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Abstract

In recent years, we have seen a dramatic increase in
the use of data-centric distributed systems such as global
grid infrastructures, sensor networks, network monitoring,
and various publish-subscribe systems. The realization of
this potential requires adequate support from middleware
that could be used to deploy and support such systems.
In this regard, we propose an integrated distributed index-
ing architecture that supports scalable handling of intense
dynamic information flows. The architecture is geared to-
wards providing timely responses to queries of different
types while minimizing the use of network and computa-
tional resources. The underlying communication framework
ensures scalability and load balancing of communication as
well as adaptivity in presence of dynamic changes. We elab-
orate on database and content-based routing methodologies
used in the integrated solution as well as non-trivial inter-
action between them, and thereby provide a valuable feed-
back to the designers of these techniques. We demonstrate
the effectiveness of our architecture with performance re-
sults that we obtained using our prototype implementation
on top of the Chord system simulator.

1. Introduction

Data stream systems such as sensornets, network monitor-
ing systems, and security sensors in military applications
consist of a multitude of streams at different locations. The
core of such system architectures is formed by data centers,
which coordinate their data handling for providing collab-
orative data mining and fusion, and for responding to var-
ious types of user queries. Typically, data centers can be
dispersed over significant distances and communication be-
tween them is expensive.

Continuous queries that run indefinitely, unless a lifetime
has been specified, fit naturally into the mold of data stream
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applications. Monitoring a set of conditions or events to oc-
cur, detecting a certain trend in the underlying raw sensor
data, or in general discovering relations between various
components of a large distributed real time system are of
profound importance in most real world applications. We
consider two types of queries in this paper: (1) Inner prod-
uct queries are important for statistics computation and con-
dition specification. An example query is “Which links or
routers in a network monitoring system have been experi-
encing significant fluctuations in the packet handling rate
over the last 5 minutes?”. (2) Similarity queries are impor-
tant for trend analysis and pattern recognition. An example
query is “Which temperature sensors in a weather observa-
tory exhibit some temperature behavior pattern?”.

Centralized solutions with a single dedicated data cen-
ter collecting information about all streams and answering
all queries are impractical for current and future data stream
systems: such server and the network in its vicinity would
have to handle dozens of thousand of messages every sec-
ond. While such loads could be tolerated by performance-
oriented cluster services, it would render a typical low-
resource data stream system non-scalable. Furthermore, the
dedicated data center becomes a single point of failure.

Emerging content-based routing technologies such as
CAN [19], Chord [24], Pastry [21], and Tapestry [26] that
are introduced as general solutions for Internet-based peer-
to-peer applications, bear the potential to lay ground for
the underlying communication stratum in distributed data
stream systems as they provide the means to uniformly dis-
tribute the load of processing stream data and queries as
well as the burden of communication due to data propaga-
tion across all nodes and links in the system. Furthermore,
these technologies aim at adaptive accommodation of dy-
namic changes, which facilitates a seamless addition of new
data streams and data centers to the system as well as han-
dling of various possible failures, e.g., data center crashes.

We exploit the scalability and load balancing of com-
munication as well as adaptivity in presence of dynamic
changes provided by content-based routing schemes, and



propose an adaptive and scalable middleware for data
stream processing in a distributed environment. Our so-
lution relies on the standard distributed hash table inter-
face, which makes it more general and portable since it can
be used on top of virtually any existing content-based rout-
ing implementation tailored to a specific data stream en-
vironment. The proposed architecture handles the most
popular types of queries in complex data stream appli-
cations, i.e., similarity queries and inner product queries,
while minimizing the amount of network and computa-
tional resources consumed by data centers and network
links.

In the rest of the paper, we will elaborate on both
database and content-based routing methodologies used in
the integrated solution as well as non-trivial interaction be-
tween them. Furthermore, we outline possible extensions
to the existing content-based routing schemes in Sec-
tion 4. Our previous work [7] outlines the general vision of
this architecture. In this paper, however, we describe the de-
tails of our prototype that we built on top of the open
source Chord simulator [22]. In Section 5, we present per-
formance results with varying number of nodes on different
scalability characteristics, such as the system load, ef-
fectiveness, and responsiveness. The results we obtain
confirm our claims, and allow us to identify potential bot-
tlenecks under non-favorable conditions. These bottlenecks
can be overcome using several extensions to our middle-
ware, which are discussed in Section 6.

