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Abstract 
 

In this paper, we propose the concept of Manifold of 
Facial Expression based on the observation that images 
of a subject’s facial expressions define a smooth manifold 
in the high dimensional image space. Such a manifold 
representation can provide a unified framework for facial 
expression analysis. We first apply Active Wavelet 
Networks (AWN) on the image sequences for facial 
feature localization. To learn the structure of the manifold 
in the feature space derived by AWN, we investigated two 
types of embeddings from a high dimensional space to a 
low dimensional space: locally linear embedding (LLE) 
and Lipschitz embedding. Our experiments show that LLE 
is suitable for visualizing expression manifolds. After 
applying Lipschitz embedding, the expression manifold 
can be approximately considered as a super-spherical 
surface in the embedding space. For manifolds derived 
from different subjects, we propose a nonlinear alignment 
algorithm that keeps the semantic similarity of facial 
expression from different subjects on one generalized 
manifold. We also show that nonlinear alignment 
outperforms linear alignment in expression classification. 
 
1. Introduction 
 

Facial expressions help coordinate conversation and 
communicate emotions and other meaningful mental, 
social, and physiological cues. People can recognize facial 
expression easily even though the appearance of the 
expression varies a lot between different individuals. 
However, it is a challenging task to automatically 
determine the expression due to the variation of facial 
expression across the human population and to the 
context-dependent variation even for the same individual.  

Facial expressions can be classified in various ways –
in terms of some non-prototypic expressions such as 
“raised brows,” in terms of some prototypic expressions 
such as emotional expressions, or in terms of facial 
actions that cause an expression such as the Action Units 
defined in Facial Action Coding System (FACS) [13]. 
Psychologists claim that there are six kinds of universally 
recognized facial expressions: happiness, sadness, fear, 
anger, disgust and surprise [1]. Existing expression 
analyzers [3,17] generally classify the examined 

expression into one of the basic emotion categories. This 
approach has two main limitations. First, it is not clear 
that all facial expressions expressible by the human face 
can be classified under the six basic emotion categories. 
For “blended” expression, it is more reasonable to classify 
facial expression quantitatively into multiple emotion 
categories. Second, this approach does not consider the 
intensity scale of the different facial expressions. In 
addition, each person has his/her own maximal intensity 
of displaying a particular facial action. Many behavioral 
scientists perform facial expression classification through 
FACS [13] encoding. FACS provides a linguistic 
description of all visually detectable facial changes in 
terms of 44 Action Units (AU). Using these rules, an 
expression can be decomposed into the specific AUs. But 
there are only five AUs with the option to score intensity 
on three-level scale (low, medium, and high). Also it is 
very hard to connect the combinations of AUs with the 
emotional expression in an analytical way due to the 
discrete nature of AUs. A key challenge in automatic 
facial expression analysis is to find some global, analytical, 
and semantic-related representation for all possible facial 
expressions.  

An image with N pixels can be considered as a point in 
an N-dimensional image space, and the variability of 
image classes can be represented as low-dimensional 
manifolds embedded in image space. Since people change 
facial expression continuously over time, it is a reasonable 
assumption that all images of someone’s facial 
expressions make a smooth manifold in the N-dimensional 
image space with the “neutral” face as the central 
reference point. The intrinsic dimension of the manifold is 
much lower than N. If we were to allow other factors of 
image variation, such as face pose and illumination, the 
intrinsic dimensionality of the manifold of expression 
would increase accordingly.  

On the manifold of expression, similar expressions are 
points in the local neighborhood on the manifold. The 
basic emotional expressions with increasing intensity 
become curves on the manifold extended from the center. 
The blends of expressions will lie between those curves, 
so they can be defined analytically by the positions of the 
main curves. The analysis of the relationships between 
different facial expressions will be facilitated on the 
manifold. More generally, the manifold of facial 



expression shows promise as a unified framework for 
facial expression analysis. 

