
Energy-Conscious Data Aggregation Over Large-Scale Sensor
Networks

Fatih Emekci Hailing Yu Divyakant Agrawal Amr El Abbadi

Abstract

Recent advances in hardware technology facilitate appli-
cations requiring large numbers of sensor devices, where
each sensor device has computational, storage, and com-
munication capabilities. Since sensor devices are powered
by ordinary batteries, power is a limiting resource in sen-
sor networks. Power usage can be reduced by pushing part
of the computation into the network to reduce communica-
tion cost, which is the main energy consumer in sensor net-
works. In order to further reduce power usage, we propose
power-aware query processing techniques for aggregation
queries. Instead of requiring exact answers to queries, we
introduce precision into queries to give users full control
of the tradeoffs between precision and energy usage. Our
query processing approach incorporates in-network pre-
diction to further reduce the need for constant communi-
cation. Moreover, we optimize the execution of multiple
queries to take advantage of sharing common aggregated
values among different queries. Since communication is
three orders of magnitude more expensive than computa-
tion, incorporating precision and efficiently executing mul-
tiple queries results in significant power savings, thus ex-
tending the lifetime of sensor networks.

1 Introduction

Due to advances in miniaturization, low power, and low
cost design of sensors, large-scale sensor networks are be-
coming a reality and are being used in many applications,
such as environment monitoring on Great Duck Island and
James Reserve [1, 10], where sensor nodes collect light,
temperature, and humidity data. In such networks, each
sensor node has the capabilities of sensing, computing, and
communicating. For example, one of the current commer-
cially available sensor devices, Berkeley MICA [4], has the
characteristics shown in Table 1. Since sensor nodes are
full-fledged computing devices with multiple sensing func-
tions (such as temperature, light, and fluid flows), sensor
networks are distributed systems with thousands of nodes.
However the inherent properties of sensor networks differ-
entiate them from traditional distributed systems. These
distinguishing properties are summarized as follows.

Table 1: Hardware Characteristics of MICA Mote

Processor 4Mhz, 8bit MCU (ATMEL)
Storage 512KB
Radio 916Mhz Radio

Communication Range 100 ft

• Limited power: Currently, the energy of most sensor
nodes is supplied by ordinary batteries. Hence, en-
ergy usage is an important factor for application de-
sign.

• High communication cost: Power consumption is
dominated by radio communication. Hence, commu-
nication utilization must be minimized to conserve
power.

• Low computation capability: Even though each sen-
sor node has a micro-processor, the processing speed
is much slower than modern computers. For example,
MICA motes use an ATMEL processor with clock
rate 4Mhz. Hence the sensor node cannot process
very complex tasks. Furthermore, the memory avail-
able for programming and data is too small to store
the code for complex programs and large datasets.

• Uncertainty: Readings of the sensor nodes may con-
tain errors, which could result from environmental
noises, or the inherent precision of the sensors them-
selves. Thus average values should be considered in-
stead of individual readings.

• Low bandwidth: In sensor networks, sensor nodes
use radio (wireless) to communicate with each other.
Since the bandwidth of wireless is very low, it is nec-
essary to decrease the number and the size of mes-
sages.

Due to these properties, existing techniques developed
for traditional distributed systems can not be applied to
sensor networks directly. Therefore, several techniques fo-
cused on energy and bandwidth constraints [8, 17, 18, 7, 9]
have been proposed for data management and query pro-
cessing over sensor networks. Since sensor nodes are pow-
ered using ordinary batteries which are expensive or im-
possible to replace, power-aware techniques need to be

1

designed to extend the lifetime of sensor networks. In
this paper, we target the query processing layer, where we
introducepower-aware queriesand proposepower-aware
query processingtechniques. In particular, we introduce a
notion of precision into queries that allows users to trade-
off data precision and power usage. We use this notion
of precision in conjunction with prediction to reduce inter-
node communication. Moreover, we propose a technique
for power-aware multi-query processing. To the best of
our knowledge, this is the first work targeting multi-query
processing over sensor networks. The contributions of this
paper can be summarized as follows:

• We introduce the notion of precision into SQL
queries.

• We propose power-aware queries over sensor net-
works, which gives energy-precision tradeoff to users.

• We develop a power-aware query processing tech-
nique based onin-network aggregationand in-
network prediction, where aggregation and prediction
take place in the network, instead of only at the bases-
tation.

• We propose an efficient technique for power-aware
multi-query processing.

The rest of the paper is organized as follows. Section
2 gives some background and motivation for power-aware
query processing. The sensor network model is reviewed
in Section 3. In Section 4, we introduce the power-aware
query type. The power-aware query processing algorithms
are presented in Section 5. In Section 6, we present multi-
query processing for power-aware queries. Experimental
results are shown in Section 7. We end with a conclusion
in Section 8.

2 Background and Motivation

In sensor networks, queries are initiated at a basestation,
where the optimized query plan is disseminated to the
entire sensor network. In [7], researchers proposed the
Fjords architecture for managing multiple queries over
many sensors. In this architecture, each senor node sends
its data directly to the basestation. This direct communica-
tion requires a large amount of transmission power which
drains the node’s batteries rapidly, and thus substantially
decreases the lifetime of the system [16]. Minimum en-
ergy multi-hop routing protocols (MTE) were therefore
proposed, in which sensor nodes route their data to the
basestation through intermediate nodes [2, 14, 15, 13].
However, in general, sensor networks contain too much

data for a single end user to process. Therefore data fu-
sion, where automated methods of combining or aggregat-
ing the data into small sets of information, has been pro-
posed [3, 5]. Data aggregation is also used to obtain more
reliable data measurements by combining several unreli-
able data measurements to produce a more accurate sig-
nal by enhancing the common signal and reducing noise.
Chandrakasan et al. [16] proposed Low-Energy Adaptive
Clustering Hierarchy (LEACH), in which nodes organize
themselves into clusters, one node in a cluster acts as a
cluster head, and sends all the data of the nodes in the clus-
ter to the basestation after local-aggregation. Due to local
aggregation at cluster heads, the total size of the message
sent by sensor nodes is reduced. In order to further reduce
the power consumption of sensor networks, TAG [8] and
COUGAR [17, 18] examined the properties of aggregate
queries and proposed to use a tree structure, which allows
data aggregation at every level of the tree for algebraic (e.g.
Average) and distributive (e.g. Max/Min, Count, and Sum)
aggregates. This method is referred to asin-network ag-
gregation. Since a tree structure allows local-aggregation
at every level of the tree, the total number of messages and
the total message size in the tree structure is much less than
that in the cluster based structure, where local-aggregation
takes place only at cluster heads. In general, in-network
aggregation can reduce the power usage by pushing part of
the computation into the sensor networks.

