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Abstract

The Active Wavelet Network (AWN) [9] approach was re-

cently proposed for automatic face alignment, showing ad-

vantages over Active Appearance Models (AAM), such as

more robustness against partial occlusions and illumination

changes. In this paper, we (1) extend the AWN method to a

view-based approach, (2) verify the robustness of our algo-

rithm with respect to unseen views in a large dataset and (3)

show that using only nine wavelets, our method yields simi-

lar performance to state-of-the-art face alignment systems,

with a significant enhancement in terms of speed. After op-

timization, our system requires only 3ms per iteration on a

1.6GHz Pentium IV. We show applications in face alignment

for recognition and real-time facial feature tracking under

large pose variations.

1. Introduction

This paper addresses the problem of automatic face align-

ment, which consists of extracting facial feature points of a

given face image, so that it can be aligned with a canonical

face image. Such task is pre-requisite for many computer

vision problems, such as face recognition, facial expression

analysis and face tracking.

Extensive research has been conducted on this topic, us-

ing methods based on Active Contours [10], Gabor wavelets

[17, 11] and deformable models [18], to mention just a

few. Among model-based approaches, Active Shape Mod-

els (ASM) [3] and Active Appearance Models (AAM) [5]

have achieve good results in face alignment.

The ASM method detects facial landmarks through a

local-based search constrained by a global shape model, sta-

tistically learned from training data. The AAM algorithm

elegantly combines shape and texture models, assuming a

linear relationship between appearance and pose variation.

We refer to the work of Cootes et al.[4] for a comparison

between these two methods.

Several variations of AAM have also been proposed to

improve the original algorithm, namely view-based AAM

[6], Direct Appearance Models [8], a compositional ap-

proach [2] and 3D AAM [1]. Despite the success of these

methods, problems still remain to be solved. For example,

AAM is sensitive to illumination changes, especially if the

lighting in the test image significantly differs from the light-

ing encoded in the training set. Moreover, under the pres-

ence of partial occlusion, the PCA-based texture model of

AAM causes the reconstruction error to be globally spread

over the image, thus impairing alignment.

Recently, we have proposed a new method, called Active

Wavelet Networks (AWN) [9], in which a Gabor wavelet

network representation (GWN) [11] is used to model the

texture variation in the training set. The GWN approach

represents a face image through a linear combination of 2D

Gabor functions whose parameters (position, scale and ori-

entation) and weights are optimally determined to preserve

the maximum image information for a chosen number of

wavelets.

Because of the localization property of wavelets, when



Figure 1: (a) Partial occluded image. (b) PCA recon-

struction. Note that the error is spread over the image.

(c) Wavelet reconstruction.

partial occlusion or highlight illumination problems arise,

the matching is more robust than with AAM. Figure 1 il-

lustrates a comparison between PCA and a Gabor wavelet

reconstruction for a partial occluded face image. Note that

the error is globally spread over the image in PCA, whereas

it remains local in the wavelet representation.

In this paper, we improve our work in the following as-

pects:

• We extend the AWN method to a view-based approach,

allowing robust facial feature tracking under large pose

variations.

• We verify the robustness of the AWN algorithm with

respect to unseen faces in a large dataset. A real-time,

fully automatic face alignment system is presented,

with evaluation in FERET database.

• We demonstrate that using only nine wavelets, our

method yields accuracy similar to state-of-the-art face

alignment systems [5, 3], while posing a significant en-

hancement in terms of speed. Implemented on a con-

ventional desktop computer, the AWN algorithm re-

quires only 3ms per iteration. In general, given a good

initialization, at most ten iterations are sufficient for

good convergence.

The remainder of this paper is organized as follows. In

Section 2, we present the AWN approach for face align-

ment, whereas Section 3 describes the extension to a view-

based approach. Section 4 covers our experimental results

and Section 5 concludes the paper with final remarks and

future work.

Figure 2: (a) Labelled training image. (b) Shape-free

texture.

2. Active Wavelet Networks

In this section, we introduce active wavelet networks for

face alignment. Our method starts with a training set, in

which each image is labelled with landmark points on the

subject’s face. Thus, each sample has a labelled shape and

an image texture.