2. Related Work

2.1. Data stream management systems
Design and implementation issues for building Data Stream
Management Systems [2] for sensor networks [11, 13, 16],
Internet databases [9], and telecommunications net-
works [10] have been explored in the database community.
A significant amount of previous work addresses query pro-
cessing over dynamic information sources [3, 17]. How-
ever, to the best of our knowledge, none of these works
consider similarity queries over distributed data streams.

Several approaches were proposed in the past towards
solving the problem of mining multiple data streams in cen-
tralized settings in which all streams and client queries ar-
rive at a single location [5, 6, 27]. While developing im-
portant techniques aimed at conserving local computational
resources, these solutions did not take the distributed na-
ture of data stream systems into account. In this paper, we
fill this gap by proposing an architecture that handles com-
plex user queries over distributed and dynamic information
sources.

2.2. Content-based routing paradigm
Various content-based routing approaches have been de-
signed for different types of networks: GHT [20] and

NanoPeers [25] were introduced specifically for sensornets
while CAN [19], Chord [24], Pastry [21] and Tapestry [26]
were introduced as general solutions for Internet-based
peer-to-peer applications. However, the common idea be-
hind most schemes is to map both messages and data cen-
ters to the same universe of integer keys. Each key is cov-
ered by some data center (e.g., the one which maps to
the closest key value.) A message containing applica-
tion data is sent not to a specific data center but rather
to the key to which the summary maps. The system au-
tomatically routes the message to the data center, which
covers the key in the message. Such key-based routing al-
lows the system to quickly adapt to dynamic changes, such
as a failure or addition of individual data centers to the sys-
tem.

Furthermore, virtually all content-based routing schemes
provide the same interface for the applications, which con-
sists of the following basic primitives: a) send operation to
send a message to a destination determined by the given key,
b) join and leave operations for a node to join or leave
the system, and c) deliver operation that invokes an ap-
plication upcall upon message delivery. This interface is
used to implement standard structured overlay applications,
such as the put/get DHT functionality, peer-to-peer storage
systems, or publish-subscribe. The solution we propose re-
lies on this interface built on top of Chord routing proto-
col. However, our solution can use virtually any content-
based routing protocol mentioned above. In Section 2.2.1,
we present the key features of the Chord protocol. The in-
terested reader can refer to [24] for an in-depth analysis.

2.2.1. The Chord protocol. The Chord protocol specifies
how to find the locations of the keys in a dynamic system
where new nodes join and some existing nodes leave. A
Chord node maintains information about O(log N) other
nodes in an N -node network. A consistent hash function,
e.g., SHA-1 [1], is used to assign an m-bit identifier to each
node and key. These identifiers are ordered on an identifier
circle (Chord ring) modulo 2m. We will use the term “key”
to refer to both the original key and its image under the hash
function, as the meaning will be clear from context. Key k
is assigned to the first node called the successor node of key
k, whose identifier is equal to or follows k in the ring. Fig-
ure 1(a) shows a Chord ring with m = 5. Keys with iden-
tifiers 13, 17 and 26 are assigned to nodes with identifiers
14, 20 and 1.

For efficient lookup, Chord maintains a table called fin-
ger table. The ith entry in the table at node n is the succes-
sor node s of the identifier (n+2i−1) modulo 2m. The node
s is called the ith finger of node n. Each entry also contains
the IP address and the port number of the relevant node. Fig-
ure 1(a) shows an example finger table for node 8. For ex-
ample, the 4th entry is N20 which is the successor node of
identifier (8 + 24−1) mod 25 = 16.
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Figure 1. Chord: a content-based routing protocol for P2P networks

Consider the Chord ring in Figure 1(b), and suppose that
node 8 wants to find the successor of key 25. Node 8 finds
the node that most immediately precedes key 25, which is
node 20. The query is forwarded to node 20. This node in
turn finds the closest preceding node (N23) in its own table
for key 25, and forwards the query to this node. Node 23
finds that key 25 falls within itself and its immediate suc-
cessor, node 1. Therefore, node 1 is returned as the location
of key 25.

