
EFFICIENT FILTRATION OF SEQUENCE HOMOLOGY
SEARCH THROUGH SINGULAR VALUE DECOMPOSITION

S. ALIREZA AGHILI, ÖZGÜR D. ŞAHİN,
DIVYAKANT AGRAWAL, AMR EL ABBADI

Department of Computer Science,
University of California-Santa Barbara,

Santa Barbara, CA 93106
{aghili,odsahin,agrawal,amr}@cs.ucsb.edu

Similarity search in textual databases and bioinformatics has received substantial
attention in the past decade. Numerous filtration and indexing techniques have
been proposed to reduce the curse of dimensionality. This paper proposes a novel
approach to map the problem of whole-genome sequence homology search into
an approximate vector comparison in the well-established multidimensional vector
space. We propose the application of Singular Value Decomposition(SVD) dimen-
sionality reduction technique as a pre-processing filtration step to effectively reduce
the search space and the running time of the search operation. Our empirical re-
sults on a Prokaryote and a Eukaryote DNA contig dataset, demonstrate effective
filtration to prune non-relevant portions of the database with up to 2.3 times faster
running time compared with q-gram approach. SVD filtration may easily be inte-
grated as a pre-processing step for any of the well-known sequence search heuristics
as BLAST, QUASAR and FastA. We analyze the precision of applying SVD fil-
tration as a transformation-based dimensionality reduction technique, and finally
discuss the imposed trade-offs.

1 Introduction

The problem of similarity search and the corresponding applications have been
extensively studied within the past decade, especially in the context of textual
and biological databases. Errors and modifications are observed in a variety
of applications originating from typographical mistakes(Data cleansing), in-
consistent attribute design conventions(Data integration), or even being part
of a natural mutational mechanism(Genomics). The approximate k-Nearest
Neighbor(kNN) seeks the k-closest strings of the database to the given query
string using an appropriate distance function. Approximate sequence analysis
has enabled the detection of certain strains of the Escherichia coli(E.coli) bac-
teria responsible for infant diarrhea and gastroenteritis. Meanwhile, looking
for pairwise whole-genome homology search most of the database should be
searched, although most of the inspected strings may not actually result in
the answer set. As a result, the expensive inspection of non-relevant strings
impacts the performance dramatically. Similarly, the problem of keyword
search in textual and web data mining has been well-studied within the past

1

years. Mathematical techniques such as Singular Value Decomposition(SVD)
have been used to replace the massive term-by-document matrices with much
smaller matrices and perform the approximate search in the reduced matrix
space. Using such techniques, unimportant words get discarded and the search
process is only singled out to highly relevant words. In this paper, we consider
the integration of a textual data mining technique as an efficient filtration on
genomic data to leverage the cost and scalability of the approximate search
process. We map the problem of pairwise whole-genome sequence compari-
son into an approximate vector comparison in the well-established relational
database context. We propose the integration of Singular Value Decomposi-
tion(SVD) as a pre-processing filtration step towards whole-genome k-Nearest
Neighbor(kNN) search. Our simulations study the corresponding filtration ef-
ficiency gained by the proposed technique on a Prokaryote and a Eukaryote
DNA contig dataset.

The rest of the paper is organized as follows: Section 2, discusses the back-
ground and related work. Section 3 introduces the terminology and formula-
tion of the problem, followed by the proposed technique in section 4. Section
5 demonstrates a concise empirical performance analysis and the simulation
results followed by section 6, which concludes the work.

2 Background, Related Work

In a typical application of kNN, given a string dataset S and a query string
q, all the string tuples of S are compared against q, in search for the k-closest
substring tuples Si to query q. However, because of the quadratic time in-
volved, the dynamic programming16,18 algorithms are not feasible. Several
heuristics 3,5,6,12,17 have been proposed to speed up the similarity search phase
of the procedure in the case of range query and k-nearest neighbor search. To
the best of our knowledge, this study is the first effort to facilitate efficient
filtration for genome-wide approximate sequence search using Singular Value
Decomposition(SVD).