Consider the training set of shape and texture to be Ω =

{(xi, gx
i )}, i = 1...N ,where N is the number of training

images, xi = {(xi
j , y

i
j)}, j = 1...M , is a shape specified

by a set of M points, and gx
i is the texture enclosed by the

shape xi. We model the shape variation by PCA, and the

texture is represented by a GWN model. We will describe

the shape model and the GWN texture representation in the

following subsections.

2.1. Statistical Shape Model

Given the training set, all shapes are aligned to a common

coordinate frame and then the shape variation can be mod-

elled by PCA in a lower dimensional shape space. So, a

normalized shape x can be approximated as:

x = x̄ + Pb (1)

where x̄ is the mean shape, P is a set of orthogonal modes

of variation and b is a set of shape parameters. Using the

shape landmarks as control points, we can warp the training

images to the mean shape. Figure 2 illustrates a labelled

image and its texture warped into the mean shape. The set

of shape-free textures G = {gx̄
i }, i = 1...N is used to learn

the GWN representation, as described next.



2.2. Wavelet Network Model

We have used a wavelet network to model the face texture as

an alternative to Principal Component Analysis in standard

AAM. As already mentioned, the use of spatially localized

wavelets allows more robustness with respect to partial oc-

clusions and illumination changes.

The constituents of a wavelet network are single

wavelets and their associated coefficients. We adopted the

odd-Gabor function as the mother wavelet. It is well known

that Gabor filters are recognized as good feature detectors

and provide the best trade-off between spatial and frequency

resolution [14]. Considering the 2D image case, each single

odd Gabor wavelet can be expressed as follows:

ψn(x) = exp
[
−1

2
(S(x − µ))T (S(x − µ))

]

× sin

[
(S(x − µ))T

(
1

0

)]
(2)

where x represents image coordinates and n =

(sx, sy, θ, µx, µy) are parameters which compose the terms

S =

(
sx cos θ −sy sin θ

sx sin θ sy cos θ

)
, and µ =

(
µx

µy

)
, that al-

low scaling, orientation, and translation. A Gabor wavelet

network for a given image consists in a set of n wavelets

{ψnk
} and a set of associated weights {wk}, specifically

chosen so that the GWN reconstruction:

Î(x) =
n∑

k=1

wkψnk
(x) (3)

best approximates the target image. We modified the orig-

inal formulation of GWNs to allow the optimization of a

single GWN in a set of shape-free images, obtained through

warping, as described in previous section.

2.2.1 Calculation of Wavelet Parameters

Assuming that we have a set of shape-free face images of

different people, {gx̄
i }, 1 ≤ i ≤ N , that are truncated to

the region that the face occupies, we calculate the GWN

representation parameters as follows:

1. Randomly drop n wavelets of assorted position, scale,

and orientation, within the bounds of the normalized

face images.

116 216 original

Number of Wavelets

52

Figure 3: The image shows a facial reconstructions with

variable accuracy, considering (from left to right) 52,

116 and 216 wavelets.

2. Perform gradient descent (via Levenberg-Marquardt

optimization) over the set of wavelet parameters to

minimize the total sum of differences between the

training images and their wavelet reconstructions:

arg min
nk,wik

∥∥∥∥∥
N∑

i=1

(gx̄
i −

n∑
k=1

wikψnk
(x))

∥∥∥∥∥
2

(4)

One advantage of the GWN approach is that one can

trade-off computational effort with representational accu-

racy, by increasing or decreasing the number n of wavelets

(see Figure 3).

2.2.2 Calculation of Texture Parameters

In the standard Shape-AAM method, the texture parame-

ters for a given image are computed by projecting the im-

age into an eigenspace learned from the training set. In our

method, the texture parameters {tk}, k = 1...n correspond

to wavelet coefficients, obtained by projecting the image

into the learned wavelet subspace.

For an orthogonal wavelet basis, these coefficients may

be calculated by simple inner products of the image with

each wavelet function ψnk
, which guarantees an optimal

image reconstruction (in the least square sense). However,

Gabor functions are not orthogonal, so the texture parame-

ter cannot be computed by inner products of the image with

the wavelet functions. In this case, we need to consider a

family of dual wavelets Ψ̃ = {ψ̃n1 . . . ψ̃nn} [7] to obtain

the set of coefficients (or texture parameters) that leads to

an optimal image reconstruction. The wavelet ψ̃nj is the

dual wavelet of the wavelet ψni iff 〈ψni , ψ̃nj 〉 = δi,j .

