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Abstract

The fast-paced growth of the Internet’s user population is
driving clustered architectures as the platform of choice for
hosting high volume-services. The ability to provide a guar-
anteed service quality in such clustered architectures is be-
coming a need for today’s e-businesses. Most companies
that currently offer such service guarantees rely on over-
provisioning their resources or on physically reserving groups
of cluster nodes for different entities. Unfortunately, these
attempts to address the QoS problem suffer from poor re-
source utilization, high cost and low flexibility. In this pa-
per, we propose a non-intrusive, shaping technique that al-
lows for the management of cluster resources such that ser-
vice quality can be guaranteed to the clients. To this effect,
we present Qflow, an attractive alternative solution suitable
for the rapidly changing and ill-behaved traffic patterns of
most Internet services. Qflow is more effective, has lower
cost and is more flexible than any of the existing techniques.
Simulation results of real scenarios are also presented, which
validate and quantify the effectiveness of the proposed tech-
nique.

1 Introduction

Web-based services delivered using scalable cluster archi-
tectures are playing an increasingly important role in to-
day’s society. Key challenges facing these services include
the exponential growth of users, unpredictable load fluctu-
ations, and an increasing criticality to every day life. As
users demand a wider array of new powerful services, scal-
able service capacity coupled with service quality guarantees
become essential. Single-server solutions [7, 4, 5, 11, 1] are
not adequate for current high-volume demands and the few
existing clustered solutions require important operating sys-
tem modifications [3] or tailor-made applications [13, 12]. So
far, these challenges have been addressed through the appli-
cation of parallel cluster architectures with simple resource
allocation mechanisms including hardware partitioning and
over-provisioning. In this paper we address the question
of how to provide quality of service guarantees in software
without relying on traditional hardware over-provisioning.
Using a new technique for request-based traffic our results
demonstrate how it is possible to achieve the same quality of
service levels that hardware partitioning provides, but with
improved resource efficiency.

In a commercial setting, client-side Quality of Service
(QoS) at the service level (as opposed to the network level [6,

8] alone) provides inherent value by directly improving cus-
tomer experience and strengthening customer trust in the of-
fered services. In addition, Service Level Agreements (SLASs)
that enable partnering between service providers also de-
pend, critically, on service guarantees.

Preferential service prioritization is also emerging as a
critical capability in many e-commerce settings. Clients of-
ten wish to pay for a specified level of service and the de-
gree to which it can be guaranteed depends on individu-
ally changing client needs. Server provisioning mechanisms,
such as load balancing, and portioning can provide limited
prioritization capabilities, and typically do not permit pri-
oritization levels to change dynamically in response to client
demand.

At the same time, service providers must ensure that the
computational resources they use to support their services
are used efficiently. Extra resources that are kept on-hand
to meet sudden, unpredictable “bursts” in request traffic
are typically wasted during slack periods. The economic
overhead (e.g. administrative and maintenance costs) asso-
ciated with such over-provisioning must be balanced against
the cost in lost business that a server over-run causes. Since
bursts are difficult to predict, service providers must have
the ability to reallocate resources to services dynamically
as a way of mitigating load fluctuations while maintaining
maximal resource efficiency.

Server resources themselves are often organized into com-
putational clusters as a way of achieving low-cost parallelism
and redundancy in an extensible framework with relatively
scalable system administration properties. As the per-unit
cost for cluster nodes continues to drop, and the quality of
cheap cluster interconnect increases, the trend toward clus-
ters and Internet service platforms will certainly continue.

2 Qflow: a New Approach

To provide both client-side QoS at the service level, and
server side efficiency guarantees, we need a service infras-
tructure that supports flexible, high-performance, and dy-
namic resource allocation and control. In this paper we
describe Qflow — a service-level control methodology that
uses dynamic request shaping and admission control at the
cluster boundary to provide efficient service guarantees. By
controlling the shape of the request streams serviced by a
cluster, and incorporating performance feedback in the shap-
ing process, Qflow is able to achieve service quality guaran-
tees with much greater resource efficiency than can be had
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Figure 1: While traditional approaches provide service isolation by physically partitioning the cluster nodes, our approach consists of
logically separating them to achieve a more effective resource utilization, lower cost and increased flexibility.

through resource partitioning, over-provisioning, or a com-
bination of both.