Since the lifetime of the system is one of the most im-
portant metrics of sensor networks, the power consumption
of the sensor nodes should be reduced to extend the life-
time of the entire network. Power consumption of sensor
nodes is dominated by radio communication. In general,
the transmission cost of sending 1 bit of data costs as much
as executing 1000 CPU instructions [9]. Therefore com-
munication needs to be reduced to save energy and prolong
the lifetime of sensor networks. Several methods have been
proposed to reduce the amount of communication between
a data source and the base station or a server [?, 12,?, 6,?].
Olston and Widom [12] proposed to balance the trade-
off between precision and performance in wired-network
replication management to reduce the amount of commu-
nication. In their study, the server cache stores an interval
for each data source within which the exact value must be
bounded. When the exact value of the data source is out
of the range at the cache server, the data source sends a
new interval in which the exact value must lie. A query is
answered by using these intervals if they satisfy the spec-
ified precision bound, otherwise exact values need to be
retrieved from the source. Recently, this work has been
extended by Jain et al. [?], where Kalman Filter is used
to predict the values of data sources. In sensor networks,
Lazaridis et al. [6] proposed to compress the raw data at
each sensor node, then the compressed data is sent to the
basestation when the precision is out of bound. Since the

2

compressed data series contain less data, communication
cost is reduced. They also proposed to predict the sensor
readings due to the fact that the basestation has no con-
trol over when the sensor nodes deliver their compressed
data. Similarly [?] proposed another prediction technique
to monitor environment by applying MPEG techniques in
prediction. In these approaches, it is assumed that there is a
virtually direct communication between every sensor node
and the base station, or between the data sources and the
cache server. In other words, prediction only takes place
in the basestation or the cache server. In sensor networks,
recent works [17, 18] show significant energy savings by
pushing computation into the network, which is referred to
asin-network aggregation. With this motivation, we push
prediction into network, referred to asin-network predic-
tion. The idea of in-network prediction is similar to in-
network aggregation, which allows prediction of partial
aggregation values in sensor nodes while in-network ag-
gregation allows to aggregate partial aggregation values.
However both in-network aggregation and in-network pre-
diction are based on tree structures, the existing two meth-
ods [12, 6] can not be directly applied to a tree structure [?].
Therefore we propose new techniques to realize both in-
network aggregation and in-network prediction. We also
propose multi-query processing technique for power-aware
queries. For a single power-aware query, the energy is re-
duced by decreasing the number of messages sent by each
sensor node. In the case of multi-queries, sensor readings
and communication among different queries can be shared
for further energy savings.

3 The Architecture of Sensor Net-
works

In this paper, we consider sensor nodes that use wire-
less RF radio to communicate with a basestation, which
is wired to the outside world [7]. Due to the fact that
low-power wireless radio has low communication distance,
sensor nodes communicate with the basestation via inter-
mediate sensor nodes. Hence there are three important
components in a sensor network: a basestation, sensor
nodes, and communication topology.

The basestation is a different type of node from the sen-
sor nodes. It is not subject to the limitations of sensor
nodes: power, communication, memory, and computation.
It is responsible for connecting the sensor network to the
outside world through wired communication. In general,
users pose queries over sensor networks through the bases-
tation. The queries are optimized and disseminated from
the basestation, also the query results are assembled at the
basestation and delivered to the users via the basestation.

Sensor nodes are the basic components in sensor net-
works. Each sensor integrated in a sensor node is a separate

data source and monitors the physical environment by sam-
pling physical signals. From another point of view, each
sensor generates a discrete time series. Since uncertainty
is an inherent property of sensors, the time series gener-
ated by sensors contain errors (the difference between the
real environmental values and the sampled values). How-
ever more accurate results can be obtained by aggregating
data from multiple sensors, i.e., summaries and aggregates
of raw sensor readings are more meaningful and trustwor-
thy than individual ones [16]. Note that the data contained
at the basestation is always “stale”, because the data al-
ways reflects an “old” reading of the sensor which is either
delivered directly or preprocessed before it arrives at the
basestation via multiple hops.

In our model, sensor nodes send and receive data using
a low power wireless radio. Due to the constraint on com-
munication distance of wireless radio (from several feet
to 100 feet), data at some sensor nodes are transmitted
to the basestation using a multi-hop routing protocol ex-
ecuted over intermediate nodes. Currently, there are sev-
eral structures proposed for data collection. One simple
approach is broadcasting. Each sensor node broadcasts its
sampled data or relayed data from other nodes to its neigh-
bors. Since sensor networks are completely connected, the
data can reach the basestation eventually. This idea is sim-
ple and easy to implement, but is not applicable to sen-
sor networks, because a large amount of energy and com-
munication is consumed to send the redundant informa-
tion. In this paper, we use a tree communication topology
rooted at the basestation, which is adopted in [18, 9] and is
the most energy-efficient communication topology. In this
communication topology, each sensor node sends its data
to the basestation through its ancestors in the tree, there-
fore synchronization of the sensor nodes along a path to
the basestation is crucial for aggregation over sensor net-
works. We use the same synchronization method as pro-
posed in [8, 18]. Each node synchronizes its clock using
GPS. For a given sampling ratet, each node dividest into
three time segments: sleeping, listening, and sending. The
listening segment should be long enough to receive data
from any of its children. Assume the depth of the query
tree isH, t is divided intoH segments (the length of each
segment ist/H), and the nodes at levelh will set thehth
segment as their sending segment. During the sending seg-
ment, a node will send its reading or the partial aggregation
results rooted at this node to its parent.

4 Power-aware Queries and Predic-
tion

Declarative queries are the preferred way of interact-
ing with sensor networks to aggregate data, rather than
adopting application-specific procedures. This is impor-

3

tant since user interests may change over time and they
also may need more precise answers over time. Re-
cent works [18, 9] proposed query engines for declarative
queries over sensor networks. In [18], in-network process-
ing is proposed to decrease communication cost. Based
on the inherent uncertainty of sensor nodes, we introduce
precision into declarative queries, where users can spec-
ify the error tolerance range of the estimated results from
the real values (which is referred to asprecision P). We
also introduce prediction that enables the basestation and
sensor nodes to predict query results or partial aggrega-
tion values based on past information. In particular, the
basestation or intermediate sensor nodes will only be in-
formed about the sampled values of some sensor nodes if
their predicted values may result in the query results being
out of the precision bound. Hence message communication
overhead can be dramatically reduced. In this section, we
describe power-aware queries, then we will address some
issues about prediction.

4.1 Power-Aware Queries

Current query framework proposed for sensor net-
works [18, 9] is based on SQL, and incorporates sam-
pling intervals, monitoring periods into SELECT-FROM-
WHERE clause. Due to the inaccuracy of single sen-
sor readings, aggregation of multiple sensor readings is
more meaningful to users. Hence we primarily focus on
AVG/SUM queries. The queries have the following for-
mat, where we have introduced thePRECISIONclause.

