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Abstract Table 1: Hardware Characteristics of MICA Mote
Recent advances in hardware technology facilitate appli- Processor 4Mhz, 8bit MCU (ATMEL)
cations requiring large numbers of sensor devices, where Storage S12KB
each sensor device has computational, storage, and com- Radio 916Mhz Radio
munication capabilities. Since sensor devices are powered_Communication Range 100 ft

by ordinary batteries, power is a limiting resource in sen-

sor networks. Power usage can be reduced by pushing pagt [ imited power: Currently, the energy of most sensor
of the computation into the network to reduce communica- nodes is supplied by ordinary batteries. Hence, en-

tion cost, which is the main energy consumer in sensor net-  grgy usage is an important factor for application de-
works. In order to further reduce power usage, we propose  gjgn,

power-aware query processing techniques for aggregation

queries. Instead of requiring exact answers to queries, we@ High communication cost: Power consumption is
introduce precision into queries to give users full control dominated by radio communication. Hence, commu-
of the tradeoffs between precision and energy usage. Our nication utilization must be minimized to conserve
guery processing approach incorporates in-network pre- POWer.

diction to further reduce the need for constant communi-

cation. Moreover, we optimize the_ execution of multiple ¢ ode has a micro-processor, the processing speed
queries to take advantage of sharing common aggregated i much slower than modern computers. For example,

values among different queries. Since communication is  \jicA motes use an ATMEL processor with clock
three orders of magnitude more expensive than computa- |4ie aMhz. Hence the sensor node cannot process
tion, incorporating precision and efficiently executing mul- very complex tasks. Furthermore, the memory avail-
tiple queries results in significant power savings, thus ex- 4p|e for programming and data is too small to store

tending the lifetime of sensor networks. the code for complex programs and large datasets.

e Low computation capability: Even though each sen-

] e Uncertainty: Readings of the sensor nodes may con-

1 Introduction tain errors, which could result from environmental

noises, or the inherent precision of the sensors them-
Due to advances in miniaturization, low power, and low selves. Thus average values should be considered in-
cost design of sensors, large-scale sensor networks are be-stead of individual readings.
coming a real'ty and are b_eln_g used in many appllcatlons,. Low bandwidth: In sensor networks, sensor nodes
such as environment monitoring on Great Duck Island and . . . :

) use radio (wireless) to communicate with each other.

James Reserve [1, 10], where sensor nodes collect light, J. . : . .

Since the bandwidth of wireless is very low, it is nec-

temperature, and hum|d|ty' q§1ta. In suph networks', each essary to decrease the number and the size of mes-
sensor node has the capabilities of sensing, computing, and sages

communicating. For example, one of the current commer-
cially available sensor devices, Berkeley MICA [4], has the Due to these properties, existing techniques developed
characteristics shown in Table 1. Since sensor nodes faretraditional distributed systems can not be applied to
full-fledged computing devices with multiple sensing funsensor networks directly. Therefore, several techniques fo-
tions (such as temperature, light, and fluid flows), sensrsed on energy and bandwidth constraints [8, 17, 18, 7, 9]
networks are distributed systems with thousands of nodeave been proposed for data management and query pro-
However the inherent properties of sensor networks diffeessing over sensor networks. Since sensor nodes are pow-
entiate them from traditional distributed systems. Theseed using ordinary batteries which are expensive or im-
distinguishing properties are summarized as follows.  possible to replace, power-aware techniques need to be



designed to extend the lifetime of sensor networks. diata for a single end user to process. Therefore data fu-
this paper, we target the query processing layer, where sien, where automated methods of combining or aggregat-
introducepower-aware querieand proposg@ower-aware ing the data into small sets of information, has been pro-
query processingechniques. In particular, we introduce @osed [3, 5]. Data aggregation is also used to obtain more
notion of precision into queries that allows users to tradesliable data measurements by combining several unreli-
off data precision and power usage. We use this notiable data measurements to produce a more accurate sig-
of precision in conjunction with prediction to reduce intemal by enhancing the common signal and reducing noise.
node communication. Moreover, we propose a technig@bandrakasan et al. [16] proposed Low-Energy Adaptive
for power-aware multi-query processing. To the best 6iustering Hierarchy (LEACH), in which nodes organize
our knowledge, this is the first work targeting multi-querthemselves into clusters, one node in a cluster acts as a
processing over sensor networks. The contributions of thlaster head, and sends all the data of the nodes in the clus-
paper can be summarized as follows: ter to the basestation after local-aggregation. Due to local
aggregation at cluster heads, the total size of the message

e We introduce the notion of precision into SQIlsent by sensor nodes is reduced. In order to further reduce

queries. the power consumption of sensor networks, TAG [8] and
COUGAR [17, 18] examined the properties of aggregate

e We propose power-aware queries over sensor ngteries and proposed to use a tree structure, which allows

works, which gives energy-precision tradeoff to userdata aggregation at every level of the tree for algebraic (e.g.
Average) and distributive (e.g. Max/Min, Count, and Sum)

e We develop a power-aware query processing teciggregates. This method is referred tarasetwork ag-
nique based onin-network aggregationand in- gregation Since a tree structure allows local-aggregation
network predictionwhere aggregation and predictiomt every level of the tree, the total number of messages and
take place in the network, instead of only at the basdbe total message size in the tree structure is much less than
tation. that in the cluster based structure, where local-aggregation

takes place only at cluster heads. In general, in-network

e We propose an efficient technique for power-awaeggregation can reduce the power usage by pushing part of
multi-query processing. the computation into the sensor networks.

