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Abstract
This paper describes the design and implementation of Sor-
rento – a self-organizing storage cluster built upon com-
modity components. Sorrento complements previous re-
searches on distributed file/storage systems by focusing on
incremental expandability and manageability of the system
and on design choices for optimizing performance of paral-
lel data-intensive applications with low write-sharing pat-
terns. Sorrento virtualizes distributed storage devices as
incrementally expandable volumes and automatically man-
ages storage node additions and failures. Its consistency
model chooses a version-based scheme for data updating
and replica management, which is especially suitable for
data-intensive applications where distributed processes ac-
cess disjoint datasets most of the time. To further facili-
tate parallel I/O, Sorrento provides load-aware or locality-
driven data placement and an adaptive migration strategy.
This paper presents experimental results to demonstrate fea-
tures and performance of Sorrento using both microbench-
marks and trace-replay of real applications from several do-
mains, including scientific computing, data mining, and of-
fline processing for web search.

1 Introduction
Large-scale storage systems that consist of a cluster of
nodes with locally attached disks have become a cost-
effective solution for a large class of data-intensive appli-
cations, ranging from high-performance computing to data
mining and network services [13, 14, 38, 46].

There have been an extensive body of research on or rel-
evant to storage clusters, such as Petal [30], xFS [8], AFS/-
Coda [28], PVFS [13], and GoogleFS [18]. The important
aspects being studied are: resource virtualization, availabil-
ity, and scalability. Resource virtualization means that dis-
tributed disks in a storage cluster must be virtualized as a
single disk (or a few of them). Additionally, files should
be named and addressed in a location-transparent fashion.
Availability requirement means that a storage cluster must
mask out component failures and make data available all
the time. Scalability means that the system is able to de-
liver scalable performance as the number of storage nodes

grows.
The Sorrento project is based on the pioneering effort of

previous work and complements their solutions by focusing
on the issues of incremental expandability and manageabil-
ity. As hardware cost decreases steadily, a cluster must be
able to expand incrementally as the application demand for
storage increases [34]. Second, human errors are a signif-
icant source of unmasked system failures [16]. To reduce
the chance of operational errors, we must reduce the in-
volvement of administrators and make the system easy to
manage. Thus an important aspect in the design of Sorrento
is that we try to make the storage cluster self-organizing,
i.e. the system is able to automatically adapt to environ-
ment changes such as node additions or component failures.
Specifically, the whole system is built upon many indepen-
dent entities, which constantly monitor and dynamically ad-
just their behavior. These entities collaborate together and
automatically perform tasks such as resource virtualization,
data location and placement, replication, and recovery.

Additionally, the design of Sorrento is optimized toward
a class of data-intensive applications that exhibit different
workload from file systems used in interactive environments
such as desktop PCs. Specifically, the applications we tar-
get are data-intensive applications involving a large number
of parallel processes issuing concurrent I/O requests, and
they operate on disjoint data sets most of the time. Exam-
ples of such applications include partitionable network ser-
vices [17, 38], graphical rendering for movie scenes, satel-
lite image processing, and offline processing of Web docu-
ments in search engines [1, 2]. As a result, Sorrento uses a
version-based update and replica management scheme that
allows applications to exploit I/O parallelism efficiently.

Other design features of Sorrento are summarized as fol-
lows: (1) Storage resources are organized in expandable
virtual volumes. A logical file may be divided into sev-
eral variable-length data segments. Segments are stored in
their entirety on native file systems, and are addressed by
location-independent SegIDs. Segments can be replicated
on or migrated to any cluster nodes. The physical loca-
tion information of segments are distributed among cluster
nodes as soft states. (2) Our data location scheme can be
regarded as a variation of the Chord [40] protocol, with var-
ious changes that make it more suitable for a LAN environ-
ment. (3) Data locations are chosen by a load-aware place-

1



ment policy that can balance both storage utilization and I/O
workload. The system constantly monitors node departures
and joins, and recreates data segments or migrates them ac-
cordingly. We further provide a locality-driven placement
policy for applications that exhibit good access locality.

We have implemented a Sorrento prototype with all these
features incorporated. We have used a combination of
microbenchmarks and application trace replay to demon-
strate the scalable performance and the effectiveness of self-
organizing features of Sorrento. The rest of the paper is or-
ganized as follows: Section 2 outlines our design assump-
tions and provides an overview of the system. Section 3
gives details on the system design. Section 4 presents the
system implementation and evaluation results. Section 5
describes related work, and Section 6 summarizes the con-
clusions.

2 Design Assumptions and System
Overview

2.1 Design Assumptions

Our targeted hardware architecture is PC or workstation
clusters. Each cluster node may contribute storage re-
sources to globally accessible Sorrento volumes. We also
assume a storage cluster runs in a trusted environment, and
security issues are not the focus of this research project.
However, the system does need to cope with failures caused
by various reasons including software bugs and human op-
eration errors.

While our system works for general applications, our tar-
geted workload typically involves intensive read and write
requests through a large number of parallel processes and
these processes operate on disjoint datasets. Thus our de-
sign consideration seeks to to reduce the overhead of data
updates and replica management, and to exploit I/O concur-
rency among application processes as much as possible.

2.2 System Overview

Figure 1 shows the general system architecture of Sorrento.
The basic building blocks of Sorrento are two types of clus-
ter nodes: storage providers and namespace servers. Stor-
age providers are responsible for managing locally attached
disks through the native file system interface. They also
collaborate on virtualizing the distributed storage into ex-
pandable volumes to users. Each volume is identified by an
ASCII name. Data stored in each volume are organized in a
hierarchical directory tree, which is maintained by names-
pace servers. In the current implementation, there will be
one instance of namespace server per volume.

Applications that access data stored in Sorrento (through
Sorrento’s client stub) are also called Sorrento clients and
can run on any cluster node. Note that storage providers or
namespace servers are software entities (daemons) and do

not have to run on dedicated boxes. In a typical deployment,
they may co-locate with Sorrento client applications.
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Figure 1: Sorrento system architecture.

A Sorrento deployment can be configured and maintained
incrementally without interrupting the normal operation of
the whole system. To add storage resources, we just need to
attach more disks to a storage provider, configure it to join
a designated volume, and connect it to the network. The
maintenance is also simple. To repair a failed node or to
recycle a node (maybe because it runs out of its useful life
span), we can directly shut down the machine. When a ma-
chine is repaired, it can be directly connected to the network
without the need to reformat the partitions, and the system
will automatically determine what data are still current and
what are outdated.

2.3 Programming Interface

Sorrento provides multiple flavors of client-side program-
ming interfaces. The basic Sorrento API layer exports
an NFS-style interface, in which operations are based on
opaque file and directory handles [4]. Upon this layer, we
have implemented another library interface that is similar to
the UNIX file-system calls. We are also working on a kernel
file system module to make a Sorrento volume mountable to
the local file system.

Deciding on which interface to use is a tradeoff between
functionality and transparency. Accessing a Sorrento vol-
ume through operating system calls would be convenient
and would allow existing tools and applications to run with-
out modification; however, to achieve the best efficiency or
to utilize the functional extensions offered by Sorrento, the
user-level library interface must be chosen. An application
can fine-tune how the data of a certain file should be man-
aged through these extensions, such as replication degree,
data organization, and data placement policies.

