, while each node of a range trie extracts the common
dimension values shared by the tuples inserted. For the set
of dimension values not common to all tuples, choose the
smallest dimension as the start dimension and insert the tu-
ple to the branch rooted at the node whose start dimension
value is equal to the tuple’s dimension value.

Figure 4 gives the algorithm to construct a range trie
from a given dataset. The algorithm iteratively inserts a
tuple into the current range trie. Lines 3-26 describe how
to insert dimension values of a tuple downward from the
root of the current range trie. First, it will choose the way
to go by searching for the child node whose start dimen-
sion value is identical with that of the tuple. If none of the
existing child nodes has identical start dimension value as
the tuple, the insertion is wrapped up by adding a new leaf
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root           ( ):1

(S1, C1, P1, D1):1

(a) The
range trie
after inserting
(S1,C1,P1,D1)

root           ( ):4

(S1, C1):2 (S2, P1, D2):2

(P1, D1):1 (P2, D2):1 (C1):1 (C2):1

(b) The range trie after in-
serting (S1,C1,P2,D2),
(S2,C1,P1,D2), and
(S2,C2,P1,D2)

root           ( ):6

(S1, C1):2 (S2, D2):3 (S3, C3, P3, D1):1

(P1, D1):1 (P2, D2):1 (C1, P1):1 (C3, P2):1 (C2, P1):1

(c) The range trie after in-
serting (S2,C3,P2,D2) and
(S2,C3,P2,D2)

root           ( )

(S1) (S2) (S3)

(C1) (C1) (C3) (C2) (C3)

(P1) (P1) (P2) (P1) (P3)(P2)

(D1) (D2) (D2) (D2) (D1)(D2)

(d) The star tree or H-Tree

Figure 3. The construction of the range trie

node as a child of the root node, where all dimension val-
ues remaining in the tuple are used as the key of the new
node (Line7,8). For example, when the last tuple (S3,
C3, P3, D1)is inserted into the range trie shown in Fig-
ure 3(b), a new leaf node is created as the rightmost child
node of the root in Figure 3(c).

Otherwise, it chooses the existing child node whose start
dimension value is identical with that of the tuple. A set
of common dimension values is obtained by comparing the
dimension values of the tuple and those in the chosen child
node, and is removed from the tuple. This is described in
line 10-11 of the algorithm.

Now if the key of the chosen child node is all in the set of
common dimension values, that is, all the dimension values
in the chosen child node appear in the tuple, the root of
a range trie is set to the chosen child node. The insertion
continues in the next iteration to insert the tuple with fewer
dimension values into the range trie rooted at the previously
chosen node. If the tuple (S1, C1, P3, D2) is to be
inserted in the range trie shown in Figure 3(b), the chosen
child node (S1, C1) will not be changed. The dimension
values left in the tuple will be (P3, D2) after removing
(S1, C1). The new iteration will insert the tuple (P3,
D2) to the range trie rooted at the node (S1, C1).

Lines 12-23 describes what to do if some dimension val-
ues in the chosen child node are not in the set of common
dimension values. If the smallest dimension in the chosen
node excluding the set of common dimensions is larger than
the start dimension of the child nodes of the chosen node,
append those non-common dimension values to all those
child nodes(line 16). Then, the new iteration continues with
the tuple with fewer dimensions and the range trie rooted
at the chosen node. This is the case when the tuple (S2,
C3, P2, D2) is inserted to the range trie in Figure 3(b).
The child node (S2, P1, D2) is chosen to insert the tu-
ple. The set of common dimension values is {S2, D2} on

Algorithm 1: Range Trie Construction
Input: a set of n-dimension data tuples;
Output: the root node of the new range trie;
begin

