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Abstract. Joining massive tables in relational databases have received
substantial attention in the past decade. Numerous filtration and index-
ing techniques have been proposed to reduce the curse of dimensionality.
This paper proposes a novel approach to map the problem of pairwise
whole genome comparison into an approximate join operation in the well-
established relational database context. We propose a novel Bit Filtra-
tion Technique (BFT) based on vector transformation and furthermore
conduct the application of DFT(Discrete Fourier Transformation) and
DWT(Discrete Wavelet Transformation, Haar) dimensionality reduction
techniques as a pre-processing filtration step to effectively reduce the
search space. BFT reduces the search space and the running time of the
join operation drastically. Our empirical results on a number of Prokary-
ote and Eukaryote DNA contig databases, demonstrate up to 99.9% fil-
tration ratio to efficiently prune non-relevant portions of the database,
incurring no false negatives, with up to 50 times faster running time
compared with traditional dynamic programming, and q-gram extrac-
tion approaches. BFT may easily be incorporated as a pre-processing
step for any of the well-known sequence search heuristics as BLAST,
QUASAR and FastA, for the purpose of pairwise whole genome compar-
ison. Additionally, we discuss the integration of our proposed techniques
for more efficient approximate join in the text databases, data integra-
tion, and data cleansing. We analyze the precision of applying BFT and
other transformation-based dimensionality reduction techniques, and fi-
nally discuss the imposed trade-offs.

1 Introduction

Traditional query languages and relational databases have been mainly
designed for exact query search, and the problem of similarity search and
the corresponding applications have been extensively studied within the
past decade, especially in the context of biological databases. However,
not enough advances have been made to address the need for approxi-
mate queries. In particular, mainstream database research has not paid
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substantial attention to the issue of approximate pairwise whole genome
similarities. Errors and modifications are observed in a variety of appli-
cations originating from typographical mistakes(Data cleansing), incon-
sistent attribute design conventions(Data integration), or even being part
of a natural mutational mechanism(Genomics). Each of these events may
result in a series of changes on the original strings from a global point
of view. The approximate search seeks the sequences close enough to
a given query sequence either through direct alignment[15, 17] or using
other heuristics [1, 16, 18]. For instance, approximate sequence analysis
has enabled the detection of certain strains of the Escherichia coli(E.coli)
bacteria responsible for infant diarrhea and gastroenteritis. Similarly in
large and modern enterprises, it is inevitable that different branches of the
organization would need a large amount of external data, retrieved from
other resources, to be integrated into the existing database. Such data
would most probably use a different schema and/or tuple representation
conventions, probably generated by different database engines. Integra-
tion of such data sources (approximate join to suppress the duplicates)
leads to an enormous challenge since the corresponding database relations
might each include hundreds of millions of records(e.g. digital libraries).
Looking for pairwise whole genome homology search, or very large scale
string joins, neither the dynamic programming algorithms nor the heuris-
tics [1, 16, 18, 13, 14, 7] may practically be applied. In such cases, the entire
database should be searched, although most of the inspected strings may
not actually result in the answer set. As a result, the expensive inspection
of non-relevant strings impacts the performance dramatically.

The mentioned applications, motivations, and shortcomings trigger
the necessity of incorporating efficient filtration techniques to leverage
the complexity and scalability of the problem. In this paper we propose
a novel approach to map the problem of pairwise whole genome com-
parison into an approximate join operation in the well-established rela-
tional database context. Furthermore, we apply the proposed BFT(Bit-
Filtration Technique), and additionally, DWT(Discrete Wavelet, Haar)
and DFT(Discrete Fourier Transformation) as pre-processing filtration
techniques. Our simulations study the approximate join operation and
the corresponding filtration efficiency gained by the proposed techniques
while dealing with relations with up to 1.3 billion tuple comparisons in
the worst case.

The rest of the paper is organized as follows: Section 2, discusses the
background and related work. Section 3 introduces the proposed tech-
niques. Section 4 demonstrates a concise empirical performance analysis
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and the simulation results followed by section 5, which concludes the
work.