3 System Design

We break the core Sorrento system into seven intercon-
nected components, the dependences among which are il-
lustrated in Figure 2. The remaining discussion generally
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follows the bottom-up order, with the exception of data
placement and migration, which we will leave to the end.

Sorrento client API
(Section 2.3)

File data
organization
(Section 3.2)

Namespace
management
(Section 3.1)

Replication
(Section 3.6)

Data location
(Section 3.4)

Consistency and
concurrency control

(Section 3.5)

Membership management
and load monitoring

(Section 3.3)

Data placement
and migration
(Section 3.7)

Figure 2: Sorrento software components and their interdependences.
Sorrento API (the gray box) was discussed previously in Section 2.3. An
arc A→B means that B relies on the functionality of A.

3.1 Namespace Management

As mentioned previously, Sorrento separates the names-
pace management from storage management. Such a sep-
aration is not a new concept and has been adopted in
other work such as Zebra, NASD architecture, PVFS and
GoogleFS [13, 18, 19, 23]. The underlying motivation is
that namespace operations are very different from appli-
cation I/O operations. Namespace operations typically in-
volve small read/write requests and may require atomicity
for requests that span multiple data objects. While for appli-
cation I/O, it is more important to serve large I/O requests
fast, and typically operations on different files are indepen-
dent. Separating these two types of workloads allows us to
make optimizations targeted to their specific workload.

The namespace servers are responsible for operations
such as creating/removing a directory, creating/removing a
file entry1 under a directory, directory listing, and pathname
lookup. Each file entry contains a 128-bit FileID, the file’s
latest version, and the timestamp information, etc.

One notable difference of our namespace server design
from other research such as PVFS [13] or GoogleFS [18] is
that the namespace servers do not keep the physical loca-
tions of data blocks for files. FileIDs are persistent across
the lifespan of files, and are location independent. Such
a design is necessitated by the fact that in Sorrento, data
blocks may constantly migrate among providers to balance
storage usage or I/O workload, or to exploit data locality.
Thus, requiring the namespace servers to track the locations

1A file entry on the namespace server can be considered as the inode
equivalent in Sorrento.

of mobile data blocks would make them vulnerable to be-
come a performance bottleneck.

In our current implementation, the directory tree is stored
in a database using Berkeley DB [33]. We employ a combi-
nation of write-ahead logging and checkpointing to allow a
namespace server to recover from disk failures. We can also
adopt solutions proposed in several previous work that im-
proves reliability and availability of a name server through
replication or directory tree partitioning [7, 10].

3.2 File Data Organization
Sorrento adopts the conventional representation of a file as
a linear array of bytes. The actual file data may be split
into multiple variable-length data segments and stored on
different storage providers. Each data segment is kept in
its entirety on a storage provider. How to organize the data
segments as a linear byte array is specified in an index seg-
ment. All data segments and index segments are addressed
through 128-bit SegIDs, which can be generated locally
with little chance of collision by combining a machine’s
MAC address, its internal high-resolution timer, and ran-
dom seeds. In our implementation, a logical file’s FileID is
the same as the SegID of the index segment.
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Figure 3: Illustration of data organization modes in Sorrento. Each cell
in a segment is a fixed block, and is marked by its sequence number in the
logical file (or a stripe group in the Hybrid mode). The number of segments
in this illustration for the Linear, Striped, and Hybrid modes are M , L and
2L respectively.

Sorrento currently supports three data organization
modes, as illustrated in Figure 3:

Linear: In the Linear mode, the index segment specifies
an order of all the data segments, and the byte array is a
linear concatenation of the data segments in that order (Fig-
ure 3 (a)). Linear mode is suitable for sequential access of
file data.

Striped: In the Striped mode, file data are striped across
a fixed number of data segments (Figure 3 (b)), which is
similar to RAID-0. All the data segments are of equal size.
Striped mode is suitable for applications that need to tap
into the aggregated I/O bandwidth of multiple disks. One
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restriction of the striped mode is that the file size (or its
maximum size) and the number of data segments must be
specified when the file is created.

Hybrid: The Hybrid mode can be considered as a com-
bination of the Linear and Striped modes (Figure 3 (c)). The
data segments are organized in several groups. Within each
group, the data are organized in Striped mode. Different
groups concatenate linearly. The Hybrid mode provides the
parallel I/O performance of the Striped mode, and does not
require applications to know the file size in advance.

The three data organization modes being supported are
not meant to be conclusive, and it is fairly easy to extend
Sorrento to support other data organization schemes.

Choosing segment sizes. Sorrento automatically deter-
mines the segment sizes for the Linear or Hybrid mode.
In the Linear mode, starting from offset zero, we gradually
increase the segment size exponentially until it reaches a
predefined maximum segment size. After that, all segments
will be of the maximum segment size. In our current design,
the size of the i-th segment (i starts from 0) is determined
by the following formula (in MB): min

{

512, 8b
i
8c

}

. The
underlying motivation behind this sizing scheme is to use
small segments for small files, and large segments for large
files. In the Hybrid mode, a similar scheme is used: Sup-
pose all segment groups are of the same size j, then the
segments in the i-th segment group (i again starts from 0)
is: min

{

512, 8b
i×j

8 c
}

. Note that Sorrento does not pre-
allocate space for a whole segment. Instead, it expands the
last segment (or the last segment group in the Hybrid mode)
when a file grows.

For small files, to avoid the inefficiency of two data trans-
fers (first reading the index segment, then accessing the data
segment), we attach the file data within the index segment.
Currently, the maximum attachable file size is set to 60KB
to fit in a UDP packet.

3.3 Membership Management and Load
Monitoring

Previous systems, such as xFS or PVFS, keep a table of
I/O servers (or storage providers in Sorrento’s term) as hard
states, which are either updated synchronously among all
servers or maintained at a central location. For a large-
scale cluster, cluster nodes may join or leave the net-
work fairly frequently, updating the membership informa-
tion synchronously is costly and may lead to scalability
problems. On the other hand, the membership information
is needed for most of the other components in Sorrento (see
Figure 2), relying on a central server to supply the member-
ship information would easily saturate that server and thus
limit the system’s scalability.

In Sorrento, the membership manager (which runs on all
cluster nodes) maintains the set of live storage providers
as soft states in a way similar to the one used in Nep-
tune [38]. Specifically, all storage providers periodically

send out heartbeat packets through a multicast channel,
and the membership manager can construct the set of live
providers by monitoring the same multicast channel. If a
process fails to receive heartbeat packets from a provider
for a prolonged period (five times the heartbeat announce-
ment interval), the membership manager will remove that
provider from its membership set. The heartbeat packets
also include the load information and storage resource avail-
ability of the storage providers.

3.4 Data Location
As mentioned previously, one design challenge of Sorrento
is the data location scheme because a segment may be
placed on any provider (or providers in the case of repli-
cation) in Sorrento. Given a SegID, the location scheme
needs to quickly locate which provider (or providers) stores
the segment.

3.4.1 The Base Scheme

The Sorrento’s data location scheme has been influenced by
data location protocols proposed in peer-to-peer networking
research, and the base scheme is similar to Chord [40] in
various ways.

The task of data location is distributed among all the stor-
age nodes. For each SegID, we designate a home host that
is responsible for tracking the hosts that store the segment,
which are called the owners of the segment. Currently, we
use consistent hashing [27] to determine the home host of
a SegID. Unlike Chord, where each host maintains a fin-
ger table and performs lookup in log N (N is the number
of providers) steps, a Sorrento client has the complete view
of all the storage providers (Section 3.3) and can directly
determine the home host of a certain SegID.