3. Data, Query and Computation Models

In this section, we present the preliminaries of our
data stream management application for sensor net-
works in terms of data, query and computation models
used.

3.1. Stream data model
Sensing nodes are basic components in sensor networks.
Each sensor integrated in a sensing node is a separate data
source and monitors the physical environment by sampling
physical signals. In other words, each sensor generates a
discrete time series, an ordered sequence of data points
〈. . . , xi, . . .〉 such that the value of each data point xi lies in
a bounded range, [Rmin, Rmax]. For all practical purposes,
we will be interested in only those values of each stream
that falls into a given time frame of size N . This model cor-
responds to the “sliding-window” model with window pa-
rameter = N .

3.2. Stream query models

3.2.1. Inner product queries. An inner product query is
a quadruple (Sid, I, W, T ), where Sid denotes the identi-
fier for the stream in the system, I denotes the index vec-
tor (the data items of interest), W denotes the weight vector

(the individual weights corresponding to each data item),
and T denotes the lifespan of the query [5]. For exam-
ple, (0, [0, 1, 2, 3], [8, 4, 2, 1],∞) is an inner product query,
which computes the weighted average of data items at in-
dices 0, . . . , 3 of the stream with id = 0 indefinitely.

3.2.2. Similarity queries. A similarity query is a triplet
(Q, r, T ), where Q is the query sequence (a pattern or a
trend), r is the threshold value (similarity score), and T is
the lifespan of the query. All sequences in the given set of
sensor streams that are within Euclidean distance r to the
query sequence Q are output during T time units. We es-
tablish the notion of similarity between sequences as fol-
lows: given two sequences x and y, x is considered to be r-

similar to y if L2(x̂, ŷ) =
√

∑N−1

i=0
(x̂i − ŷi)2 ≤ r where

L2 denotes the Euclidean distance, and x̂ denotes the unit-
normalized sequence for x.

3.3. Stream computation model
System devices that are in use in today’s data stream sys-
tems such as battery powered sensors in an embedded sen-
sor network, and routers in a telecommunications network
have limited resources. Therefore, the state information
maintained for a stream of data has to be small in space,
and has to be updated fast with each incoming data item.
This is essential for normal functioning of the whole sys-
tem. We use Discrete Fourier Transform (DFT) to capture
the salient features of the underlying data stream on the fly.
The N-point DFT of a signal ~x = [xt], t = 0, . . . , N − 1

is defined to be a sequence ~X of N complex numbers Xf

such that

Xf =
1√
N

N−1
∑

t=0

xte
−j2πft/N f = 0, . . . , N − 1 (1)



where j =
√
−1. The inverse Fourier transform of ~X is

given by

xt =
1√
N

N−1
∑

f=0

Xfej2πft/N t = 0, . . . , N − 1 (2)

DFT is an orthogonal transformation; hence, it preserves the
energy of the signal:

∑N−1

t=0
x2

t =
∑N−1

f=0
X2

f .
If we compute the coefficients from scratch with each

new data arrival, the per-item processing time can be pro-
hibitive for large N . However, due to the updateability of
DFT [12], each coefficient X ′

f , f = 0, . . . , N − 1, for the
signal ~x = [xt], t = 1, . . . , N can be computed in con-
stant time using the previously computed coefficients Xf

and stream values x0 and xN as follows:

X ′

f = e
j2πf

N (Xf +
xN − x0√

N
) f = 0, . . . , N − 1 (3)

For most real time series, the first k (k << N ) DFT coeffi-
cients retain most of the energy of the signal. Therefore, we
can safely disregard all but the very first few DFT coeffi-
cients, effectively reducing the dimensionality of the space
to work with. The overall approach requires O(k) in time to
retain the salient features (e.g., the overall trend) of the orig-
inal time series. We call this state information maintained
“summary” or “synopsis” in the rest of the paper.

4. Proposed Solution

4.1. Distributed indexing approaches
The main design goal of a distributed indexing scheme is
to provide fast and efficient stream data mining and timely
response to queries while minimizing the amount of net-
work and computational resources consumed by data cen-
ters and network links. It is imperative for such a scheme
to uniformly distribute the load of processing stream data
and queries as well as the burden of communication due
to data propagation across all nodes and links in the sys-
tem. Furthermore, the system must be able to adaptively ac-
commodate dynamic changes: data centers and links may
fail and new data centers and streams may be added with-
out the need to temporarily block the normal system opera-
tion.