SELECT AggregationFunction
FROM Sensordatas
WHEREs.loc in R
DURATION D
EVERY t
PRECISIONP

(1)

In the above query schema,AggregationFunction can
be aggregates AVG and SUM,s specifies the sensor types,
R is the query region,D gives the query runtime,t spec-
ifies the sampling rate, andP denotes the maximum tol-
erated difference between the predicted values and the
real values. For example, ifAggregationFunction =
AV G(s.temperature), the semantic of this query is: Cal-
culate the average temperature in roomR with precision
P , and run this query forD duration once everyt time in-
terval. Note that we use an absolute value for precisionP ,
but our query processing technique can be easily modified
to handle percentages as well.

4.2 Prediction of Time Series

For a given query, each sensor’s reading is a discrete time
series, where the time corresponds to the instant when the

sensor value was sampled, the sensor readings are the val-
ues, and the time range is determined by the query duration
D. For example, a sensor’s readings at every 10 seconds
during one minute are[32.7, 33.2, 32.8, 33.5, 34.1, 33.7].
In order to predict future readings, we need to find the trend
of the time series. Due to the inherent uncertainty of sen-
sors and due to the presence of environmental noise, it may
not be possible to find the trend using a fixed-parameters
model for a long time range even though each sensor’s suc-
cessive readings are correlated. On the other hand, from
an accuracy point of view, we would like to detect the ex-
act changing patterns of sensor readings. This, however,
needs a lot of samples, high computation cost, and perhaps
off-line analysis. Therefore we propose a compromise. In
most cases, sensor readings will not change dramatically
during a short time period, we can fit values in a short time
range in a prediction model. In this paper, we propose to
use thepiecewise predictionmethod, where the parameters
of the prediction function are adjusted to reflect the new
trend of the time series if the old parameters of the function
drives the predicted values out of user’s tolerance range.

In our technique, the prediction function of a single sen-
sor node is stored at the node and incoporated into the pre-
diction function of its parent. Therefore, some sampled
readings of the node do not need to be processed and trans-
mitted to its parent when its future values can be approxi-
mately estimated from the prediction function. As a result,
energy can be saved while results are guaranteed to be in
a given precision range. The detailed techniques are dis-
cussed in the following section.

A method used for prediction of a time series is the state-
space model [?]. In this model, the next state~xi+1 is mod-
eled as a linear combination of both the previous state~xi

and some process noiseui, which is described using the
following equations:

~xi+1 = A~xi + ~ui

WhereA is the transmission matrix. The process measures
or observations~yi are derived from the internal state~xi:

~yi = Hi ~xi.

WhereHi is the matrix relating the system state and the
measurement vector. These two equations are often re-
ferred to as the process model (for prediction) and mea-
surement model (for correction) respectively, which are the
basis for all linear estimation methods, such as Kalman Fil-
ter. In sensor networks, each sensor node sends a new ma-
trix A to its parent when the predicted value is out of the
precision bound. However theobserver design problem
arises when attempting to determine the internal states of
the system solely based on the knowledge of the system’s
outputs. In many environments there are many sources of
noise for the sensor measurements which would violate the

4

assumption of the state-space model that the noise is zero-
mean white random noise. This will degrade the quality of
sensor readings (signal) which is the only source of infor-
mation in the process model. As a result, the state-space
model can only be used to make predictions over relatively
short intervals.

One basic technique commonly used to describe a time
series is linear regression [?], where timet is the indepen-
dent variable, sensor valuev(t) is a variable dependent on
t. Their relationship can be estimated using:

v̂(t) = â ∗ t + b̂.

Where v̂(t) is the estimated value ofv(t), a, b are two
parameters referred to as theslopeand theintercept re-
spectively. One popular estimation technique ofa and b
is to use least square error (LST) linear fit. In the LST
method,̂a andb̂ are computed to minimize the residual sum
of squares

∑
t = tstev(t)− v̂(t)2, ts andte are the start-

ing time and ending time. AssumingW previous readings:
[v1, v2, ..., vw], â andb̂ can be computed as follows [?].

â =
∑

(ti − t)(vi − v)∑
(ti − t)2

.

b̂ =
1
W

(
∑

(vi)− b1

∑
(ti)).

Wheret denotes the average oft, v denotes the average of
v1, v2, ..., vw.

Other prediction techniques have been proposed in the
literature, and our proposed power aware query process-
ing algorithms given in next section are not affected by the
different prediction techniques. In this paper, compared to
the state-space model, we choose linear regression for the
following reasons:

• It is simple and easy to compute, which is suitable for
sensor nodes with limited computation capability. In
the state-space model, the computation is more com-
plex than that of the linear regression.

• The model contains less parameters, hence it will con-
sume less communication bandwidth and memory. In
the state-space model, state transmission matrixA
needs to be sent to upper level of a query tree.

• It can simulate the changing signal using piecewise
linear regression (or piece-wise prediction) to guar-
antee a given precision. In the state-space model,
since the actual state transform model is completely
unknown, it is impossible to use the model for long-
term prediction.

5 Power-Aware Query Processing

Users initiate queries at the basestation where a query is
optimized and the query execution plan is disseminated
over the sensor network. After dissemination of the query
to the sensor nodes whose readings are needed to answer
the query,a query treeis constructed over the sensor nodes.
Once the query is disseminated and the query tree is built,
each sensor node sends the sampled readings or partial ag-
gregate values to the basestation through this query tree.
During data collection, an interior node in the query tree
should send its partial results after hearing from all of
its children in order to send as few messages as possible.
To achieve this, we use the synchronization method intro-
duced in Section 3.

To execute power-aware queries, a naive and straight-
forward approach is as follows. Each sensor node collects
its sampled data, constructs its prediction function based
on these sampled data, and sends the most recent reading
and the corresponding prediction function to the basesta-
tion using the query tree. When its predicted value at the
basestation differs from the sampled value of this sensor
node by more than the precisionP , the sensor node recal-
culates its prediction function based on its new sampled
data and updates the basestation with the new information.

Alternatively, the answer of aggregate queries can be
calculated from partial results calculated in-network, thus
decreasing the communication cost. However, the naive
approach does not consider in-network aggregation. Thus,
the average number and size of messages per sensor node
in this approach is large, which will result in more en-
ergy usage and the lifetime of the sensor network is short-
ened. In order to improve the energy usage of power-
aware queries, we propose a power-aware query processing
technique which considers in-network aggregation and in-
network prediction, where every sensor noden in the query
tree predicts the partial aggregation values of the subtree
rooted at noden.

Since we introduce precision into queries, the core of
our query processing is required to preserve the precision
of different kinds of aggregate queries in order to answer
them using in-network aggregation and in-network predic-
tion. We will first discuss the base case: a query tree with
two levels. Then we will generalize the base case to a query
tree with multiple levels.

5.1 Base Case

As mentioned in Section 2, the techniques proposed in
[12, 6] can be applied to a two-level structure: from sensor
nodes to the basestation. In this section, we review these
two techniques and argue that they are not applicable to
more than two levels. Then we introduce our technique.