On each storage provider, we maintain a location table
that maps SegIDs to segment owners. The location table
is also managed as soft states, which is reconstructed every
time a storage provider starts up and is refreshed periodi-
cally during its life span. There are four types of events that
will trigger the update of the location table:

(1) Periodic content refreshing. Each provider (as an
owner) periodically refreshes the location tables on other
providers (as home hosts) by sending the SegIDs of locally
stored segments to their corresponding home hosts. Content
refreshing is important since location tables are considered
soft states in our system and a node may fail to keep its
location table up-to-date due to various reasons (e.g. un-
expected faults). In our test environment, we set the table
refreshing cycle to 15 minutes, namely the location tables
are refreshed every 15 minutes. The complexity of calculat-
ing the list of SegIDs for a remote home host is proportional
to the size of the list (asymptotically optimal).

(2) Node-join notification. This event happens when the
membership manager adds a new provider (provider A) to
the live set of providers. Note that this event could imply
two possible situations: (i) an existing provider (B) learns
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about a newly joined provider (A), and (ii) a newly joined
provider (B) discovers an existing provider (A). In response
to this event, provider B will schedule a refreshing event
for provider A. To avoid a newly joined provider from be-
ing overwhelmed by simultaneous refreshing requests from
existing providers, the refreshing event is scheduled after a
short random delay (within 20 seconds in our test environ-
ment).

(3) Node-departure notification. This event hap-
pens when the membership manager removes a provider
(provider A) from its membership set. In response to
this event, a data segment owner (provider B) will can-
cel the pending refreshing events for home host A, and re-
move from the location table the SegIDs that are stored on
provider A. Finally, provider B will compose a list of lo-
cally stored segments whose locations were previous man-
aged by A and send those SegIDs to their new home hosts.

(4) Segment creation and deletion. Between periodic
refreshing, a provider will also update other providers’ lo-
cation table in response to the creation or deletion of a local
segment, or when a local segment’s home host is changed.
In response to these events, the provider will instruct the
home host of the segment to add or remove an entry in its
location table. Note that this event allows fast updating and
it happens between periodic content refreshing described
above.

An entry in a provider’s location table could become
garbage when the provider is no longer the home host of
a SegID. This may happen when a newly joined provider
takes over the provider as the new home of that SegID.
To reclaim resources taken by the garbage entries, every
entry in the location table is marked with its last refresh-
ing time. Since valid entries will be refreshed periodically
while garbage entries will never be refreshed, the latter can
be identified based on their ages and eventually be purged.

3.4.2 The Backup Scheme

The base scheme described above may occasionally fail ei-
ther because a client asks the wrong home host due to an
inconsistent view of the live providers or because the loca-
tion information has not been propagated to the home host
yet. In those cases, the client will fall to a backup scheme
in which it will simply query all the providers by issuing a
request through the multicast channel.

3.5 Data Consistency and Concurrency Con-
trol

Sorrento provides a version-based consistency model,
which bears similarity to Amoeba [32]. Such a choice fol-
lows our objective of optimizing performance for applica-
tion workloads with low data-sharing as discussed in Sec-
tion 2. However, it should also work for general I/O work-
load. In this section, we will briefly describe the semantics
of such a model, how it is implemented in Sorrento, and
finally provide justifications of such a design.

Semantics. From a user’s point of view, a file evolves over
a series of versions. Modifications to a file can only be ap-
plied to the latest version. To make changes to a file, an
application first creates a shadow copy of the latest version,
which is only visible to that application. Once the applica-
tion makes some modifications that transform the shadow
copy to a new consistent state, it can commit the shadow
copy and make it the latest version of the file. A commit-
ted version is immutable and further modifications to the
file will advance the version again. Sorrento forbids version
branching, which complicates the data consistency model
and will likely offer programmers more confusion than flex-
ibility. The version-based semantics can be implemented
hidden behind conventional file system primitives: a com-
mit operation is implicitly invoked when we make a close
or sync call. A shadow copy is created when we open a file
for write or after we finish a sync call. The latest version
of a file is maintained on the namespace server.

Implementation. Behind the scene, all index segments
and data segments are also versioned. The versions of data
segments for a specific file version are stored in the corre-
sponding index segment. In fact, a file’s version is just the
version of the index segment. If part of a file is changed,
only the modified segments and the index segment will have
their version numbers advanced. We employ the standard
copy-on-write technique to avoid the overhead of making
complete shadow copies of segments. To create a shadow
copy of a segment (the base segment), we simply create a
blank segment and truncate it to the same size as the base
segment. Unmodified regions of the shadow copy will be
found in the base segment or its ancestor versions, and mod-
ified regions will always be found in the newly created seg-
ment. We use an index structure to maintain the mapping
from region ranges to physical segments where the valid
data for the shadow copy can be located. The index struc-
tures are kept in memory, and will be flushed to disk when
the shadow copy is committed and becomes immutable.

To cope with failures of client applications, which may
leave uncommitted shadow segments as garbage, all shadow
copies are given an expiration time. The application must
either commit a shadow segment before its expiration, or
reset the expiration timer before it expires.

When two processes attempt to modify the same file,
each will work on its own shadow copy of the file. However,
a conflict will occur when both of them attempt to commit
their changes. Update conflicts can be avoided among co-
operative processes by write-lock leases through the names-
pace servers. Otherwise, they will always be detected dur-
ing the commit phase: when a process attempts to commit
a new version of a file to the namespace server, it will also
specify the base version of the file. If the version stored
on the namespace server is higher than the base version,
then it means that another process has made some changes
to the same file and successfully committed the changes.
The former process may attempt to resolve the conflict by
reapplying the changes to the new version and recommit
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(as OceanStore’s predicate-based update primitives [29] or
Bayou’s merge procedures [41]), or it may just notify end-
users about the conflict.

Committing a new version of a file may require the com-
mitment of multiple segments on distributed providers. We
use the standard two-phase commitment (2PC) [44] to en-
sure the atomicity of such an operation, whose details are
omitted here due to space constraints.

To conserve storage resource, Sorrento consolidates ear-
lier versions of a segment and only keeps one or a few lat-
est stable versions. In the future, we plan to allow users to
specify or automatically detect milestone versions that will
never be consolidated, a feature similar to the Elephant file
system [36].

Justification The choice of a version-based data consis-
tency model may sound surprising for those who have been
accustomed to the UNIX semantics. One may feel that there
could be too many versions in the system and the efficiency
could be a problem. There are four reasons behind our de-
sign:

(1) The decision is driven by the suitability for our tar-
geted applications and the runtime efficiency. For parallel
applications which access disjoint datasets most of the time,
update conflicts seldom occur. Thus optimistic concurrency
control is preferred. Additionally, for several applications
that Sorrento intends to support, the correctness of an op-
eration requires the atomicity of multiple reads and writes
on different offsets of a file. Reads and writes from two
different operations cannot interleave.

(2) Storage overhead is not an issue due to the use of
copy-on-write and version consolidation. Only one or few
versions are needed for each object. In the latter case, older
versions serve as backups in the events when the latest ver-
sion gets lost due to failures.