The Qflow architecture is depicted in Figure 1.b. Cluster
resources implementing various Internet services are guarded
by a Qflow Engine that intercepts incoming client requests
and controls their admission to the system. The Engine
is parameterized by a control policy that dictates how and
when (e.g., at what rate) requests for different types of ser-
vices, depicted as Xs and Os in the figure, are forwarded on
to the cluster. By controlling traffic at the cluster boundary,
the system requires no knowledge or control over how the
requests will be internally processed or how the services are
internally organized. Similarly, the Qflow engine does not
depend on the homogeneity of the nodes or the architecture
of the cluster and it transparently complements any inter-
nal mechanisms such as load-balancing, service replication,
internal node partitioning or node failure and recovery.

In addition to request shaping, the Engine is respon-
sible for implementing controlled service degradation and
prioritization. If the client request rate bursts beyond avail-
able capacity, the Engine intelligently drops requests so that
clients paying for lower-priority service receive proportion-
ally degraded service, and the resulting service degradation
is predictable and stable.

The Engine requires a continuous stream of performance
feedback data from the cluster of services it protects. A
monitoring module intercepts the served requests at the
cluster output and feeds service statistics back to the En-
gine. Based on such measurements and the current status of
the scheduling algorithms, the QoS parameters of the Qflow
Engine can be accordingly readjusted so that client-side QoS
guarantees can successfully be achieved. In addition, if the
internal cluster management infrastructure supports a con-
trol interface, the Engine may also feed control informa-
tion forward, in response to increased client load, to affect
a dynamic reallocation of resources. The deployment of the
proposed architecture will enable cluster systems to provide
flexible service guarantees without the need to modify or
configure any hardware of software in the already working
system.

Our experimental results show that using Qflow it is pos-
sible to provide the same level of service isolation as physical
partitioning while maintaining a much higher resource effi-
ciency. To do so, we will first describe the experimental
methodology we have used to investigate the effectiveness of
Qflow in Section 3 and present our findings in Section 4.

3 Experiment Methodology

To perform our experiments we have developed a customized
simulator called Mimic. Mimic is designed to model the
high-level behavior of cluster systems. Component based,
it supports flexible and extensible node configuration with
several types of load-balancer modules and server applica-
tions. It also emulates the basic O.S. resource management
mechanisms such as a time-shared CPU scheduling along
with network and disk resources. For efficiency, Mimic uses
high level request objects rather than trying to emulate
low level network packets and their protocol processing. In
the experiments we have conducted for this investigation,
we use a common server paradigm as in the apache web
server [2] where a main process accepts all the incoming
requests and forwards them to a preconfigured number of
maximum helper processes.

3.1 Compared Techniques

At each of our experiments, we will compare the perfor-
mance of Qflow with both physical partitioning and un-
controlled access (which we name load-balancer), under the
same exact input traces and capacity-equivalent clusters.

Physical partitioning corresponds to the cases where a
provider sells a fix portion of its cluster capacity to differ-
ent companies. Such assignments are negotiated without
any dependence to the input traffic characteristics. In this
experiments, each entity would have a fixed number of ded-
icated nodes, corresponding to the desired proportion of the
cluster.

The load-balancer case consists of a system with a level-7
load-balancer that will forward the incoming requests to the
internal cluster nodes in a round-robin manner. Although
this technique lacks of any QoS mechanisms, it will serve as a
good comparison basis for its very high resource utilization.

3.2 Cluster Performance Regimes

To demonstrate the effectiveness of Qflow under a broad
range of cases, we divide the space of possible cluster per-
formance response into four categories shown in Table 1.
For easier reference, we name the cases from A through D.
The order in which the cases are named is done such that
it corresponds to an increasing amount of total incoming
traffic.




underload | overload
Case B Case C
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imbalance

balance

Table 1: Cluster operation regimes.