Jin, Li, and Mehrotra10 map the strings of the database into the Euclidean
space and use d dimensions to represent each string in the feature space. Fur-
thermore, a new range threshold δ for the new feature space is empirically
found and all pairs of strings whose feature vector distances are greater than
δ are pruned. However, i) the number of dimensions d, is found empirically,
which is very much data dependent, ii) range threshold δ, is found empiri-
cally by sampling random subsets of the database which may potentially re-
sult in a large number of false negatives. Gravano et al.9 target the problem
of approximate join in textual relational databases. They extract positional
q-grams9,11,15 from each of the strings and apply count, positional, and length

2

filtering to prune out-of-range string pairs. Furthermore, the SQL equivalents
of the proposed operations are represented, and the work is also extended
for edit distances with block shifts. Multi-Resolution index Structure(MRS)12

uses a sliding window of size |w| and extracts the first and second Haar wavelet
coefficients of the corresponding windows. Given a range query (Q, r), MRS
seeks the result set in different resolution levels of maximum postfix segments.
However, the authors12 only focus on the cost of MRS, and do not evaluate the
filtration efficiency of their proposed technique.

Chavez and Navarro6 translate the problem of approximate string search
into a range query or proximity search in a metric space. The technique is
based on picking k pivots randomly, and mapping each sequence with a k-
dimensional vector, and further using triangle inequality to prune non-relevant
sequences using Suffix Tree4 as an index structure. No empirical analysis is con-
ducted to evaluate this approach on real biological data. SST8 uses overlapping
sliding windows of size w over the database sequences and maps them into
4w-dimensional frequency vectors. Furthermore, SST uses k-means cluster-
ing algorithm to hierarchically cluster database sequences. It first divides the
database sequences into non-overlapping windows. Given a query P, it prunes
the database windows which are further from the given query range. The
authors8 finally study the effect of window size on search time, error rate, and
true positive/negative rates of the proposed technique. Most similarly, Aghili
et al.1,2 provide a concise study of Discrete Fourier Transformation(DFT),
Discrete Wavelet Transformation(DWT) and Bit-Filtration Technique(BFT)
as pre-processing filtration techniques for approximate join and range queries.
In this work, we propose a new pre-processing filtration technique to the prob-
lem of k-Nearest Neighbor(kNN) search in the context of biological databases,
and study the imposed trade-offs.

3 Terminology, Formulation

The traditional database search operation is based on the exact matching of
string tuples, while the approximate search is based on the approximate match-
ing of the string tuples. Initially, we build a relational database view on top of
the raw DNA contig datasets13 by chopping its contig sequences into equal-sized
subsequences(blocks). This procedure is called block-based mapping, which fa-
cilitates the initial step of mapping the problem of whole-genome sequence
homology search into an approximate string search in the context of relational
databases(Fig. 1).

The following definitions introduce the steps in transforming the original
domain(set of strings) to frequency domain(set of feature vectors):

Definition 1 (k-Nearest Neighbor, kNN) Let S = S1, . . . , SN be a string

3

offline

3
0

Relation S

6

s
1

s
2

s
m

9

TGCATG

GAGGTA

ACCTGC

ATGCAT

CATGCA

pos tuple
ACCTGCATGCATGC
ATGCATGCATGCAT
ATAGAACGCGCTAG
CTACGGCCCCCCTA
GCTTACACAACTGA
CTCAGATCGAGGTA

String dataset S

BLOCKING

ACC TGC ATG CAT GCA GAG GTA...

b2 b4 b
m-1

b1 b3 b
m

Figure 1: The block-based mapping procedure for block size = 6.

database over the alphabet Σ. Let Si,j denote a subsequence of Si starting at
index j, for 1 ≤ i ≤ N and 0 ≤ j < |Si|, where |Si,j | = |Si| − j. Given a query
pattern P ∈ Σ∗, an integer k, and distance function d, the kNNd

q (S, P) is the
problem of finding the k closest subsequences Si,j to the query pattern P.
Definition 2 (frequency vector) Let s be a string over the alphabet Σu =
{α1, . . . , αu}, then the q-tuple frequency vector of s is a row vector fq(s) and
defined as: fq(s) = [f1, . . . , fuq], where each fi is a positive integer correspond-
ing to the occurrence frequency of ith q-sized substring from Σu in s.