Since the lifetime of the system is one of the most im-
The rest of the paper is organized as follows. Sectig@rtant metrics of sensor networks, the power consumption
2 gives some background and motivation for power-awasethe sensor nodes should be reduced to extend the life-
query processing. The sensor network model is reviewigfle of the entire network. Power consumption of sensor
in Section 3. In Section 4, we introduce the power-awaggdes is dominated by radio communication. In general,
query type. The power-aware query processing algorithgag transmission cost of sending 1 bit of data costs as much
are presented in Section 5. In Section 6, we present muli- executing 1000 CPU instructions [9]. Therefore com-
query processing for power-aware queries. Experimeniglinication needs to be reduced to save energy and prolong
results are shown in Section 7. We end with a conclusigi |ifetime of sensor networks. Several methods have been
in Section 8. proposed to reduce the amount of communication between
a data source and the base station or a setyé&e[?, 6, ?].
. . Olston and Widom [12] proposed to balance the trade-
2 Background and Motivation off between precision and performance in wired-network
replication management to reduce the amount of commu-
In sensor networks, queries are initiated at a basestatioication. In their study, the server cache stores an interval
where the optimized query plan is disseminated to tfer each data source within which the exact value must be
entire sensor network. In [7], researchers proposed timunded. When the exact value of the data source is out
Fjords architecture for managing multiple queries ovef the range at the cache server, the data source sends a
many sensors. In this architecture, each senor node sams interval in which the exact value must lie. A query is
its data directly to the basestation. This direct communicaswered by using these intervals if they satisfy the spec-
tion requires a large amount of transmission power whidted precision bound, otherwise exact values need to be
drains the node’s batteries rapidly, and thus substantiakrieved from the source. Recently, this work has been
decreases the lifetime of the system [16]. Minimum eextended by Jain et al?], where Kalman Filter is used
ergy multi-hop routing protocols (MTE) were thereforéo predict the values of data sources. In sensor networks,
proposed, in which sensor nodes route their data to ttezaridis et al. [6] proposed to compress the raw data at
basestation through intermediate nodes [2, 14, 15, 1&kch sensor node, then the compressed data is sent to the
However, in general, sensor networks contain too mubhsestation when the precision is out of bound. Since the



compressed data series contain less data, communicatiaia source and monitors the physical environment by sam-
cost is reduced. They also proposed to predict the senglang physical signals. From another point of view, each
readings due to the fact that the basestation has no cegnsor generates a discrete time series. Since uncertainty
trol over when the sensor nodes deliver their compressgdn inherent property of sensors, the time series gener-
data. Similarly ] proposed another prediction techniquated by sensors contain errors (the difference between the
to monitor environment by applying MPEG techniques ireal environmental values and the sampled values). How-
prediction. In these approaches, itis assumed that thereéser more accurate results can be obtained by aggregating
virtually direct communication between every sensor nodata from multiple sensors, i.e., summaries and aggregates
and the base station, or between the data sources andflraw sensor readings are more meaningful and trustwor-
cache server. In other words, prediction only takes plaitg than individual ones [16]. Note that the data contained
in the basestation or the cache server. In sensor netwodtsthe basestation is always “stale”, because the data al-
recent works [17, 18] show significant energy savings lways reflects an “old” reading of the sensor which is either
pushing computation into the network, which is referred tielivered directly or preprocessed before it arrives at the
asin-network aggregationWith this motivation, we push basestation via multiple hops.
prediction into network, referred to @&s-network predic-  In our model, sensor nodes send and receive data using
tion. The idea of in-network prediction is similar to in-a low power wireless radio. Due to the constraint on com-
network aggregation, which allows prediction of partiahunication distance of wireless radio (from several feet
aggregation values in sensor nodes while in-network dg-100 feet), data at some sensor nodes are transmitted
gregation allows to aggregate partial aggregation valugsthe basestation using a multi-hop routing protocol ex-
However both in-network aggregation and in-network preeuted over intermediate nodes. Currently, there are sev-
diction are based on tree structures, the existing two meghal structures proposed for data collection. One simple
ods [12, 6] can not be directly applied to a tree struct@fe [ approach is broadcasting. Each sensor node broadcasts its
Therefore we propose new techniques to realize both §ampled data or relayed data from other nodes to its neigh-
network aggregation and in-network prediction. We aldmrs. Since sensor networks are completely connected, the
propose multi-query processing technique for power-awatata can reach the basestation eventually. This idea is sim-
queries. For a single power-aware query, the energy ispée and easy to implement, but is not applicable to sen-
duced by decreasing the number of messages sent by eatmetworks, because a large amount of energy and com-
sensor node. In the case of multi-queries, sensor readingsication is consumed to send the redundant informa-
and communication among different queries can be shatieth. In this paper, we use a tree communication topology
for further energy savings. rooted at the basestation, which is adopted in [18, 9] and is
the most energy-efficient communication topology. In this
. communication topology, each sensor node sends its data
3 The Architecture of Sensor Net- (o the basestation through its ancestors in the tree, there-
works fore synchronization of the sensor nodes along a path to
the basestation is crucial for aggregation over sensor net-
In this paper, we consider sensor nodes that use wif§2ks. We use the same synchronization method as pro-
less RF radio to communicate with a basestation, whipRS€d in [8, 18]. Each node synchronizes its clock using
is wired to the outside world [7]. Due to the fact thafPS- For a given sampling .ratee.ach node d|V|des|pto
low-power wireless radio has low communication distandgree time segments: sleeping, listening, and sending. The
sensor nodes communicate with the basestation via inf§€ning segment should be long enough to receive data
mediate sensor nodes. Hence there are three impor{i! @ny of its children. Assume the depth of the query
components in a sensor network: a basestation, serf&@f ISH. tis divided intoH segments (the length of each
nodes, and communication topology. segment ig/H), and the nodes at levélwill set the hth

The basestation is a different type of node from the seifdment as their sending segment. During the sending seg-
sor nodes. It is not subject to the limitations of sensBteNt @node will send its reading or the partial aggregation

nodes: power, communication, memory, and computatiéfSults rooted at this node to its parent.

It is responsible for connecting the sensor network to the

outside world through wired communication. In genera] : .

users pose queries over sensor networks through the baé}es— I?ower-aware Querles and Predic-

tation. The queries are optimized and disseminated from tlON

the basestation, also the query results are assembled at the

basestation and delivered to the users via the basestati@eclarative queries are the preferred way of interact-
Sensor nodes are the basic components in sensor mgt-with sensor networks to aggregate data, rather than

works. Each sensor integrated in a sensor node is a sepadtpting application-specific procedures. This is impor-



tant since user interests may change over time and tlseysor value was sampled, the sensor readings are the val-
also may need more precise answers over time. Res, and the time range is determined by the query duration
cent works [18, 9] proposed query engines for declaratife For example, a sensor’s readings at every 10 seconds
queries over sensor networks. In [18], in-network proceshiring one minute ar¢32.7,33.2,32.8,33.5,34.1, 33.7].