(3) Implementing UNIX semantics could incur unneces-
sary cost since a read/write request may involve multiple
segments, and making it atomic will require proper coordi-
nation among the owners of these segments. On the other
hand, in many cases, our applications do not need to see
the immediate changes made by other processes, so UNIX
semantics are unnecessary. If UNIX semantics are indeed
desirable, it can be emulated by issuing a sync call after
each write.

(4) Finally, versioning greatly simplifies the management
of replica consistency (Section 3.6).

We also want to emphasize that in our design, update
conflict resolution mechanisms are not included in the core
system. Instead, applications can choose to implement their
own conflict resolution protocol based on the application
semantics. For instance, we have written an atomic append
operation [18], which is illustrated in Figure 4.

For applications (such as DBMS) that prefer to imple-
ment their own data consistency, Sorrento also provides an
option to disable data versioning. In this case, all reads and
writes will be directly applied to the data segments. How-
ever, since our replication scheme is dependent on version-

// append a record r to file f.
void atomic_append(string &f, Record &r)
{

while (1) {
// Open a shadow copy of f.
FileHandle *fh = open(f, "w");
fh->append(r); // Append r to f.
// Try to commit the file.
if (fh->commit() == true) {

// Succeed: return.
return;

}
else {

// Conflict: delete the shadow copy and retry.
fh->drop();

}
}

}

Figure 4: Implementation of atomic append.

ing, enabling this option will also disable replication. Cur-
rently, this option is being used to support the parallel I/O
byte-range sharing primitive [21].

3.6 Data Replication
Sorrento tolerates component failures through data replica-
tion. Sorrento lets applications customize the replication
degree for each file to fit the nature of the file. For in-
stance, in a typical search engine, the same set of pages are
crawled and indexed periodically. If we lose a small frac-
tion of the pages, we can borrow the ones crawled during
the previous batch, and users will probably notice little or
no difference. In this case, it is desirable not to replicate the
page sources. On the other hand, inverted word indexes are
time-consuming to generate, and are read-only afterward.
So they are better to be replicated with a high replication
degree.

Sorrento’s version-based data consistency simplifies the
management of replica consistency. We can identify
whether two replicas of a segment are the same or which
one is older by comparing their versions. This allows Sor-
rento to propagate updates to replicas lazily [20]. Updates
to a segment will first be applied to the shadow copy of one
replica. When the shadow copy is successfully committed,
the provider will send the updated location information to
the home host of the segment, which also contains the new
version number. On the home host side, whenever it in-
serts or refreshes an entry in the location table, it will check
whether the segment replicas are of the same version. If
version discrepancy is found on different owners, the home
host will notify those with older versions to synchronize
with the latest version owner. Replication degree is main-
tained similarly. When a home host finds a segment has
fewer replicas than the specified degree, it will choose new
replica sites and notify them to request a copy from existing
owners.

Such a lazy propagation scheme allows writes to be exe-
cuted as fast as if there were no replication. Update propa-
gation is done in background (after a segment is committed)
and is not in an application’s execution path. Such an ap-
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proach also brings one drawback. Namely, an application
would not have any guarantee whether its latest changes
have been successfully replicated when it commits a file.
For certain applications that do require such a guarantee,
we also offer synchronous commitment as an option when
an application closes a file. In a synchronous commitment,
the application will query the home host of the set of ac-
cessible replicas, detect version discrepancies among them,
and push changes to older replicas before it returns the con-
trol back to the application.
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Figure 5: The initial setting of a simple example. File /foo is repre-
sented by an index segment Si and data segment Sd. Both segments are
replicated twice. The home hosts of Si and Sd are h1 and h2 respectively.
hn is the namespace server, and hc is the node where client application is
launched.

Putting All Things Together We demonstrate how dif-
ferent components and entities in Sorrento work in sync
through a simple example. This example involves four stor-
age providers (h1, h2, h3, h4), and one file /foo, which is
physically represented by an index segment (Si) and a data
segment (Sd). Both segments are replicated twice (Si on h1

and h2, and Sd on h3 and h4). The home hosts for Si and Sd

are h1 and h2 respectively. A client application (running on
host hc) opens the file /foo, performs a write, and closes
the file. The initial arrangement of this example is shown
in Figure 5, where hn is the namespace server. The time-
line of the execution is illustrated in Figure 6. The activities
carried out in each step are explained in Figure 7.

Note that although the whole process might seem quite
involving, the actual I/O transfer goes directly between the
client and the storage provider (steps (3)-(5)) with little
overhead. Typically, an application will issue many read-
/write requests during a file session, and the cost of the open
and close operations will be amortized. Additionally, up-
date propagation are performed in the background and will
not slow down the client application.
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Figure 6: The timeline of activities for a simple example, in which an
application opens a file, writes to it, and closes it. The file has two segments
Si and Sd, whose home hosts are h1 and h2 respectively. Si is replicated
on h1 and h2, and Sd is replicated on h3 and h4. Time flows from left
to right. Arcs between different timelines stand for communications. We
also illustrate the steps corresponding to open(), write(), close(),
and the background propagation process.

Step Activity
(1) The client retrieves file /foo’s FileID from the namespace server.
(2) The client contacts h1, the home host of the index segment Si, to

retrieve the data of Si. Since h1 happens to have Si, it sends back
the data immediately.

(3) The client contacts h2, the home host of Sd, to retrieve the data of
Sd. h2 sends back a redirection response to hd with the two owners
of Sd (h3 and h4).

(4) The client contacts one owner h3 and creates a shadow copy of Sd

(called S′

d).
(5) The client issues the write request to h3 .
(6) The client closes the file, so it creates a shadow copy of the index

segment on h1 (called S′

i).
(7) The client contacts the namespace server for the approval of commit,

and succeeds.
(8) The client performs the two-phase commit to make sure the commit-

ment of S′

i and D′

i are carried out atomically.
(9) The client contacts the namespace server and completes the version

commit operation (After (7) and before (9), other processes will be
blocked from committing changes to /foo.)

(10) h1 updates the local location table (not shown), and h3 updates the
location table on h2 to reflect the version advances of Si and Sd.

(11) h1 and h2 instruct h2 and h4 to sync with h1 and h3 for S′

i and S′

d

respectively.
(12) h2 and h4 retrieve the updates from h1 and h3 respectively.

Figure 7: Activities carried out in the steps of Figure 6.

3.7 Data Placement and Migration
Our aforementioned data location scheme offers the flexi-
bility of placing a segment on any provider without restric-
tion. In Sorrento, a segment is not confined to the location
where it is initially created, and the system dynamically
adjusts its location (1) to balance I/O load and (2) to bal-
ance storage usage among the providers. As a result, data
placement in Sorrento is closely coupled with data migra-
tion. Note that our two balancing objectives are to some
degree correlated. For example, studies have shown that a
typical UNIX file system performance degrades when it is
close to saturation [31], so balancing storage usage among
providers could potentially improve I/O performance. On
the other hand, these two objectives may also conflict with
each other. For instance, when a new provider joins the net-
work, we may want to fill it up quickly by placing more
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new segments on it according to the second objective (bal-
ancing storage utilization). However, since newly created
segments are more likely to be accessed subsequently by
their creators, it will cause a quick load increase on that
provider at a later time.