The tmbalance row corresponds to the cases where the
service-request stream contains significantly more requests
for one entity than for another. Conversely, the balance
row represents the cases in which the request streams for
each entity are either all under or all over their assigned
minimum output guarantees. When the input traffic for
all entities is below their guarantee (case A), the cluster is
in underload and the output proportions should match the
input ones (there’s enough capacity in each of the static
partitions). When one or more of the entities receive traffic
above their guarantees (case B), a system will only be able to
successfully service it all if unused cycles of the underloaded
entities can be reused.

The column marked underload refers to the cases where
the frequency and service load generated by overall request
stream does not completely saturate all of the cluster re-
sources. Finally, the overload cases are those where the over-
all request stream saturates all of the available resources,
thus driving the cluster at its maximum output capacity.
When the traffic exceeds the resources available for each en-
tity (case D), the cluster is in overload and each partition
should be functioning at it maximum rate. When on or more
entities are above their minimum guarantees such that the
total excess amount far surpasses the unused capacity from
the other underloaded entities, we’re in case C. The best a
system can do in this case is to reuse all unused resources
with the most valuable of the excess traffic.

3.3 The Case for a Weather Service

To demonstrate the efficiency and isolation capabilities of
Qflow, we will use a common cluster-based scenario consist-
ing on providing a single type of service (images) to several
different partner portals. In particular, we will simulate a
weather information site that serves precomputed weather
forecast maps that can be linked from the weather sections
of several partner electronic newspapers.

Each of the partners needs to be assured service protec-
tion against node or software misbehavior, and will be guar-
anteed a minimum share of the total cluster capacity that is
directly proportional to the premium they are charged. The
hypothetical QoS policy for the experiment consists on three
different partners (CNN, NewYork Times and L.A. Times)
which need to be guaranteed 70%,15% and 15% of the total
cluster capacity, respectively.

The cluster size for the experiment will be of 20 nodes.
Node partitions of 14, 3 and 3 for CNN, NYTimes and LA-
Times will be statically allocated in the case of physical par-
titioning. The maximum number of simultaneous requests
for each apache-like server is set at 200.

3.3.1

To present a realistic case and show how Qflow can grace-
fully handle bursty and ill-behaved traffic, we have used real

Input Trace Characteristics

traces from a web server for our experiments. The used
traces are from Clarknet, a service provider that hosted web
pages for companies and users [9]. The section used from
the traces spans over a week worth of traffic and contains 1.6
million requests with one second granularity timestamps.

Additionally, we wish to vary the frequency with which
requests can be presented to the system. To experiment
with different possible requests frequencies, we artificially
“speed-up” the Clarknet trace stream so that more requests
are presented in each simulated time epoch. The advan-
tage of this approach is that it preserves the arrival patterns
present in the real-world trace. The disadvantage (from a
comparison point of view) is that faster traces (ones with
higher speed-ups) present greater segments of the trace to
our simulator. We believe that any short-term correlation
between request arrivals is an important characteristic to
preserve. As such, we do not decimate “slower” traces so
that they cover the same overall time period as the faster
ones.

Finally, the execution (processor and network usage) times
for each of the received requests have been derived from a
heavy tailed distribution based on empirical profiling done
with an apache process serving static HTML pages.

4 Experimental Results
In order to select the appropriate parameters for each of
the tests at each of the four possible regimes, we first need

to define and determine the available total capacity of the
cluster.

4.1 Cluster Capacity
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Figure 2: Replaying the input traces at different speedups using
the ‘load-balancer case determines the cluster capacity for our
experiment at 218 req/sec.