ing is proposed to decrease communication cost. Basedrder to predict future readings, we need to find the trend
on the inherent uncertainty of sensor nodes, we introduafehe time series. Due to the inherent uncertainty of sen-
precision into declarative queries, where users can spgars and due to the presence of environmental noise, it may
ify the error tolerance range of the estimated results frarot be possible to find the trend using a fixed-parameters
the real values (which is referred to peecision B. We model for a long time range even though each sensor’s suc-
also introduce prediction that enables the basestation aedsive readings are correlated. On the other hand, from
sensor nodes to predict query results or partial aggrega-accuracy point of view, we would like to detect the ex-
tion values based on past information. In particular, tlaet changing patterns of sensor readings. This, however,
basestation or intermediate sensor nodes will only be meeds a lot of samples, high computation cost, and perhaps
formed about the sampled values of some sensor nodesfffline analysis. Therefore we propose a compromise. In
their predicted values may result in the query results beimpst cases, sensor readings will not change dramatically
out of the precision bound. Hence message communicatituring a short time period, we can fit values in a short time
overhead can be dramatically reduced. In this section, vemge in a prediction model. In this paper, we propose to
describe power-aware queries, then we will address sonse thepiecewise predictiomethod, where the parameters

issues about prediction. of the prediction function are adjusted to reflect the new
trend of the time series if the old parameters of the function
4.1 Power-Aware Queries drives the predicted values out of user’s tolerance range.

In our technique, the prediction function of a single sen-
Current query framework proposed for sensor nefor node is stored at the node and incoporated into the pre-
works [18, 9] is based on SQL, and incorporates sagfiction function of its parent. Therefore, some sampled
pling intervals, monitoring periods into SELECT-FROMreadings of the node do not need to be processed and trans-
WHERE clause. Due to the inaccuracy of single sefitted to its parent when its future values can be approxi-
sor readings, aggregation of multiple sensor readingsnigtely estimated from the prediction function. As a result,
more meaningful to users. Hence we primarily focus @hergy can be saved while results are guaranteed to be in
AVG/SUM queries. The queries have the following fora given precision range. The detailed techniques are dis-
mat, where we have introduced tRRECISIONclause.  cyssed in the following section.

A method used for prediction of a time series is the state-

SELECT AggregationFunction space modeld]. In this model, the next state ; is mod-
FROM Sensordata eled as a linear combination of both the previous state
WHEREs.locin R (1) and some process noisg, which is described using the
DURATION D following equations:

EVERY ¢

PRECISIONP rii = AT +

In the above query schemaggregationFunction can \WhereA is the transmission matrix. The process measures
be aggregates AVG and SUM specifies the sensor typeser observationg; are derived from the internal stafé:

R is the query regionD gives the query runtime, spec-

ifies the sampling rate, anB denotes the maximum tol-
erated difference between the predicted values and the
real values. For example, ilggregationFunction = WhereH; is the matrix relating the system state and the
AV G(s.temperature), the semantic of this query is: Calneasurement vector. These two equations are often re-
culate the average temperature in roghwith precision ferred to as the process model (for prediction) and mea-
P, and run this query foP duration once everytime in- surement model (for correction) respectively, which are the
terval. Note that we use an absolute value for precigtpn basis for all linear estimation methods, such as Kalman Fil-
but our query processing technique can be easily modifi€# In sensor networks, each sensor node sends a new ma-
to handle percentages as well. trix A to its parent when the predicted value is out of the
precision bound. However thebserver design problem
arises when attempting to determine the internal states of
the system solely based on the knowledge of the system’s
For a given query, each sensor’s reading is a discrete timgputs. In many environments there are many sources of
series, where the time corresponds to the instant when tioése for the sensor measurements which would violate the

4.2 Prediction of Time Series



assumption of the state-space model that the noise is z&o- Power-Aware Query Processing

mean white random noise. This will degrade the quality of

sensor readings (signal) which is the only source of infQiise 5 injtiate queries at the basestation where a query is

mation in the process model. As a result, the state-Spag@inized and the query execution plan is disseminated

mode! can only be used to make predictions over relativejye the sensor network. After dissemination of the query

short mteryals. ) ) ‘to the sensor nodes whose readings are needed to answer
One basic technique commonly used to describe a tiga@ querya query treds constructed over the sensor nodes.

series is linear regressiofl][ where timet is the indepen- once the query is disseminated and the query tree is built,

dent variable, sensor valugt) is a variable dependent oreach sensor node sends the sampled readings or partial ag-

t. Their relationship can be estimated using: gregate values to the basestation through this query tree.
During data collection, an interior node in the query tree
o(t) =a «t 4 D. should send its partial results after hearing from all of

its children in order to send as few messages as possible.
Where 4(t) is the estimated value af(t), a,b are two To achieve this, we use the synchronization method intro-
parameters referred to as tepeand theinterceptre- duced in Section 3.
spectively. One popular estimation techniquezcdind b To execute power-aware gueries, a naive and straight-
is to use least square error (LST) linear fit. In the LSfbrward approach is as follows. Each sensor node collects
method andb are computed to minimize the residual suritss sampled data, constructs its prediction function based
of squares " t = t,t.v(t) — 0(t)°, t, andt, are the start- on these sampled data, and sends the most recent reading
ing time and ending time. Assuming previous readings: and the corresponding prediction function to the basesta-
[v1,v2, ..., 0], @ @andb can be computed as follows][ tion using the query tree. When its predicted value at the

basestation differs from the sampled value of this sensor

L >t —D)(v; — D) node by more than the precisiéh the sensor node recal-
a= St —10)2 culates its prediction function based on its new sampled
data and updates the basestation with the new information.
. 1 Alternatively, the answer of aggregate queries can be
b= W(Z(”i) — b1y (L) calculated from partial results calculated in-network, thus

decreasing the communication cost. However, the naive

Wheret denotes the average 6ft denotes the average oBpproach does not consider in-network aggregation. Thus,
V1, V2, .o, Ugpe the average number and size of messages per sensor node
Other prediction techniques have been proposed in tAethis approach is large, which will result in more en-
literature, and our proposed power aware query proce3&y usage and the _Iifetime of the sensor network is short-
ing algorithms given in next section are not affected by ti§8€d. In order to improve the energy usage of power-
different prediction techniques. In this paper, compared@yare queries, we propose a power-aware query processing

the state-space model, we choose linear regression fort@fdnique which considers in-network aggregation and in-
following reasons: network prediction, where every sensor nada the query

tree predicts the partial aggregation values of the subtree
rooted at node:.

e Itis simple and easy to compute, which is suitable for ] . )
sensor nodes with limited computation capability. In SiNCe We introduce precision into queries, the core of

the state-space model, the computation is more cofiyir query prgcessing is required to preserve the precision

plex than that of the linear regression. of dlffergnt I_<|nds of aggregate queries in order to answer
them using in-network aggregation and in-network predic-

on. We will first discuss the base case: a query tree with

e The model contains less parameters, hence it will coth o levels. Then we will generalize the base case to a quer
sume less communication bandwidth and memory. R 9 query
tree with multiple levels.

the state-space model, state transmission matrix
needs to be sent to upper level of a query tree.