For instance, for Σ={A,C,G,T}, q=2, and string s = AGGTTGCAATTA:
f2(s)=[1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 2] where the first entry is used to represent
the frequency of AA, second entry for AC, third entry for AG, ..., and the last
entry to represent the frequency of TT in s.
Definition 3 (frequency quantization) Let S = {S1, . . . , Sn} be a string
relation from the alphabet Σu. The q-tuple frequency quantization of relation
S, SF

q = [ξ1, . . . , ξuq], is an (n × uq) matrix, where each vector ξj corresponds
to the (n × 1)-dimensional column vector for jth q-tuple of all Si strings, for
1 ≤ j ≤ uq.

In other words, Definition 3 is equivalent to extracting the frequency vec-
tors for each of the tuples of the given string relation S and placing them as
rows in a new matrix SF . Hence, for

S =

[
A G G T T G C A A T T A
C C G T A A T T A G G C
T G T G C C C A G G A C

]
,

applying frequency quantization(Def. 3) results in:

SF
2 =

[
1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 2
1 1 1 1 0 1 1 0 1 0 1 1 2 0 0 1
0 1 1 0 1 2 0 0 1 1 1 1 0 0 2 0

]
.

Definition 4 (Singular Value Decomposition, SVD) SVD decomposes a
matrix A ∈ Rm×n into the product of two orthonormal matrices, U ∈ Rm×m,

4

V ∈ Rn×n, and a pseudo-diagonal matrix Σ = diag(σ1, . . . , σr) ∈ Rm×n where
r ≤ min(m,n) (all the components except the first r diagonal components are
zero), such that A = UΣV T . By convention, the diagonal elements σi of Σ,
named singular values, are all non-negative and are sorted in decreasing order.

One way to solve the kNN problem is as follows: Given relation S, compare
all tuples of S against the query pattern P using Edit Distance(ED)a as the
distance measure, either through direct application of dynamic programming
16,18 or other popular heuristics3,5,17. Although this approach is correct, it
is not practical/scalable for two reasons: First, sequence databases may in-
volve a large number of very large sequences(e.g. Chr22 as the smallest human
chromosome 13 consists of approximately 35 million base pairs) resulting in
severe performance penalty. Secondly, the prohibitive computational cost of
alignment or even heuristic-based sequence comparison makes it impractical
or inefficient, respectively. A solution could involve mapping the approximate
string similarity search of the sequence domain into a vector comparison in a
vector domain using a well-defined Frequency Distance (FD), to benefit from
much more time/space-efficient numerical methods in the literature. One way
is to use a mathematical transformation to map each string Si into its cor-
responding n-dimensional frequency vector fq(Si), for a given tuple size q,
and use an appropriate frequency distance function to approximate the edit
distance of the original string domain1,2,6,8,9,10,12,14.

The calculation of distance in the frequency domain is linear in time/space,
which is much more efficient compared to the calculation of the distance in
the original string domain which is quadratic in time/space, for the price of
generating some false positives. Hence, approximate string search is potentially
much more efficiently evaluated incorporating the frequency domain properties.
These claims are further validated in the simulation study section.

4 Proposed SVD-Filtration Technique
Given the string dataset S with a total of B blocks, we first extract its blocks
and construct the relational equivalent of it as S= {S1, . . . , SB}(Fig. 1). The
tuple extraction procedure is very fast and needs only a single scan of the given
database. In the second step, the corresponding frequency vector(s), fq(Si),
are extracted into the resulting relation SF

q = {fq(S1), . . . , fq(Sn)}(Fig. 2).
The schema of SF

q has two attributes: i) The index of the tuple in the original
database as the primary key, and ii) |Σ|q-dimensional frequency feature vector.

The transformation-based SVD filtration is an automated procedure ex-
cept for the choice of required precision or in other words the desired amount

aMinimum number of Insertion, Deletion, and Replacement operations needed to convert
a string into another string.