It is a formidable task to learn the structure of the 
manifold of expression in a high dimensional image space. 
Therefore, we first apply Active Wavelets Networks [12] 
on the image sequences to reduce the variation due to 
scaling, illumination condition, and face pose. We seek to 
embed the manifold from the high dimensional feature 
space of AWN to a low dimensional space while keeping 
the main structure of the manifold. In this paper, we 
investigate two types of embeddings to perform this task. 
The first is locally linear embedding (LLE) [4].  LLE is an 
unsupervised learning algorithm that computes low-
dimensional, neighborhood-preserving embedding of 
high-dimensional inputs. LLE maps its inputs into a single 
global coordinate system of lower dimensionality, and its 
optimizations do not involve local minima. The second is 
Lipschitz embedding [5,6]. In Lipschitz embedding, a 
coordinate space is defined such that each axis 
corresponds to a reference set R, drawn from the input 
data set. With a suitable definition of R, we can establish 
the bounds on the distortion for all pairs of data points in 
the embedding space. Lipschitz embedding leads to good 
preservation of clusters in some practical cases [7,8].  

We found that LLE is suitable for the purpose of 
visualizing manifolds. After applying Lipschitz 
embedding, the manifold of expression can be 
approximately considered as a super-spherical surface in 
the embedding space. Therefore, expression classification 
can be performed effectively on the manifold. In the space 
of the Lipschitz embedding, we propose a nonlinear 
method to align the manifolds of different subjects while 
keeping the images of different subjects with similar 
expressions in the near region. The experiments show that 
the nonlinearly aligned manifold outperforms the linearly 
aligned one in many ways. 

The remainder of this paper is organized as follows. 
We describe the related work in next section. We then 
discuss the properties of LLE in Section 3. The Lipschitz 
embedding and the nonlinear alignment of manifolds will 
be presented in Section 4. Section 5 presents the 
experiments we conducted on the manifold of facial 
expression. Finally, we present conclusions and future 
research direction in Section 6. 

 
2. Related Work 
 

Many scientists have explored the nature of the space 
of facial expressions. Shalif [2] examined the principal 
emotional variables in daily life by letting 202 subjects 
judge the extent of emotional state expressed in 
photographs. He found that the happiness and sadness 
dimensions are bipolar and are the most prominent 
dimension in expression space, followed by fear, anger 
dimension, etc. Schmidt and Cohn [15] measured 195 

spontaneous smiles from 95 individuals through facial 
electromyographic (EMG) data and found consistency in 
zygomaticus major muscle activity over time. Black and 
Yacoob [17] classified the facial expression through the 
movements of prominent facial features. By setting a 
threshold for the mid-level representation, they can detect 
the beginning, apex, and ending of four kinds of 
expressions. Zhang et al. [3] used a two-layer perceptron 
to classify facial expressions. They found that five to 
seven hidden perceptrons are probably enough to 
represent the space of feature expressions. Chuang et al. 
[9] showed that the space of facial expressions can be 
modeled with a bilinear model. Two formulations of 
bilinear models, asymmetric and symmetric, were fit to 
facial expression data.  

In this paper, we explore the space of expression 
through the manifold of expression. The manifold is 
learned from image sequences of basic facial expressions. 
To reduce the variation due to scaling, illumination 
condition, and face pose, we first apply Active Wavelets 
Networks [12] on the image sequences. Then we apply 
LLE and Lipschitz embedding to learn the distribution of 
different expressions on the manifold of facial expression. 

 
3. Locally Linear Embedding 
 

Locally Linear Embedding (LLE) [4] is a method that 
maps the high dimensional input to low dimensional, 
neighbor-preserving embedding. Previous approaches to 
this problem, based on multidimensional scaling (MDS) 
[18], have computed embeddings that attempt to preserve 
pairwise distances between data points. Some methods 
measure these distances in p metric space, while other 
methods measure these distances along the shortest paths 
confined to the manifold of observed inputs, such as 
Isomap [19]. However, LLE recovers global nonlinear 
structure from locally linear fits. It is based on the 
following geometric intuitions. If the data points are 
drawn from some underlying manifold uniformly, each 
data point and its neighbors are expected to lie on or close 
to a locally linear patch of the manifold. The overlapping 
local neighborhoods, collectively analyzed, can provide 
information about global geometry.  