3.7.1 The Base Scheme

We consider that each segment has its temperature, which
may change over time. A hot segment is one that is being
actively accessed recently; while a cold segment is one that
has not been touched for quite a while. We use the last ac-
cess time (LAT) of a segment to measure its temperature:
a more recent LAT stands for a higher temperature. The
distribution of segments in relation to temperature is typi-
cally bimodal – most of the segments are either hot or cold,
with few lukewarm ones spread in between. To balance I/O
load, we need to migrate hot segments from heavily loaded
providers to lightly loaded providers.

The problem of selecting the location of a new segment
appears in three contexts: (1) placing a newly created seg-
ment; (2) making a new replica of an existing segment;
and (3) migrating an existing segment to a different loca-
tion. Note that the third case is equivalent to making a new
replica of the segment somewhere else and then erasing the
local copy. We use the same provider selection algorithm in
all three cases. The algorithm only relies on the load infor-
mation, which is maintained by the local membership man-
ager, and is randomized: First, for each candidate provider
pi, we calculate a weight wpi

. Second, we randomly se-
lect a provider among the candidates, in which pi has the
probability of being chosen proportional to its weight. The
weight of a provider considers both the provider’s current
workload (through the load factor fl) and its available stor-
age resources (through the storage factor fs). Specifically,
fl and fs are calculated as follows:

fl = min

�
10, � 1

l
− 1 � � , and fs = min

�
10, log

2

S

s
� .

In the above formulas, l (0 ≤ l ≤ 1) is the provider’s
CPU and I/O wait load, S the provider’s available space,
and s the segment size (s ≤ S)2. These formulas are based
on some empirical studies. The storage factor is calculated
as the logarithm of the ratio between the available space and
the segment size. The load factor is calculated as the inverse
of the current workload. We add adjustments to keep both
factors within range [0, 10]. Given fl and fs of a provider
pi (0 ≤ fl, fs ≤ 10), its weight can be calculated as wpi

=
fα

l ×f1−α
s , where α is within [0, 1] and can be used to adjust

the favoritism of the storage factor or load factor in the final
weight. For instance, we can use a small value of α if we
want to place a file on providers with more storage space.
By default, we chose each file’s α value to be 0.5.

2If a segment’s size is not know, as in the case when we create a new
segment, we use the potential maximum size determined in our segment
sizing scheme.

In terms of data migration, we still need to decide when
and what segments should we migrate. These questions are
relatively straightforward to answer. Migration is desirable
when there is significant imbalance of either I/O load or
storage utilization. To this end, we measure a provider’s I/O
load using the EWMA3 of the I/O wait percentage, and the
storage utilization using the percentage of consumed space.
Significant imbalance, translating into mathematics, means
that some provider’s I/O load or storage utilization is out-
side the ±3σ range of the cluster-wide average, where σ is
the standard deviation. The migration process on a provider
will be activated if the provider’s I/O load or storage utiliza-
tion is among the highest 10% of all providers, and is higher
than the system-wide average plus three times the standard
deviation.

As to what segments to migrate, the answer depends on
the providers. For providers with high I/O load, we prefer
migrating hot segments because our goal is to lower their
I/O load. Additionally, we choose the value of α to be 0.8,
favoring providers with low load as the destination of mi-
gration. For providers with high storage utilization, we pre-
fer migrating cold segments, and set the value of α to be
0.3, favoring providers with low storage utilization.

To avoid oscillation in which a segment may be migrating
back and forth due to sudden bursts of traffic, the migration
design is made once every minute. Additionally, to prevent
the traffic generated from data migration to disturb the nor-
mal operation of the system, we only allow one active data
migration process per node.

3.7.2 Optimizations and Customizations.

In the base data location scheme, each data access requires
at least two network operations: first contacting the home
host, and then interacting with the actual owner. For large
segments, such an overhead would be amortized by the data
transfer cost; however, it is very inefficient for small seg-
ments, whose cost is dominated by network latencies. (A
particular case is accessing index segments.) We modify
our provider selection algorithm and increase the weight of
a home host by a factor of 3N (N being the number of
providers) to make a home host more favorable to be the
owner for a small segment. We also adjust how a provider
responds to location table refreshing requests: for small seg-
ments, we will send the actual data instead of the SegIDs to
the remote provider.

To increase data survivability against failures, we also
seek to store replicas of a segment on different providers.
This is achieved by excluding the current replica holders
from the candidate set when selecting a new replica site. We
also plan to extend our replica placement policy to support
more sophisticated requirement, such as placing replicas on
different racks as GoogleFS does.

Another aspect of our data placement and migration
scheme is that it is customizable by user applications. First,
an application can specify the favoritism parameter α for

3EWMA stands for Exponentially Weighted Moving Average.
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each file during their creation time. The customized α val-
ues will then be used in place of the system-wide defaults
during the placement and migration of that file. For in-
stance, if a file will be accessed frequently, the application
may want to place it on a lightly loaded node; on the other
hand, if the file is meant to be created and put away (such as
a checkpoint file or crawled HTML pages), we do not have
to worry about the load of its destination.

We also support a special locality-driven data placement
policy. This is again based on our observation that for many
applications, the application dataset is partitioned and dif-
ferent processes will access disjoint sets of data, exhibiting
good locality. Thus, it is desirable to take advantage of such
kind of locality by co-locating segments with the process
that accesses them, so that data transfers do not need to
go through network. A segment will migrate to a remote
provider if a significant percentage of the traffic it receives
is from that provider. The threshold percentage is specified
as a parameter to the locality-driven placement policy. To
avoid instability, the threshold value must be greater than
50%. Traffic monitoring is achieved by maintaining an ac-
cess history for each data segment managed under locality-
driven policy. We also limit the memory consumption by
only keeping the latest one thousand accesses for the most
recently accessed one thousand segments. Through a seg-
ment’s access history, we can derive the traffic volumes gen-
erated by remote nodes.

4 Implementation and Evaluation
A prototype of Sorrento has been developed, which imple-
ments all the components discussed in Section 3. The whole
system is written mostly in C/C++. plus a few hundred lines
of assembly code. Although various components in Sor-
rento are based on ideas from previous research, we choose
to implement the whole system completely from scratch due
to either source code unavailability or efficiency consider-
ations. The core components, such as client libraries and
server daemons, consist of 50K lines. System monitoring,
diagnosis and maintenance utilities took another 10K lines.
As of this writing, our effort mainly focuses on the system’s
functionality and reliability. Much room is available for fur-
ther optimization. For instance, we have not implemented
any caching for either namespace server or file data.

The following evaluations seek to answer two questions:
(1) What is the overhead and scalability of Sorrento in
comparison with NFS and parallel file systems such as
PVFS (Section 4.1 and 4.2); (2) How effective are the self-
organizing features of Sorrento, such as online data recov-
ery and data migration (Section 4.3, 4.4 and 4.5).

The evaluations are conducted on two clusters A and B.
The hardware and software configuration of these two clus-
ters are summarized in Figure 8. In both clusters, all nodes
are connected to the network through Fast Ethernet links
and none of the following experiments would saturate the
switches. Each experiment may not use all the available
storage nodes of a cluster. In the remaining sections, we use

the notation Sorrento-(n, r) to denote a Sorrento deploy-
ment with n storage providers and all files are replicated r

times. Similarly, we use PVFS-n to specify a PVFS deploy-
ment with n I/O nodes. By default, Sorrento uses lazy prop-
agation for replica updates and load-aware data placement
and migration. Additionally, unless otherwise specified, the
benchmark programs or application processes run on a sep-
arate set of machines from the storage nodes. To realize the
best possible performance of PVFS experiments, we modify
the programs to directly use PVFS library functions instead
of calling UNIX file system calls.

