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Abstract

This paper introduces fast and robust computer vision meth-
ods for hand gesture-based mobile user interfaces. In com-
bination with other algorithms, these methods achieve us-
ability and interactivity even when both the camera and the
object of interest are in motion, such as with mobile and
wearable computing settings. By means of a head-worn
camera a set of applications can be controlled entirely with
gestures of non-instrumented hands.

We describe a set of general gesture-based interaction
techniques and explore their characteristics in terms of task
suitability and the computer vision algorithms required for
their recognition. By doing so, we present an arsenal of
mostly generic interaction methods that can be used to fa-
cilitate input to mobile applications. We developed a pro-
totype application testbed to evaluate our gesture-based in-
terfaces. We chose three basic tasks from an infrastructure
maintenance and repair scenario to illustrate the applica-
bility of our interface techniques.

1. Introduction

Vision-based interfaces (VBI) in stationary installations
have recently achieved a quality level acceptable to con-
sumers for a number of compelling applications. For exam-
ple, Sony’s Eye Toy, an accessory for the PlayStation 2, has
enjoyed unexpected commercial success and topped the UK
game sales charts for months. A USB camera recognizes
the players’ full-body motions and projects the player di-
rectly into the game. Mobile computer vision systems, how-
ever, have not seen the same level of maturity. Their lack of
robustness, speed, and accuracy previously prevented reli-
able interface operation when both the camera and the ob-
ject of interest are moving. We demonstrate in this paper
that hand gesture recognition by means of computer vision
methods is both feasible and advantageous in mobile com-
puting environments.

User input to a mobile or wearable computer is possi-
ble using a number of modalities: Through a device with
a receptive surface (PDA touch-screen, hand-held chord-
ing keyboard, phone keypad), through sensors worn or
attached to the body (data gloves, orientation sensors),

through speech recognition (speaker phone with voice acti-
vation), or through non-contact computer vision (CV) meth-
ods. For every technology there are environmental condi-
tions in which it is favorable to use alternative technologies.
For example, physical input devices can be too bulky or can
have too small interaction surfaces for the task at hand. Data
gloves are inconvenient in hot weather and for fine tool ma-
nipulation tasks. Speech recognition fails in noisy environ-
ments and is not always socially acceptable. Additionally,
their use is limited for people with speech impediments.
Free-hand gesture interfaces undoubtedly have their short-
comings as well, but they should be available as an interac-
tion modality whenever desired. Hands and hand gestures
are in many ways well suited to human-computer interac-
tion (HCI) tasks. Hands are man’s most dextrous physical
tools as pianos and laparoscopy readily demonstrate. Hu-
man motor skills can perform tasks with high precision and
incredible speeds. In the mobile context, where data input is
a challenge and methods that require physical devices are at
a disadvantage, vision-based hand gesture recognition has
the potential to become an important interface modality.

Figure 1: Our mobile user interface in action. All hardware
components aside from the display and camera are in the
backpack.
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In this paper, we take a systematic approach at investi-
gating the capabilities of hand gesture VBIs capable of sup-
porting the mobile user. In section 3, we distinguish differ-
ent types of gestures and their place in the mobile user inter-
face (MUI). We then briefly evaluate the suitability of com-
puter vision methods to the task of hand detection, tracking,
and posture recognition. In conclusion, we describe in sec-
tions 4 and 5 a system that we have built to demonstrate
the feasibility of our approach in serving as the sole inter-
face modality to a set of mobile applications. Our hardware
setup, shown in Figure 1 and detailed in subsection 5.1, con-
sists of a head-worn display with an attached camera as the
only visible and interacting components, while a laptop is
stowed away in a backpack. Overall, our results offer guide-
lines for MUI designers desiring to employ CV for gesture
recognition interfaces. We hope to stimulate increased re-
search and interest in using CV in the mobile systems arena.