 The algorithm of LLE is presented in Fig. 1. LLE 
aims to minimize the locally linear reconstruction error for 
every data point in the embedding space. The local 
geometry of the patches around every data point is 
characterized as the weight matrix WN,N. It can be 
considered as a least squares problem to compute W 
subject to the constraint ∑ =

=N

j jiw
1 , 1 . This least squares 

problem can be solved by the Lagrange multiplier 
algorithm [21]. The low dimensional vectors Yi represent 
the global internal coordinates on the manifold. Yi are 
chosen to minimize the embedding cost function 
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 with fixed weight W. By 

the Rayleigh-Ritz theorem [22], Yi are the smallest d 
eigenvectors of matrix )()( WIWIM T −−=  after 
discarding the bottom eigenvector [4].  

LLE is able to learn the global structure of nonlinear 
manifolds. For data visualization in two and three 
dimensions, it works well when the data set has only one 
cluster. This assumption holds when the image sequences 
of facial expressions are from the same subject. When the 
data come from multiple subjects, there are many 
manifolds with different centers (neutral face) and 
stretching directions. We need to build “global 
coordinates” for the mixture of locally linear projection 
from samples to coordinate space [11], or decompose the 
sample data into some patches, then merge them into one 
global coordinates in an optimal way [10].    
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Figure 1: Locally Linear Embedding algorithmFigure 1: Locally Linear Embedding algorithmFigure 1: Locally Linear Embedding algorithmFigure 1: Locally Linear Embedding algorithm    

 
4. Lipschitz Embedding 
 
4.1 Algorithm 

 
Lipschitz embedding [5,6] is a powerful embedding 

method used widely in image clustering and image search. 
In Lipschitz embedding, a coordinate space is defined 
such that each axis corresponds to a reference set R, 
which is drawn from the input data set S. The algorithm of 
Lipschitz embedding is shown in Fig. 2.  

With a suitable definition of the reference set R, the 
distance of all pairs of data points in the embedding space 
is bounded [24]. So Lipschitz embedding works well 
when there are multiple clusters in the input data set [7,8]. 
Assume that the number of typical facial expressions is k, 
and every reference set contains only the images of one 

kind of facial expression during apex. If there are only 
three kinds of facial expressions, the apex of each kind of 
expression will be mapped on the positive central part of 
the x-y, x-z, y-z planes, and one kind of expression with 
different intensity or blended expressions will be mapped 
on an approximately spherical surface, as illustrated in Fig. 
3. Because people can exhibit many more the three facial 
expressions, the manifold of facial expression will become 
a super-spherical surface in k-dimensional space through 
Lipschitz embedding. The experimental results in Section 
5 support this point.  
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Figure 3: An illustration of Lipschitz embedding for Figure 3: An illustration of Lipschitz embedding for Figure 3: An illustration of Lipschitz embedding for Figure 3: An illustration of Lipschitz embedding for 
k=3. The points in the circles are in the reference k=3. The points in the circles are in the reference k=3. The points in the circles are in the reference k=3. The points in the circles are in the reference 
set which represent extreme expressions. The set which represent extreme expressions. The set which represent extreme expressions. The set which represent extreme expressions. The 
neutral faces are far away from every reference set.neutral faces are far away from every reference set.neutral faces are far away from every reference set.neutral faces are far away from every reference set.    
    

4.2 Alignment of manifolds of different subjects 
 

The data points of a single subject make a continuous 
manifold in the embedding space, while the neutral face 
and the intensity of expression that can be displayed by 
different subjects vary significantly. Correspondingly, the 
manifolds of different subjects vary a lot in the centers, 



the stretching directions, and the covered regions. Because 
of the appearance variation across the subjects, it is very 
hard to align the manifolds of different subjects in a way 
that the images from different subjects with semantic 
similarity can be mapped to the near region. But in the 
space of Lipschitz embedding, the alignment can be 
performed in an elegant way. 

In Lipschitz embedding, the k reference sets contain 
typical expressions. The ith coordinate of data points in 
reference set Ai is zero by definition. So the images in the 
reference set Ai are mapped to a compact plane region Ri. 
The images that represent a kind of expression from 
beginning to apex are mapped along the curves from the 
center (neutral expression) to Ri on the expression 
manifold. To align the manifolds of different subjects, we 
need only to align the corresponding region Ri of the 
different manifolds to the set region one by one. The 
center of region Ri is Ti

k
i
i

ii
i qqqQ ),...,0,...,,( 21= . The 

essential idea is to align 
iQ  to T

kiii )1...,1,0,1,...,1( ,111 +−
. 