2 Background, Related Work

In a typical application of approximate join, given two string datasets
S and T, and range r, all the string tuples of S are compared against
all string tuples of T, in search for pairs of string tuples which are at
most r edit operations far from each other. However as mentioned before,
because of the quadratic time involved, the dynamic programming[17, 15]
algorithms are not feasible. Several heuristics [4, 11, 3, 1, 16] have been
proposed to speed up the similarity search phase of the procedure in the
case of range query and k-nearest neighbor search. Most of these heuristics
need to inspect the entire database while only a very small part of it might
actually be of interest. To the best of our knowledge, this study is the first
effort to i) facilitate efficient filtration for approximate join queries using
discrete transformation techniques, and ii) map the problem of pairwise
whole genome comparison into a relational approximate join operation of
the database context.

Jin, Li, and Mehrotra[9] map the strings of database into Euclidean
space and use d dimensions to represent each string in the feature space.
Furthermore, a new range threshold δ for the new feature space is em-
pirically found and all pairs of strings whose feature vector distances are
greater than δ are pruned. However, i) the number of dimensions d is
found empirically, which is very much data dependent, ii) range thresh-
old δ, is found empirically by sampling random subsets of the database
which results in false negatives! Gravano et al.[7] target the problem of
approximate join in textual relational databases. They extract positional
q-grams[10, 14] from each of the strings and apply count, positional, and
length filtering to prune out-of-range string pairs. Furthermore, the SQL
equivalents of the proposed operations are represented, and the work is
also extended for edit distances with block shifts. Multi-Resolution in-
dex Structure(MRS)[11] uses a sliding window of size |w| and extracts
the first and second Haar wavelet coefficients of the corresponding win-
dows. Given a range query (Q, r), MRS seeks the result set in different
resolution levels of maximum postfix segments. However, i) MRS only
addresses the problem of range query and k-nearest neighbor, and ii) the
focus of the work is on the cost of their index structure/procedure, rather
than the analysis of the filtration efficiency, and precision of the proposed
approach.
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Chavez and Navarro[4] translate the problem of approximate string
search into a range query or proximity search in a metric space. The
technique is based on picking k pivots randomly, and mapping each se-
quence with a k-dimensional vector, and further using triangle inequality
to prune non-relevant sequences using Suffix Tree[2] as an index structure.
No empirical analysis is conducted to evaluate this approach on real bi-
ological data. SST[6] uses overlapping sliding windows of size w over the
database sequences and maps them into a IR4w

-dimensional frequency
vectors. Furthermore, SST uses k-means clustering algorithm to hierar-
chically cluster database sequences. Given a query Q, it is first divided
into non-overlapping windows, pruning the database windows which are
farther from the given query range, and finally studying the effect of
window size on search time, and error rate of input data on true pos-
itive/negative rates. Finally, authors in [19] provide a concise study of
DFT and DWT transformations, but only in the context of time-series
databases.

3 Proposed Techniques

The traditional database join(�) operation is based on the exact matching
of string tuples, while the approximate join(�̃) is based on the approxi-
mate matching of the string tuples. Initially, we perform the block-based
mapping1 procedure as depicted in Fig. 1. Given string databases T and
S: i) perform the block-based mapping and extract the relational equiv-
alent of T and S: A window of size b traverses each of the databases and
extracts b-sized blocks overlapped by b/2 characters(Steps 1,2), ii) the
extracted blocks are then represented as attribute values in a relational
database with their corresponding location in the original string database
as the primary key(Step 3), iii) given range r, the approximate join oper-
ation seeks all the corresponding tuple pairs of T and S, which are at most
r far from each other based on a well defined distance function, usually
being Edit Distance(ED)[1](Step 4). Block-based mapping facilitates the
initial step of mapping the problem of pairwise whole genome comparison
into an approximate table join.

1 Note that, in our implementation, the database designer has the freedom of choosing
non-uniform blocking factors across relations.
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Fig. 1. The relational database conversion or block-based mapping procedure for b = 6

3.1 Terminology, Formulation

Following definitions2 introduce the steps in transforming the original
domain(set of strings) to frequency domain(set of feature vectors):

Definition 1 (frequency vector) Let S = s1, . . . , sn be a string over
the alphabet Σk = {α1, . . . , αk}, then the frequency vector of S, called
f(S) is defined as: f(S) = [f1, . . . , fk], where each fi(≥ 0) corresponds to
the occurrence frequency of αi in S, and

∑k
i=1 fi = |S| = n.