. N o 5.1 Base Case
e It can simulate the changing signal using piecewise

linear regression (or piece-wise prediction) to guags mentioned in Section 2, the techniques proposed in
antee a given precision. In the state-space modgk, 6] can be applied to a two-level structure: from sensor
since the actual state transform model is completg{pdes to the basestation. In this section, we review these
unknown, it is impossible to use the model for longwo techniques and argue that they are not applicable to
term prediction. more than two levels. Then we introduce our technique.



Olston and Widom [12] addressed the problem of band propagated to the basestation which may result in the
ancing the tradeoff between precision and performance fprery results being out of precision bound.
querying replicated data in replication management. In or-Before presenting our general query processing algo-
der to improve performance and reduce communicatigithm, we use the example shown in Figure 1 to introduce
instead of storing the exact value of an item, the senaur method for the base case. Using the linear regression
stores an interval for each item’s value within which thexodel presented in Section 4.2, each sensor node has its
current value must be located, as shown in Figure 1¥g). own prediction function. Initially, child sensor nodes send
denotes the servel; to N5 are sources, where itethto their prediction functions to their parent sensor node. For
item_3 are located. Figure 1(a) shows an example whexeample, as shown in Figure 1(c), for the sake of simplic-
the exact values of iterth to item3 are5, 11, and10 re- ity, we use two readings to construct prediction functions.
spectively. At the server side, the intervals [3, 6], [6, 10Prediction function® f1, pf2, andpfs of nodesN, No,
and [9, 12] are stored for iterh to item3. Queries are and N3 are constructed and sent to nallg. Assume that
answered immediately using these intervals. On the otliee precision given by users 3, node Ny usespfi, pfe,
hand, the data source will update its interval at the senardpf5 to predict the values at nod@§ , No, N3. At the
if its current value is not located in the old interval. Fosame time, nodéV;, N», N3 also predict their values and
example, if item2 has a new valuél, then it will send a sample the exact values with their sensors. If the exact
new interval which containsl to serverN. value of any node differs from its predicted valueBythe

node will recompute its prediction function and send both
of, Piy=0  the new function and the exact value to nadlg. Oth-
,:y=2  erwise, no communication is needed. For example, the
oy -y=4  predicted value ofV; at time 3 is 0 using its prediction
functiony = 0, however, the current reading4gassume
@ @ @ @ @ P = 3). Thus nodeV; will regalculatg its prediction func-
tion and send a new prediction function and the new value,

tem 1 item2  item3 o <024 <048 <004 <024 <048 .
G W (10 4, to its parentVy.

@ (v ©

item_1: [3, 6]
item_2: [6, 10]
item_m: [9, 12)

5.2 Query Processing Algorithms

Figure 1: Comparison of different schemes for saving com- , . . — .
L In this section, we first introduce the generic power-aware
munication cost

query processing algorithm. Then we will show how this

Lazaridis et al. [6] proposed to use a compression tedgnenc algorithm can be used for AVG/SUM queries.

nique, referred to as Poor Man’s Compression - Midd{gaperic Algorithm
Range (PMC-MR), to reduce communication cost in sen-
sor networks. Each sensor node compresses sampled vdlisers query a sensor network by posing a query at the
ues, which can be viewed as a time series, as follows: Thasestation. Assume the basestation has distributed the
sensor node divides this time series into segments whgoery to the sensor nodes involved in the query and the
the median of the sampled values in a segment is more tiqaery tree has been built. Each sensor node will execute
precisionP away from the most recent sampled value. Afhe generic algorithm, given in Algorithm 1, with the pa-
ter constructing each segment, the median of the samplacheters specified in the query, i.e., query type, precision
values in that segment is sent to the basestation as a repredurationD, and sampling rate
sentative of the values in that segment. Figure 1(b) showsn Algorithm 1, each node receives partial aggregate
an example, wher@ is set to 3. The series of samples atalues of its children and their corresponding prediction
nodelV; is divided into two segments, then valueand4 functions. Based on these values, it calculates the partial
are sent to parent nod€,. A similar analysis can be ap-aggregate value and a prediction function for the subtree
plied to the series @V, andN3. The authors also proposedooted at this nodel;,. Then for each during D, n cal-
to use prediction techniques at parent nd@go predictits culates the new partial aggregate value for subifieand
children’s values, since the sending time of children is ne¢nds this value and the new prediction function to its par-
known. ent P, when the partial aggregate value predictedfgr
Even though these two proposed methods can redaté’, is out of precision bound. Note that the sensor node
communication cost, they are not applicable for a cordees not have to listen to its children. Instead if there is any
munication topology with more than two levels, where irmessage from its children before timeout, it listens, other-
network aggregation plays an important role in saving enise it sleeps after timeout. This is because energy usage
ergy. In these methods, during in-network aggregation tisehigher in listening than in sleeping. Nodealso needs
errors of partial aggregation values will be accumulatéol compute a prediction functionf,,. This is dependent



Basestation

Algorithm 1 Generic Query Processing Algorithm T(

1: Input:

2: T: the query tree;

3: n: the node executing the algorithm; Basestation

4: H: the height of the query treg; V(

5: h: the height of the subtree rooted at node

6: Procedure: @ T 1 2 n

7: IIT,, is the subtree rooted at node

8: //i is a child of node nin T7; is a subtree rooted af

9: /lv, is partial aggregate value for subtrég; @ T T T

10: /Ipf; is the prediction function fov,;

11: for Everyt during D do

12: Sleep(close RF) until listening time of node

13: Setthe timeout and start listening;

14: if Any message before timeotiten

%g; Receive the message; Figure 2: Proof of Theorem 1
©endif

17: Calculatev,, and newp f,, based on the received messages;

18: Calculatev,y,, based on the olg f,, which was sent ta's parent;

(b)

19: if | vy, — vpy, |> Pthen . ; ; .
200 Waitunti i sending time: PROOF: We use mductlo_n proof method. Bgse case:
21 Sendv,, and the new f,, to the parent; the level of the query tre& is one (only node: in T).