The manifold of expression will become a super-spherical 
surface with approximate radius 1−k .  

A straightforward solution is to apply a linear 
transformation to the embedding space. A linear 
transformation in the k-dimensional space can be 
determined by the transformation of k points, i.e. the 
centers of the k reference regions. Unfortunately, linear 
transformation does not preserve the semantic similarity 
of data points well. Our experiments show that images of 
the different expressions get mixed up after such a linear 
transformation. 

 We propose a nonlinear transformation that can align 
the reference regions while preserving the semantic 
similarity of data points at the same time. The detailed 
algorithm is presented in Fig. 4. The goal is to align all 
nonzero coordinate values of Qi to 1. To align qj

i of Qi to 
1, the jth member of each data point is multiplied by a 
scaling factor. Therefore the critical part is to design a 
nonlinear continuous function Φ  that returns a scaling 
factor as 1 for the points in all other reference sets except 
Ai, near 1/qj

i for all points in Ai, and an interpolated 
number according to their positions for the remaining data 
points. The nonlinear function Φ  is defined in Fig. 5. 
After every process, one nonzero coordinate value of a 
region center is normalized to 1 and the structure of the 
manifold is preserved. Fig. 6 compares the unaligned 
manifold and the manifold after one step alignment for a 
simple case k=3. The alignment can be achieved by 
repeating this process k(k-1) times. We will show that the 
nonlinear alignment also outperforms the linear alignment 
in expression classification in Section 5.  

When the semantic meanings of every reference set are 
defined in the same way for different subjects, the 
corresponding reference set will be aligned to the same 
region by our algorithm. So the aligned manifold will map 

the images with semantic similarity but from different 
subjects in the near region. Furthermore, the expression 
classification can be performed with high accuracy on this 
generalized manifold. 
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Figure 6: The compaFigure 6: The compaFigure 6: The compaFigure 6: The comparison of the unaligned manifold rison of the unaligned manifold rison of the unaligned manifold rison of the unaligned manifold 
and the manifold after one step alignment for and the manifold after one step alignment for and the manifold after one step alignment for and the manifold after one step alignment for k=3k=3k=3k=3. . . . 
There are three classes of data points with different There are three classes of data points with different There are three classes of data points with different There are three classes of data points with different 
colors. The points with labels are in reference sets. colors. The points with labels are in reference sets. colors. The points with labels are in reference sets. colors. The points with labels are in reference sets. 
After one step alignment, the center of magenta After one step alignment, the center of magenta After one step alignment, the center of magenta After one step alignment, the center of magenta 
reference region reference region reference region reference region is drawn to right (near 1), while blue is drawn to right (near 1), while blue is drawn to right (near 1), while blue is drawn to right (near 1), while blue 
and cyan points with labels do not move. The whole and cyan points with labels do not move. The whole and cyan points with labels do not move. The whole and cyan points with labels do not move. The whole 
structure of the manifold is preserved well.   structure of the manifold is preserved well.   structure of the manifold is preserved well.   structure of the manifold is preserved well.       

 
5. Experimental Results 
          

In this section, we present the experimental results on 
exploring the manifold of facial expression. To learn the 
structure of the expression manifold, we need O(103) 
images that cover basic expressions for every subject. 
There are no standard databases that can meet this 
requirement, so we build our own data set. Here we 
present preliminary results on the two subjects (one male, 
one female). 

In our experiments, subjects were instructed to perform 
a series of seven kinds of facial expressions: happiness 
with closed mouth, happiness with open mouth, sadness, 
anger, surprise, fear, disgust. (The fact that these are not 
true emotion-driven expressions is not relevant to the 
analysis.) The subjects repeated the series seven times. A 
total of 4851 images were captured (1824 frames for the 
female subject, 3027 frames for the male subject). To 
simplify the problem, we only used frontal view.  