5

S

q-gram extraction
(q = 1)

[2 2 4 1]

Singular Value Decomposition(SVD) Filtration
offline online

s'
R1

s'
Rm

s'R2

Relation S

s
1

s
2

s
m

pos string tuple

0

8

4

CCGTACAGA

ACAGATTCC

ATTCCGGGA

AAACGCTAA

[3 3 1 2]

[3 3 2 1]

[2 2 3 2]

pos vector tuple

0

8

4

[5 2 1 1]

Relation SF

SVD
T

nrrm VU nmS

3 3 2 1
3 3 1 2
2 2 3 2

5 2 1 1

CCGTGGAGA

Pattern P

m n m r r n
r r

))((VPfq
'P

1 r

[]___

'S m r

Inspect the SVD-reduced tuples S'Ri

Sort them in increasing order based on d(S'Ri ,P')

Pick the first k elements from the sorted list

qm

F
qS

4
)(

)(VS F
q

q41
)(Pfq

f
1
(S

1
)

f1(S2)

f
1
(S

m
)

Figure 2: The SVD filtration procedure for block size = 9, and q = 1.

of reduction. The general process is depicted in Figures 2-3. Given the genome
dataset S and query pattern P, the kNN procedure is performed in two differ-
ent stages: offline and online. In the offline stage, all the blocks/tuples Si are
extracted, and each tuple is mapped onto its corresponding frequency feature
vector(Def. 2). As a result, S is mapped into SF

q frequency vector matrix,
which is a row matrix of frequency feature vectors fq(Si). Each fq(Si) keeps
the quantity of each q-sized substring(q-gram) of the original string Si. Fur-
thermore, SVD is applied on SF

q , decomposing it into U, Σ, and V matrices.
Finally, the reduced version of the frequency vector matrix SF

q is calculated
as S′ = SF

q × V . The actual kNN operation is performed in the online stage.
Initially, the reduced version of P is calculated: P→ fq(P) → P′ = fq(P) × V .
All the reduced vector tuples of the relation S′ are compared against P′ and
the k-closest tuples of S to P are reported. All the remaining tuples are pruned
from further investigation.

The q-gram technique9,11 uses the original SF
q matrix. However, each of

the frequency vectors, fq(Si), is of size |Σ|q which grows exponentially with
the value of q. For instance, for |Σ| = 4 and q = 3: each of the frequency
vectors is 64-dimensional. Note that, SVD reduces the dimension of the vector
representation of S from B×4q(of SF

q) to B×r(of S′), where r is the rank of
SF

q matrix. This is the main intuition behind applying SVD, to remove the
“curse of dimensionality”, while i) r � 4q, and ii) SVD captures the shape of
the vector reasonably well.

After applying either SVD or q-gram filtration techniques to extract the
candidate set, we perform dynamic programming18 on the candidate set as

6

Offline pre-processing phase, Given the string database S∈ Σ∗, and integer q:

1. (Half-overlapped block-based partitioning) Slide the blocking window of size b on
the original DNA dataset S and extract the corresponding b-sized tuples, parti-

tioning S on positions 0, b
2
, 2b

2
, . . . into a total of B = � |S|−b+1

� b
2 � � blocks. Let Sj

denote the block/tuple extracted from S, at position j, where 0 ≤ j < |S| − b,

2. Represent the dataset S with its corresponding relational representation, its tuples
being the extracted blocks, and index j as the primary key of the relation,

3. Perform the frequency quantization on S, constructing SF
q as a B × |Σ|q matrix,

4. Apply SVD transformation on the matrix SF
q , and calculate the corresponding U ,

Σ, and V matrices,

5. Calculate the product S′ = SF
q × V (S′ is the SVD-reduced version of S),

6. Build an offline index structure on S′[index#, reduced tuple vector].

•———————————————————————————————— •
Online filtration phase, Given query pattern P, distance function d(cosine or Lp), and
integers k, q:

1. Calculate the frequency vector of P as fq(P),

2. Calculate P′ = fq(P) × V (P′ is the SVD-reduced version of P),

3. Allocate a k′-sized table τ , for (k′ > k),

4. Insert first k′ vectors of S′ into τ in increasing order of their distance to P′,
for i = k′ + 1 to n: do

if d(Si,P′) < d(Si, τ [k′]) then
• Remove τ [k′],
• Insert Si onto its proper location in the sorted table τ .

� Refinement step: Apply dynamic programming on the remained k′ tuples in τ ,
and output the k-closest tuples to the query pattern.

Figure 3: Approximate k -Nearest Neighbor(kNN) process.

the final stage to get the actual answer set, removing the false positives. Ad-
ditionally, a multidimensional indexing structure7 could be incorporated on
the extracted frequency vectors for more efficient tuple pruning. However, we
intend to study the impact of the various indexing schemes in our future work.