5

Olston and Widom [12] addressed the problem of bal-
ancing the tradeoff between precision and performance for
querying replicated data in replication management. In or-
der to improve performance and reduce communication,
instead of storing the exact value of an item, the server
stores an interval for each item’s value within which the
current value must be located, as shown in Figure 1(a).N0

denotes the server,N1 to N3 are sources, where item1 to
item 3 are located. Figure 1(a) shows an example where
the exact values of item1 to item3 are5, 11, and10 re-
spectively. At the server side, the intervals [3, 6], [6, 10],
and [9, 12] are stored for item1 to item3. Queries are
answered immediately using these intervals. On the other
hand, the data source will update its interval at the server
if its current value is not located in the old interval. For
example, if item2 has a new value11, then it will send a
new interval which contains11 to serverN0.

N1 N2

N0 N0

N1 N2

N0

N1 N2

pf 2

pf 3

pf 1

N3 N3 N3

(a) (b) (c)

item_1 item_2 item_3
 (5) (11) (10)

server item_m: [9, 12]

item_1: [3, 6]
item_2: [6, 10]

<0,0,4> <0,2,4> <0,4,8>

0,4,820,4

pf 0
: y = 0

: y = 2t

: y = 4t

<0,0,4> <0,2,4> <0,4,8>

Figure 1: Comparison of different schemes for saving com-
munication cost

Lazaridis et al. [6] proposed to use a compression tech-
nique, referred to as Poor Man’s Compression - Middle
Range (PMC-MR), to reduce communication cost in sen-
sor networks. Each sensor node compresses sampled val-
ues, which can be viewed as a time series, as follows: The
sensor node divides this time series into segments where
the median of the sampled values in a segment is more than
precisionP away from the most recent sampled value. Af-
ter constructing each segment, the median of the sampled
values in that segment is sent to the basestation as a repre-
sentative of the values in that segment. Figure 1(b) shows
an example, whereP is set to 3. The series of samples at
nodeN1 is divided into two segments, then values0 and4
are sent to parent nodeN0. A similar analysis can be ap-
plied to the series atN2 andN3. The authors also proposed
to use prediction techniques at parent nodeN0 to predict its
children’s values, since the sending time of children is not
known.

Even though these two proposed methods can reduce
communication cost, they are not applicable for a com-
munication topology with more than two levels, where in-
network aggregation plays an important role in saving en-
ergy. In these methods, during in-network aggregation the
errors of partial aggregation values will be accumulated

and propagated to the basestation which may result in the
query results being out of precision bound.

Before presenting our general query processing algo-
rithm, we use the example shown in Figure 1 to introduce
our method for the base case. Using the linear regression
model presented in Section 4.2, each sensor node has its
own prediction function. Initially, child sensor nodes send
their prediction functions to their parent sensor node. For
example, as shown in Figure 1(c), for the sake of simplic-
ity, we use two readings to construct prediction functions.
Prediction functionspf1, pf2, andpf3 of nodesN1, N2,
andN3 are constructed and sent to nodeN0. Assume that
the precision given by users isP , nodeN0 usespf1, pf2,
andpf3 to predict the values at nodesN1, N2, N3. At the
same time, nodeN1, N2, N3 also predict their values and
sample the exact values with their sensors. If the exact
value of any node differs from its predicted value byP , the
node will recompute its prediction function and send both
the new function and the exact value to nodeN0. Oth-
erwise, no communication is needed. For example, the
predicted value ofN1 at time3 is 0 using its prediction
functiony = 0, however, the current reading is4 (assume
P = 3). Thus nodeN1 will recalculate its prediction func-
tion and send a new prediction function and the new value,
4, to its parentN0.

5.2 Query Processing Algorithms

In this section, we first introduce the generic power-aware
query processing algorithm. Then we will show how this
generic algorithm can be used for AVG/SUM queries.

Generic Algorithm

Users query a sensor network by posing a query at the
basestation. Assume the basestation has distributed the
query to the sensor nodes involved in the query and the
query tree has been built. Each sensor node will execute
the generic algorithm, given in Algorithm 1, with the pa-
rameters specified in the query, i.e., query type, precision
P , durationD, and sampling ratet.

In Algorithm 1, each noden receives partial aggregate
values of its children and their corresponding prediction
functions. Based on these values, it calculates the partial
aggregate value and a prediction function for the subtree
rooted at this node,Tn. Then for eacht duringD, n cal-
culates the new partial aggregate value for subtreeTn and
sends this value and the new prediction function to its par-
ent Pn when the partial aggregate value predicted forTn

at Pn is out of precision bound. Note that the sensor node
does not have to listen to its children. Instead if there is any
message from its children before timeout, it listens, other-
wise it sleeps after timeout. This is because energy usage
is higher in listening than in sleeping. Noden also needs
to compute a prediction functionpfn. This is dependent

6

Algorithm 1 Generic Query Processing Algorithm
1: Input:
2: T : the query tree;
3: n: the node executing the algorithm;
4: H: the height of the query treeT ;
5: h: the height of the subtree rooted at noden;
6: Procedure:
7: //Tn is the subtree rooted at noden;
8: //i is a child of node n in T,Ti is a subtree rooted ati;
9: //vi is partial aggregate value for subtreeTi;
10: //pfi is the prediction function forvi;
11: for Everyt duringD do
12: Sleep(close RF) until listening time of noden;
13: Set the timeout and start listening;
14: if Any message before timeoutthen
15: Receive the message;
16: end if
17: Calculatevn and newpfn based on the received messages;
18: Calculatevpfn based on the oldpfn which was sent ton’s parent;
19: if | vn − vpfn |> P then
20: Wait until its sending time;
21: Sendvn and the newpfn to the parent;
22: End Procedure
23: end if
24: end for

on the aggregation function.
In the following, we show how AVG/SUM can be exe-

cuted using Algorithm 1. We also show, for a given preci-
sionP , how the precision is preserved through the partial
aggregate results.

AVG and SUM queries

Algorithm 2 Calculate Subroutine for AVG
1: Input:
2: 1, 2, . . . , m: the children of noden;
3: pfi: the prediction function for average value of subtree rooted at nodei;
4: pfn is the prediction function for average value of the subtree rooted at node

n;
5: pfn is the prediction function for average of noden;
6: ni is the number of children in the subtree rooted at nodei;
7: v is the current sampled value at noden;
8: Procedure:
9: //vi will take the value sent by childi if it sent, otherwise it is computed from

pfi;
10:

pfn =

Pm
i=1 pfi × ni + pfn

m + 1
;

11:

vn =

Pm
i=1 vi × ni + vPm

i=1 ni + 1
;

12: End Procedure
13: Output:
14: returnpfn andvn;

The Calculate() subroutine for the AVG is given in Al-
gorithm 2. The prediction function for the average value
of the subtree rooted at noden is computed by taking the
average of the prediction functions of all its children and it-
self. P in Algorithm 1 is the sameP specified in the AVG
query. The following theorem demonstrates that the final
results of the AVG query are within the precisionP .

Theorem 1 Given an AVG query with precisionP , Algo-
rithms 1 and 2 ensure that the query answer is withinP .