Definition 2 (frequency quantization) Let S = s1, . . . , sn be a string
from the alphabet Σk. The frequency quantization of S, SF = [ξs1 , . . . , ξsn ],
is a (|Σ|×n)-dimensional matrix, where each orthonormal vector ξsi rep-
resents the corresponding (|Σ| × 1)-dimensional basis vector for si char-
acter, for 1 ≤ i ≤ n.

For instance, for S = AGGTTGCAATTA:

SF =




1 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 1 0


 .

Definition 3 (approximate join)
Let T = [aT

1 , . . . , aT
g ] and S = [aS

1 , . . . , aS
h ] be two database relations

with their corresponding attributes. Suppose aT
i and aS

j are the two non-
numerical attributes over some joint alphabet Σ, upon which we would
like to perform approximate join. Given range r and distance function d,
2 Due to space limitations, further definitions, proofs are provided in the Appendix.
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approximate join of T and S, T �̃r
d S, returns all pairs of tuples (t, s) ∈

(T × S) such that d(t[i], s[j]) < r, for i ≤ g, and j ≤ h .

One way to solve the aproximate join problem, T �̃r
d S, is as fol-

lows: Given the relation S, compare all tuples of S against all tuples of
relation T using ED as the distance measure, either through direct ap-
plication of dynamic programming[15, 17] or other popular heuristics[1,
16, 3]. Although this approach is correct, it is not practical/scalable for
two reasons: First, sequence databases may involve a large number of
very large sequences(e.g. Chr22 as the smallest human chromosome[12]
consists of approximately 35 million base pairs) resulting in severe perfor-
mance penalty. Secondly, the prohibitive computational cost, of alignment
or even heuristic-based sequence comparison, makes it impractical, spe-
cially when |T �̃r

d S| � |T × S|. A solution could be mapping the string
similarity of the ED domain(T �̃r

ED S), into a vector difference in an
acquired Frequency Distance (FD)3 domain(T �̃r

FD S), to benefit from
much more time/space-efficient numerical methods in the literature. One
way is to use a mathematical transformation to map each string Si, into
its corresponding n-dimensional frequency vector f(Si), and use a lower-
bound frequency distance function to approximate the edit distance of
the original string domain.

The property shown in Theorem 1(Appendix), is the main driving
force behind using transformation-based filtration. The calculation of dis-
tance in the frequency domain is linear in time/space, which is much
more efficient compared to the calculation of the distance in the origi-
nal string domain which is quadratic in time/space, hence, approximate
join is much more efficiently evaluated in the frequency domain. Given
a set of strings S= {S1, . . . , Sn} with their corresponding frequency vec-
tors f(S) = {f(S1), . . . , f(Sn)}, and range r, let T be a relation hav-
ing only one tuple t and the corresponding frequency vector f(t). Sup-
pose we want to calculate T �̃r

ED S, then all the strings Si, for which
FD(f(t), f(Si)) > r may be pruned from the answer set without the
need to further calculate the edit distance. This property dramatically
reduces the computational cost [11], and the required amount of search
space for T �̃r

ED S, while (T �̃r
ED S) ⊆ (f(T) �̃r

FDf(S)). However, a very
important requirement is to guarantee that the Filtration Ratio(FR) =
|f(T ) �̃r

F Df(S)|
|T �̃r

EDS| ≥ 1, not to incur any false negatives. A better filtration
technique should lead to a smaller filtration ratio.

3 We applied L1-norm as the preferred FD, please refer to the details in Appendix...



BFT: A Relational-based Bit Filtration Technique ... 7

online

ACCGTCAAG

AAACGCTAA

CCGTACAGA TTCAGTTCC

AACGTCAAG

CGGATCAGT

ACGTACGTC

Relation T Relation S

DFT DFTGTCATTAAT

S
1

S
2

S
n

T
1

T
2

T
m

X (T
1
)

X (T
2
)

X (Tm)

X (S
1
)

X (S
2
)

X (Sn)

For each tuple  X(S
i
)  S'

 For each tuple  X(T
j
)  T'

  IF L
p
(X(S

i
)- X(T

j
) > r, THEN

    break;     Pruning tuple T
j

  ELSE ...