The naive approach to this problem would be to store all
data for a particular stream at the nearest data center. In this
solution, all queries to this stream would need to be sent
to this data center. While this approach is adequate for in-
ner product queries that are interested in individual values
of a specific stream, it does not provide a viable solution for
similarity queries, which will require communication with
every data center in the system with the purpose of collect-
ing information: Thus, data centers have to preprocess data
streams and match them against each other or against a pat-
tern (flooding the query to the entire network for comput-

ing an answer) in order to be able to answer such queries
in a timely manner. If such preprocessing is done by a sin-
gle data center, this data center will immediately become
a bottleneck in the system: in addition to being overloaded
with the burden of queries and data processing thereby lim-
iting the system scalability, a failure of this single node will
render the whole system completely non-functional for the
duration of the recovery operation. We refer the interested
reader to [14] for a detailed discussion of fault-tolerance is-
sues in various schemes.
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Figure 2. Content-based routing of stream
summaries

However, if each stream summary is stored locally, and
also routed to another data center based on its content, we
can avoid flooding the similarity query to the entire net-
work. We can identify the relevant nodes that contain sim-
ilar content to the query by a scalable content-lookup that
will be explained in Section 4.2. The overall approach be-
haves as a distributed index structure in order to prune the
whole search space (the entire network) to a small candi-
date set (sub-net), thereby reducing the message communi-
cation considerably.

4.2. Mapping stream summaries to nodes
In the heart of our approach lies the ability to route mes-
sages containing stream summaries based on the summary
content. A summary computed as described in Section 3.3
over a normalized stream of data is a vector X ∈ <k in a k-
dimensional unit feature space. Each newly computed fea-
ture vector X is routed to a data center, which is the succes-
sor node of a 2m-bit identifier i determined by hashing X
to a valid identifier on the Chord ring. For this purpose, we
provide a mapping function h : <k → {0, . . . , 2m-1} that
takes a feature vector X ∈ <k and returns a valid Chord
identifier i ∈ {0, . . . , 2m-1}. We use the real value com-



ponent of X0 (or of X1 if the streams are z-normalized
to have mean µx = X0 = 0) for key computation. If we
know the probability distribution function f(X0) of X0 a
priori, we can compute intervals [ai, bi] to be assigned to
each one of a total of M nodes in the system such that
∫ bi

ai
f(X0)dX0 = 1/M . This approach results in uniform

load balancing. In this paper, we assume that the distribu-
tion is uniform, and confirm the validity of this assumption
in Section 5.

Since all streams are projected on to the unit feature
space, we have

∑k−1

i=0
X2

i ≤ ∑N−1

i=0
X2

i = 1, which im-
plies −1 ≤ Xi ≤ 1 for i = 0, . . . , k − 1. We note that a
tighter bound of −0.7 ≤ Xi ≤ 0.7 holds if each stream x
is z-normalized to have mean µx = 0 and standard devia-
tion σx = 1 [27]. To compute the identifiers, we scale the
interval [−1, 1] to [0, 2m−1] as follows:

i = b(X0 + 1) ∗ 2m−1c mod 2m (4)

According to Equation 4, X0 = −1, X
′

0 = 0, and X
′′

0 =
1 maps to i = 0, i′ = 2m−1 and i′′ = 0 respectively. For
example, the feature vector X = [0.40 0.09] in <2 maps to
22 on the Chord ring in Figure 1(a), which can be verified
easily by b(0.4 + 1) ∗ 16c mod 32 = 22.

Figure 2 gives a simplistic overview of the system in op-
eration. The feature vector X = [0.40 0.09] computed at
node 8 (N8) over the data stream produced by sensor 8
hashes to key 22 (K22) as indicated by the dashed-line in
Figure 2. Node 8 checks its finger table, and finds that node
20 is the closest preceding node to K22. Therefore, it routes
X to node 20. Node 20 finds that its immediate successor,
node 23, is the successor node of K22. The feature vector
is stored at node 23 at the end of this operation. The feature
vector Y computed at node 1 has its 0th coefficient (Y0) nu-
merically close to X0. Therefore it either maps to node 23
or to a neighbor of this node. In Figure 2, it hashes to node
23.