We define the maximum cluster performance as the to-
tal maximum throughput that the cluster is able to achieve
when its resource utilization reaches 99% under a round-
robin load-balancer configuration. To such capacity we use
the load-balancer configuration and run several experiments
using the same input traces at different speedups (Figure 2).
The load-balancer case is designed to maintain all nodes busy
given that there’s enough input load. We identified the over-
load point at 218 reqs/sec where the bottleneck resource
utilization (network) reaches 99.05%. To ensure that the
presented results in this section fall within the underload or
overload cases we have used input loads (trace speedups)
that are far below or far above the cluster capacity break-
point.



4.2 Resource Utilization

The first of the experiments we perform is designed to show
the efficiency of Qflow in terms of resource utilization. Fig-
ure 3 plots the levels of resource utilization achieved for
Qflow, physical partitioning and load-balancer at each of
the 4 possible regimes. As expected, Qflow can successfully
fulfill all the incoming requests in the cases where the clus-
ter is below capacity (cases A and B). Physical partitioning
is not able to serve all incoming requests in the unbalanced
case B, given that one of the partition is fully saturated
while the other have idle cycles. In the cases where the
cluster is in overload (experiments C and D), Qflow can
reach the maximum cluster capacity. Physical partition-
ing, again, cannot reach full capacity unless all partitions
are always maintained fully occupied, regardless of a single
partition being under extreme overload. The burstiness the
used traces aggravates this problem, which causes physical
partitioning to waste some valuable cycles (case D) when an
entity goes below its capacity for very short periods of time
even though in the average the input level is above its re-
served partition. Qflow handles such common situations in a
much more graceful manner given its immediate adaptation
to highly dynamic changes.
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The results presented confirm our expectations of Qflow

achieving similar resource utilization in the balanced cases

while being significantly better in the unbalanced cases.

4.3 Service Isolation

The other significant advantage of Qflow is its ability to
provide the same level of isolation as physical partitioning
despite having different entities sharing the same nodes with
a time-shared operating system. Figure 5 shows the service
proportions delivered by the cluster under the same set of
cases. The shown proportions are normalized to the maxi-
mum cluster capacity. Input traffic is also normalized to the
input rate at which the cluster reaches maximum capacity
(i.e., the sufficient input traffic needed to drive the cluster
to its capacity).

In the cases where the cluster does not reach its capacity
(A and B), the output proportions should be equivalent to
the input traffic given that all the incoming requests can be
served without being dropped. As expected, Qflow always
exhibits such behavior. However, in the case of physical
partitioning, such output throughput is always limited by
the size of each individual partition. This causes LATimes
partition to reach only 18% out of the incoming 50% of the
traffic in case B. It is worth noting that the minimum guar-
antees as shown in the graphs, can only be honored if there
is enough input traffic demand to generate that much ser-
vice. For example, in cases A and B, all incoming traffic for
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Figure 5: Service isolation results.

CNN was serviced although its minimum guarantee would
have allowed to serve more, if more traffic had been received.

The benefits of service isolation become apparent when
the cluster is running on overload (cases C and D). In these
cases, the output levels should correspond to the defined
proportions for each entity instead to the levels of received
traffic. Both Qflow and physical partitioning are capable of
honoring such guarantees unlike "load-balancer’ which still
exhibits its proportionality to the input traffic. Further-
more, as it can be seen in case C, Qflow is again able to
steal some unused cycles from CNN to serve the much over-
loaded LATimes clients. In case D, the guarantees for the
ONN partner are not 100% fulfilled using either technique
despite there is ’apparently’ enough incoming traffic. The
reason for this has to do again with the burstiness of the
traces. That is, since the input traffic is not much higher
than its guarantee, a sudden peak of traffic can cause the
system to drop requests momentarily only to realize a sec-
ond later that the entity is now idle and those could have
been served if held a little longer. The queuing mechanisms
of Qflow and the application dropping in physical partition-
ing exhibit a similar behavior in this situation. However,
Qflow is able to at least get a better overall performance
again since it can give these (unfortunately waisted CNN
cycles) to the other entities (mostly LATimes in this case).

In short, the graphs conclude that Qflow is not only
able to deliver the minimum throughput guarantees but it
also shows that they are often surpassed in the cases where
there’s room for resource reassignment.