T

Fourier(DFT) Filtration

[ 1    1     0.67   0.33]

[ 1     1    0.67   0 .33]

 [   1     0 .33   0.33   1.33]

[1.67   0 .67  0.33  0.33]

[ 0.33    1      0.33   1.33 ]

[ 1.33  0.67  0.67   0.33]

 [0.67  0 .67      1     0.67]

[ 0.67       1     0.67  0.67]

offline

 
 

[...]

[...]

[...]

[...]

TF
1

TFm

TF
2

[...]
F
r
e
q
u
e
n
c
y

Q
u
a
n
t
i
z
a
t
i
o
n

S

[...]

[...]

[...]

[...]

SF
1

SFn

SF
2

F
r
e
q
u
e
n
c
y

Q
u
a
n
t
i
z
a
t
i
o
n

Relation  T'

pos vector tuple vector tuple

0

6

3

pos

0

6

3

Relation  S'

offline

1 1 1 0 0 0 0 1 1
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

TF
m

Fig. 2. The DFT filtration procedure for only one coefficient, and b = 9

3.2 Transformation-based filtration techniques

Discrete Fourier and Wavelet Transformation: The transformation-
based filtration on both of DFT(Fig. 2) and DWT techniques, is identical
except on the choice of transformation and the number of incorporated
coefficients. The general process is shown under Algorithm 1. Given the
genome databases S and T, the approximate join procedure is performed
in two different stages: offline and online. In the offline stage, all the
blocks/tuples Si and Tj are extracted, and each tuple is mapped onto its
corresponding feature vector(s) using DFT or DWT. Following this pro-
cedure, the S and T datasets would be mapped into S′ and T′ database
relations, respectively. The tuple extraction procedure is very fast and
needs only a single scan for each of the given databases. The actual ap-
proximate join operation is performed in the online stage. All the feature
vector tuples of the relation S′ are compared against their T′ counterparts,
and all those tuple pairs whose distance is greater than the given range
r, are pruned from the resulting candidate set. Furthermore, a refine-
ment step using dynamic programming is performed to remove the false
positives. Additionally, a multidimensional indexing structure[5] could be
built on the extracted relations for more efficient tuple pruning. However,
we intend to study the impact of the various indexing schemes in our
future work.

Bit Filtration Technique(BFT): Given two string databases T and
S, we first construct the relational equivalent of each database as T=
{T1, . . . , Tm} and S= {S1, . . . , Sn}(Fig. 1), respectively. In the second
step, the corresponding frequency vector(s), f(Ti)(f(Sj)), are extracted
and as a result two new relations T′ = {f(T1), . . . , f(Tm)} and S′ =
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{f(S1), . . . , f(Sn)} are constructed, respectively. The schema of T′(S′)
has two attributes: i) The index of the tuple in the original database as
the primary key, and ii) |Σ|-dimensional frequency feature vector. This
process may be applied offline to the bigger relation(T′), and the smaller
relation’s frequency vectors may be extracted on the fly. Furthermore,
the Most Fluctuating Bit (MFB, or comparison bit) of the frequency vec-
tor tuples of relation T′ is calculated. MFB corresponds to the kth en-
try(column) of the frequency vector, holding the frequency of alphabet
αk ∈ Σ, whose entry value across all frequency tuples f(Tj) demonstrates
the most discriminating deviation from the mean value(for 1 ≤ k ≤ |Σ|
and 1 ≤ j ≤ m).

Figure 3 depicts the steps of BFT procedure. BFT clusters the bigger
relation T′, on its 1st, ..., |Σ|th MFB bit, in p multiple passes, for 1 ≤
p ≤ |Σ|. When the algorithm starts, the entire relation is considered as
one cluster. In the first pass, the frequency tuples are clustered based on
their MFB entry value, in an increasing order. Given block size β, after
the first pass, the relation T′ would potentially be clustered into β + 1
clusters(c0, . . . , cβ) with no special order within each cluster, typically
forming clusters of size m/(β+1). The tuples belonging to cj cluster, have
the same value j, on their corresponding MFB entry. The second phase,
subdivides each cluster into potentially β + 1 new clusters based on the
values of their second MFB in an increasing order, and so on. Therefore,
the maximum total number of clusters generated by BFT would be C=∏p

1(β + 1), for the choice of p sequential passes. The value of p can be
tuned according to the requirements of the application and the filtration
threshold imposed by the user. BFT also benefits from a neighbor cluster
joining mechanism to make sure that the clusters have roughly similar
load of tuples. It is interesting to observe that BFT orders the frequency
tuples on their MFB bits. Finally, the Algorithm 2 as the filtration step,
is performed.