2. Related Work
This section covers research in VBIs for mobile computers
and applications. Work solely related to computer vision is-
sues will be selectively addressed in our algorithm descrip-
tion in section 4.

Starner et al. pioneered mobile VBIs for American Sign
Language recognition [32]. A cap-mounted camera found
and tracked skin-colored blobs (regions) in the video and
analyzed their spatial progression over time. Words were
extracted from the fairly coarse trajectories with Hidden
Markov Models (HMM). While their system works with
non-instrumented hands just as ours, our system integrates
multiple modalities (skin color and texture information) at
all stages of processing to overcome the robustness limits
associated with relying on the accuracy of a single-cue im-
age segmentation. They recognized the need for a second
modality and experiment now with accelerometers attached
to the signer’s wrists [2]. Recognizing a set of commu-
nicative gestures (that frequently exhibit distinct spatial tra-
jectories, see Quek [24] for a classification) requires more
semantic post-processing, while manipulative and discrete
gestures as recognized by our methods are more demanding
on the computer vision methods.

In a later project, Krum et al. built a mobile system for
recognizing gestures and speech [18]. It employed special-
ized imaging hardware with active infrared illumination and
provided a small interactive area at sternum height in front
of the wearer’s body. All our vision components are passive,
in particular we do not require power-hungry active light
sources. A related user study [17] found that the relatively
static hand position for extended periods of time caused fa-
tigue and the unwillingness for more extensive hand mo-
tion. Through use of a much larger area for potential in-
teraction and a diverse range of gestures, fatigue and dis-
comfort symptoms were not observed during short-term (15
minutes) informal experiments. Our system also includes a

head-worn display (HMD) that allows for registered manip-
ulation technique (see section 3).

Kurata et al.’s HandMouse [19] is a VBI for mobile users
wearing an HMD and camera just as in our scenario. It dif-
fers in the fact that the hand has to be the visually promi-
nent object in the small field-of-view (FOV) camera im-
age and that it relies solely on the skin color as image cue
modality. The robustness gained with our multi-modal ap-
proach makes it possible for the image of the hand to be
much smaller, to have arbitrarily-colored backgrounds, and
even to take the system outdoors. Going beyond the in-
teraction methods they demonstrated, we characterize addi-
tional techniques and their suitability for mobility and the
outdoors. Our system then shows how this improves MUI
usability and effectiveness.

Dominguez, Keaton et al. [4, 14] implemented a com-
pelling wearable VBI that enabled the user to circle objects
in view with a pointing gesture. Color is the only extracted
image information. Our system uses some of the same in-
teraction concepts (registered manipulation), but provides
increased robustness and mobility.

A few research project have lately come about that use
the ARtoolkit [13] software to obtain the hand’s 6 degree-
of-freedom (DOF) position. For example, Thomas and
Piekarski [33] attached a marker fiducial to the back of the
hand whose position and orientation is obtained from grey-
level image processing. This method’s constraints are lim-
ited permissible rotations and fairly big hand sizes. We
strived for unadorned hands without any markers while
still capturing more than location information. They in-
troduce another device (a Pinch Glove) for hand configu-
ration recognition, our system instead consists entirely of
computer vision methods. As a side note, the Outdoor Tin-
mith Backpack Computer is an extreme example of a high-
fidelity wearable computer, but also of the amount of equip-
ment required to facilitate this functionality. Our system on
the other hand was designed to minimize extraneous hard-
ware requirements and instead make the computer disap-
pear as much as possible. Only the head-worn devices are
exposed, everything else is carried in a small backpack.

Wearable Augmented Reality systems such as [6] are re-
lated in that they are a prime recipient for our interaction
methods, as they lack sufficient interface capabilities and
are thus still limited in their application. We have so far
restricted our work to 2D interaction, but a great benefit
of hand gestures are naturally their inherent 3D capabilities
(see [1] for 3D UI techniques).