1 create a root node whose key = NULL;
2 for each data tuple a = (a1, a2, ..., an){
3 currentNode = root;
4 while (there exist some dimension values in a) {
5 ai=the value in a on the start dimension of currentNode;
6 if no child of currentNode has start dimension value ai
7 create a new node using dimension values in a as key;
8 insert the new node as a child of currentNode; break;
9 else, {
10 commonKey=the set of values both in cś key and a;
11 remove from a the above common key values, commonKey;
12 if node c has more key values than commonKey
13 diffKey = c->key - commonKey
14 set node c′s key value to commonKey);
15 if smallest dimension in diffKey>that of c′s children
16 append diffKey to c′s child nodes;
17 else
18 create a new node c1 using diffKey as key values;
19 set c′s children as c1′s children;
20 create another new node c2 using values left in a;
21 set c1 and c2as children of node c; break;
22 end if;
23 end if;
24 set currentNode to node c;
25 end if;
26 } end while
27 } end for
28 return root;
end;

Figure 4. The range trie construction

the dimensions Store, Date. The smallest of the non-
common dimensions is Product which is larger than the
start dimension City of the child nodes of the chosen node,
given the dimension order: Store, City, Product,
Date. The set of non-common dimension values {P1} is
appended to all the children, which become C1, P1 and
C2, P1. The tuple (C3, P2) is inserted in the range trie
rooted at the updated chosen node (S2, D2) in the next
iteration. This time no child node exists with the identi-
cal start dimension value as C3. The insertion ends after a
new leaf node (C3, P2) is added as a child node of the
current root node (S2, D2), as shown in Figure 3(c). If
the smallest of the non-common dimensions in the chosen
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node is smaller than the start dimension of its child nodes,
create a new node which uses the set of non-common di-
mension values as the key and inherit all the child nodes of
the chosen node as its children. Then, create another new
leaf node which uses the remaining dimension values in the
tuple as the key, and set these two new nodes as children
of the chosen node. Here, if the chosen node is a leaf node
itself, we assume the start dimension of its child nodes is
alway largest. An example of this case occurs when the
tuple (S1, C1, P2, D2) is inserted in the range trie
shown in Figure 3(a). The non-common dimension values
in the chosen node are P1, D1 and thus non-common di-
mensions are Product, Date, where the smallest non-
common dimension is Product according to the dimen-
sion order given before. It is smaller than the start dimen-
sion of the child nodes of the chosen node(S1, C1, P1,
D1), since it is a leaf node whose child nodes has the largest
possible dimension as we assumed. The dimension values
of the chosen node are replace by the common dimension
values (S1, C1), and a new node is created which has
dimension values (P1, D1) and the child nodes of the
chosen node is empty since the chosen node is a leaf node.
Another new leaf node is created with the dimension values
left in the tuple, P2, D2, and both new nodes are set as
two child nodes of the updated chosen node. The result is
shown as the left branch in the Figure 3(b).

The range trie constructed from a dataset is invariant to
the order of data entry.The process of constructing a range
trie is actually to iteratively find the common dimension val-
ues shared by a set of tuples, which is more than prefix shar-
ing as in many other tree-like structure.

The Size of a Range Trie

As we will see later, the number of nodes in a range trie
is an important indicator of the efficiency of the range cube
computation. The range trie with fewer nodes will generally
take less memory and less time to compute the cube, and the
resulting cube will be more compressed. Suppose we have
a range trie on aD-dimensional dataset with T tuples. So, it
can have no more than T leaf nodes. The depth of the range
trie is D in the worst case, when the dataset is very dense
and the trie structure is like a full tree. It is logNT in the
average case, for some N , the average fan-out of the nodes.
Now we will give a bound on the number of internal nodes.
The proof is by induction on the depth of the range trie.

Lemma 4 The number of interior nodes in a range trie with
T leaf nodes is bounded by T − 1, while it is T−1

N−1 on aver-
age. Here, N is the average fan-out of the nodes.

Compared to an H-tree, whose internal nodes are T ∗ (D −
1) in the worst case, a range trie is more scalable w.r.t the
number of dimensions,that is, its efficiency is less impacted
by the number of dimensions.