We use a combination of microbenchmarks and applica-
tion trace replay as our evaluation methodology. The latter
one is chosen for several reasons: (1) This enables us to
quickly test how the system would perform under different
kind of application workloads without either modifying the
applications or extending the underlying I/O sub-system be-
ing used (such as ROMIO [3, 42] or the kernel file system
module); (2) We have a more controllable testing environ-
ment and the results can be reliably reproduced and ana-
lyzed. (3) Practically, some applications cannot be run di-
rectly. For instance, we cannot run a crawler application on
either clusters because internal nodes are isolated from the
Internet. We do acknowledge that through trace replay, we
may not accurately represent the exact workload imposed
by the applications; however, we believe the results are ad-
equate to provide us reasonable indications on how the sys-
tem would perform under various types of workload so that
we can make more informed design decisions during our
development. For the purpose of trace replay, we have im-
plemented two trace collection utilities: one intercepts file
system calls through glibc modification and the other inter-
cepts PVFS calls by changing the PVFS library. The traces
being collected all have accurate timing information for the
starting and ending time of each I/O request. The overhead
of trace collection ranges from 5% to 20% depending on the
granularity and frequency of requests.

4.1 Small File I/O Operations
Although interactive I/O workload is not the focus of Sor-
rento, we do want to verify whether Sorrento performs rea-
sonably under those kind of workload, which primarily con-
sists of small file I/O operations [9, 43].

4.1.1 Interactive Responses

In this experiment, a single client process issues requests
sequentially to an otherwise idle file system and measures
the response time. Four types of workload are used: cre-
ate repeatedly creates a new file then closes it immediately.
write repeatedly opens the files created by create, writes
12KB data into it, then closes it. read repeatedly opens the
files written by write, reads 12KB data from it, then closes
it. unlink unlinks all the files created by create. We run
these benchmarks on Cluster A and compare Sorrento with
NFS and PVFS. For NFS, after each run, we unmount the
file system and remount it to get rid of NFS caching. For
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Cluster A Cluster B

CPU 30 dual P-II 400MHz nodes (10 with exported storage) 46 nodes (38 with exported storage): 8 dual P-III 1.3GHz, 30 dual P-III 1.4GHz, 4
quad Xeon 1.8GHz and 4 quad Xeon 2.4GHz.

Memory 512MB per node 4GB per node
OS RedHat Linux (kernel ver 2.4.18) RedHat Linux (kernel ver 2.4.20)
Disk drives 10 disks: 2 Seagate Cheetah ST373405LW (10K rpm,

5.1ms s.t.) and 8 Seagate Barracuda ST336737LW
(7.2K rpm, 8.5ms s.t.)

114 disks: 3 Seagate Cheetah ST336704LC (10K rpm, 5.1ms s.t.), 99 Hitachi Ul-
trastar DK32EJ-72NC (10K rpm, 4.9ms s.t.), 6 Seagate Cheetah ST373405LC (10K
rpm, 5.1ms s.t.), and 6 Fujitsu Enterprise MAN3735MC (10K rpm, 5.0ms s.t.).

Total capacity 210 GB 6.55 TB
Connectivity All nodes connected to a Lucent Cajun 550 through

Fast Ethernet links
Nodes are connected to two HP 5308XL switches through Fast Ethernet links. The
two HP switches connect to a Cisco catalyst 6509 through Gigabit Ethernet links.

Figure 8: Hardware and OS settings of two clusters. In Cluster A, 10 of the 30 nodes export storage. In Cluster B, 38 nodes export storage. Each of
those nodes exports a software RAID-0 partition consisting of three SCSI partitions.

PVFS, two variations (PVFS-4 and PVFS-8) are used. For
Sorrento, four variations are used (Sorrento-(4 or 8, 1 or
2)). The results are shown in Figure 9.

create write read unlink

NFS 0.67 2.42 2.93 0.71
PVFS-4 50.3 60.1 60.1 19.4
PVFS-8 60.1 60.3 70.2 22.9

Sorrento-(4, 1) 31.4 43.5 33.5 32.4
Sorrento-(4, 2) 31.3 44.0 33.7 44.3
Sorrento-(8, 1) 32.6 45.4 34.4 32.2
Sorrento-(8, 2) 33.2 46.7 34.8 42.2

Figure 9: Small file I/O request response time (in ms).

As we can see, the overhead of Sorrento and PVFS is sig-
nificant compared to NFS for small I/O requests, because
NFS does not need to provide cluster management and self-
organizing features as Sorrento, nor does it provide parallel
file system semantics as PVFS. Additionally, NFS is highly
optimized for small I/O operations and is tightly integrated
with OS kernel, while for both PVFS and Sorrento, the stor-
age servers are running at user-level and the file data and
meta-data must traverse through kernel-user boundary a few
times before they are written to the underlying file system.
Thirdly, in Sorrento, it takes two TCP roundtrips to open a
file and three TCP roundtrips to close the file. PVFS would
also require multiple TCP roundtrips because metadata and
data are stored on metadata server and I/O nodes respec-
tively. However as we will show later, Sorrento outperforms
NFS for large I/O requests and in terms of system scalability
when the number of concurrent clients increases.

We can also see that Sorrento outperforms PVFS by 25-
53% for file creation and read/write requests but is slower
than PVFS for unlink operations. We explain the reasons
as follows. Sorrento’s namespace server is more efficient
than PVFS’s metadata server by storing the whole directory
tree in a BerkeleyDB instead of representing each inode us-
ing a small file. We can also see that a higher replication
degree in Sorrento does not have much impact on the re-
sponse time even for writes because of our lazy propagation
scheme. However, Sorrento eagerly removes all replicas
when a file is unlinked, so the response time of unlink in-
creases when replication is employed.

4.1.2 Sustained Small File I/O Throughput

We also evaluate the sustained throughput of small file op-
erations. We launch multiple client processes simultane-
ously, each of which repeatedly creates a file, writes 12KB
into it, and closes it. We calculate the aggregated system
throughput in terms of the number of completed file ses-
sions (one create/write/close is counted as one session). We
compare Sorrento-(8,2) with PVFS-8 and NFS. The exper-
iment is conducted on Cluster A and the results are shown
in Figure 10. The x-axis is the number of clients, and the
y-axis is the measured throughput.
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Figure 10: Small file I/O throughput. Throughput is reported as the
number of file sessions (open/write/close) completed per second.

As we can see, a single NFS server can deliver a higher
small I/O throughput than both Sorrento and PVFS (it satu-
rates at about 700 sessions/second). This is again due to the
optimizations of NFS server implementation over years of
experiences.

Comparing Sorrento with PVFS, we can see that the
throughput of Sorrento scales up almost linearly with the
number of clients, and we are not able to saturate the sys-
tem with 16 clients. On the other hand, PVFS saturates at
a low throughput (64 sessions/second). This is largely due
to the bottleneck caused by their metadata server. In Sor-
rento, the services provided by namespace servers is very
simple (mapping pathnames to FileIDs, and maintaining the
versioning information) and thus can be implemented effi-
ciently. Our offline performance tests show that a single
namespace server is able to handle 1300 namespace opera-
tions per second, which would provide a theoretical upper
bound of 400-500 sessions/second.
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4.2 Large File I/O Operations
We further evaluate the large file I/O performance using mi-
crobenchmarks and application trace replay.