Observe that this summary-based routing is used both
for stream updates and queries, which can be perceived as
“put” and “get” operations in the common DHT functional-
ity.

4.3. Extending content-based routing
As described in section 2.2, our solution is based on the
standard {join,leave,send,deliver} interface of
content-based routing schemes. However, in many cases,
our schemes involve sending messages to a range of keys
rather than to a single key. In other words, all nodes that
cover the given key range should receive the message. For
example, a message sent to range [K5, K13] in Figure 2
need to be delivered to N8, N11, and N14.

Unfortunately, none of the popular content-based rout-
ing architectures provides native support for multicasting
a message to a range of keys (e.g., the Internet Indirec-

tion infrastructure [23] aims at facilitating generic one-to-
many communication using multicast groups in the Internet
as opposed to the “lightweight” application-level multicast
that our application requires). Therefore, we need to pro-
vide this functionality in our solution by using the fact that
most schemes including Chord allow a node to send a mes-
sage to its successor. We exploit this fact to implement mul-
ticast to a range of keys in the following way: we send the
message to the lowest key in the range. The node that re-
ceives such a message, both delivers it locally and forwards
it to the successor. The message is forwarded further un-
til the entire key range is covered.

While this implementation is efficient in terms of the
number of messages being sent, it induces long delays in
propagating the message because the propagation is com-
pletely sequential. If the content-based routing system sup-
ports sending a message to the predecessor of a node, we
can send the message to the middle node in the range and
this node could forward the message to both its successor
and predecessor. While the difference in the propagation
method is insignificant for small ranges, it starts playing im-
portant role for wide ranges and systems with a large num-
ber of nodes as we show in Section 5. Additionally, efficient
native support of multicast to a range of keys can substan-
tially contribute to improving the scalability of our system.

4.4. Handling inner product queries

For handling inner product queries, we exploit the underly-
ing content-based routing scheme for implementing a loca-
tion service, which is the standard way of how it is used
in many other applications. To this end, we use a map-
ping function h2 from the universe of stream identifiers to
the universe of keys. Note that we do not use stream fea-
tures for mapping, since the stream identifier will be enough
to locate the source. When a stream with an identifier Sid

is registered in the system, its stream source n “puts” the
〈Sid , n〉 pair at the node determined by h2(Sid ). When an
inner product query (Sid , I, W, T ) is posed at node n2, n2

first “gets” the key of the stream source n by sending a mes-
sage to h2(Sid ) and then sends the query to n. In addition,
n2 remembers the mapping between Sid and n so that next
time it does not need to retrieve it.

When node n receives the query, it performs an in-
verse transformation on XSid (the feature computed over
the stream Sid) to reconstruct an approximate signal ~x as
follows

xt ≈
1√
N

k−1
∑

f=0

XSid

f ej2πft/N t = 0, . . . , N − 1 (5)

Let l denote the length of the vectors I and W . Using the ap-
proximate stream values xt, we can compute the weighted
inner product as

∑l
i=0

xIi
Wi.
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4.5. Handling similarity queries
Given a similarity query (Q, r, T ) posed at node n, first the
feature vector XQ is extracted. An arbitrary feature vector
X at a node is considered to be a candidate for similarity
with Q if

XQ
0 − r ≤ X0 ≤ XQ

0 + r (6)

Therefore, the query is sent to the key range of [h(XQ
0 −

r), h(XQ
0 + r)], as described in Section 4.3. Figure 3(a)

shows how a query Q posed at node 1 with the feature
vector XQ = [−0.08 0.12] and with the threshold (ra-
dius) r = 0.29 is routed to the relevant nodes. In this
case, the high boundary XQ

0 + r with numerical value -
0.08+0.29=0.21, hashes to key 19, and the low boundary
XQ

0 − r with numerical value -0.08-0.29=-0.37, hashes to
key 10. Therefore, the query is replicated at nodes 11, 14
and 20 as shown pictorially in Figure 3(a).