Given a normalized face image g and a set of optimized

wavelets Ψ = {ψn1 , . . . , ψnN}, the texture parameters are



given by:

tk = 〈g, ψ̃nk
〉. (5)

It can be shown that ψ̃nk
=
∑

l

(
A−1

)
k,l
ψnl

, where A is

the wavelet interference matrix, with Ak,l = 〈ψnk
, ψnl

〉.
It is important to mention that we can associate each

wavelet and its respective dual function with lookup tables,

which are computed beforehand. Such tables store only the

values of the wavelets within their spatial support, signifi-

cantly increasing efficiency in subspace projection and re-

construction.

2.3. AWN Search

Given a new face image, and a rough estimation of face

pose, the search process aims to determine shape and pose

parameters that best fit the model into the new image. The

AWN search algorithm is a variation of the Shape-AAM

method, where the main difference is the calculation of tex-

ture parameters and image reconstruction, which are based

on the GWN model.

Let gx̄ be the normalized image enclosed by a shape x

and ĝx̄ its GWN reconstruction. The residual between both

images is:

δg = gx̄ − ĝx̄ (6)

The residual δg is used to drive the shape parameters b

and the affine pose parameters p, assuming a linear relation-

ship:

δb = Bδg, δp = Pδg (7)

where the two regression matrices B and P are computed

offline, by perturbing the face model parameters on training

data. Our search algorithm can be described as follows.

Given a new face image, a starting shape x and pose p,

1. Sample the image enclosed by the current shape and

normalize it to obtain gx̄

2. Use GWN to compute texture parameters using eq. 5

and reconstruct the texture ĝx̄ =
∑n

k=1 tkψnk
.

3. Compute the residual using eq. 6

4. Predict the the shape and the pose parameters using eq.

7.

5. If the change of δg is small enough or the maximum

number of iterations was reached, stop; else go to step

1.

A successful search results in a AWN model that is well

aligned with the input face image.

3. View-based AWN

In this section, we extend the AWN algorithm to a view-

based approach, so that it is capable of handling significant

face pose changes.

View-based approaches [6, 13] have been successfully

applied in many computer vision problems. Rather than re-

lying on an explicit 3D model, a set of 2D models corre-

sponding to different views are used to handle pose varia-

tions.

We extend the AWN method, discussed in the previous

section, to allow face alignment under different views. Ba-

sically, the whole range of views, from profile to profile, is

partitioned into several subranges, and one AWN model is

trained to represent the shape and texture of each subrange.

Specifically, we use 5 view ranges: [−90o,−50o],

[−55o,−10o], [−15o, 15o], [10o, 55o] and [50o, 90o] with

0o being the frontal view. Given a set of training images

in each subrange, each AWN model is trained as described

in Sections 2.1 and 2.2.

Due to symmetry, we just need to train 3 models for the

ranges [−15o, 15o], [10o, 55o] and [50o, 90o]. Figure 4 il-

lustrates some labelled training samples for the considered

views, with their respective shape-free texture.

View-based alignment in a new face image is achieved

by (1) selecting the appropriate view model and (2) running

AWN search as described in Section 2.3. The first task may

be accomplished in several ways. For example, a pose esti-

mator [12] could be used to select the view range. Another

way is to run the AWN search for the view models in paral-

lel and select the best match.

In our implementation, model selection is achieved dur-

ing tracking. In the initial frame, we assume we have a

frontal view, and the AWN model corresponding to the view

range [−15o, 15o] is used. Then, a feature-based head pose



Figure 4: Examples of labelled training samples in dif-

ferent view subranges, with respective shape-free nor-

malized faces.

estimation [15] is used to select the model for the next video

frame.

Our head pose estimator uses a subset of the shape fea-

ture points, located by the AWN algorithm, to determine

the 3D transformation from a face reference frame to the

camera reference frame. This is achieved by finding a least-

squares fit between a generic 3D model of facial features

and the tracked features, under weak perspective (see [15]

for more details). Note that the view subranges overlap, so

that a rough head pose estimation is sufficient for selecting

the appropriate model.