Not built for mobility nor for free-hand gestures, but still
vividly demonstrating the realm of capabilities that can be
explored with gestural commands is an interface by Wil-
son and Shafer. The XWand [37] constitutes a very natu-
ral gesture interface with the aid of a hand-held device that
can be pointed at objects, swung, and gestured with in other
ways. Also tangentially related is DyPERS [11] as it gives a
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glimpse at the possibilities that permanently worn display-
camera-combinations offer: Video memories are captured
on demand and then automatically attached to real-world
objects as they are encountered later. Memorizing people’s
names is just one application.

3. Hand Gesture Interaction Tech-
niques

The hand can perform different types of actions. For the
sake of clarity, we briefly classify them by their physical
characteristics. A posture is a static configuration of the
fingers and the hand. Gesture is a more general term as
it can involve dynamic aspects of movement. Other clas-
sifications of hand gestures usually consider their meaning
and interpretation (see for example [15, 22, 24]). Static pos-
tures are view-dependent configurations of the hand that are
recognized immediately, on a per-frame basis. A configu-
ration is described by the joint angles of all hand-related
joints, but a qualitative statement suffices for most occa-
sions. Location-dynamic gestures are static postures com-
bined with a hand-global movement relative to a camera.
Orientation-dynamic gestures involve a static posture that,
over time, is rotated with respect to the observer, resulting
in different views. Ego-dynamic gestures are configuration
changes such as making a fist and then transitioning to a
pointing gesture by extending the index finger. While much
progress is being made to recognize and model these ges-
tures from video (for example [20]), they are currently still
too complex for reliable recognition in unconstrained envi-
ronments.

Our computer vision methods target the first three types,
but are able to deal with the fourth kind as well. For exam-
ple, after detection of a static posture the system tracks the
hand during location-dynamic gestures, continuously esti-
mates the hand rotation, and does not lose track even despite
abrupt configuration changes.

Given this physical characterization, one can distinguish
three main types of gesture interpretation for UI purposes.
Their characteristics and manipulation techniques that they
support are described in the following paragraphs.

Pointer-based manipulation describes gestures and
their interpretation as if the hand or a particular finger acts
as a computer mouse–by movements in an input plane con-
trolling a pointer with a linear transformation on a distinct
manipulation plane. The input plane is fixed relative to the
camera coordinate system, while the (“direct”) manipula-
tion plane is fixed relative to the screen coordinate system.
This type of a gesture is unsuitable to interfaces that must
be operated while in motion. Usually, a separate gesture of
the location-independent kind is used for making a selec-
tion. An example in our application is the button selection.
Instead of requiring an absolute match between the loca-
tion of the hand and the button, only relative motions from

a starting point are considered. This avoids issues of fa-
tigue that stem from too restricted postures. This method
works well for selection from a menu list, as the pointer
movement can be constrained in one dimension, which re-
duces the required precision of the hand movement and thus
likely also the associated fatigue. We found this very con-
venient, especially if the linear transformation involves a
scaling factor that avoids large hand movements, but also
is sufficiently robust to involuntary jitter during general
body motion. A sub-classification can take the orientation-
and ego-dynamics of the hand into account, distinguishing
pointer-based interfaces dependent on hand dynamics dur-
ing the hand-global motion. Examples of VBIs that allow
for pointer-based manipulation can be found in Fukumoto
et al. [7], Hu et al. [9], and Quek and Mysliwiec [25].