4.6. Propagating responses to the queries
In response to an inner-product query, the node that receives
the query sends the reply to the requesting node. Similar-
ity queries cause all nodes in the range to send the detected
similarities to the middle node periodically, and the mid-
dle node in turn regularly sends response messages to the
client. In the example depicted in Figure 3(a), nodes 11 and
20 periodically route the local candidates found to node 14,
which in turn aggregates the results and propagates them to
node 1, the querying site, during the lifespan T of the query.

4.7. Reducing the communication overhead
In our proposed approach, stream summaries are sent to a
data center that may be located far away from the stream it-

self. If every new value generated by the stream caused up-
dated summary information to be sent to a remote data cen-
ter, this would incur high bandwidth consumption and po-
tentially long lags in query responses. We now consider how
to minimize this overhead.

The consecutive feature vectors computed on the same
stream exhibit strong locality solely due to the feature ex-
traction scheme used. For example, if a feature vector is
computed at time t on a stream segment xt, . . . , xt+N−1,
the next feature vector will be computed on the stream
segment xt+1, . . . , xt+N , which overlaps with the previ-
ous stream segment in N − 1 entries. Therefore, there is
a strong temporal correlation between the feature vectors
computed at successive time units. We justify this claim on
the summaries computed on a given trace from Host Load
dataset [15], collected in late August 1997 at Carnegie Mel-
lon University (CMU) on a group of machines, as shown
in Figure 3(b). We can exploit this correlation in order
to reduce the communication overhead by sending batch-
updates to remote data centers: we group every c of the fea-
ture vectors into a set called Minimum Bounding Rectangle
(MBR) B, and route this MBR instead of propagating indi-
vidual feature vectors.

With this optimization, the routing of features needs to
be modified to reflect this change. An MBR B in <k is spec-
ified by two points X lo and Xhi in <k such that for each
feature vector X that B contains, we have

X lo
i ≤ Xi ≤ Xhi

i for i = 0, . . . , k − 1 (7)

In order not to incur any false dismissals during similar-
ity query execution, each MBR B has to be replicated at all
nodes that is a successor of a key in [h(X lo

0 ), h(Xhi
0 )]. Fig-
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ure 4.7 shows an example MBR B with X lo = [0.21 0.09]
and Xhi = [0.40 0.12] coordinates. As one can verify, the
low boundary, X lo

0 , hashes to K19, and the high boundary,
Xhi

0 , hashes to K22. Therefore, B is replicated at nodes
20 and 23, which are the only successor nodes for keys in
[19, 22], using the mechanism described in Section 4.3.

5. Performance Evaluation

We implemented a prototype of our distributed indexing
scheme in a highly portable manner with the purpose of
making it independent of the underlying content-based rout-
ing scheme. In order to obtain a performance testbed, we
linked our implementation with the open source Chord sim-
ulator [22], which replays a given workload by simulating
a) the Chord routing protocol and b) the execution of timed
events on all nodes in the system. In our case, the two main
types of input events are new data items generated by the
streams and new queries posted by the nodes (see the appli-
cation view in Figure 5). The code of our implementation is
online [8].

The middleware we propose for the distributed stream
model provides the following primitives for data stream
application (see Figure 5, the application view layer): one
primitive to post a new stream data value, and several prim-
itives for client queries of different types. We assume that
the infrastructure of data centers provides the necessary ge-
ographical coverage. Every stream value and client query
arrives at the closest data center for this stream or client by
using the means that are external to the proposed middle-
ware while the middleware is responsible for the informa-
tion exchange between data centers with the purpose of ef-
ficient and scalable data handling.

New data values  for
different streams arriving

at data centers

Continuous similarity
queries issued by clients

Continuous inner product queries
issued by clients

one-time
subscribe(pattern)

periodic
push_similarity_info

one-time
update(summary,stream)

one-time
subscribe(inner_product)

periodic
push_inner_product_info

1. Compute the range of
keys based on
h(summary)

2. Route to the data
centers in the range

3. Update the index
structure at the
destination data centers

1. Compute the range
based on h(pattern)

2. Route to the data
centers in the range

3. Add the pattern to
the list of subscriptions
at the centers

4. Add to the list of such
subscriptions

Application View

Interface

Implementation

1. Periodically
check  similarities
with all subscribed
patterns locally

2. Propagate the
information back to
the clients

1. Periodically
compute all products
subscribed locally

2. Propagate the
information back to
the clients

1. Key K := h2(stream id)

2. Resolve source id by
sending a request  to a
data center based on K

Content based routing

3. Route to the data
center based on the
source id

Figure 5. The overview of various processes
that occur in the system in response to
queries of different types