The main idea of applying SVD filtration is as follows: Instead of cal-
culating the approximate kNNED

q (S, P), we may inspect the frequency vec-
tor domain for kNN. However, this may result in false negatives. Hence,
we would need to look for a potentially, slightly larger value k′(≥ k) in the
vector space(k′NNFD

q (S′, P ′)) to capture all the actual kNN. All the strings
Si /∈ k′NNFD

q (S′, P ′) may be pruned from the answer set without the need to
further calculate the costly dynamic programming operation. This property
dramatically reduces the computational cost and the search space of calculating
approximate kNNED

q (S, P). The total search space would be reduced to ρ = k′
B

(where 0 < ρ � 1). We empirically observed that k′NNFD
q (S′, P ′) contains

most of the elements of kNNED
q (S, P), specially when there are reasonably

enough number of close-match sequences in the database to the query.

7

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300

Number of strings

S
tr

in
g
 L

en
g
th

Alu contig strings

0

50000

100000

150000

200000

250000

1 21 41 61 81 101 121

Number of Strings
Mitochondria contig strings

Figure 4: Distribution of string(contig) lengths for Alu, and Mitochondria datasets.

Table 1: The datasets used in our simulations for block size = 32.

Dataset A C G T Size # of Blcoks

Alu 24301 18271 22192 15742 80506 4555
Mitochondria 1024379 647278 502392 989164 3163213 197580

5 Performance Analysis

We compared the performance of SVDb as a pre-processing filtration tech-
nique against q-gram 9,11 filtration and used dynamic programming 18 as the
benchmark. Our implementation closely follows the depicted procedures of
Figures 1-3. Within the context of vector comparison in multidimensional in-
dexing, cosine similarity distance measure is one of the most popular choices
for frequency distance(FD) or vector similarity function. We should apply the
frequency distance function which demonstrates a better estimate of the ED
in the original domain, or in other words “more precisely” reflecting the sim-
ilarity/distance across the sequences. The better the choice of FD, the more
effective filtration is expected. For any two SVD-transformed vectors U, V :
we deploy the cosine similarity function among vectors which is defined as
cosθ(U, V) = U·V

||U||·||V || .

We incorporated various blocking schemes on string datasets for the re-
lational database conversion procedure: i) Consecutive partitioning: Each
of the consecutive blocks of length b, overlap by b − 1 residues, ii) Half-
overlapped partitioning: Each of the consecutive blocks of length b, overlap
by b/2 residues(Fig. 1), and iii) non-Overlapped partitioning, where the whole
data is chopped into l = θ(log|Σ||S|) 15 partitions of various length. Extract-
ing more blocks during the block partitioning phase, e.g. case (i) versus (ii),
results in more precise string search but higher computational cost. However,
due to space limitation, we did not include those results in this study.

bThe frequency vectors were reduced to 5 dimensions using SVD.

8

5.1 Implementation and Simulation Results

We implemented all the desired algorithms using Java 1.4.2, and ran our sim-
ulations on an Intel Xeon 2.4GHz processor with 2GB of main memory. The
experimental analysis was performed on a Prokaryote and a Eukaryote genome
dataset (Alu, and Mitochondria) 13. The statistics of the incorporated data
are depicted in Fig. 4, and Table 1. In the blocking process, we applied half-
overlapped partitioning with block size= 3 and q = 3. Additionally, we could
use variable block lengths on our DNA datasets however, we only included the
result for the uniform blocking for the sake of simplicity.

Identification of highly conserved sequences, which are likely to correspond
to essential sites for the function or the structure of the sequence, is one of the
main goals of approximate sequence search in bioinformatics. High similarity
among two sequences (very few edit operations) may imply similar functional
relationships or interactions, mutual inclusion in the same biological pathway,
or may be used to infer evolutionary relationships. Consider the case where the
query pattern does not have close-match counterparts in the desired database.
In this case, the kNN will return a set of sequences, which are closest to the
query pattern compared with other sequences of the database. However, if
the distance among the query pattern and the returned nearest neighbors is
high, then the returned results of the nearest neighbor search would be of no
practical use. Moreover, the cosine distance among two SVD-reduced vectors
may only reflect the actual similarity of the given sequences, if the sequences
are close-match counterparts. This problem arises when there are no real
close-match sequences in the database to the given pattern. Such queries are
not very desirable since they will not provide any meaningful implication. A
more desirable case is to look for similar patterns to a given query in the
database which actually contains some close variations of the query pattern,
and study how well the proposed techniques would perform in capturing those
occurrences. For this reason, we performed an exhaustive search on both
datasets and for each of them we picked a query pattern of length 32, for
which the dataset actually contained some close-match blocks. More precisely,
the query for each of the Alu and Mitochondria datasets had its actual 20
nearest neighbors within 2 and 4 edit distance, respectively.