52 EndProcedure Because the prediction function of nodés the prediction
24: end for function of tre€T’, if the prediction value ofi is out of the

precision, the real sampling value will be used. Thus, the

statement is true.

on the aggregation function. Induction Hypothesis: Assume that the statement is true
In the following, we show how AVG/SUM can be exewhen the level of the spanning tree is no larger thaire.,

cuted using Algorithm 1. We also show, for a given predike results at the root differ from the exact results at most

sion P, how the precision is preserved through the partiay P.

aggregate results. Induction step: As shown in Figure 2, [&tbe a query
. tree withk + 1 levels,r be a root inT', 1,2,...,n be di-
AVG and SUM queries . Y
rect children of-, Ty, 15, ..., T,, be subtrees rooted at nodes
, , 1,2, ...,n respectivelypy, ...., v,, be the average values for
?Igonthm 2 Calculate Subroutine for AVG subtreedl’, T, ..., T, v, be the current reading of roet
> Input: Lt .
2-1.2.....m: the children of nodes: andpfi,pfa,....pfn be the prediction functions for these
3 pfi: the prediction function for average value of subtree rooted at fjode values. Based on Algonthm 2, the predICtlon function for
4. ;;Lf” is the prediction function for average value of the subtree rooted at noﬂf[-e average value of tré@is:
5: pfn is the prediction function for average of node N
6: n; is the number of children in the subtree rooted at npde g S X n;) +
7: v is the current sampled value at nodp pfr = Zi:l(gfl l) plr
8: Procedure: Yoiqi(ng) +1
9: /lv; will take the value sent by childif it sent, otherwise it is computed from L .
pfi Where pfr denotes the prediction function for average
10: ST pfi X ni 4 P value of tre€l’, andn; is the number of children of node
_ Zui=1 01 i n. . .
Phn = m+1 ’ Thus, the predicted average value of trees:
11:
o — ;"Z’lvixnintv. v . Z;;l(vpﬁ xni)+vr
ST pir Sy (i) +1
12: End Procedure . L
13' output: Wherewv,, is the average value based on the prediction
14: returnp fr, andvn,; function of subtredl;. The exact average value of trée
is:
The Calculate() subroutine for the AVG is given in Al- S (or x i) +
gorithm 2. The prediction function for the average value op = =V X ) T O
of the subtree rooted at nodeis computed by taking the > im(ni) +1

average of the prediction functions of all its children and iBased on the induction hypothesis, since each suliiree
self. P in Algorithm 1 is the samé” specified in the AVG has at mosk levels, it satisfies:
qguery. The following theorem demonstrates that the final

results of the AVG query are within the precisiéh | vi —vpy, |[< P.

. . - Therefore,
Theorem 1 Given an AVG query with precisioR, Algo- S (s e ()
rithms 1 and 2 ensure that the query answer is witRin | vr — vppy |=| == Uizai?(niﬁl L



< % <P Ri,R,,...,R,. Note that we can assume that all queries
Thus e have the same type of aggre_gation functions, because the
SUM can always be approximated by AVG*N where N
is the number of sensor nodes involved. A query tree
o Tynion is first constructed over the union of queried re-
Therefore, the answer of the AVG query, which is execut@| NSR; U Rs... U R,,. Then queries are answered at the
using Algorithms 1 and 2, satisfies the precision basestation using partial results from some of the involved
The query processing of SUM queries is similar to AV@Gsdes in the union region. For example, Figure 3 shows a

gueries. However, we have to modify the generic algoritl*@_fl]Jery tree built ove?, U R, and is used to answer both
and calculate subroutine for SUM. Liné of Algorithm 1 0, andQ,.

should ben,, /N x P, where N is the total number of nodes 14 answer a query in the batch, we can not use the sin-
in the query tree and,, is the number of nodes in the subgje guery processing algorithms presented in Section 5,
tree rooted at node, P is the precision specified in SUMgjnce the query tree of multiple queries is built over the
gueries. The caICL!Iate subroutine returns the sum of th&on of all query regions instead of a query tree for each
values of all nodes in subtree rooted at nadend the pre- query. Each query regioR; of a single query); intersects
diction function associated with that sum. The correctngggh the query tred,..;on. The query region is treated as
proof of SUM query processing is similar to that of AVG, plack box, which crosses some edges of the query tree

|vT—vaT |< P.

query processing. _Dug to the space limitation, we do npt . Assuming in-network aggregation, the query an-

include the details in this paper. swer can be answered using information contained in the
messages sent on the edges intersecting RjthFor ex-

6 Multi-Query Processing ample, the answer for query; can be computed by sub-

tracting partial aggregation values at n@dend4 from the

Users typically impose multiple queries over a sensor nBgrtial aggregation values at notleGivenQy, @z, ..., Qn,
work at the basestation during a time range (a batch '8f @ AueryQi, we classify the edges which intersect the
queries). This could happen, for example, when a set®te"Y regiony; in the query re’ynon into the following

sensors detect some anomalies and need to learn the 4YBFS:
age temperature of some specm(_ed regions. Current pflféfinition 1 Incoming edge: A directed edgee, f > is
posals [8, 18, 9] for query processing over sensor networ

asincomin edge if it intersects with the query regi®
do not consider multi-query processing. The problem aF g edg query regron

multi-query optimization has been studied in different cor%nd the ending nod¢ is inside the query region and the

texts, such as relational database systems(RDBMs) g}%'tmg noder is outside the query region.

data streams. In RDBMs, muIt_i—query optimizqtion amﬁefinition 2 Outgoing edges: A directed edgee, f > is
to share common sub-expressiofis 7] among different an outgoing edge if it intersects with the query regi®n

queries. Ir.1 data streams][ thq goal of mul'tl-query 9P and the starting node is inside the query region and the
timization is to share processing among different querig ding nodef is either outside the query region or is the
with the assumption that the data is already collectgq, octation