Registered manipulation is similar to pointer-based
manipulation, but the input and manipulation plane are co-
incident. That is, the hand or finger virtually touches the
object it is interacting with in a mixed reality world. Due to
the difficulty of good registration in optical see-through dis-
plays, this method will currently work better in video see-
through display methods. Again, it is hard to perform this
kind of manipulation while on the move. This method is es-
pecially suitable to interaction with virtual objects in mixed
reality scenarios and was, for example, employed in des-
ignating an area of the FOV to be captured as a snapshot
within our application. Another reason for using registered
manipulation in our case is that for larger active interaction
regions (such as in the number selector interface) it was dif-
ficult to work around the lack of the “picking up and repo-
sitioning the mouse” action. Previously, the tracked hand
would frequently exit the camera’s FOV, while the pointer
had not reached the desired target yet. In addition to that,
interaction in registered manipulation interfaces allows for
direct reaching for the target without any mouse-to-pointer
translation. In other words, it is probably hard to define a
linear transformation function that relates the input with the
manipulation plane in a more intuitive and effective way
than the identity transformation. Note that during motion,
just like in the previous case, other hand configurations can
be assumed.

Location-independent interaction refers to hand pos-
tures that can be performed anywhere within the camera
FOV where it produces a single event. Performing pre-
defined actions, such as generic task switching, confirma-
tion or rejection gestures, clicking as in our application
are perfect for this mode, as opposed to those that re-
quire interaction with dynamic UI elements. As Hauptman
pointed out [8], pointer-based manipulation should not be
the only mode of interaction. Instead, gestures are prefer-
ably performed with more than one finger and both hands.
Location-independent gestures are thus an important mode
of interaction, especially for people “on the move”.

A selecting gesture (a “mouse click”) is a necessary con-
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cept for many pointer-based and registered interfaces. It
can be implemented with two techniques: Selection by ac-
tion, which involves a distinct gesture or posture that is per-
formed to signal the desire to select. If the same hand is
employed for both pointing and selection, some movement
during the selection action must be expected and should not
interfere with pointing precision. For high precision de-
mands a selection by suspension technique might be more
appropriate, in which the desire to select is conveyed by not
moving the pointer for a threshold period of time. Requir-
ing the user to be idle for a few seconds, or constantly move
her hand to avoid selection, is usually unwise, particularly
in mobile contexts. We therefore only used selection by sus-
pension for the area snapshot task, for which the user will
most likely assume a stationary body position and an addi-
tional gesture definition seemed more complicated. Selec-
tion by action was used for all other selection interactions.

The gesture interface was built with several constraints in
mind. First, there are human factors that limit reach. In ac-
cordance with ref. [16], the interaction range was designed
to be within the users’ comfort zone. The comfort of hand
postures (in the sense of configurations) has not yet been
evaluated. Second, the gestures were selected for being
natural and intuitive to the user. This is best illustrated by
the pointing gesture. However, there is very little research
available to this end and we have to rely on our intuition
to some extent. Third, we picked gestures that were suffi-
ciently distinguishable from background artifacts. That for
example rules out using a fist from dorsal view. Gestures
have to be different enough from one another that posture
classification is feasible in a robust manner. Owing to the
learning-based recognition method, this turned out not to
be a factor. Table 3 summarizes which hand gesture interac-
tion techniques we used for which application functionality,
which will be described in detail in section 5.

manipulation
technique

prototype application’s UI compo-
nent

pointer-
based

voice recorder, image/video capture
menu

registered area image capture, number selection
location-
independent

task switch, work order selection

selection by
action

all button clicks

selection by
suspension

area image capture

Table 1: The different types of gestures and which applica-
tion part implemented this interaction technique.

Hauptman [8] made another important observation: The
importance of immediate feedback for the user’s actions.
We provide immediate feedback about the system state to
the user. After a few experiments we removed low-level

output from the CV methods from the display (such as seg-
mentation or tracking confidence information). Instead, we
found it sufficient to only relay the most important vision-
level information in a timely and direct manner: whether
detection and tracking of the hand was successful. This
is simply indicated after detection by a big red dot on top
of what the system thinks is the hand. All other feedback
comes from application space. For example, a red border
is drawn around buttons that the user hovers over, signaling
that executing a selection gesture will “click” that button.
An iconic hand is drawn as cursor for the pointer-based ma-
nipulation techniques.