We use synthetic data in our experiments. The synthetic
data streams are generated using the random walk model.
For a stream x, the value at time i, x[i] (0 < i), equals to
R +

∑i
j=1

(uj − 0.5) where R is a constant uniform ran-
dom number in [0, 100], and uj is a set of uniform random
real numbers in [0, 1]. In order to test the scalability of our
system, we run a series of experiments in which the number
of nodes varied from 50 to 500. We can extrapolate the sys-
tem behavior to bigger systems that contain a larger num-
ber of nodes, since the results we obtain clearly indicate the
type of various dependencies in the system. In all our tests
we assume that each node is a source of exactly one stream.
In contrast, every query is issued by a random node. Queries
are generated synthetically by using a uniform distribution.
We use similarity queries with radius 0.1 for most of the ex-
periments.

Here are the main parameters of our workload and run-
time configuration: a stream is simulated as a periodic pro-
cess such that the period for each stream is chosen randomly
in the range of 150–250ms and fixed for this stream. Ev-
ery MBR or query is stored at nodes only for a certain life
span. The life span of an MBR is five seconds while the
life span for a query is chosen randomly from the range of
20–100 seconds. Query arrivals are modelled by the Pois-
son processes with the average rate of two queries per sec-
ond. Responses to client queries and information exchanges
between neighbor nodes are sent periodically with the pe-
riod of two seconds. Since our analysis includes the notion



of time, it is important to mention that the Chord simula-
tor simulates a constant 50ms delay per hop when routing a
message to the destination.

The three main characteristics we measure in our exper-
iments are: (1) the load of messages on a node per unit of
time, (2) the system efficiency, i.e., the number of messages
sent in response to each input event in the system, and (3)
the responsiveness of the system measured in the number of
hops that a message has to traverse.
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Figure 6. Average load of messages on a
node per second

Figure 6 presents the average number of messages that
an individual node sends or receives per second, as a func-
tion of the number of nodes in the system. This number is
further broken down into seven components: a) MBR mes-
sages originated by the node as a stream source, b) addi-
tional messages in case an MBR key range spans multiple
nodes as described in Section 4.7, c) MBR messages by in-
termediate nodes on the route from the stream source to the
destination where the MBR is stored, d) all query messages,
e) response messages from the notifying node to the client,
f) information exchange about detected similarities between
the neighbor nodes, and g) response messages by intermedi-
ate nodes on the route from the notifying node to the client
that posed the query.

As we can see, messages due to MBR and response
propagation contribute the most into the load while query-
related messages constitute just a small fraction of the total
number. This is due to the fact that queries are posed once
and run continuously, and each such query typically results
in many periodic responses being sent to the client. Fur-
thermore, the query rate is independent of the number of
nodes, while each node represents a stream source, thereby
regularly sending new MBR messages. Since response mes-
sages are sent periodically by the node that receives a query,
their total number is linearly proportional to the number of
queries, which is why it is constant in all experiments and

component e) is linearly decreasing. Notification messages
to the neighbors are sent by each node periodically so that
component f) is constant. The same argument explains why
component a), i.e., the number of MBRs sent by a node as
a stream source is not affected by the number of nodes. Our
mechanism of MBR creation generated MBRs with rela-
tively small ranges so that the contribution of component
b) is also negligible. Thus, the only significant component
which is increasing with the number of nodes is c), i.e.,
messages due to overlay routing. However, this component
grows only logarithmically due to the fundamental property
of all content-based routing systems such as Chord. There-
fore, the load caused by this component cannot render the
system non-scalable.
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Figure 7. Comparison of load balancing be-
tween competing techniques.