The experiments consisted of two parts after the 
preprocessing. In the first part, we applied LLE to 
visualize the manifold. In the second part, Lipschitz 
embedding was applied to construct the manifolds for two 
subjects. We aligned the expression manifolds of the 
subjects by linear and nonlinear alignment algorithms, 
then compared their efficiency. Finally, we performed 
expression classification on the manifold acquired by both 
LLE and Lipschitz embedding.  
5.1. Preprocessing  

 
To reduce the variation due to scaling, illumination 

condition, and face pose, we applied Active Wavelets 
Networks (AWN) [12] on the image sequence for face 
registration and facial feature localization. The inputs for 
the embedding algorithms are the (x, y) coordinates of 58 
localized facial features. This preprocessing increases the 
generality of the expression manifold and reduces the data 
dimensionality greatly compared with the raw images.  

 

  
Figure 7: Facial Figure 7: Facial Figure 7: Facial Figure 7: Facial llllandmarkandmarkandmarkandmarkssss (58 (58 (58 (58 points points points points))))    

 

 

  
Figure 8: Representative images after applying AWN. Figure 8: Representative images after applying AWN. Figure 8: Representative images after applying AWN. Figure 8: Representative images after applying AWN. 
From left to right, up to down, the images with From left to right, up to down, the images with From left to right, up to down, the images with From left to right, up to down, the images with 
expressions: neutral, small smile, big smile, sadness, expressions: neutral, small smile, big smile, sadness, expressions: neutral, small smile, big smile, sadness, expressions: neutral, small smile, big smile, sadness, 
anger, surprise, fear, and disgust.anger, surprise, fear, and disgust.anger, surprise, fear, and disgust.anger, surprise, fear, and disgust.    
 

AWN is a new face alignment method, which is robust 
to illumination and partial occlusion and has very strong 
generalization ability.  The key idea of AWN is to replace 
the PCA-based texture model in Active Appearance 
Models (AAM) [16] with a wavelet network 
representation. Because of the spatially localized property 
of wavelets, AWN has better performance over AAM 
when there are partial occlusions or illumination changes.  
More details can be found in [12].  Fig. 7 shows the face 
model used in this paper. It is slightly modified from the 
model of AAM-API, a C++ implementation of the Active 
Appearance Model framework [14]. Among the 4851 face 
images, 117 images are selected out as the training set, 
which covers the seven kinds of typical expressions. The 
localizations of all the test images are completely 
automatic. The typical facial feature localization results of 
different expression are shown in Fig. 8. Each raw image 
is reduced to a 116-dimensional vector (the (x, y) 



coordinates of 58 feature points after alignment) for 
further processing. 
 
   5.2. Results of LLE 
 

We found that LLE is very sensitive to the selection 
of the number of nearest neighbors. When the data set 
contains just one series of seven kinds of facial 
expressions, every image sequence is mapped to a curve 
that begins from the center (neutral face) and extends in 
distinctive direction with varying intensity of expression 
as in Fig. 9. While there are many series, the sequences 
with the same kind of facial expression diverge in 
different directions when the number of nearest neighbors 
is small. The images of different expressions become 
mixed up easily when we increase the number of nearest 
neighbors as shown in Fig. 10.  
 

 
(a) 

 
(b) 

Figure 9: The first 2 coordinates of LLE of 478 Figure 9: The first 2 coordinates of LLE of 478 Figure 9: The first 2 coordinates of LLE of 478 Figure 9: The first 2 coordinates of LLE of 478 images images images images 
with the number of nearest neighbors k=9. Fig. (b) is the with the number of nearest neighbors k=9. Fig. (b) is the with the number of nearest neighbors k=9. Fig. (b) is the with the number of nearest neighbors k=9. Fig. (b) is the 
enlarged red rectangular region in Fig. (a). Seven enlarged red rectangular region in Fig. (a). Seven enlarged red rectangular region in Fig. (a). Seven enlarged red rectangular region in Fig. (a). Seven 
sequences for seven different expressions, which are sequences for seven different expressions, which are sequences for seven different expressions, which are sequences for seven different expressions, which are 
represented by different colors: small smile: yellow; big represented by different colors: small smile: yellow; big represented by different colors: small smile: yellow; big represented by different colors: small smile: yellow; big 
smile: black; sadness: magentsmile: black; sadness: magentsmile: black; sadness: magentsmile: black; sadness: magenta; anger: cyan; disgust: a; anger: cyan; disgust: a; anger: cyan; disgust: a; anger: cyan; disgust: 
red; surprise: green; fear: blue. The representative red; surprise: green; fear: blue. The representative red; surprise: green; fear: blue. The representative red; surprise: green; fear: blue. The representative 
images are shown next to the circled points. images are shown next to the circled points. images are shown next to the circled points. images are shown next to the circled points.  