4. Experimental Results

We start by showing that the AWN method may run ex-

tremely fast , while providing results as accurate as the Ac-

tive Appearance Model (AAM) algorithm.

We have learned the AWN and AAM models in a train-

ing set containing 40 face images of different individuals.

We derived a statistical shape model using a 15-dimensional

eigenspace, capturing 98% of variation in the training set.

The texture model for AAM was built using 75 modes, also

capturing 98% of the total texture variation.

Using only nine wavelets, the AWN method yields simi-

lar performance to AAM in a small test database of 90 im-

ages (128x192 pixels) of different individuals, under nor-

mal conditions. Figure 5 (top) shows the average error per

shape point for both methods for each image in the test set.

The range of initial location for good convergence is about

Figure 5: Top: Comparison of accuracy of AWN with

nine wavelets and AAM. The two methods achieve sim-

ilar performance. Bottom: number of iterations re-

quired for each image.

8 pixels for both methods. The initial model location was

randomly chosen with maximum range of 8 pixels from the

ground-truth.

Figure 5 (bottom) shows the number of iterations for

AWN and AAM in each test image, where AWN offers a

slight advantage over AAM. After code optimization, our

method requires only 3ms per iteration on a Pentium IV 1.6

GHz, with 512MB of RAM.

We also verified the robustness of the AWN algorithm

with respect to unseen faces in a large dataset. More than

3000 frontal view face images of FERET database were

used to evaluate a real-time, fully automatic face alignment

system for face recognition.

The system is composed of a face detector module, re-

cently proposed by Viola and Jones [16], which provides

initialization for our AWN method. As ground truth, we

used four facial feature points, namely the position of two

eyes, nose and mouth.

Figure 6 shows the correct feature localization rate for

all test set. A feature was counted as accurately detected

if it was localized to within 4 pixels of the ground-truth, in

images of 128x192 pixels.



Figure 6: Feature localization results of our fully auto-

matic system in more than 3000 FERET images. Face

detection and face alignment take, in average, 100ms

and 24ms per image, respectively.

Examples of correctly aligned face images are shown in

Figure 7. Note that our method is quite robust to people with

facial hair, wearing glasses, and exhibiting different facial

expressions. In general, misalignments occurred due to sig-

nificant illumination changes or when the position and scale

of the face provided by the face detector falling outside the

range supported by our algorithm. A multi-resolution ap-

proach could be used to enlarge the range and get even bet-

ter results.

In this experiment, the average number of iterations for

the AWN method was eight, thus requiring about 24ms

to perform alignment. The face detector module requires

about 100ms to process an image. Hence, the final system

works in 124ms.

For the view-based approach, we collected a set of 68

sequences of 34 people, with two sequences per person. In

each subrange, We selected 68 images for training. The

speed and the localization accuracy is the same for the

frontal view case.

We verified that our approach can be reliably applied for

real-time facial feature tracking under large pose variation.

Figure 8 shows some samples from a video sequence track-

ing demo.

As described in Section 3, the view model switching is

based on a feature-based head pose estimator. In the first

video frame, we assume the person is looking at the cam-

era, so that we have a frontal view face, which can be au-

tomatically detected [16] and aligned using the frontal view

range model. A generic 3D model is then constructed with

a subset of the shape control points. In each view range, a

Figure 7: Examples of accurate face alignment in

FERET database.

set of nine visible non-coplanar points is used to estimate

the pose, which selects the appropriate model for the next

video frame.

We assume that the face undergoes smooth motion, oth-

erwise the wrong view model might be selected. We ver-

ified that the pose estimates are accurate enough to switch

among the models. For more accurate pose computation,

one should use a person-specific 3D model.

5. Conclusions

We have presented a view-based approach for automatic

face alignment, based on a new method called Active

Wavelet Networks (AWN). After optimizing the code, we

obtained a significant enhancement in speed, making the

method suitable for real-time applications. We also veri-

fied the robustness of the AWN algorithm with respect to

unseen faces in a large dataset. Applications in alignment

for face recognition and facial feature tracking under large

pose variations were successfully demonstrated.

As future work, we plan to consider new view ranges to

allow alignment and tracking also on pitch rotations. We

also intend to use an explicit model for handling illumina-

tion changes.



Figure 8: Samples frames showing real-time facial feature tracking under large pose variation.
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