However multi-query processing in sensor networks is mo-
tivated by sharing sensor readings and data transmissioRor example, in Figure 3, is an outgoing edge and
among different queries if the query regions of differemodel is the starting node af;. e; andes are the incom-
queries intersect. Therefore, energy can be conservedrayedges where nodeis the ending node, nod&sand4
sharing the results of common regions among differeste the two starting nodes. Note that there can be many in-
queries. coming edges and outgoing edges for a query. The incom-
For the sake of simplicity, we assume multiple queriésg and outgoing edges are determined when queries are
run as a batch and all queries have the same precision disdeminated over the sensor networks. Each node knows
the same sampling rate. If two intersecting queries hawbether it is the starting node of an incoming edge or an
different sampling rates, the sensor nodes in the comnmrigoing edge when the query tree is constructed. This
regions choose the higher sampling rate since the sermuy needs a small modification to the query tree construc-
readings with higher sampling rates can give better apprdion algorithm of a single query. After the basestation dis-
imation of the real environment. Similarly, if two interseminates all queries, every sensor nadgnds its query
secting queries have different precision, the sensor notistsi,, to its parent, which consists of all queries involv-
in the common regions choose the smaller value, whitcty n. Then, the parent nogecompares the query list of
corresponds to the higher precision. This guarantees thatith its own query list,. If a queryQ; is inl, but notin
the results of each query satisfy the specified precisibn it means that the edge n, p > is an incoming edge of
in this query. LetQq,Qs, ..., Q, be queries over regionsquery®;. Then noder sends to node a message which



states that node is the starting node of an incoming edgbers4 and6. When the basestation reads this information,
and its partial aggregation values need to be propagateddmg the the knowledge of positions of all sensor nodes,
the basestation. Similarly, if a query isdf but not inl,,, it determines that edge 4,6 > is an incoming edge for

it means that the edge n,p > is an outgoing edge andquery@;. Based on the synchronization at the end of each

noden will be notified too. time interval, the basestation executes Algorithm 3 to an-
swer each querg); in the batch using the partial aggrega-
Base station tion values and prediction functions from the outgoing and
( incoming edges. The results f@); satisfy the precision

constraint specified i);, which is proved by the follow-

Rq
/ \@\O ing theorem.

A GO :
O E) d) @}gg®/© Algorithm 3 Calculate the results for que€y at the bases-
) o tation
&2 Q 1: Input:
@ 2:1,2,...,n.u¢: the outgoing edges;
/ \ 3:1,2,...,n;,: the incoming edges;
Q Q 4: pf;: the prediction function for average value of subtree leaded by outgoing
R2 edgei;
5: pf;: the prediction function for average value of subtree leaded by incoming
edgey;

p fq is the prediction function for average values of qugy
n; is the number of children in the subtree leaded by outgoing or incoming edge
i,
8: Procedure:
Since all queries have the same Samp"ng rate, the s@n#v; will take the value sent by subtréd it sent, otherwise it is computed from

: : fis
sor nodes only need to sample once each time interval td’ SO xS pf

Figure 3: Power-aware multi-query processing algorithn’-s,i

answer all queries gnd execute a query .processing alfpfe = DRSS IS ;
rithm given in Algorithm 1 except for a minor change tq. v = Ti2Y? vixni —E50 vy xny
the messages passed among sensor nodes. In order to an- T2t oDl g

. . .12: End Proced
swer queryQ;, the partial aggregation values and predigs: ouput.

tion functions at the sensor nodes which are the startifretumpfe andvg;
nodes of the incoming or outgoing edges of regitymeed
to be sent to the basestation. Therefore the starting nodes

of the incoming and outgoing edges B need to Inform thegrem 2 Algorithm 3 guarantees thaty is the result
their parents to pass their partial aggregation values %?‘ﬁuery@ and is within the precision range.

prediction functions to the basestation. Consider a node

which is the ending node of an incoming edgee, p >, PROOF: We first need to prove that, is the query re-
nodep, in addition to computing the partial aggregatiosult, i.e.,ug only includes the sensor node values (the real
values and prediction functions of the subti@erooted at readings or the predicted values) in the query region. Each
the nodep, also transfers the partial aggregation values gfibtreeT},, rooted at the starting node of one incoming
nodee along with its own partial aggregation values angdgee;,, must be included in a subtrég,,; rooted at the
prediction functions. We use the same example in Figtarting node of an outgoing edgg,,, therefore the values
ure 3. Nodes and4 inform node6 to pass their partial ag- of the subtred’,,; contains the values df},,. The above
gregation values and prediction functiod4; and PA4, formula for computingu is the subtraction of the sum
to the basestation, and nodédirst usesP A3 and PA4 to  of all outgoing edges’ values and the sum of all incoming
compute its own partial aggregation values and predictietiges’ values, which only contains the values inside the
functions PA¢ of the subtree rooted at node and then query region.

transfersP A3, PA4, andP Ag to node2 which is the par-  For a given query, in Algorithm 3, if there is no update
ent of nodes. For the basestation to answer queries, eabm its outgoing and incoming edges, the predicted result
partial aggregation value should contain information thet queryQ, Upfo. IS computed using the predicted values

it is a value of a starting node of an incoming edge or af),. of its outgoing and incoming edges:
outgoing edge of some query. This can be done by adding

the starting and ending nodes’ numbers of an incoming or

an outgoing edge to the message which contains the partial S Dy Vpg, XMy — Z?;"l Upf; XN
aggregation values and prediction functions at the starting ~ */@ — Dot = 20y '

node. For the example shown in Figure 3, the message
sent by nodet to node6 contains the partial aggregatiowWherewv, s, is the predicted value of subtreend is com-
values and prediction functions at nod@nd node num- puted usingf;. The exact valuer, of Q is:



" . Each node can communicate with its eight direct neighbors
- 2ot v X — 0 v Xong on this grid (excluding the sensor nodes at the border of the
© St = Y 0 ’ grid).

Wherewr, is the exact average value of outgoing or in- We conducted experiments on power-aware query pro-
coming edge subtree. Since the difference of nodes in&#fSing for AVG and SUM queries over a synthetic dataset
outgoing edge subtrees and in all incoming edge subtr@84 real temperature and humidity datasets from the Trop-
of queryQ is all nodes in query), and each nodé in ical Atmosphere Ocean Project [11]. The synthetic data is

query region of satisfies: generated by a random walk:

— <P
_ vz = p [ _ z[0] = 20 andz([n] = z[n — 1] + s, Wheres,, = F0.25.
Wherewvr, is the exact value of node, v,y, is the pre-
dicted value of node:, P is the precision given ifQ. The characteristics of the datasets are shown in Figure 4.