Raising the level of feedback and hiding the interface im-
plementation details is a desirable step as it allows the user
to concentrate on the task rather than the means to execute
it.

4. Software Architecture – Computer
Vision

The core of this paper’s contribution – demonstrating fea-
sibility of and choices for mobile VBIs – is based on the
computer vision system. We use a combination of recently
developed methods with novel algorithms to achieve real-
time performance and robustness. A careful orchestration
and automatic parameterization is largely responsible for
the high speed performance while multi-modal cue integra-
tion improves robustness to achieve a low false positive rate.

There are three stages of processing. In the first stage,
the presence of the hand in a particular posture has to be
detected. It is undesirable to have the vision interface in an
always-active state since coincidental gestures may be in-
terpreted as commands. In addition, vision processing can
be made faster and more robust if only one gesture is to be
detected. After gesture-based activation of the vision inter-
face, the second stage is entered. It serves as an initializa-
tion to the third stage and is repeatedly executed if the pos-
ture classification in the third stage succeeded. Together,
the second and third stage track the hand continuously in
the full-size video. Also, at the tacked location key postures
are identified.

This multi-stage approach makes it possible to take ad-
vantage of less general situations at each stage. Thus, faster
processing speed can be achieved by exploiting spatial and
other constraints that limit the dimensionality and/or extent
of the search space. We use this at a number of places in our
algorithms: The generic skin color model is adapted to the
specifics of the observed user (see subsection 4.2), and the
search window for the hand location is predicted by Con-
densation (see subsection 4.3). However, staged systems are
more prone to error propagation and failures at each stage.
To avoid these, every stage makes conservative estimations
and uses multiple image cues (grey-level texture and local
color information) to increase confidence in the results.
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Figure 2: How the computer vision methods are arranged: Only on successful hand detection will the tracking method start
operating. As long as this method has not lost track of the hand, the posture recognition is attempted. If successful, features
and color are re-initialized if the condensation tracker reports low confidence.

The final output of the vision system consists of the loca-
tion and sometimes the posture of the hand, and at some oc-
casions also the location of the second hand. The location,
estimated as a measure of individual features’ locations, is
in 2D image coordinates. The posture is described as a clas-
sification into a set of predefined, recognizable hand config-
urations. The diagram in Figure 2 details the components
of our vision system and their interactions. The following
subsections describe the computer vision methods in more
detail.

4.1. Hand Detection

Most earlier gesture recognition systems place restrictions
on the environment, such as a uniform background [29, 26],
a static background [23], or colored gloves or markers (fidu-
cials) on the hand [5, 33]. Hand detection against arbitrary
background was achieved for example by Triesch and Mals-
burg [34] who are able to distinguish hand poses with 86.2%
accuracy, or with a method by Cui and Weng [3]. Neither
of them however can perform the detection in real time as
is required for UIs.

We customized an object detection method recently pro-
posed by Viola and Jones [36]. Objects are learned during
a training phase with Ada boosting of features that compare
grey-level intensity in rectangular image areas. The deci-
sive advantage of this over other appearance-based methods
is that it can be implemented with “integration templates”, a
method borrowed from database research and better known
as data cubes. During detection, a pre-computation step
produces a 2-dimensional brightness integral. The sum of
pixel values in arbitrary rectangular areas can then be com-
puted in constant time. Training of the approximately 200-
feature classifiers (one classifier for each posture and view)
on 200 test and 200 validation images took about a day on

a 25-node PC cluster running Linux. In contrast, detection
of hands of arbitrary scale (larger than 30x20 pixels) is very
fast and can run with about 10fps on a 640x480 sized video
stream on a high-performance laptop.

There are other accurate methods that compress texture
features into a low dimensional space, for example the prin-
cipal component analysis (PCA) in Eigenfaces [35], or Ga-
bor wavelets in [28]. For every area that is to be classified
they need to inspect every pixel however, which prohibits
their performance to reach the demands of interactive sys-
tems.