4 Range Cube

As we have shown in Lemma 3, the range trie will iden-
tify a range of cells with identical aggregation values. The
definition of a range coincides with the definition of sub-
lattice.

Two cells c1 and c2 are needed to represent a range.
However, since c1 � c2, it means intuitively that either c1

has the same dimension value as c2 or c1 has some value but
c2 has value “∗′′ on each dimension. For each dimension
value a, we introduce a new symbol a to represent either the
value a or ∗. Thus, a range can be represented as a range
tuple like a cell with n values followed by its aggregation
value.

Definition 6 Let [a, b] be a range. If a = (a1, a2, ..., an)
is a k − dimensional cell and b = (b1, b2, ..., bn) is an
l − dimensional cell, and a � b. The range tuple c is
defined as:

ci =

{
ai if ai = bi
ai if ai 6= ∗ and bi = ∗

A range cube is a partitioning of all cells in a cube and each
partition is a range. All ranges in a range cube are disjoint
and each cell must be in one range.

(S1, C1, *, *)

(S1, C1, *, D1) (S1, C1, *, D2)

(S1, C1, P1, D1) (S1, C1, P2, D2)

Figure 5. The ranges with Store set to “S1”

A range cube is basically a compressed cube, which
replaces a sequence of cells with a range. For exam-
ple, (S1, C1, P1, D1) represents all the cells in
the range [(S1, ∗, P1, ∗), (S1, C1, P1, D1)]
which are: (S1, ∗, P1, ∗), (S1, C1, P1, ∗),
(S1, ∗, P1, D1), and (S1, C1, P1, D1). So,
the resulting cube size is reduced. As an example, the five
ranges in Figure 5 consist of 14 cells.

A range cube has some desirable properties compared
to other compressed cubes. First, it preserves the native
reprentation of a data cube, i.e., each range is expressed as
a tuple with the same number of dimensions as a cell. So,
a wide range of current database and data mining applica-
tions can work with it easily. In addition, other compression
or index techniques such as dwarf [14] can also be applied
naturally to a range cube. This property makes it a good
candidate to incorporate with other performance improve-
ment approaches.
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Second, as we will show, a range cube preserves the se-
mantic properties of a data cube, which means it keeps the
roll-up/drill-down property of a data cube as described in
[10]. Lakshmanan et al. proposed the sematics-preserving
property for a compressed cube in [10]. They devel-
oped several theorems to help prove the sematics-preserving
property of a compressed cube. We will use them to show
the sematics-preserving property of a range cube. First it is
clear to see from the definition that a range cube is a convex
partition of a full data cube. Now we reach the conclusion
that a range cube is sematics-preserving.

Theorem 1 A range cube preserves the roll-up/drill-down
properties of a data cube.

This follows from the formalization of partition preserving
the roll-up/drill-down semantics of a cube in[10]. Laksh-
manan et al.[10] show that (1)a partition is convex iff the
equivalence relation inducing the partition is a weak con-
gruence and (2)a weak congruence relation respects the par-
tial order of cells in a cube. So it immediately leads to the
conclusion that the range cube is a partition which respects
the partial order of cells, that is, it preserves the roll-up/drill-
down property of the original cube.

As an example, Figure 5 shows the roll-up and drill-
down relation of the ranges on those cells whose Store
dimension value is ‘‘S1’’.

5 Range Cube Computation

The range cubing algorithm operates on the range trie
and generates ranges to represent all cells completely. The
dimensions of the data cube are ordered, yielding a list
A1, A2, ..., An. It iteratively reduces a n − dimensional
range trie to a (n − 1) − dimensional range trie after
traversing on the n − dimensional range trie to gener-
ate ranges and recursively apply the range cubing on each
node. The n − dimensional range trie generates the cells
in cuboids from (A1, ∗, ..., ∗) to (A1, A2, ..., An). And then
the (n − 1) − dimensional range trie generates cells in
cuboids from (∗, A2, ..., ∗) to (∗, A2, ..., An) and so on.