The intuition behind BFT is the fact that, given f(Si) ∈ c′k′ and
f(Tj) ∈ ck and range r, if the absolute difference between their corre-
sponding MFB entry is bigger than the given range: (|k′ − k| > r) ⇒
(FD(f(Si), f(Tj)) > r) ⇒ (ED(Si, Tj) > r), and hence all the clusters
ck, . . . , c|Σ| (Tj . . . Tm) may be pruned from the candidate set. We could
further represent each of the clusters with a single frequency vector or
build a tree index on T′, to reduce the space and time needed to perform
the approximate join operation. These issues would be further discussed
in the simulation result section.
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Algorithm 1 Approximate join processing:

Offline preprocessing phase, Given the string database, T(and S)∈ Σ∗:

• (Block-based partitioning) Slide the blocking window of size b on the original DNA
dataset T and extract the corresponding b-sized tuples, partitioning T on positions
0, b

2
, 2b

2
, . . . into a total of |T |−b+1

� b
2 � blocks. Let Tj denote the block/tuple extracted

from T, at position j, where 0 ≤ j < |T | − b.
• Represent the dataset with its corresponding relational representation with its
tuples being the extracted blocks, and index j as the primary key of the relation.
• Perform Frequency Quantization(Def. 2) on each tuple Tj , constructing T F

j ,
• Use the desired DFT or DWT transformation on each Frequency-Quantized tuple
T F

j , and calculate the corresponding transformed vector X(T F
j ) or �(T F

j ) coefficients
in the frequency domain, respectively.
• Extract and store only a few coefficients to represent the original string tuple. For
the case of DFT , we keep the highest energy-concentrated coefficients as, first, last
and the second[19]. For the DWT , we keep the first and second coefficients.
• For each relation T, build an offline index structure, relation T′[index#, tuple
vector(s)].
————————————————————————————————————–
Online filtration phase, Given a distance function d(FD or Lp), and range r:

for all tuple vectors in S′: do
for all tuple vectors in T′: do

if d(X(Si) − X(Tj)) > r then
Prune Tj from the resulting candidate set;
Break;

end if
end for

end for
� Refinement step: Apply dynamic programming on the remained tuple pairs, to
find the strings Si and Tj , where ED(Si, Tj) < r.

Algorithm 2 Bit filtration procedure:
for i = 1 to n: do

for j = 1 to m: do
if |(fMF B(Si) − fMF B(Tj))| > r then

// means that ED(Si, Tj) > r ⇒ prune all remaining tuples Tj . . . Tm;
Continue with Si+1;

end if
end for

end for
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4 Performance Analysis

4.1 Implementation

We compared the performance of BFT, DFT, and DWT as preprocessing
filtration techniques, against and in conjunction with dynamic program-
ming [15, 17], and q-gram [7] approaches. Our implementation closely
follows the depicted procedures of Figures 1-3.

We incorporated different blocking methods for string dataset to rela-
tional database conversion procedure: i) Consecutive partitioning: Each of
the consecutive blocks of length b, overlap by b−1 residues, ii) Overlapped
partitioning: Each of the consecutive blocks of length b, overlap by b/2
residues(Fig. 1), and iii) non-Overlapped partitioning, where the whole
data is chopped into l = θ(log|Σ||T|) [14] partitions of various length.
On various block partitioning methods, more the blocks extracted, we
observed higher computational cost, and better filtration ratio(smaller
candidate set). This choice is a trade-off between cost versus precision.
However, due to the limitation of the space, we did not include those re-
sults in this study. We implemented all the desired algorithms and trans-
formations using Java 1.4.1, and ran our simulations on an Intel Xeon
2.4GHz processor with 2GB of main memory.

i) Frequency Distance (FD) should be a tight chosen in the frequency
domain, cost. For instance, in the case of DFT, we had to use 1st, 2nd,
and nth however, its corresponding running time became impractical Af-
ter applying DWT, or DFT, we clustering the extracted frequency vectors
as incorporated in BFT procedure, domain should be, computationally,
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as while maximized, incurring no false negatives, however the efficiency
of pruning depends on the approximate join range(application require-
ments).