The reason is that LLE is an unsupervised learning 
algorithm. It selects the nearest neighbors to reconstruct 

the manifold in the low dimensional space. There are two 
types of variations in the data set: the different kinds of 
facial expressions and the varying intensity for every kind 
of facial expression. Generally, LLE can catch the second 
type of variation – an image sequence is mapped in a 
“line,” and LLE can keep the sequences with different 
expressions distinctive when there is only one sequence 
for each expression. When the data set contains many 
image sequences for the same kind of expression, it is 
very hard to catch the first kind of variation using a small 
number of nearest neighbors. But with the increased 
number of nearest neighbors, the images of different 
expressions are more prone to be mixed up. 

We classify expressions by applying a k-Nearest 
Neighbor method in the embedding space. The result is in 
Table 1. It can be seen that LLE cannot achieve good 
expression classification results without building “global 
coordinates” for the mixture of locally linear projection 
[11], or performing some decomposing/merging processes 
[10]. 
 

 

  
Figure 10: The first 2 coordinates of LLE of 3027 Figure 10: The first 2 coordinates of LLE of 3027 Figure 10: The first 2 coordinates of LLE of 3027 Figure 10: The first 2 coordinates of LLE of 3027 
images (the male subject) with the number of nearest images (the male subject) with the number of nearest images (the male subject) with the number of nearest images (the male subject) with the number of nearest 
neighbors k=10,20,30,50, from left to right, up to down. neighbors k=10,20,30,50, from left to right, up to down. neighbors k=10,20,30,50, from left to right, up to down. neighbors k=10,20,30,50, from left to right, up to down. 
The meaning of colors is the same as in Fig. 9.The meaning of colors is the same as in Fig. 9.The meaning of colors is the same as in Fig. 9.The meaning of colors is the same as in Fig. 9.    
 
Table 1: Comparison of classificatTable 1: Comparison of classificatTable 1: Comparison of classificatTable 1: Comparison of classification rate on the four ion rate on the four ion rate on the four ion rate on the four 
manifolds in Fig. 10.manifolds in Fig. 10.manifolds in Fig. 10.manifolds in Fig. 10.    
 
 LLE(k=10) LLE(k=20) LLE(k=30) LLE(k=50)

k_NN(k=9) 15.76% 16.60% 13.53% 16.32% 
k_NN(k=13) 15.62% 17.57% 15.90% 16.47% 

5.3. Results of Lipschitz embedding 
        

There are six kinds of typical expressions in the data 
set (we consider the small smile and big smile as the same 



class). So there are six reference sets. For every sequence, 
only one image during the apex of expression is selected 
for the corresponding reference set. Every image is 
mapped to a six dimensional vector, which represents its 
distance to each kind of “extreme” expression. For the 
purpose of visualization, we can project the manifold 
onto its first three dimensions as shown in Fig. 11. One 
can see that the expression manifold can be considered 
approximately as a spherical surface. The alignment of the 
two manifolds in Fig. 11 by nonlinear alignment is shown 
in Fig. 12. The alignment by linear alignment is shown in 
Fig. 13. We can see the clusters of different expressions 
are preserved well through nonlinear alignment, while 
images of different expressions become mixed up after 
linear alignment. 

 

 
(a) 

   
(b) 

Figure 11: The projection on first three dimensions after Figure 11: The projection on first three dimensions after Figure 11: The projection on first three dimensions after Figure 11: The projection on first three dimensions after 
Lipschitz embedding. (a) the female subject. (b) the Lipschitz embedding. (a) the female subject. (b) the Lipschitz embedding. (a) the female subject. (b) the Lipschitz embedding. (a) the female subject. (b) the 
male subject. The meaningmale subject. The meaningmale subject. The meaningmale subject. The meaning of colors is the same as in  of colors is the same as in  of colors is the same as in  of colors is the same as in 
Fig. 9.Fig. 9.Fig. 9.Fig. 9.    
 