T

T1 T2 Tn

T

(a)

(b)

n

r

1 2 n

Basestation

Basestation

Figure 2: Proof of Theorem 1

PROOF: We use induction proof method. Base case:
the level of the query treeT is one (only noden in T).
Because the prediction function of noden is the prediction
function of treeT , if the prediction value ofn is out of the
precision, the real sampling value will be used. Thus, the
statement is true.

Induction Hypothesis: Assume that the statement is true
when the level of the spanning tree is no larger thank, i.e.,
the results at the root differ from the exact results at most
by P .

Induction step: As shown in Figure 2, letT be a query
tree withk + 1 levels,r be a root inT , 1, 2, ..., n be di-
rect children ofr, T1, T2, ..., Tn be subtrees rooted at nodes
1, 2, ..., n respectively,v1,, vn be the average values for
subtreesT1, T2, ..., Tn, vr be the current reading of rootr
andpf1, pf2, ..., pfn be the prediction functions for these
values. Based on Algorithm 2, the prediction function for
the average value of treeT is:

pfT =
∑n

i=1(pfi × ni) + pfr∑n
i=1(ni) + 1

.

Where pfT denotes the prediction function for average
value of treeT , andni is the number of children of nodei.
Thus, the predicted average value of treeT is:

vpfT =
∑n

i=1(vpfi × ni) + vr∑n
i=1(ni) + 1

.

Wherevpfi is the average value based on the prediction
function of subtreeTi. The exact average value of treeT
is:

vT =
∑n

i=1(vi × ni) + vr∑n
i=1(ni) + 1

.

Based on the induction hypothesis, since each subtreeTi

has at mostk levels, it satisfies:

| vi − vpfi |≤ P.

Therefore,

| vT − vpfT
|=|

Pn
i=1((vi−vpfi

)×ni)+(vr−vr)Pn
i=1(ni)+1 |

7

≤ P
Pn

i=1(ni)Pn
i=1(ni)+1 ≤ P.

Thus

| vT − vpfT |≤ P.

Therefore, the answer of the AVG query, which is executed
using Algorithms 1 and 2, satisfies the precisionP .2

The query processing of SUM queries is similar to AVG
queries. However, we have to modify the generic algorithm
and calculate subroutine for SUM. Line19 of Algorithm 1
should benn/N×P , where N is the total number of nodes
in the query tree andnn is the number of nodes in the sub-
tree rooted at noden, P is the precision specified in SUM
queries. The calculate subroutine returns the sum of the
values of all nodes in subtree rooted at noden and the pre-
diction function associated with that sum. The correctness
proof of SUM query processing is similar to that of AVG
query processing. Due to the space limitation, we do not
include the details in this paper.

6 Multi-Query Processing

Users typically impose multiple queries over a sensor net-
work at the basestation during a time range (a batch of
queries). This could happen, for example, when a set of
sensors detect some anomalies and need to learn the aver-
age temperature of some specified regions. Current pro-
posals [8, 18, 9] for query processing over sensor networks
do not consider multi-query processing. The problem of
multi-query optimization has been studied in different con-
texts, such as relational database systems(RDBMs) and
data streams. In RDBMs, multi-query optimization aims
to share common sub-expressions [?, ?] among different
queries. In data streams [?], the goal of multi-query op-
timization is to share processing among different queries
with the assumption that the data is already collected.
However multi-query processing in sensor networks is mo-
tivated by sharing sensor readings and data transmission
among different queries if the query regions of different
queries intersect. Therefore, energy can be conserved by
sharing the results of common regions among different
queries.

For the sake of simplicity, we assume multiple queries
run as a batch and all queries have the same precision and
the same sampling rate. If two intersecting queries have
different sampling rates, the sensor nodes in the common
regions choose the higher sampling rate since the sensor
readings with higher sampling rates can give better approx-
imation of the real environment. Similarly, if two inter-
secting queries have different precision, the sensor nodes
in the common regions choose the smaller value, which
corresponds to the higher precision. This guarantees that
the results of each query satisfy the specified precision
in this query. LetQ1, Q2, ..., Qn be queries over regions

R1, R2, ..., Rn. Note that we can assume that all queries
have the same type of aggregation functions, because the
SUM can always be approximated by AVG*N where N
is the number of sensor nodes involved. A query tree
Tunion is first constructed over the union of queried re-
gionsR1 ∪ R2... ∪ Rn. Then queries are answered at the
basestation using partial results from some of the involved
nodes in the union region. For example, Figure 3 shows a
query tree built overR1 ∪ R2 and is used to answer both
Q1 andQ2.

To answer a query in the batch, we can not use the sin-
gle query processing algorithms presented in Section 5,
since the query tree of multiple queries is built over the
union of all query regions instead of a query tree for each
query. Each query regionRi of a single queryQi intersects
with the query treeTunion. The query region is treated as
a black box, which crosses some edges of the query tree
Tunion. Assuming in-network aggregation, the query an-
swer can be answered using information contained in the
messages sent on the edges intersecting withRi. For ex-
ample, the answer for queryQ1 can be computed by sub-
tracting partial aggregation values at node3 and4 from the
partial aggregation values at node1. GivenQ1, Q2, ..., Qn,
for a queryQi, we classify the edges which intersect the
query regionQi in the query treeTunion into the following
types.

Definition 1 Incoming edge: A directed edge< e, f > is
an incoming edge if it intersects with the query regionRi,
and the ending nodef is inside the query region and the
starting nodee is outside the query region.

Definition 2 Outgoing edges: A directed edge< e, f > is
an outgoing edge if it intersects with the query regionRi,
and the starting nodee is inside the query region and the
ending nodef is either outside the query region or is the
basestation.

For example, in Figure 3,e1 is an outgoing edge and
node1 is the starting node ofe1. e2 ande3 are the incom-
ing edges where node6 is the ending node, nodes3 and4
are the two starting nodes. Note that there can be many in-
coming edges and outgoing edges for a query. The incom-
ing and outgoing edges are determined when queries are
disseminated over the sensor networks. Each node knows
whether it is the starting node of an incoming edge or an
outgoing edge when the query tree is constructed. This
only needs a small modification to the query tree construc-
tion algorithm of a single query. After the basestation dis-
seminates all queries, every sensor noden sends its query
list ln to its parentp, which consists of all queries involv-
ing n. Then, the parent nodep compares the query list of
n with its own query listlp. If a queryQi is in lp but not in
ln, it means that the edge< n, p > is an incoming edge of
queryQi. Then nodep sends to noden a message which

8

states that noden is the starting node of an incoming edge
and its partial aggregation values need to be propagated to
the basestation. Similarly, if a query is inln but not inlp,
it means that the edge< n, p > is an outgoing edge and
noden will be notified too.