The initial hand pose is a top-down view of the flat hand
with the fingers touching each other (see Fig. 4). We chose
this posture/view combination due to its highly identifiable
nature against background noise and therefore its good suc-
cess rate as a fail-safe detection condition. The recognition
is executed in a part of the camera’s FOV that corresponds
to a natural reaching distance in front of the right shoulder.
The original object detection method is very sensitive to-
wards in-plane rotations. We trained one detector each for
multiple slight rotations of the same hand posture (four in-
cremental rotations of 5° each), allowing the initial posture
to be performed at angles convenient to the user. The same
technique was used for the classified postures as well, but
with fewer angles.

Upon detection of a hand area, it is tested for the amount
of skin colored pixels it contains. To this end, we built
a histogram-based statistical model in HSV space from
a large collection of hand-segmented pictures from many
imaging sources, similar to Jones and Rehg’s approach [12].
Color-based methods bank on the fact that the appearance of
skin color varies mostly in intensity while the chrominance
remains fairly consistent [27]. We used a histogram-based
method because they achieve better results in general, user-
independent cases. If a sufficient amount of area pixels are
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classified as skin pixels, the hand detection is considered
successful and control is passed to the tracking initializa-
tion stage.

4.2. Tracking Initialization
The very general statistical model of skin color is then re-
fined by learning the observed hand color on the area de-
tected as a grey-level texture. This color histogram is con-
trasted to a reference area that is assumed to not contain skin
areas, located around the hand area to the left, top and right.
This assumption always held in our experiments due to the
camera FOV and angle. Note that even though other skin-
like colored objects might be in this reference area they are
still to be considered background and the learned color clas-
sifier automatically incorporates this information by mod-
eling the observed foreground/background color distribu-
tion. Figure 3 exemplifies the color segmentation and fea-
ture tracking operation.

Figure 3: This is a screen capture with CV-debugging out-
put turned on. Visible is the partially color-segmented video
frame, illustrating how skin color by itself is not a reliable
modality. Also shown are the KLT features at their current
location.

Next, about twenty KLT features [31] are placed ran-
domly on skin-colored spots in the detected area. KLT
trackers are named after Kanade, Lucas, and Tomasi who
found that a steep brightness gradient along at least two
directions makes for a promising feature candidate to be
tracked over time. In combination with image pyramids (a
series of progressively smaller resolution interpolations of
the original image), a feature’s image area can be matched
efficiently to a similar area in the following video frame
(see [21]).

KLT features do not encode object-level knowledge nor
global information. To achieve consistency among the fea-
tures, to improve tracking across changing backgrounds,
and to better deal with short occlusions, we enforce global

constraints on the features’ locations with the aid of Con-
densation tracking [10]. This is a particle filtering method
that models very well the multi-modal probability distribu-
tions that arise during object tracking due to multi-causal
background noise. The modeled state in our case consists
of the 2-dimensional location of the centroid of the features
and an angular component that describes the rotation of all
features around that centroid. During the initialization step,
this state is set to the current position without rotation, and
sensible (spatial and angular) velocity bounds are set, de-
rived dynamically from the match area size and offline ex-
perimentation.

4.3. Tracking and Recognition
On receiving another input frame, the locations of the fea-
tures are updated and the posture at the tracked hand po-
sition is classified. First, a search area is determined by
the previous tracked location and hand velocity. With help
of the learned foreground/background color model, the pix-
els within this search area are evaluated for their probabil-
ities to be of skin color. Next, the KLT features’ positions
are moved to the location predicted by the Condensation
tracker. From there, they are updated with the traditional
pyramid-based feature matching algorithm. This and the
color probability map constitute the observation or mea-
surement for the Condensation update step: many randomly
generated state samples are confidence-rated based on their
distance to the observation. This distance is additionally
weighted by the summative color probability of the image
patch at the feature location. This method leads to a very
natural integration of feature movement based on grey-level
image texture with texture-less color information. In addi-
tion, it enforces global constraints on the feature locations,
keeping outliers at bay and following the main object of in-
terest instead.