Figures 5-6 demonstrate the filtration efficiency of applying SVD filtra-
tion compared with q-gram9,11, and dynamic programming18 techniques on the
above datasets for up to 200K total number of block comparisons on each
dataset. The results are summarized in the following three sections:

• True Positive Rate(TPR): Figure 5 depicts the true positive rate
or the actual kNN returned by SVD and q-gram filtration against dynamic

9

programming method on Alu and Mitochondria datasets as a function of k.
The vertical axis shows the number of returned correct results with k on the
horizontal axis. The values returned by dynamic programming are the actual
correct results and used as a benchmark. A large portion of the correct results
were returned by simply trying kNN on the reduced vectors produced by SVD,
which might be sufficient enough for approximate search, though with much
faster response time. The results of SVD on Mitochondria dataset was very
promising and close to q-gram method. On the average among the inspected 5
values of k, the percentage of the correct kNN results captured by using only
SVD filtration(for k′ = k) is 74% and 57.6% on the Mitochondria and Alu
datasets, respectively.

• Filtration Ratio: In Figure 6, the vertical axis demonstrates the size
of the minimum subset produced by SVD and q-gram, that includes the actual
k-closest tuples to the given query pattern which is found through dynamic
programming. The vertical axis corresponds to the optimal value for k′ for
the given value of k on the horizontal axis. For instance, looking for 8 nearest
neighbors(k = 8) on the Mitochondria dataset, we need to inspect at least
20 nearest neighbors(k′ = 20) in the SVD domain to capture all the actual 8
nearest neighbors. Hence, the application of SVD efficiently reduces the search
space from B=197580 blocks to k′ = 20 blocks, whereafter dynamic program-
ming may be applied to eliminate the false positives. In general, a higher filtra-
tion efficiency is achieved when k and k′ are closer to each other. Similarly, for
low values of k(< 10) on Alu, the actual nearest neighbors are captured by just
trying the SVD method for k′=k. This means no false positives and no false
negatives for k < 10 on Alu. Meanwhile, the results get worse with increasing
values of k, however the filtration ratio is still considerably high. For instance,
for k = 20, the filtration ratio is equal to FR = k′

B = 200
197580 = 0.001, meaning

that more than 99% of the database may effectively be pruned. These graphs
may be stored(offline) as a profile for each of the given datasets to assist in
estimating(online) a good value for k′. We also note that in comparison with
q-gram, the filtration of SVD is quite good. In the Alu dataset the size of
the minimum subset is identical up to k = 8, and in the Mitochondria dataset
although the size of the minimum subset is bigger in SVD, it is still comparable
to q-gram for up to k = 14.

• Running Time: Table 2 shows the average running time of approxi-
mate kNN for k = 20. SVD is slower than q-gram on the computation side,
which is because of the floating-point matrix multiplications performed by SVD
for query reduction and angle computations. However, when taking the I/O
response time into account as well, SVD performs up to 2.3 times faster than
q-gram. This property is very desirable in the case of online or interactive

10

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Nu
mb

er o
f co

rrec
t re

sul
ts

Number of Nearest Neighbors (k)

Actual k-Nearest Neighbors returned for Alu dataset

Dynamic Programming
q-gram

SVD

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Nu
mb

er o
f co

rrec
t re

sul
ts

Number of Nearest Neighbors (k)

Actual k-Nearest Neighbors returned for Mitochondria dataset

Dynamic Programming
q-gram

SVD

Figure 5: True Positives for kNN on Alu and Mitochondria datasets.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 4 8 12 16 20