5.1 An Example

In this section, we will illustrate the efficiency of range
cube computation using the previous example shown in
Fig 2(a). Fig 3(c) is the initial four-dimensional range trie
constructed from the base table. The number inside each
node is the number of tuples used to compute the aggre-
gation values of each node. The algorithm visits the node
(S1, C1) and produces the range (S1, C1, ∗, ∗),
representing the cells (S1, ∗, ∗, ∗) and (S1, C1,
∗, ∗). Then it applies range cubing algorithm on the sub-
trie rooted at at node (S1, C1), which is defined on the

dimension Product, Date. The range cubing on the
sub-trie should generate the ranges containing all cells with
dimension values either (S1, *) or (S1, C1), that is,
all the cells with dimension values (S1). Similarly, the
middle branch of the root will generate ranges representing
all the cells with the dimension value (S2) and the right-
most branch will generate those having the dimension value
(S3).

After traversing the initial range trie in Fig 3(c), it
is reorganized to generate a three-dimensional range trie
as shown in Fig 6(a). It is defined on the dimensions
City, Product, Date. The way to reorganize a n −
dimensional range trie to a (n− 1)− dimensional range
trie will be explained later. Similar traversal is applied to
the three-dimensional range trie(Fig 6(a)), and it generates
all the ranges including those cells with values (*, C1)
or (*, C2) or (*, C3) on dimensions Store and
City.

After that, the three-dimensional range trie is reduced to
the two-dimensional range trie on dimensions Product,
Date as shown in Fig 6(b). The transformation is ob-
tained by reorganizing the three-dimensional range trie ei-
ther. This time it produces all the ranges representing
cells who have values (*, *, P1) or (*, *, P2)
on dimensions (Store, City, Product). Finally
a one-dimensional range trie is obtained from the two-
dimensional range trie as shown in Fig 6(c) and gives the ag-
gregation values for the cells (*, *, *, D1) and (*,
*, *, D2).

Now we will explain how to transform a four-
dimensional range trie to a three-dimensional range trie on
(City, Product, Date). By setting the Store di-
mension of each child nodes of the root to ∗, the trie will
look like the one in Figure 6(d). Since the new start di-
mension is City, the child nodes which do not contain the
dimension Store will append their dimension values to
their children. That is, the dimension value D2 is appended
to its three children, which become (C1, P1, D2),
(C3, P2, D2), (C2, P1, D2). These three nodes
will be merged with the node (C1) and the node (C3,
P3, D1). Then, the resultant three-dimensional range trie
appears in Figure 6(a)

5.2 Range Cubing Algorithm

If we generalize the example given above, the algorithm
can be obtained as in Figure 7. It starts from an initial
n − dimensional range trie, and does a depth-first traver-
sal of the nodes. For each node, it will generate a range
and recursively apply the cubing algorithm to it in case it is
not a leaf node. Then it will reorganize the range trie to a
(n − 1) − dimensional range trie and did the same thing
on it. Similar things happen to the (n− 1)− dimensional
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root           ( ):6

( C1):3 (C3):2

(P1):2 (P2, D2):1

(D2):1

(P2, D2):1

(C2, P1, D2):1

(P3, D1):1

(D1):1

(a) The range trie on dimensions
(City, Product, Date)

root           ( ):6

(P1):3 (P2, D2):2

(D1):1

(P3, D1):1

(D2):2

(b) The range trie on dimen-
sions (Product, Date)

root           ( ):6

(D1):2 (D2):4

(c) The range
trie on di-
mensions
(Date)

root           ( ):6

(C1):2 (D2):3 (C3, P3, D1):1

(P1, D1):1 (P2, D2):1 (C1, P1):1 (C3, P2):1 (C2, P1):1

(d) A temporary trie in transition from 4 −
dimension to 3− dimension

Figure 6. The process of range cube computation

range trie. After that, it comes to a (n− 2)− dimensional
range trie, a (n − 3) − dimensional range trie and so on.
The algorithm ends with a 1− dimensional range trie.