We confirm the validity of our uniformity assumption
in Section 4.2 with the load distribution for 200 nodes as
shown in Figure 7(a). The distribution is not heavytailed,
which indicates that the load is indeed distributed evenly.
For illustrative comparison, Figure 7(b) shows the distribu-
tion of load for a centralized solution. Note that in practice,



the centralized server will employ a backup scheme in or-
der to avoid being a single point of failure. This will further
increase the load of messages on the server and the network
in its vicinity. This load may reach thousands of messages
per second in a real system. Handling such loads would
require high-end dedicated servers/clusters, networks, and
technologies instead of commodity mid-level hardware.

Next, we measure system efficiency in terms of the num-
ber of messages the system sends in order to handle an in-
put event of each type such as a new MBR, a query, or
a response. Obviously, every event results in at least one
message being sent by the origin node of this event. Fig-
ure 8(a) shows the overhead of messages, i.e., the number
of additional messages that the system sends. For each num-
ber of nodes, we present the number of a) MBR messages
in case an MBR key range spans multiple nodes, b) MBR
messages in transit that are sent by intermediate nodes, c)
query messages in case a query radius spans multiple nodes,
d) query messages in transit, e) messages with information
about detected similarities that are exchanged between the
neighbors, and f) response messages in transit. As we can
see, the system efficiently handles messages of all types ex-
cept for internal query messages. To see why this happens,
observe that as the system grows in the number of nodes,
the nodes are more densely distributed over the universe of
keys. Therefore, the same key range of a query covers more
nodes, all of which have to learn about this query in our im-
plementation as described in Section 4.3. This dependency
is linear with the number of nodes, which is also confirmed
by Figure 8(a).

Figure 8(b) shows the message overhead for a larger
query radius. The most significant difference here is in an
even higher number of query messages because a two times
larger query radius spans twice as many nodes. However,
even this high query message load does not have a signif-
icant overhead on our system, thereby proving its scalabil-
ity.

Another important system characteristic is how respon-
sive the system is and how fast each event is taken into ac-
count. To this end, Figure 9 presents the number of hops
each MBR, query, or response message traverses before
reaching the destination and being processed. This is not
the same as the number of messages induced by each event,
since some of the messages are sent in parallel. There-
fore, Figures 8 and 9 show related but different characteris-
tics. While the system guarantees good responsiveness, the
query messages take the longest time to propagate because
of the linear increase in the number of nodes covered by the
query range.

6. Future Work

Since the unit of communication between nodes are MBRs,
we envision that the size of an MBR directly affects our
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Figure 9. Average number of hops traversed
by a request

system performance. Olston et al. [18] consider an adaptive
technique for caching intervals in distributed settings. We
will adapt their scheme to adjust the low and high bound-
aries of an MBR along each feature dimension.

In order to provide an efficient similarity detection for
queries with varying selectivity, we can design a feature
space partitioning scheme such that data centers are orga-
nized into a hierarchy of clusters, similar to the one used
in [4] for application layer multicast. At the bottom level,
all data centers are divided into small constant size clusters
of neighbor data centers. For each cluster, a leader is cho-
sen to represent the nodes in this cluster. Then, all leaders
of the bottom level clusters are divided into the next level
clusters by their proximity to each other. This process is re-
peated until a single leader is chosen for all nodes at the top-
most level.

When a new summary arrives at some data center that
belongs to the bottom level cluster C, this data center (in
addition to storing the summary locally) forwards it to the
leader of C. The leader of C, in turn, forwards the summary
to its own leader. As a result of this technique, the higher we
go up the hierarchy of cluster leaders, the larger is the fea-
ture space covered.

7. Concluding Remarks

In this paper, we proposed a system solution that addresses
the challenge of providing fast and efficient stream data
mining and timely response to queries while minimizing
the amount of network and computational resources con-
sumed by data centers and network links. The system dis-
tributes the load of processing stream data and queries as
well as the burden of communication due to data propaga-
tion uniformly across all nodes and links in the system.

The underlying communication stratum of our solution
accommodates dynamic changes such as data center fail-
ures, link failures, and/or addition of new data centers as
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Figure 8. Effect of varying query selectivity on message load

well as new streams, without the need to temporarily block
the normal system operation. Since the proposed middle-
ware relies on the standard distributed hashing table inter-
face provided by content-based routing schemes, it can be
used on top of any existing content-based routing imple-
mentation tailored to a specific data stream environment.
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