4.2.1 Microbenchmarks

In this experiment, benchmark bulkread repeatedly reads
4MB data at random offsets (aligned at 4KB boundary)
from a set of 512MB-large files. Similarly, benchmark
bulkwrite repeatedly writes 4MB data at random offsets
to a set of 512MB-large files. We run the experiment on
cluster B and vary the number of client processes. We
compare the aggregated data transfer rate for NFS, PVFS-8,
and Sorrento-(8,2). Different client processes access dis-
joint sets of files. For Sorrento and PVFS, a total of 160
files (80GB) are pre-populated. For NFS, a total of 30 files
(15GB) are pre-populated. In each run, a client reads or
writes 256MB data. Note that since the total dataset cannot
be fit in memory, and the data being accessed are at random
offsets, the impact of file system caching is negligible. For
bulkwrite, we also show the performance of Sorrento us-
ing eager propagation (Sorrento-(8,2), eager). The results
are shown in Figure 11.
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Figure 11: Large file read/write performance.

As we can see, NFS performs the worst and the read or
write rates saturate at 8MB/s. On the other hand, both PVFS
and Sorrento are able to scale up the transfer rates with the
number of clients. For read rates, Sorrento and PVFS per-
form similarly. For write rates, PVFS outperforms Sorrento
by a factor of two. This is because Sorrento needs to com-
mit each write to two replicas. For both systems, the transfer
rates are saturated when the network links connecting to the
storage nodes are saturated. Finally, for Sorrento, the peak
transfer rates under eager propagation and lazy propagation
are very close. However, lazy propagation is able to deliver
a higher transfer rate when the number of clients is small
and the system is underloaded. This is because under lazy
propagation, a client does not have to wait until all replicas
are updated before it can issue the next request.

4.2.2 Application Benchmarks

We further access the performance of Sorrento through
trace-replay of two real applications. The first is the
BTIO benchmark from NAS Parallel Benchmark Suite

(NPB) [45]. BTIO solves the Block-Tridiagonal prob-
lem and issues read/write requests through MPI-IO inter-
face. The second application is a parallel Protein Se-
quence Matching service based on NCBI’s Blast pack-
age [5] (PSM). In PSM, a set of backend service processes
access a partitioned protein database to serve user submitted
search queries.

We conduct our experiments on Cluster B. For BTIO,
four trace replayers wrote 2.7GB data and read 1.7GB data4.
For PSM, eight trace replayers read a total of 3.1GB data
(there is no write operations for PSM). BTIO uses PVFS’s
list-write primitive, which is emulated in Sorrento
through asynchronous I/O calls, and we disabled version-
based data management to support concurrent writes to dif-
ferent byte ranges. In both settings, the trace replayers are
launched simultaneously, and they issue requests sequen-
tially as fast as they can. For both applications, we compare
Sorrento-(8,1) with PVFS-8 and NFS. We show the results
(Figure 12) in terms of the maximum, minimum and aver-
age execution time of client processes, and the aggregated
data transfer rates.

Execution time (sec) Aggregated trans-
fer rates (MB/s)

Min Max Average Read Write
NFS 1426.1 1509.7 1472.8 1.84 1.15

BTIO PVFS-8 140.2 141.5 140.9 19.3 12.0
Sorrento-(8,1) 156.3 158.1 157.2 17.3 10.7

NFS 1196.0 1274.7 1235.7 2.51 (N/A)
PSM PVFS-8 213.8 233.4 226.3 13.7 (N/A)

Sorrento-(8,1) 200.7 222.5 214.8 14.5 (N/A)

Figure 12: Performance comparison using NPB BTIO and parallel Pro-
tein Sequence Match.

As we can see, for both applications, the workload is dis-
tributed to clients in a very balanced way, and thus the ex-
ecution time for all the client processes is very close for all
three types of file systems. Second, NFS again performs the
worst while Sorrento and PVFS perform comparably. PVFS
does have an 11% edge over Sorrento for BTIO. This is be-
cause after all, PVFS has been specifically tailored for this
type of applications, while our prototype system is far from
optimal.

4.3 Handling Node Failures and Additions

In this section, we evaluate how the system handles node
failures and additions. We employ 10 nodes from Cluster
B as storage providers, and populate the system with 200
512MB files, each has three replicas (totally 300GB data).
A constant workload of three bulkread and two bulk-
write processes is present during the experiment, which is
at about 50% of the system capacity. Each client writes to
its log the amount of data being read/written every three sec-
onds, and we calculate the aggregated transfer rates offline.

4BTIO has five different classes, and this experiment uses the class B
setting.
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We knock down one storage provider at time 30 (seconds);
and then add a new storage provider at time 45.
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Figure 13: Handling node failures and additions. A storage provider
fails at time 30, and a new node joins at time 45.

The results are shown in Figure 13. As we can see, right
after the failure of a storage provider, the transfer rate drops
because the requests issued to the failed node are all timed
out. After that, the system quickly adjusts the content of
location table and the transfer rates recover to about 94%
of the inital setting, this is due to the fact that now each
remaining storage providers receives an increased share of
load from clients. About 30 seconds later, the transfer rate
decreases to the 85% of the initial setting. This is caused
by the data recovery process that seeks to restore the repli-
cation degree of under-replicated segments. Eventually, all
lost replicas are restored after 20 minutes (not shown in Fig-
ure 13). This experiment confirms that Sorrento is able to
tolerate node failures and deliver sustained I/O throughput
during the data recovery process.

4.4 Load-Aware Data Placement and Migra-
tion

We evaluate the effectiveness of our load-aware data place-
ment and migration policy through a search engine crawler
application from Ask Jeeves [1]. In this application, a num-
ber of crawlers are assigned disjoint sets of seed URLs, and
each one crawls within a confined set of URL domains and
stores the pages to the storage system. Pages from one do-
main are stored in a single file. Statistical data from Ask
Jeeves shows that the number of pages from a single do-
main can range from hundreds to millions. And there is
typically a speed discrepancy of more than ten folds among
crawlers. The high skewness of the file size distribution
and I/O workload distribution makes it a good candidate to
study the effectiveness of Sorrento’s load-aware data place-
ment and migration.

In this experiment, we use a 10-node Sorrento deploy-
ment at Cluster B, and launch 50 crawlers on the same set of
storage providers (five crawlers per node). The trace replay-
ers are multi-threaded, and they replay the traces collected
from search engine crawlers deployed in Ask Jeeves’s pro-
duction environment. The trace replayers emulate the ef-
fect of Internet latency when fetching a page by blocking
themselves for the same amount of time. The page files are
not replicated. We compare three variations of Sorrento:

Node with lowest
storage usage

Node with highest
storage usage

Unevenness
ratio

Sorrento-random 7.1% 35.3% 4.97
Sorrento-space 9.1% 26.2% 2.88

Sorrento-migration 10.2% 18.5% 1.81

Figure 14: Comparison of storage usages of the crawler application un-
der three data placement and migration schemes. Sorrento-random places
data uniform randomly on all servers; Sorrento-space places data based
on storage usages of the nodes. Sorrento-migration is Sorrento-space with
online migration enabled.