Base station

1

2

3

4

2

R 1

R

5

6

e1

e2

e3

Figure 3: Power-aware multi-query processing algorithm

Since all queries have the same sampling rate, the sen-
sor nodes only need to sample once each time interval to
answer all queries and execute a query processing algo-
rithm given in Algorithm 1 except for a minor change to
the messages passed among sensor nodes. In order to an-
swer queryQi, the partial aggregation values and predic-
tion functions at the sensor nodes which are the starting
nodes of the incoming or outgoing edges of regionRi need
to be sent to the basestation. Therefore the starting nodes
of the incoming and outgoing edges ofRi need to inform
their parents to pass their partial aggregation values and
prediction functions to the basestation. Consider a nodep
which is the ending node of an incoming edge< e, p >,
nodep, in addition to computing the partial aggregation
values and prediction functions of the subtreeTp rooted at
the nodep, also transfers the partial aggregation values of
nodee along with its own partial aggregation values and
prediction functions. We use the same example in Fig-
ure 3. Nodes3 and4 inform node6 to pass their partial ag-
gregation values and prediction functions,PA3 andPA4,
to the basestation, and node6 first usesPA3 andPA4 to
compute its own partial aggregation values and prediction
functionsPA6 of the subtree rooted at node6, and then
transfersPA3, PA4, andPA6 to node2 which is the par-
ent of node6. For the basestation to answer queries, each
partial aggregation value should contain information that
it is a value of a starting node of an incoming edge or an
outgoing edge of some query. This can be done by adding
the starting and ending nodes’ numbers of an incoming or
an outgoing edge to the message which contains the partial
aggregation values and prediction functions at the starting
node. For the example shown in Figure 3, the message
sent by node4 to node6 contains the partial aggregation
values and prediction functions at node4 and node num-

bers4 and6. When the basestation reads this information,
using the the knowledge of positions of all sensor nodes,
it determines that edge< 4, 6 > is an incoming edge for
queryQ1. Based on the synchronization at the end of each
time interval, the basestation executes Algorithm 3 to an-
swer each queryQi in the batch using the partial aggrega-
tion values and prediction functions from the outgoing and
incoming edges. The results forQi satisfy the precision
constraint specified inQi, which is proved by the follow-
ing theorem.

Algorithm 3 Calculate the results for queryQ at the bases-
tation
1: Input:
2: 1, 2, . . . , nout: the outgoing edges;
3: 1, 2, . . . , nin: the incoming edges;
4: pfi: the prediction function for average value of subtree leaded by outgoing

edgei;
5: pfj : the prediction function for average value of subtree leaded by incoming

edgej;
6: pfQ is the prediction function for average values of queryQ;
7: ni is the number of children in the subtree leaded by outgoing or incoming edge

i;
8: Procedure:
9: //vi will take the value sent by subtreei if it sent, otherwise it is computed from

pfi;

10: pfQ =

Pnout
i=1 pfi×ni−

Pnin
j=1 pfj×njPnout

i=1 ni−
Pnin

j=1 nj
;

11: vQ =

Pnout
i=1 vi×ni−

Pnin
j=1 vj×njPnout

i=1 ni−
Pnin

j=1 nj
;

12: End Procedure
13: Output:
14: returnpfQ andvQ;

Theorem 2 Algorithm 3 guarantees thatvQ is the result
of queryQ and is within the precision range.

PROOF: We first need to prove thatvQ is the query re-
sult, i.e.,vQ only includes the sensor node values (the real
readings or the predicted values) in the query region. Each
subtreeTin rooted at the starting node of one incoming
edgeein must be included in a subtreeTout rooted at the
starting node of an outgoing edgeeout, therefore the values
of the subtreeTout contains the values ofTin. The above
formula for computingvQ is the subtraction of the sum
of all outgoing edges’ values and the sum of all incoming
edges’ values, which only contains the values inside the
query region.

For a given queryQ, in Algorithm 3, if there is no update
from its outgoing and incoming edges, the predicted result
of queryQ, vpfQ , is computed using the predicted values
vpfi of its outgoing and incoming edges:

vpfQ
=

∑nout

i=1 vpfi × ni −
∑nin

j=1 vpfj × nj∑nout

i=1 ni −
∑nin

j=1 nj
;

Wherevpfi is the predicted value of subtreei and is com-
puted usingpfi. The exact valuevTQ of Q is:

9

vTQ
=

∑nout

i=1 vTi
× ni −

∑nin

j=1 vTj
× nj∑nout

i=1 ni −
∑nin

j=1 nj
;

WherevTj is the exact average value of outgoing or in-
coming edge subtree. Since the difference of nodes in all
outgoing edge subtrees and in all incoming edge subtrees
of queryQ is all nodes in queryQ, and each nodek in
query region ofQ satisfies:

| vTk
− vpfk

|≤ P.

WherevTk
is the exact value of nodek, vpfk

is the pre-
dicted value of nodek, P is the precision given inQ.
Assume the number of involved nodes inQ is nQ (=∑nout

i=1 ni −
∑nin

j=1 nj), we have,

| vTQ
− vpfQ

|
=
Pnout

i=1 (vTi
−vpfi

)×ni−
Pnin

j=1 (vTj
−vpfj

)×njPnout
i=1 ni−

Pnin
j=1 nj

=
PnQ

k=1 (vTk
−vpfk

)

nQ
≤
PnQ

k=1 P

nQ
≤ P.2

7 Experimental Evaluation

In this section, we present experimental results for power-
aware query processing. We compare our power-aware
query processing technique with TAG approach [8] and the
naive approach. Note that TAG only considers in-network
aggregation, i.e., all queries are executed without consid-
ering precision. Therefore, experimental results forP = 0
is for TAG approach. In the naive approach, each sensor
computes and sends its prediction function to the basesta-
tion using the query tree.

In our experiments, we use the tree based communi-
cation topology. We assume all nodes are well synchro-
nized. In the naive approach, each node uses the synchro-
nization to merge the packets from its children. In power-
aware query processing, we use this synchronization for
in-network aggregation and in-network prediction.

For all queries, we compare the average number of bits
sent by a single sensor node because the communication
cost is directly determined by the number of bits sent. In
our experiments, we use the linear regression as a predic-
tion model. This results in less computation cost. In gen-
eral, the computation cost of the prediction function of one
sensor node is the cost of sending1/4 bit. Due to the nature
of prediction and in-network prediction, prediction func-
tions of sensor nodes do not need to be recomputed most
of the time. Hence we only consider communication cost
in our experiments.

7.1 Experimental Setup

In our experimental scenario, we placeN2 sensor nodes
over anN ×N grid with each node located at a grid point.

Each node can communicate with its eight direct neighbors
on this grid (excluding the sensor nodes at the border of the
grid).

We conducted experiments on power-aware query pro-
cessing for AVG and SUM queries over a synthetic dataset
and real temperature and humidity datasets from the Trop-
ical Atmosphere Ocean Project [11]. The synthetic data is
generated by a random walk:

x[0] = 20 andx[n] = x[n− 1] + sn, wheresn = ∓0.25.