Table 1. The statistics (max b = 32) for the datasets used in our simulations

Dataset A C G T Total Tuple quantity MFB

Alu 24301 18271 22192 15742 80506 4530 G
Mitocondria 1024379 647278 502392 989164 3163213 197566 A
E. coli 1148707 1184392 1181731 1147409 4662239 290779 A

imdb N/A N/A N/A N/A 788020 54000 B

4.2 Simulation Results

We ran our experiments on three Prokaryote and Eukaryote genome
databases (Alu, Escherichia coli, and Mitochondria) [12], and one actor
name database [8]. The Statistics of the incorporated data are depicted in
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Fig. 4, and Table 1. Due to the large computational cost of applying the
inner-loop-join for the ED comparison, we had to reduce the size of each
DNA database relation T into 4K tuples, named TR, to be able to run
the all-pair-all local alignment [17] in a reasonable amount of time. How-
ever, Fig. 5 demonstrates the filtration efficiency on the original files with
1.3 billion tuple comparisons. Initially, we performed block-based map-
ping on the DNA contig datasets to build their relational equivalents. In
the blocking process, we applied a uniform tuple length(b = 32) for all
the DNA databases of the choice, however, tuple lengths in the movie
database[8] were variable(8 ≤ b ≤ 32) by nature. Additionally, we could
incorporate variable block lengths on our DNA datasets but, we only in-
cluded the result for the uniform blocking for the sake of simplicity. We
incorporated three coefficients(1st, 2nd, and nth) for DFT, and two coef-
ficients (1st and 2nd) for DWT. The results of BFT were based on only



BFT: A Relational-based Bit Filtration Technique ... 13

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

70

80

90

100

Join range

Ca
nd

ida
te 

se
t s

ize
 (%

 of
 db

 si
ze

)

Precision comparison of various filtration methods on imdb movie database

Edit Distance
BFT
DWT
DFT
q−gram

Fig. 8. Resulting candidate set of the approximate join imdb[8] database

using the first MFB, hence, only 1-pass clustering of the relation. Due
to the limitations of the space, the results of more than one MFB are
not shown in this paper. Figures 5-8, demonstrate the filtration efficiency
of running BFT, DWT, and DFT compared with q-gram[7], and local
alignment [17] techniques on various databases.

Given two database relations S and T, let B denote the total number
of tuple comparisons needed in an approximate join operation. Vertical
axis demonstrates the candidate set(∝ 1

precision), the fraction of compar-

isons that is left for further refinement ( |f(S) �̃r
d f(T )|

B %), as a function
of join range. Smaller candidate set is the result of a higher filtration
efficiency. Figures 5, and 6-8 demonstrate the filtration efficiency, out
of 1.3 billion and 16 million total number of comparisons, respectively.
In Fig. 5, we used two different ways of performing BFT: using the 1st

coefficient of DWT versus the 1st coefficient DFT for frequency vector ex-
traction. However, the results were identical, which can be explained by
the fact that the first coefficient of DFT is identical to the first coefficient
of DWT with a multiplication factor of 1/

√
n. Therefore, for the rest of

experiments, we only demonstrate the classical BFT using frequency vec-
tors extraction. BFT, and DWT demonstrated very similar trend on the
filtration ratio. Given relation S and target relation T, all the techniques
except BFT, need to inspect all the tuples of the target relation T for any
given tuple of S, while in contrary, BFT incorporates the pruning phase
and hence, does not need to scan the entire database T. The portion of
database inspected by BFT takes its best values on the lower ranges.
Lower the join range, a better filtration ratio was expected and observed,
while potentially a larger portion of the relation is expected to be out
of range. BFT demonstrated up to 99.9% effective filtration ratio on all
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DNA datasets. In very low ranges, q-gram[7] provides efficient filtration,
however, it needs to scan all the target tuples for a possible within-bound
q-gram count(or positional/length filtering).