Assume the number of involved nodes his ng (= Figure 4(a) shows the synthetic dataset we generated, the

Dot i — 305 my), we have, real dataset for humidity and temperature are displayed in
| vry — Vpso | Figures 4(b) and (c). The queries we execute are as fol-
lows:

_ Z?:Oi” (vr; —vpy,;) Xni_zygi (UTJ —Upty ) X1

- Tout ,, . _ N tin .
22t i =30 ny

"R (v, —, e
— D e mven) o X P po SELECT AVG/SUM

¢ “ FROM Sensordata
. ) WHERE ss.loc in GRIDN x N
7 Experimental Evaluation DURATION D @
EVERY 1
In this section, we present experimental results for power- PRECISIONP

aware query processing. We compare our power-aware

query processing technique with TAG approach [8] and tiée vary D and P for different queries. For the synthetic

naive approach. Note that TAG only considers in-netwodataset,D is always equal td 000 while for the temper-

aggregation, i.e., all queries are executed without considure and humidity datasef3 is set to250. The reason

ering precision. Therefore, experimental resultsffoe= 0  for choosing different values for duratidn is because the

is for TAG approach. In the naive approach, each senseal datasets only contain neafl§0 readings per sensor

computes and sends its prediction function to the basestade. However, in order to see the long-run gains of our

tion using the query tree. technigue, we choosP as 1000 in the experiments over
In our experiments, we use the tree based commuthie synthetic data.

cation topology. We assume all nodes are well synchro-

n?zed.. In the naive approach, each 'node'uses the syncl=yr_t? Experimental Results For Single Query

nization to merge the packets from its children. In power- .

aware query processing, we use this synchronization for Processing

in-network aggregation and in-network prediction. In this section, we present the experimental results for sin-

For all queries, we compare the average number of hjie query processing over the synthetic and real datasets.
sent by a single sensor node because the communication

cost is dir_ectly determined by _the number qf bits sent. 17?2_1 Synthetic Dataset

our experiments, we use the linear regression as a predic-

tion model. This results in less computation cost. In gehigure 5 shows the experimental results over the synthetic
eral, the computation cost of the prediction function of orgtaitaset for AVG queries. ThE axis represents the size
sensor node is the cost of sending bit. Due to the nature of the query region (or grid), which also determines the
of prediction and in-network prediction, prediction funcAumber of sensor nodes involved in the queries. For ex-
tions of sensor nodes do not need to be recomputed nwsple, if the region size i$0 x 10, we queryl00 sensor

of the time. Hence we only consider communication cospdes to compute their average values. We set different

in our experiments. levels of precision = 0,0.25,0.5,0.75,1). The results
show that the larger the precisidt the less messages are
7.1 Experimental Setup needed to answer the query. SinBe= 0 is the case of

TAG approach, TAG always has worse performance than
In our experimental scenario, we plad& sensor nodes our power-aware query processing technique. This is be-
over anN x N grid with each node located at a grid pointcause our technique considers both in-network aggregation
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Figure 4: The data characteristics of synthetic and real datasets

and in-network prediction. From Figure 5, we observe that 4
the average number of bits sent by a node decreases when

P > 0 and the diameter of the network increases. Thisis =™
due to the fact that using in-network prediction, the prer
dicted partial aggregation values at the higher levels of tée
tree have more chance to be in the precision range singe soom
the change resulted from increased values of some noé;es
can be reduced by the changes resulted from decreased™”
values of some other nodes. Furthermore, a tight preci-
sion range, e.gf.25, results in significant savings in en-§

ergy when compared to queries without any precision, i.€., s
whenP = 0.
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Figure 6: The comparison of power-aware query process-
ing and the naive approach

ods outperform the naive approach by more than two-fold

savings in terms of the average bits sent per node. We
conclude that power-aware query processing is much more
scalable than the naive approach because the naive ap-
e proach only considers prediction without considering in-

1 network aggregation and in-network prediction.
on the comparison of these two approaches over AVG

Based

The size of grid gueries, we observe that the power-aware query process-
ing approach always outperforms the naive approach. In
Figure 5: The average number of bits sent by each nodettes naive approach, when the diameter of the network in-

AVG queries

creases, the average number of bits sent per node increases

linearly, as shown in Figure 6. This is again because there
In order to show the effectiveness and scalability of ifs no in-network aggregation. Similar results are observed

network computing, we compare the two query processifig SUM queries.

techniques: the power-aware approach and the naive ag-igure 7 shows the results for SUM queries over the syn-

proach. The results for increasing the grid sizes are shothiatic dataset. With the increase in diameter of the sensor
in Figure 6, which are based on the synthetic dataset. Retwork and the number of sensor nodes, the average hum-
a given precisionP, power-aware query processing mether of bits sent increases. Since the results of SUM queries

11
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Figure 7: The average size of bits sent by each node foFigure 9: The experimental results over humidity data
SUM queries

. cessing techniques, we tested them over real tempera-
are the addition of values of all sensor nodes, the aUeN¥e and humidity data from Tropical Atmosphere Ocean
results are aﬁec‘?‘?‘ by the value of any sensor node. ject [11]. The characteristics of the data is shown in
results of the addition of all sensor values is a much Iarq:_% ures 4(b) and (). The experiments are conducted over
value than the value of any sensor node. However, the' 1o qrid with 100 sensor nodes. Figure 8 shows the
results use the same precision as the one of a single $88Ults of different query types over temperature data by

sor, hence the results with the very small precision val S ing the precision. The larger the precision range, the
are almost the same as their absolute values. In anotlet \ imber of bits are sent

words, sensor nodes almost need to send the parameters of . )
their prediction function with a very small value Bfwhile Similarly, Figure 9 shows the results of different query

sensor nodes only need to send their sampled values wi@§S Over the humidity dataset by varying the precision.
P = 0. This explains that the average number of bits seHf€ number of messages in AVG queries decrease sig-

of each node whe® — 0 is less than the other cases a&ificantly when the precision is increased. However, the
shown in Figure 7. In conclusion, for SUM queries, precRYM guery does not change significantly as discussed be-
sion P should be set as a percentage of the results. fore. Compared to the results over the temperature dataset,

the larger change in number of messages over the humid-

ity dataset is due to the larger fluctuations in the humidity
7.2.2 Real Dataset Experiment dataset, which can be observed from Figure 4. In another
words, the prediction functions in processing the humidity
data are updated more often than the ones over the temper-
- ature dataset.