The characteristics of the datasets are shown in Figure 4.
Figure 4(a) shows the synthetic dataset we generated, the
real dataset for humidity and temperature are displayed in
Figures 4(b) and (c). The queries we execute are as fol-
lows:

SELECT AVG/SUM
FROM Sensordatas
WHEREs.loc in GRIDN ×N
DURATION D
EVERY 1
PRECISIONP

(2)

We varyD andP for different queries. For the synthetic
dataset,D is always equal to1000 while for the temper-
ature and humidity datasetsD is set to250. The reason
for choosing different values for durationD is because the
real datasets only contain nearly250 readings per sensor
node. However, in order to see the long-run gains of our
technique, we chooseD as 1000 in the experiments over
the synthetic data.

7.2 Experimental Results For Single Query
Processing

In this section, we present the experimental results for sin-
gle query processing over the synthetic and real datasets.

7.2.1 Synthetic Dataset

Figure 5 shows the experimental results over the synthetic
dataset for AVG queries. TheY axis represents the size
of the query region (or grid), which also determines the
number of sensor nodes involved in the queries. For ex-
ample, if the region size is10 × 10, we query100 sensor
nodes to compute their average values. We set different
levels of precision (P = 0, 0.25, 0.5, 0.75, 1). The results
show that the larger the precisionP , the less messages are
needed to answer the query. SinceP = 0 is the case of
TAG approach, TAG always has worse performance than
our power-aware query processing technique. This is be-
cause our technique considers both in-network aggregation

10

 14

 15

 16

 17

 18

 19

 20

 0 50 100 150 200 250 300

T
h
e
 s

ig
n
a
l
v
a
lu

e
s

Time

The synthetic dataset

(a)

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 0 50 100 150 200 250

T
h
e
 h

u
m

id
it
y
 v

a
lu

e
s

Time

The humidity signal

(b)

 25.5

 26

 26.5

 27

 27.5

 28

 28.5

 29

 0 50 100 150 200 250

T
h
e
 t
e
m

p
e
ra

tu
re

 v
a
lu

e
s

Time

The temperature signal

(c)

Figure 4: The data characteristics of synthetic and real datasets

and in-network prediction. From Figure 5, we observe that
the average number of bits sent by a node decreases when
P > 0 and the diameter of the network increases. This is
due to the fact that using in-network prediction, the pre-
dicted partial aggregation values at the higher levels of the
tree have more chance to be in the precision range since
the change resulted from increased values of some nodes
can be reduced by the changes resulted from decreased
values of some other nodes. Furthermore, a tight preci-
sion range, e.g.,0.25, results in significant savings in en-
ergy when compared to queries without any precision, i.e.,
whenP = 0.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 n
um

be
r

of
 b

its
 s

en
t b

y
on

e
no

de

The size of grid

P = 0.25
P = 0.5

P = 0.75
P = 1
P = 0

Figure 5: The average number of bits sent by each node for
AVG queries

In order to show the effectiveness and scalability of in-
network computing, we compare the two query processing
techniques: the power-aware approach and the naive ap-
proach. The results for increasing the grid sizes are shown
in Figure 6, which are based on the synthetic dataset. For
a given precisionP , power-aware query processing meth-

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 n
um

be
r

of
 b

its
 s

en
t b

y
on

e
no

de

The size of grid

Power aware with P = 0.25
Power aware with P = 0.75

Naive approach with P = 0.25
Naive approach with P = 0.75

Figure 6: The comparison of power-aware query process-
ing and the naive approach

ods outperform the naive approach by more than two-fold
savings in terms of the average bits sent per node. We
conclude that power-aware query processing is much more
scalable than the naive approach because the naive ap-
proach only considers prediction without considering in-
network aggregation and in-network prediction. Based
on the comparison of these two approaches over AVG
queries, we observe that the power-aware query process-
ing approach always outperforms the naive approach. In
the naive approach, when the diameter of the network in-
creases, the average number of bits sent per node increases
linearly, as shown in Figure 6. This is again because there
is no in-network aggregation. Similar results are observed
for SUM queries.

Figure 7 shows the results for SUM queries over the syn-
thetic dataset. With the increase in diameter of the sensor
network and the number of sensor nodes, the average num-
ber of bits sent increases. Since the results of SUM queries

11

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 n
um

be
r

of
 b

its
 s

en
t b

y
on

e
no

de

The size of grid

P = 0.25
P = 0.5

P = 0.75
P = 1
P = 0

Figure 7: The average size of bits sent by each node for
SUM queries

are the addition of values of all sensor nodes, the query
results are affected by the value of any sensor node. The
results of the addition of all sensor values is a much larger
value than the value of any sensor node. However, the
results use the same precision as the one of a single sen-
sor, hence the results with the very small precision value
are almost the same as their absolute values. In another
words, sensor nodes almost need to send the parameters of
their prediction function with a very small value ofP while
sensor nodes only need to send their sampled values when
P = 0. This explains that the average number of bits sent
of each node whenP = 0 is less than the other cases, as
shown in Figure 7. In conclusion, for SUM queries, preci-
sionP should be set as a percentage of the results.

7.2.2 Real Dataset Experiment

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 a
ve

ra
ge

 n
um

be
r

of
 b

its
 s

en
t b

y
on

e
no

de

precision P

AVG
SUM
MAX

Figure 8: The experimental results over temperature data

In order to show the effectiveness of our query pro-

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 a
ve

ra
ge

 n
um

be
r

of
 b

its
 s

en
t b

y
on

e
no

de

precision P

AVG
SUM
MAX

Figure 9: The experimental results over humidity data

cessing techniques, we tested them over real tempera-
ture and humidity data from Tropical Atmosphere Ocean
Project [11]. The characteristics of the data is shown in
Figures 4(b) and (c). The experiments are conducted over
10 × 10 grid with 100 sensor nodes. Figure 8 shows the
results of different query types over temperature data by
varying the precision. The larger the precision range, the
less number of bits are sent.

Similarly, Figure 9 shows the results of different query
types over the humidity dataset by varying the precision.
The number of messages in AVG queries decrease sig-
nificantly when the precision is increased. However, the
SUM query does not change significantly as discussed be-
fore. Compared to the results over the temperature dataset,
the larger change in number of messages over the humid-
ity dataset is due to the larger fluctuations in the humidity
dataset, which can be observed from Figure 4. In another
words, the prediction functions in processing the humidity
data are updated more often than the ones over the temper-
ature dataset.

We also conducted an experiment to test the distribu-
tion of the total bits sent over all sensor nodes. The results
are shown in Figure 10. TheX and Y axes denote the
10× 10 grid and100 sensor nodes. TheZ axis is the total
number of bits sent by each sensor node. We observe that
our query processing methods can achieve balanced energy
consumption compared to the naive approach. Since we
placed the basestation at the center of the grid, the sensor
nodes which are near to the basestation in the naive ap-
proach have more bits to send, as shown in Figure 10(a).
Thus these nodes will drain their power more quickly. On
the other hand, in the power-aware query processing ap-
proach, the energy usage of sensor nodes is balanced, as
shown in Figure 10(b). Hence, as the network diameter is
increased, our approach will be much more scalable when
compared to the naive approach.