Figure 8, demonstrates the result of running our proposed techniques(
for |Σ| = 32), on two disjoint subsets of imdb[8] movie database. DWT
achieves a reasonable filtration efficiency, however BFT works really bad!
The reason lies on the fact that i) the chosen alphabet size was far too
sparse and insensitive to the context, and hence MFB was not able to
perform an efficient filtration on the tuples. We would need to use words
as a finer granularity representation of name tuples rather than just single
alphabet characters. We are planning to investigate this issue more in
our future work, ii) the actual portion of the database which was within
the range(ED), was very small, and hence BFT had to scan the whole
database to find the candidate matches. On the other hand, DFT and
DWT perform efficient filtration for 0-5 range. Not surprisingly, this is
the desired range within the area of data cleansing or data integration,
while only very few typographical errors on each single word/block are
allowed.

Table 2 shows the average running timing comparisons(in seconds) of
approximate join for range r = {0, 1, . . . , 8}. Figures 9-10, demonstrate
the ”Crème de la Crème” of applying BFT. We first applied BFT as a
preprocessing filtration step to extract the candidate sets calculated from
the frequency join f(S) �̃r

FD f(T), incurring no false negatives, which is
a superset of the actual result set S �̃r

ED T. Furthermore, we used local
alignment, and q-gram techniques on the remaining candidate set as the
next pruning step to possibly narrow the search space either to the actual
answer set(alignment), or possibly a narrower candidate set(q-gram). As a
result, the recall4 of applying BFT, DWT, DFT were all 100%, as earlier
expected by Theorem 1(FD≤ED), as no false negatives were created.
Figures 9-10 show up to 52-times speed-up on the overall process, should
BFT is used as a filtration preprocessing step.
Table 2. Average run time(in seconds) of approximate join, for r = 0 . . . 8 and b = 32

Edit Distance DFT q-gram DWT BFT

Alu �̃r E.coli 109546 409156 101872 93337 4881

5 Conclusion

In this paper, we proposed a novel, yet simple, Bit Filtration Technique(BFT)
for more efficient filtration of undesired tuple comparisons, and studied
4 Recall = CandidateSet ∩ AnswerSet

AnswerSet
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the similar integration of DFT and DWT on biological databases and
evaluated the specific problem of approximate join. BFT and other pro-
posed transformation methods, may be applied as a pre-processing fil-
tration step for any of the known heuristic techniques like BLAST[1],
QUASAR[3], FastA[16], and even the dynamic programming sequence
alignment[17, 15], and q-gram[7]. Our results show that applying the pro-
posed techniques, a high accuracy and faster database pruning is achieved.
The filtration ratio is very much data dependent and no generalization
on the min/max filtration ratio or true positive rates can be suggested.
However, the empirical results show a promising performance behavior
on the integration of BFT, for up to 99.9% filtration, incurring no false
negatives, and 50-times faster running time.
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Appendix:

Corollary 1 Let S= s1, . . . , sn be a string over the alphabet Σk with
the corresponding frequency vector f(S) = [f1, . . . , fk]. Any single edit
distance operation at the position i of the string S, corresponds to an
equivalent frequency distance operation:

– (Deletion of a character) ≡ (fi ← fi − 1), for some i,
– (Insertion of a character) ≡ (fi ← fi + 1), for some i,
– (Replacement of a character) ≡ (fi ← fi− 1 and fj ← fj + 1), ∃ i �= j

For instance, let S and T be two strings from Σ∗, with their corre-
sponding frequency vectors f(S) = [2 3 0 4] and f(T) = [0 4 2 1]. Then,
FD(f(S), f(T)) = 5 with 3(±1) operations(Replacements) and 2(−1)
operations(Deletions). It is interesting to observe that f :S→ f(S) is a
many-to-1 function and 5 ≥ ED(S,T) < 9.