Algorithm 2: Range Cube Computation
Input: root1: the root node of the range trie;

dim: the set of dimensions of root1;
upper: the upper bound cell;
lower: the lower bound cell;

Output: the range tuples;
begin
for each dimension iDim ∈ dim{
for each child of root, namely, c,{

Let startDim be the start Dim of the c;
upper[startDim] = cś start dimension value;
set upper’s dims ∈ {c->key - startDim} to ∗;
set lower’s dims ∈ c->key to c->KeyValue;
outputRange(upper,lower, c->quant-info);
if c is not a leaf node
call range cubing on c recursively;

}
Traverse all the child nodes of the root and
merge the nodes with same next startDim value;
upper[iDim] = lower[iDim] = ∗;
iDim = next StartDim;

}
end;

Figure 7. Range Cube Computation algorithm

It is easy to see the number of recursive calls is equal
to the number of interior nodes. So the bound on the in-
terior nodes given previously provides a warranty of the
computational complexity. Moreover, each node gener-
ated represents a distinct set of tuples to be aggregated
for some cell(s), thus distinct aggregation values, so it can
be shown that it needs least number of aggregation oper-
ations in the algorithm, once the initial range trie is con-
structed. The proof is not shown here due to the space
constraint. The intuition is that each node represents a dis-
tinct aggragation values and each node representing some
n−dimensional cells is aggregated from those nodes rep-
resenting (n+1)−dimensional cells. In our example, the
total number of aggregation needed is 9 in range cubing.

All existing cube computation algorithms are quite sen-
sitive to dimension order since it determines the order to

compute cells. The range trie also depends on the dimen-
sion order as shown before. However, it is only used to en-
force the choice of start dimensions, that is, the start dimen-
sion of a child node must be larger than the start dimensions
of its ancestors. The range trie provides some flexibility to
dimension order since it not only allows the dimensions in a
child nodes might be smaller than the non-start dimensions
of the parents, but also allows different branch to have dif-
ferent dimension order based on the data distribution. This
feature makes range cube computation less sensitive to di-
mension order.

The favorite dimension order for the range cubing is also
cardinality-descending, which is the same as star-cubing
and BUC. Since the dimension with large cardinality is
more possible to imply the dimension with small cardinal-
ity, it won’t lead to much more number of nodes compared
to the range trie based on the cardinality-ascending order.
However, it produces smaller partition and thus achieves
earlier pruning, while it also generates more compressed
range cube.

6 Experimental results

To evaluate the efficiency of the range cubing algorithm
in terms of time and space, we conducted a comprehen-
sive set of experiments and present the results in this sec-
tion. Currently there exist two main cube computation algo-
rithms: BUC[4] and H-Cubing[9],that is shown to outper-
form BUC in cube computation. We cannot do a thorough
comparison with the latest star cubing algorithm, which is
to appear in VLDB03, due to time limit. We would like to
include it in the near future. In this paper, we will only re-
port result comparing with H-Cubing and more results with
comparison with star-cubing and condensed cube will be
included soon.As we will see, the experiments show that
range cubing saves computation time substantially, and re-
duces the cube size simultaneously. The range cube does
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Figure 8. Evaluating the effectiveness of
range cubing

not try to compress the cube optimally like Quotien-Cube
which finds all cells with identical aggregation values, how-
ever, it still compresses the cube close to optimality as
shown in the case of real dataset. It balances the compu-
tational efficiency and space saving to achieve overall im-
provements.

Both synthetic and real dataset are used in the exper-
iments. We used uniform and Zipf[18] distributions for
generating the synthetic data. These are standard datasets
most often used to test the performance of cube algorithms
[10, 15, 4]. The real dataset is the data of weather condi-
tions at various weather land stations for September 1985
[8]. It has been frequently used in gauging the performance
of cube algorithms [10, 15, 12]. We ran the experiments
on an AthlonXP 1800+ 1533MHz PC with 1.0G RAM and
50G byte hard disk.