Since the points with the same kind of expression can 
be approximated by a curve on the manifold, we use a 
least squares line to fit those points. The line of happiness 
on the manifold of subject 1 should have similar direction 
with the line of happiness on the manifold of subject 2 
after alignment. We compare the angles between the lines 
on the manifold of both subjects after linear/nonlinear 
alignment for each kind of expression. The result is shown 
in Fig. 14. The experimental results show that the 

nonlinear alignment has better performance in preserving 
the same kind of expression from different subjects in the 
near region.  

  
Figure 12: The aligned manifolds after nonlinear Figure 12: The aligned manifolds after nonlinear Figure 12: The aligned manifolds after nonlinear Figure 12: The aligned manifolds after nonlinear 
alignment. The points from the first manialignment. The points from the first manialignment. The points from the first manialignment. The points from the first manifold are fold are fold are fold are 
represented as circles. The meaning of colors is the represented as circles. The meaning of colors is the represented as circles. The meaning of colors is the represented as circles. The meaning of colors is the 
same as in Fig. 9. same as in Fig. 9. same as in Fig. 9. same as in Fig. 9.     
 

     
Figure 13: The aligned manifolds after linear alignment. Figure 13: The aligned manifolds after linear alignment. Figure 13: The aligned manifolds after linear alignment. Figure 13: The aligned manifolds after linear alignment. 
The points from the first manifold are represented as The points from the first manifold are represented as The points from the first manifold are represented as The points from the first manifold are represented as 
circles. The meaning of colors is the same as in Fig. 9.circles. The meaning of colors is the same as in Fig. 9.circles. The meaning of colors is the same as in Fig. 9.circles. The meaning of colors is the same as in Fig. 9.    
    

 
Figure 14: Comparison of angles between expression Figure 14: Comparison of angles between expression Figure 14: Comparison of angles between expression Figure 14: Comparison of angles between expression 
lines from two subjects after linear/nonlinear alignment.lines from two subjects after linear/nonlinear alignment.lines from two subjects after linear/nonlinear alignment.lines from two subjects after linear/nonlinear alignment. 



We apply a k-Nearest Neighbor method to classify 
expressions for all 4851 images on the aligned manifold 
of facial expression. The comparison of the classification 
rate between the generalized manifold drawn by nonlinear 
alignment and linear alignment is presented in Table 2. 
The experimental results further demonstrate the 
effectiveness of nonlinear alignment.    
Table 2: Comparison of recognitioTable 2: Comparison of recognitioTable 2: Comparison of recognitioTable 2: Comparison of recognition rate on one n rate on one n rate on one n rate on one 
generalized manifold after linear/nonlinear alignment.generalized manifold after linear/nonlinear alignment.generalized manifold after linear/nonlinear alignment.generalized manifold after linear/nonlinear alignment.            
 
 Manifold by linear 

alignment 
Manifold by 
nonlinear alignment

k_NN(k=9) 94.42% 96.09% 
k_NN(k=13) 94.60% 96.37% 
 
6. Conclusions and Future Work 
 

In this paper, we proposed the concept of the manifold 
of facial expression. Because the expression manifold can 
provide a global, analytical representation for all possible 
facial expressions, it shows promise as a unified 
framework for facial expression analysis. To explore the 
structure of the expression manifold in the high 
dimensional feature space derived by AWN, we 
investigated two types of embedding methods, LLE and 
Lipschitz embedding. LLE is suitable for the visualization 
of manifolds, while Lipschitz embedding is effective for 
more generalized analysis on the expression manifold. For 
manifolds of different subjects, we proposed a nonlinear 
alignment algorithm, which preserves the semantic 
similarity on one generalized manifold. Nonlinear 
alignment also outperforms linear alignment in expression 
classification.  

To verify the generality of expression manifolds, 
images from more subjects are needed for further testing. 
Only images with six basic emotional expressions were 
used to learn the structure of the manifold. We will learn 
more properties of expression manifolds with the images 
of blended expressions. It has been shown that the change 
of face pose will add additional dimensionality to the 
manifold [20,23]. How the pose variations affect the 
manifold of expression will also be a topic of future 
research. 
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