(1) uniform random placement policy and no data migra-
tion (Sorrento-random); (2) space-usage based placement
(setting α to 0) and no data migration (Sorrento-space);
(3) space-usage based placement with data migration en-
abled (Sorrento-migration). We choose α to be 0 because
the I/O workload generated by the crawlers is fairly light
(totally less than 10MB per second). For each setting, we
run the experiment for 12 hours, and report the nodes with
the lowest and highest storage usage percentage at the end
of the experiment. We use the ratio between the highest
storage usage and the lowest usage to measure the uneven-
ness of the final data placement. Each run starts with an
empty file system and totally 243GB data are written. The
results are shown in Figure 14. As we can see, because
of the heavily skewed file size distribution, a uniform ran-
dom placement performs poorly, with an unevenness ratio
of 4.97. Sorrento-space performs better by placing data us-
ing realtime storage utilization information, however, since
a file’s size is not known when it is initially created, the
unevenness ratio is still quite high (2.88). Through online
data migration, Sorrento-migration is able to reduce the un-
evenness ratio to 1.81. This confirms the effectiveness of
Sorrento’s load-aware data placement and migration policy.

4.5 Locality-Driven Data Placement and Mi-
gration

Finally, we demonstrate the effectiveness of the locality-
driven data placement and migration scheme through the
parallel Protein Sequence Matching service (PSM) (as de-
scribed in Section 4.2.2). In this experiment, the total
dataset consists of 24 partitions, each of which is between
1GB and 1.5GB. Each PSM service process is statically as-
signed a disjoint set of three partitions. To serve a request,
a PSM service process performs a local search on its as-
signed partitions, then sends the results to a dedicated ag-
gregation node. Because of the data access locality exhib-
ited by this service, it is desirable to place the partitions
and their designated PSM service processes on the same
machine. We collect the traces in an environment where
partitions are manually placed with their designated PSM
service processes. The traces also contain boundary marks
of individual queries.

When playing back the traces in Sorrento, we import the
partitions to an eight-node volume without the knowledge
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of which partitions will be accessed by which PSM service
process, so as to verify whether Sorrento can automatically
detect the access locality from the workload and migrate
partitions accordingly. Each trace replayer issues I/O re-
quests belonging to the same query as fast as it can, and
then blocks itself for the same amount of time as indicated
by the gap between the query-end mark and the next query-
start mark. We show the time-varying behavior of the sys-
tem by reporting the I/O portion of the service time.
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Figure 15: Locality-driven data placement and migration.

The results are shown in Figure 15. The x-axis is the
elapsed time, and the y-axis is the I/O portion of the service
time per query, which is termed as I/O time for simplicity.
Each data point in Figure 15 is the average I/O time for
queries served in the past 30 seconds. Initially, only four
partitions are placed locally with their designated PSM ser-
vice processes, and the I/O time is 62 ms/query. The data
migration starts at time 60, and the background migration
traffic increases the I/O time to around 75 ms/query. The
I/O time gradually decreases when more partitions are mi-
grated to co-locate with their designated PSM service pro-
cesses. The migration process finally completes at around
1410, after which the I/O time is reduced 46 ms/query.
As we can see, the system is able to dynamically migrate
data to their processors without any interruption of services.
Additionally, the results also demonstrate the importance
of exploiting data locality in the parallel Protein Sequence
Matching service, which can reduce the I/O portion of the
execution time by as much as 26%.

Summary of findings: (1) Sorrento outperforms PVFS
for small file I/O performance, however, it still incurs higher
overhead than NFS, which has been optimized for such kind
of workload and does not have the overhead of distributed
storage management. (2) For large file I/O performance,
Sorrento delivers scalable performance and is comparable
with PVFS using both microbenchmarks and real applica-
tion traces. (3) Sorrento is able to automatically handle
failures and recover lost data segments. (4) Through load-
aware or locality-driven data placement and migration, Sor-
rento is able to balance storage usage, and improve data ac-
cess performance without explicit interventions from appli-
cations or administrators, and does not interrupt the normal
operation of the system.

5 Related Work

Our work is in large part motivated by previous work on par-
allel/distributed file systems and cluster-based storage sys-
tems such as AFS [26], GPFS [37], Petal [30], PVFS [13],
Slice [7], Swift [12], xFS [8], and others [22, 23, 28, 32].

Our work complements those work with a specific focus
on incremental expandability and manageability of the sys-
tem. For instance, Petal and xFS organizes storage in RAID
volumes, which is not easy to expand incrementally. PVFS
focuses on parallel I/O support and but is notably weak
in supporting system expansion and automatically handling
component failures. Additionally, Sorrento targets the typ-
ical workload of data-intensive applications, and exploits
their unique characteristics to optimize their performance.

The design objectives of GoogleFS [18] is the closest to
ours. However, GoogleFS focuses on building a proprietary
system for their own search engine, and makes several as-
sumptions that may not be valid for other types of applica-
tions, such as the lack of directory listing, and the central-
ized metadata server.

Dynamic distributed data location has been studied peer-
to-peer network research, such as CAN [35], Chord in
CFS [15, 40], and Tapestry in OceanStore [24, 29]. Our so-
lution is simplified by the fact that we only need to deal with
the LAN environment and we use consistent hashing [27] to
map SegIDs to home hosts.

Version-based data consistency model and immutable
files are first proposed in Amoeba [32]. Other version-
based standalone file systems include Elephant [36] and
CVFS [39]. Their goals are to protect data loss or to provide
information for intrusion analysis, and therefore are differ-
ent from ours. In Sorrento, we only need to maintain the
most recent several versions, and the granularity of version-
ing is controllable by applications through standard UNIX
file system calls.

Online data placement to balance system workload have
also been studied in CFS [15], by Honicky et. al [25] and
by Brinkmann et. al [11]. These work all seek to place data
proportional to statically determined weights of the storage
nodes. They can not balance both storage usage and I/O
workload. On the contrary, Sorrento uses realtime informa-
tion of storage usage and I/O workload to make placement
decisions.

Dynamic data migration has also been proposed in
GoogleFS [18]. Different from their work, the data migra-
tion decision in Sorrento is made in a distributed fashion
instead of by a centralized server. Additionally, their work
mainly focuses on balancing storage usage, while we seek
to balance both I/O and storage load.

Finally, our design fits well to the Object-based Storage
Device (OSD) Model [6], in which each physical device ex-
ports a set of variable-length objects addressed by location-
independent OIDs.
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6 Concluding Remarks
This paper presents the design and implementation of a
storage cluster built upon commodity components called
Sorrento. The design of Sorrento targets a class of data-
intensive applications that have low write-sharing patterns,
and seek to provide incremental expandability and easy
manageability by making the system self-organizing. The
design of Sorrento employs a version-based data consis-
tency model, lazy propagation for replica updates, and a
flexible data placement and migration scheme that is able to
balance storage usage and I/O workload, or to exploit data
access locality. We validated our design through a combi-
nation of microbenchmarks and trace-replay of real appli-
cations on a Sorrento prototype. In terms of system perfor-
mance, we found that Sorrento is able to deliver reasonable
performance for small file operations and scalable I/O for
large file operations which is comparable with PVFS. Ad-
ditionally, the self-organizing features of Sorrento simplify
system failure handling, and delivers improved storage us-
age and I/O performance without any human intervention
or interrupting the normal operation of the system.
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