12

Number of bits sent by each sensor in 10x10 grid

Naive

 0 1 2 3 4 5 6 7 8 9
x 0

 1
 2

 3
 4

 5
 6

 7
 8

 9

y

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000

Number of bits sent

(a) Power-aware query processing

Number of bits sent by each sensor in 10x10 grid

Power-aware

 0 1 2 3 4 5 6 7 8 9
x 0

 1
 2

 3
 4

 5
 6

 7
 8

 9

y

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000

Number of bits sent

(b) Naive approach

Figure 10: The number of bits sent by each sensor node with precision0.5 of AVG queries over a10× 10 grid

7.3 Experimental Results for Multi-Query
Processing

In order to show the effectiveness of our proposed multi-
query processing technique (MPO), we compare it with the
following two multi-query processing techniques.

• Naive multi-query processing approach (NMP):
The Basestation collects the readings of all sensor
nodes whose readings are needed to answer queries.
Then the basestation computes the results for each
query. This method does not consider in-network ag-
gregation. In terms of collecting messages from sen-
sor nodes, we use tree structures which have been pro-
posed to allow merging packets in [17], hence com-
munication cost is reduced by reducing packet header
overhead.

• Power-aware query processing without optimiza-
tion (MPWO): The basestation processes each query
separately using a single power-aware query process-
ing technique, i.e., processing each query indepen-
dently using its own tree and employing both in-
network aggregation and in-network prediction.

In our experiments, we constructed a set of random AVG
queries over a50 × 50 grid and varied the total number
of queries from10 to 100 to measure the average number
of bits sent by a sensor node. All queries haveP = 0.5
andD = 300. The experiments are conducted over the
temperature datasets. GivenNQ + 1 queries, the query set
consists ofNQ/3 queries over15×15, NQ/3 queries over
20 × 20, NQ/3 queries over25 × 25, and a single query
over50× 50.

The experimental results are given in Figure 11, which
shows that our multi-query processing technique signifi-
cantly outperforms the other two approaches. Multi-query

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 10 20 30 40 50 60 70 80 90 100

T
he

 a
ve

ra
ge

 n
um

be
r

of
 b

its
 s

en
t b

y
on

e
no

de

Total number of queries

MPO
MPWO

NMP

Figure 11: Power-aware multi-query processing algorithm

processing improves the communication cost by one order
of a magnitude compared to the naive multi-query process-
ing approach. The power-aware query processing without
optimization becomes very inefficient and has worse per-
formance than the naive multi-query processing technique
when the number of queries increases. Since in power-
aware query processing without optimization, a tree is built
for each single query, one sensor node sends its readings
multiple times if it is involved in multiple queries. How-
ever in the naive multi-query processing approach, a sin-
gle tree is built over the entire sensor network, hence each
sensor node only sends its readings once without consid-
ering the number of queries. Therefore, even though the
power-aware query processing without optimization ap-
proach benefits from in-network aggregation, the cost of
sending each sensor readings multiple times is larger than
the savings from in-network aggregation when the num-
ber of queries increases. Hence, it is not scalable when
compared to the other two methods. From Figure 11, we

13

observe that the number of bits sent in the multi-query
processing technique slightly increases with the number
of queries, because the number of incoming and outgoing
edges increase with the larger number of queries.

8 Conclusion and Discussion

In this paper, we introduced a precision based framework
for query processing over sensor networks. We proposed
a power-aware query processing technique which incor-
porates in-network aggregation and in-network prediction.
Our experimental results show that our query processing
technique can reduce the number of message (or the size of
bits) sent by each sensor node dramatically. Furthermore,
the energy usage of sensor nodes is balanced, which means
that our technique can be applied to large-scale sensor net-
works. We also proposed multi-query processing over sen-
sor networks by sharing the readings and communication
of common sensors among different queries. The energy
saved from the sampling and communication prolongs the
lifetime of the sensor network.

In this paper, even though we do not cover node fail-
ures, link failures and changes, our proposed techniques
are not affected by these issues. Since these problems can
be solved by periodical heart beat messages sent by the
parent sensor nodes. If a parent node does not receive the
replies from a child, it assumes that either the child node
is failed or changes its parent node. Then the parent node
will remove the prediction functions and partial aggrega-
tion values of this child node.

References

[1] A. Cerpa, J.Elson, D. Estrin, L. Hamilton, and J. Zhao. Habitat
monitoring: application driver for wireless communications tech-
nology. In ACM SIGCOMM Workshop on Data Communications in
Latin America and the Caribbean, 2001.

[2] M. Ettus. System capacity, latency and power consumption in
multihop-routed ss-cdma wireless networks.Radio and Wireless
Conference (RAWCON ’98), August 1998.

[3] D. Hall. Mathematical techniques in multisensor data fusion.Artech
House, 1992.

[4] J. Hill and D. Culler. A wireless embedded sensor architecture for
system level optimization.Technical report U.C. Berkeley, 2001.

[5] L. Klein. Sensor and data fusion concepts and applications.SPIE
Optical Engr Press, 1996.

[6] Iosif Lazaridis and Sharad Mehrotra. Capturing sensor-generated
time seires with quality guarantees.International Conference on
Data Engineering (ICDE 2003), March 2003.

[7] S. Madden and M.J. Franklin. Fjording the stream: An architecture
for queries over streaming sensor data.International Conference on
Data Engineering (ICDE 2002), March 2002.

[8] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. Tag: A
tiny aggregation service for ad-hoc sensor networks.5th Symposium
on Operating Sytsem Design and Implementation, December 2002.

[9] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor networks.In
ACM SIGMOD 2003, June 2003.

[10] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless
sensor networks for habitat monitoring.In ACM Workshop on Sen-
sor Networks and Applicaions, 2002.

[11] M. J. McPhaden. Tropical atmosphere ocean project.Pacific marine
environmental laboratory. http://www.pmel.noaa.gov/tao/.

[12] C. Olston and J. Widom. Offering a precision-performance tradeoff
for aggregation queries over replicated data.In VLDB2000, Septem-
ber 2000.

[13] Timothy J. Shepard. A channel access scheme for large dense
packet radio networks.SIGCOMM, pages 219–230, 1996.

[14] Mike Woo Suresh Singh and C. S. Raghavendra. Power-aware rout-
ing in mobile ad hoc networks.Mobile Computing and Networking,
pages 181–190, 1998.

[15] Meng T. and Volkan R. Distributed network protocols for wireless
communication.In Proc. IEEEE ISCAS, May 1998.

[16] Anantha Chandrakasan Wendi Rabiner Heinzelman and Hari Bal-
akrishnan. Energy-efficient communication protocol for wireless
microsensor networks.HICSS, January 2000.

[17] Yong Yao and Johannes Gehrke. The cougar approach to in-network
query processing in sensor networks.SIGMOD Records, 31(3),
2002.

[18] Yong Yao and Johannes Gehrke. Query processing for sensor net-
works. In CIDR 2003, January 2003.

14