] We also conducted an experiment to test the distribu-

40000

35000 |- T R B

30000 |- | tion of the total bits sent over all sensor nodes. The results
are shown in Figure 10. Th& andY axes denote the
10 x 10 grid and100 sensor nodes. Thg axis is the total
20000 |- | number of bits sent by each sensor node. We observe that
our query processing methods can achieve balanced energy
consumption compared to the naive approach. Since we
10000 | | placed the basestation at the center of the grid, the sensor
nodes which are near to the basestation in the naive ap-
proach have more bits to send, as shown in Figure 10(a).
e =%  1hus these nodes will drain their power more quickly. On
e e ' the other hand, in the power-aware query processing ap-
proach, the energy usage of sensor nodes is balanced, as
Figure 8: The experimental results over temperature dathown in Figure 10(b). Hence, as the network diameter is
increased, our approach will be much more scalable when
In order to show the effectiveness of our query pra@ompared to the naive approach.

25000 |

15000

The average number of bits sent by one node

5000
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Figure 10: The number of bits sent by each sensor node with pre€isiari AVG queries over 40 x 10 grid

7.3 Experimental Results for Multi-Query s g—
1 MPWO

Processing 50000 |- e ]

In order to show the effectiveness of our proposed multé- 70000 x 1

guery processing technique (MPO), we compare it with the sooco | X i

following two multi-query processing techniques.

50000 |- 4

mber of bits sen

40000 E

e Naive multi-query processing approach (NMP):

The Basestation collects the readings of all SENSAN ot e
nodes whose readings are needed to answer queries. P

. £ 20000 - q
Then the basestation computes the results for each

guery. This method does not consider in-network ag- 000" 1

gregation. In terms of collecting messages from sen- t——+——t—7 1 o |

20 30 40 50 60 70 80 90 100

sor nodes, we use tree structures which have been pro- Total number of queries

posed to allow merging packets in [17], hence com-

munication cost is reduced by reducing packet headggure 11: Power-aware multi-query processing algorithm
overhead.

e Power-aware query processing without optimiza- processing improves the communication cost by one order
tion (MPWO): The basestation processes each quearfya magnitude compared to the naive multi-query process-
separately using a single power-aware query processy approach. The power-aware query processing without
ing technique, i.e., processing each query indepeaptimization becomes very inefficient and has worse per-
dently using its own tree and employing both informance than the naive multi-query processing technique
network aggregation and in-network prediction. ~ when the number of queries increases. Since in power-

aware gquery processing without optimization, a tree is built

In our experiments, we constructed a set of random AMGr each single query, one sensor node sends its readings

queries over &0 x 50 grid and varied the total numbemultiple times if it is involved in multiple queries. How-

of queries fromlL0 to 100 to measure the average numbesver in the naive multi-query processing approach, a sin-
of bits sent by a sensor node. All queries hd¥e= 0.5 gle tree is built over the entire sensor network, hence each
and D = 300. The experiments are conducted over tteensor node only sends its readings once without consid-
temperature datasets. Givaiy + 1 queries, the query setering the number of queries. Therefore, even though the
consists ofVq /3 queries ovel5 x 15, Ng /3 queries over power-aware query processing without optimization ap-

20 x 20, Ng/3 queries oveR5 x 25, and a single query proach benefits from in-network aggregation, the cost of

over50 x 50. sending each sensor readings multiple times is larger than

The experimental results are given in Figure 11, whit¢he savings from in-network aggregation when the num-

shows that our multi-query processing technique signifier of queries increases. Hence, it is not scalable when
cantly outperforms the other two approaches. Multi-quecpmpared to the other two methods. From Figure 11, we
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observe that the number of bits sent in the multi-querfg] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. The

processing technique slightly increases with the number
of queries, because the number of incoming and outgoing
edges increase with the larger number of queries.

8

In this paper, we introduced a precision based framewdtR!
for query processing over sensor networks. We proposed
a power-aware query processing technique which incgys

Conclusion and Discussion

porates in-network aggregation and in-network prediction.
Our experimental results show that our query processi[@g] Mike Woo Suresh Singh and C. S. Raghavendra. Power-aware rout-
technique can reduce the number of message (or the size ofing in mobile ad hoc networksviobile Computing and Networking
bits) sent by each sensor node dramatically. Furthermore, pages 181-190, 1998.

the energy usage of sensor nodes is balanced, which me&fisMeng T. and Volkan R. Distributed network protocols for wireless
that our technique can be applied to large-scale sensor net- communicationin Proc. [EEEE ISCASMay 1998.

works. We also proposed multi-query processing over sé¥§!
sor networks by sharing the readings and communication
of common sensors among different queries. The eneﬂrf%

saved from the sampling and communication prolongs
lifetime of the sensor network.

In this paper, even though we do not cover node fajly
ures, link failures and changes, our proposed techniques

(10]

(11]

design of an acquisitional query processor for sensor netwanks.
ACM SIGMOD 2003June 2003.

A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless
sensor networks for habitat monitoringn ACM Workshop on Sen-
sor Networks and Applicaion2002.

M. J. McPhaden. Tropical atmosphere ocean profeatific marine
environmental laboratoryhttp://www.pmel.noaa.gov/tao/.

C. Olston and J. Widom. Offering a precision-performance tradeoff
for aggregation queries over replicated d&ta/LDB200Q Septem-
ber 2000.

Timothy J. Shepard. A channel access scheme for large dense
packet radio networksSIGCOMM pages 219-230, 1996.

Anantha Chandrakasan Wendi Rabiner Heinzelman and Hari Bal-
akrishnan. Energy-efficient communication protocol for wireless
microsensor networkddICSS January 2000.

Yong Yao and Johannes Gehrke. The cougar approach to in-network
query processing in sensor network&IGMOD Records31(3),
2002.

Yong Yao and Johannes Gehrke. Query processing for sensor net-
works. In CIDR 2003 January 2003.

are not affected by these issues. Since these problems can

be solved by periodical heart beat messages sent by the
parent sensor nodes. If a parent node does not receive the

replies from a child, it assumes that either the child node

is failed or changes its parent node. Then the parent node

will remove the prediction functions and partial aggrega-
tion values of this child node.
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