We measure the effectiveness of range cubing on the ba-
sis of three metrics. The first one is the total run time to
generate the range cube from an input dataset, which mea-
sures the computational cost. The results about computa-
tion time without I/O are omitted since its improvement is
no worse than the total run time. The second one is tuple
ratio[15], which is the ratio between the number of tuples
in the range cube and the number of tuples in the full cube.
Tuple ratio measures the space compression of the resulting
cube, and the smaller the ratio the better. The third met-
ric is the node ratio, which is defined as the ratio between
the number of nodes in the initial range trie and that in the
H-Tree. The number of nodes is an important indicator of
the memory requirement of the cube computation. For a
specific dimension order, the less the number of nodes, the
better the performance.
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Figure 9. Evaluating the impact of skewness

6.1 Synthetic Dataset

First, we demonstrate the effectiveness of range cubing
and then show the performance in case of skewness and
sparsity. Finally we will investigate its scalability. ndfig-
ure

Effectiveness. This set of experiments shows the effec-
tiveness of range cubing in reducing time and space costs.
We use a synthetic dataset with Zipf distribution. The Zipf
factor is fixed at 1.5. We also fix the number of tuples at
200K and the cardinality of each dimension is 100. The
number of dimensions is varied from 2 to 10. Fig 8(a) shows
the timing result and Fig 8(b) shows the space compression
result.

When the dimensionality increases, both range cubing
and H-Cubing need more time and space. However, the pos-
sibility of data correlation increases too. So Range Cubing
does not grow as rapidly as H-Cubing does, and achieves
better time and space compression ratios. The computation
time of range cubing is one eighth of H-Cubing even with
a 6-dimension dataset. The space ratio improves as the di-
mensionality grows.

When the cube is very dense (2 to 4 dimensions), the
computation time and cube size of range cubing and H-
Cubing are almost the same. This shows that the lower
bound of a range trie is an H-Tree and a range cube in the
worst case is an uncompressed full cube.

Skewness. We investigate the impact of the data skew
in the second set of experiments. We set the number of di-
mensions to 6 and the cardinality of each dimension to 100
and the number of tuples to 200K. We generate the dataset
with the Zipf factor ranging from 0.0(uniform) to 3.0(highly
skewed) with 0.5 interval. Fig 9(a) and Fig 9(b) show how
the computation time and the cube size compression change
with regard to increased data skew.
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Figure 10. Evaluating the impact of sparsity

As data gets more skewed, both cubing algorithms de-
crease in their computation time, because their data struc-
tures adapt to the data distribution. The space compression
ratio increases with Zipf factor and it becomes stable af-
ter Zipf factor reaches 1.5. As data gets skewed, the space
compression in a smaller dense region decreases while the
space compression in the sparse region increases. When the
Zipf factor is about 1.5, the two effects balance. As noted
for BUC, and BUC-dup algorithms[4], they perform worse
as Zipf factor increases, and perform worst when Zipf factor
is 1.5.

Sparsity. To evaluate the effect of sparse data, we
vary the cardinality of dimensions while fixing other pa-
rameters. This is different from most prior experimental
evaluations[10, 15], which vary the number of tuples while
fixing the cardinality. The reason is that the latter approach
changes both the sparsity of the dataset and the experimen-
tal scale (the size of dataset). When we measure the cube
space compression ratio, we can assume that when we en-
large a dataset with a specific level of sparsity, the space
compression ratio will remain stable. However, a similar
assumption cannot be made for the run time. Hence, in or-
der to isolate only the sparsity effect, we vary the cardinal-
ity instead of the number of tuples. The results in Fig 10
are based on the dataset with Zipf factor of 1.5, the number
of dimensions is 6, and the number of tuples is 200K. The
cardinality of the dimensions takes the values 10, 100, 1000
and 10000.