S
iz

e
of

 th
e

m
in

im
um

 s
ub

se
t c

on
ta

in
in

g
kN

N

Number of Nearest Neighbors (k)

k-Nearest Neighbor on Alu dataset

SVD
q-gram

Dynamic Programming

 0

 20

 40

 60

 0 4 8 12 16 20

S
iz

e
of

 th
e

m
in

im
um

 s
ub

se
t c

on
ta

in
in

g
kN

N

Number of Nearest Neighbors (k)

k-Nearest Neighbor on Mitochondria dataset

SVD
q-gram

Dynamic Programming

Figure 6: Filtration of approximate kNN on Alu and Mitochondria datasets.

approximate query search where the reduced vectors can be read much faster
from the disk and leads to much less network traffic, resulting in faster overall
query response time. q-gram is slower than dynamic programming when taking
the I/O into account, because reading the original |Σ|q-dimensional frequency
vectors used by q-gram takes more time compared with reading string blocks
of length 32(block size < |Σ|q), which dominates the computation time. The
I/O portion may be further reduced by incorporating a caching technique or
loading all the vectors into the main memory.

Table 2: Average running time(in milliseconds) of approximate kNN, for k=20.

Computation Computation + I/O
Alu Mitochondria Alu Mitochondria

Dynamic Programming(DP) 300 11693 1248 30315
q-gram(with DP refinement) 7 117 1434 36210
SVD(with DP refinement) 24 363 984 15239

11

6 Conclusion
In this paper, we proposed a novel, yet simple, filtration technique for the
genome-wide homology search using Singular Value Decomposition(SVD) to
eliminate undesired tuple comparisons. We studied its integration on biologi-
cal databases for the problem of approximate k-Nearest Neighbor search. SVD
may be applied as a pre-processing filtration step for any of the known heuristic
techniques like BLAST3, QUASAR5, FastA17, and even the dynamic program-
ming sequence alignment16,18. Our results show that applying the proposed
technique, an efficient and fast filtration is achieved when the database con-
tains close-match patterns to the given query. The filtration ratio is very much
data dependent and no generalization on the min/max filtration ratio or true
positive rates can be suggested. However, the empirical results show a promis-
ing performance behavior of SVD filtration. In particular, SVD’s filtration is
comparable to q-gram9,11 in most interesting cases of comparison, while being
much faster in terms of I/O, e.g. we have shown that on different datasets, up
to 2.3 times faster running time can be achieved.

Acknowledgments
This research was supported by the NSF grants under EIA02-05675, EIA99-
86057, EIA00-80134, and IIS02-09112.

References
1. S.A. Aghili, D. Agrawal and A. El Abbadi, Filtration of String Proximity Search via

Transformation. BIBE , 149-157 (2003).
2. S.A. Aghili, D. Agrawal and A. El Abbadi, BFT: Bit Filtration Technique for Ap-

proximate String Join in Biological Databases. SPIRE , (2003).
3. S. Altschul et al, J. Molecular Biology 215, 403–410 (1990).
4. A. Apostolico, Combinatorial Algorithms on Words, NATO ISI Series, Springer-

Verlag , 85–96 (1985).
5. S. Burkhardt et al, RECOMB , 77–83 (1999).
6. E. Chavez and G. Navarro, LATIN , 181–195 (2002).
7. V. Gaede and O. Günther, ACM Computing Surveys 30, 170–231 (1998).
8. E. Giladi et al, Bioinformatics 18, 873–877 (2002).
9. L. Gravano et al, VLDB , 491–500 (2001).

10. L. Jin et al, UCI ICS Technical Report, TR-DB-02-04 (2002).
11. P. Jokinen and E. Ukkonen, Two Algorithms for Approximate String Matching in

Static Texts. MFCS 16, 240–248 (1991).
12. T. Kahveci and A.K. Singh, VLDB , 351–360 (2001).
13. National Center for Bio. Information(NCBI), http://www.ncbi.nih.gov/.
14. G. Navarro et al, J. Discrete Algorithms 1, 205–239 (2000).
15. G. Navarro et al, IEEE Data Engineering Bulletin 24, 19–27 (2001).
16. S.B. Needleman et al, J. Molecular Biology 48, 443–453 (1970).
17. W.R. Pearson, Methods Molecular Biology 25, 365–389 (1994).

18. T.F. Smith et al, Identification of Common Molecular Subsequences. J. Molecular

Biology 147, 195–197 (1981).

12