What is the geometric explanation behind FD? Given two frequency
distance vectors u, v ∈ IR|Σ|, the Frequency Distance FD(u, v), as defined
above, relocates the origin of the IR|Σ| vector space to the far end of the
vector u, and returns the sum of the magnitudes of those portions of
the vector v entries which are in the positive region of the new relocated
coordinate space.

Definition 4 (Frequency Distance, FD) Given two frequency vectors
U= [u1, . . . , uk] and V= [v1, . . . , vk], The frequency distance FD(U,V),
is defined as the minimum number of (+1), (-1), and (±1) operations(
corollary 1) needed, on the entries of U, to transform U to V, or vice
versa.

Theorem 1 Let S and T, be two strings from alphabet Σ, with their
corresponding frequency vectors f(S) and f(T). The frequency distance
FD(f(S), f(T)), is a lower bound on the edit distance ED(S,T) [11]:
FD(f(S), f(T)) ≤ ED(S,T). Furthermore, given range r, (FD(f(S), f(T))
> r)⇒ ED(S,T) > r.

Proof. As explained by corollary 1, frequency distance (FD) substitutes
each of the edit operations by at most one (+1), (−1), or (±1) operation.
Hence, the number of FD operations provide a lower-bound on the number
of ED operations, hence FD≤ ED. Similarly, it is easy to show that FD
satisfies the criteria of being a metric, while the triangular inequality
holds be default. ��
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Definition 5 The kth-level Haar Wavelet Transformation(DWT) [11] of
a frequency quantized string S, �k(S), for 0 ≤ k ≤ log2n, is defined as
�k(S) = [vk,0, vk,1, . . . , vk, n

2k
], where vk,i = [αk,i, βk,i], for

αk,i =

{
f(ci) k = 0
αk−1,2i + αk−1,2i+1 0 < k ≤ log2n,

βk,i =

{
0 k = 0
αk−1,2i − αk−1,2i+1 0 < k ≤ log2n,

where for k = log2n: αlog2n,0 = f(S[0 : n − 1]) and βlog2n,0 = f(S[0 :
n
2 − 1]) − f(S[n2 : n − 1]) represent the first and second Haar wavelet
coefficients, respectively.

For instance, for S = AGGTTGCAATTA , the 3rd-level Haar Wavelet
transformation of S is �3(AGGTTGCAATTA)= {α3,0, β3,0} = {[4, 1, 3, 4],
[−2,−1, 3, 0]}, represents the set of first and second wavelet coefficients.

Definition 6 The n-point Discrete Fourier Transformation(DFT) of a
sequence S = [St], for t=0,. . . ,n-1 is defined to be a sequence X of n
complex numbers xf of (|Σ|×1)-dimensional vectors, for f = 0, . . . , n−1,
and is given by

xf = 1√
n

∑n−1
t=0 Ste

−j2πft
n , f = 0, 1, . . . , n-1,

where j =
√−1 is the imaginary unit. The original sequence S can be

restored by the inverse transform:

St = 1√
n

∑n−1
f=0 xfe

j2πft
n , t = 0, 1, . . . , n-1,

where xf is a complex number and its real and imaginary parts are (|Σ|×
1)-dimensional vectors.

For instance, for S′ = ACCT , the first and second DFT coefficients
of S′ are: X0(S′) = [12 , 1, 0, 1

2 ] and X1(S′) = {[12 , −1
2 , 0, 0], [0, −1

2 , 0, 1
2 ]},

respectively.
Meanwhile, There is one question that needs to be answered: What

would be the proper FD distance to deploy in the frequency domain to
provide a better/tighter approximation on the Edit Distance of the original
space, when using DFT?

Within the context of frequency transformations in multi-dimensional
indexing, Lp-norm(p > 0) distance measures are usually the popular
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choice for frequency distance function. We should use the FD which
demonstrates a tighter bound estimate of the ED in the original domain,
or in other words ”more precisely” reflecting the similarity/distance across
the sequences. Higher the FD, constrained that FD ≤ ED, a better es-
timate on ED is achieved. For any two DFT-transformed vectors X,Y :
we deploy L1-norm as the desired frequency distance which is defined as
L1(X,Y ) =

∑
j |xj − yj|. L1-norm facilitates a tighter lower bound and

is also expected to have a lower computational cost compared with the
other Lp-norms.