When the cardinality gets larger, the run time used by
H-Cubing algorithm increases rapidly while that of range
cubing does not change much. The space compression ratio
improves. The reason is that more data coincidence hap-
pens when the data is sparse, resulting in a more compressed
range trie. This means that on average, a range tuple rep-
resents more cells. Meanwhile, the efficiency of h-cubing

comes from prefix sharing in the h-tree structure. It has less
prefix sharing as the cardinality increases, which makes its
preformance worse with larger cardinality.
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Figure 11. Evaluating the scalability of algo-
rithms

Scalability. We also measured how the algorithm scales
up as the dataset size grows. We vary both the number of tu-
ples and the cardinality, in order to accurately measure the
effect of experiment scale on the cubing algorithm. Most
prior research changed only the number of tuples to mea-
sure scalability. However, this will cause the dataset to get
denser simultaneously. Then the impact on the algorithm is
a hybrid of the increased density and the experiment size.
Therefore, we change both so that the dataset density re-
mains stable as the dataset size increases. In our experi-
ments, we use a dataset with 10 dimensions and Zipf factor
1.5. The cardinality ranges from 10 to 50 with 10 interval.
The number of tuples varies from 200K to 1M with the in-
terval of 200K.

The results in Fig 11 shows that range cubing is much
more scalable. The total run time in case of 200K tuples
with cardinality 10 for each of 10 dimensions is 412.3 sec-
onds for range-cubing and 1072.5 for H-Cubing. While H-
cubing goes up rapidly and reaches more than 387803 sec-
onds in case of 1M tuples with cardinality 50; Range cub-
ing in this case takes only 4104 seconds. As we can see, the
space compression ration is slightly better when the experi-
ment scale goes up, since the data density does not change.

6.2 Real Dataset

We used the weather dataset which contains 1,015,367
tuples. The attributes with cardinalities are as follows:
station-id (7,037), longitude (352), solar-altitude (179),
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latitude (152), present-weather (101), day (30), weather-
change-code (10), hour (8) and brightness (2).
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Figure 12. Evaluating performance on the real
dataset

The dimension order of the dataset does affect the perfor-
mance in the range cubing algorithm. As mentioned before,
it prefers to order dimensions by decreasing cardinality. The
reason is that it allows flexible dimension orders and may
have different dimension order on each branch. sensitive to
dimension order than other algorithms.

As we can see from the results in Fig 12, the range cub-
ing algorithm takes significantly less time and space than
H-Cubing. When we order the dimensions by the decreas-
ing cardinality,as favored by range cubing, it is more than
30 times faster than H-Cubing in its favorable dimension or-
der ( by increasing cardinality) and generates a range cube
with only 11.2% of the full cube size. Even in the least fa-
vorable dimension order (increasing cardinality), range cub-
ing takes less than one fortieth of the run time used by H-
Cubing in its least favorable order. The space compression
ratio of the range cube grows to 64% in its least favorable
dimension order.

7 Discussion and Future Work

This paper proposes a new cube computation algorithm,
which utilizes the correlation in the datasets to effectively
reduce the computational cost. Although it does not com-
press the cube optimally, its goal is to achieve overall speed-
up by balancing computational efficiency and space effi-
ciency. It not only substantially reduces computational time
of the cube construction, but also generates a compressed
form of the cube, called the range cube. The range cube is
a partition of the full cube and effectively preserves its roll-
up/drill-down semantics. Moreover, a range is expressed as
a tuple similar to a cell, so that it preserves the format of the
original dataset. These desirable properties facilitates in-
tegration of range cube with existing database applications
and data mining techniques.

Since the range trie reduce the effective dimensions of
input datasets, it should good at handling high-dimensional
sparse or correlated dataset. Even when the dataset is fully
dense, the range trie degrades to the H-Tree, and the range
cube is a full cube.

Our current efforts include incorporating constraints
with range cube computation, dealing with holistic func-
tions, and applying some other compression techniques to
compress the cube. Supporting incremental and batch up-
dates, are to be explored in the future.
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