4.4 Service Yield

There are metrics other than service isolation by which we
can measure the quality of the service a cluster is providing.
For example, not all of the requests serviced by a cluster have
the same importance. The “value” of a completed request
may depend on both the entity it belongs to and the time in
which was completed. Yield functions have been introduced
as a way to express such value relationships [10]. Such rela-
tionships are commonly defined based on revenue values or
premiums payed. They are unitless and their values are only



significant for comparison or analytical purposes. Examples
of yield definitions range from constant functions (e.g., a
completed request gets a value of 10 regardless of how long
it took), to value-decaying functions for each different entity.

In the next section we will show that without deploying
any intelligent dropping policy in the Qflow engine other
than throwing away requests due to space constraints, we
can still guarantee comparable or better service yield than
physical partitioning. We expect the advantages to be much
more significant when appropriate dropping policies are also
implemented.

To calculate the total yield delivered by the cluster we
need not only to account for the value of each serviced re-
quest but we also need to have into consideration the amount
of requests that have arrived but not been served (lost busi-
ness). We can factor in such unserved requests by including
drops at 0 yield value:

N
Yieldiotar = Z Yield(req;)/(N + drops)

i=1

In our experiments, the value of a request completed is
defined by a constant yield function and it is dependent on
the entity it belongs to. The chosen constant values are 70,
15 and 15 for the CNN, NYTimes and LATimes such that
it coincides with their proportion values.

4.4.1 Service Yield Results

As Figure 4 shows, for this experiment, Qflow always gets
better service yield than physical partitioning in all the
tested regimes.

In the cases where the cluster is underloaded (cases A
and B), all the incoming requests can potentially be ser-
viced without being dropped. This is the case for Qflow
and load-balancer which achieve the same overall rate given
that isolation is not a factor. However, physical partitioning
needs to drop some requests given that some partitions can
be momentarily full due to a sudden burst (Case A) or sim-
ply too much load (Case B). These have a detrimental effect
on the yield achieved by the physical partitioning technique.

In the overloaded cases, service isolation becomes more
important, given that servicing requests of more value will
result in a higher yield value. In these cases both Qflow
and physical partitioning clearly outperform load-balancer
since they give preference to higher-value requests (while
still honoring the guaranteed throughputs for each of the
entities).

5 Conclusions

In this paper we have presented Qflow as an attractive alter-
native solution to the current techniques of physical parti-
tioning and over-provisioning and showed that is suitable for
the rapidly changing and ill-behaved traffic patterns of In-
ternet services. We have also shown that for cluster systems
Qflow is able to provide the same levels of service isolation as
physical partitioning while achieving a much better resource
efficiency.

The table below summarizes the observed performance of
Qflow versus Physical partitioning for each of the described
regimes. Note that this is precisely what one would expect

since Qflow inherits both the QoS benefits of physical par-
titioning as well as the high efficiency of a round-robin load
balancer.

underload overload

imbalance | Case B: Qflow>PPart | Case C: Qflow>PPart

balance Case A: Qflowx~PPart | Case D: Qflow~PPart

Another of the advantages of Qflow is its ability to be
deployed transparently in any of the existing cluster archi-
tectures giving such systems the ability to isolate misbehav-
iors and to control how the service is delivered in a flexible
manner. We believe such offered compatibility and trans-
parency to be of great value given the existing investment
in current cluster systems that have no service quality mech-
anisms. Qflow can also be used to protect from DoS attacks
and unexpected overload situations due to ‘too’ successful
marketing campaigns or ‘news-of-the-day’ effects.

Finally we have also shown that Qflow achieves a bet-
ter service yield than physical partitioning. In the future,
we plan to study smarter dropping techniques that take re-
quest service times and more sophisticated yield functions
into consideration. The capability of including request ser-
vicing times in addition to service isolation guarantees will
give Qflow more expressivity power, allowing more compre-
hensive policies to be enforced.
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