There is one aspect that must be considered. The method
as described would work fine for rigid objects with mostly
invariant appearance. However, this is not the case for
hands, a highly articulate object whose appearance can
change vastly and rapidly. The feature match correlation in
two consecutive frames can potentially be very low at times.
Other features will be moved into a low-match-correlation
area due to the global constraint. To cope with this situa-
tion, our algorithm removes these features from the set and
re-initializes them at positions that have a high skin color
probability and are within a certain range of the centroid.
Beyond that, they are chosen randomly. This technique
is responsible for the system’s ability to not loose track-
ing despite sudden or vast ego-dynamic gestures (posture
changes).

We found edge and shape based methods unsuitable for
detection and tracking in complex environments. Their ro-
bustness is largely determined by the amount of contrast
between the foreground object and the background scene,
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which can not be guaranteed. Also, the frequently asso-
ciated gradient-descent methods that enforce global con-
straints for the individual edges’ locations encounter prob-
lems with the highly articulated hands whose appearance
can trap the algorithms in deep local minima because of
the multitude of strong edges. Also, texture-based features,
which have true spatial extent, contain more information
than line features. Thus, edge-based methods need further
processing to reach the same level of knowledge integration.
This level dependency makes them more susceptible to im-
age noise. We also decided not to go beyond appearance-
based methods to extract hand configuration information,
such as with kinematic 3D hand models, because the avail-
able methods do not exhibit the performance characteristics
(robustness and accuracy) necessary for VBIs due to too
many degrees of freedom and arising singularities during
parameter estimation.

The described combination of feature matching, color
segmentation, and Condensation tracking is by itself a good
object-independent tracker. Over time however, the only
guarantee we get about the tracked object is that it has a
high content of skin color. Nothing prevents the features
from moving onto other skin-colored objects. To counter
this drift, the tracker attempts detection of a set of key pos-
tures at every frame with the detection method described in
subsection 4.1. We have currently only trained it for five
postures (see Fig. 4) and a number of in-plane rotations,
which proved to be sufficient to re-initialize tracking fre-
quently enough during gesture transitions. Once any pos-
ture is recognized, the color model is re-learned from the
area known to be of skin color. Also, all features are located
onto image parts that are known to belong to the hand.

Figure 4: Two examples each of the five hand postures that
are recognized along with in-plane rotations within approx-
imately 30°, and additionally around 90° for the pointing
and the rightmost posture. They are shown in the minimum
resolution required for recognition, 25x25 pixels, some with
a distorted aspect ratio for recognition performance reasons.
Currently we detect and recognize only gestures of the right
hand.

4.4. Performance
The quality and usability of an image-based user interface
is determined by three main aspects of the computer vision

method(s) used: speed, accuracy, and robustness. Speed
concerns the system’s latency and frame rate. A maximum
latency between event occurrence and system response of
45ms has been found to be experienced as “no delay” by
Sheridan and Ferrell [30]. While we have not quite achieved
that end-to-end latency, all methods combined typically re-
quire less than 100ms total processing time per frame (la-
tency from frame capture to render completion time as re-
ported by DirectShow on a high-performance laptop). This
is well below the threshold of 300ms for when interfaces
start to feel sluggish, might provoke oscillations, and cause
the “move and wait” symptom [30]. It certainly was suffi-
cient to comfortably control our prototypical applications.
The system achieved frame rates of 10-15Hz. In compari-
son to other mobile VBIs, our method is significantly more
responsive than the Hand Mouse [19], judging from a video
available from their web site.

The accuracy of the methods—that is, the correlation of
the actual with the recognized hand gestures—determines
largely the degree of user satisfaction. The object detection
and posture recognition methods were trained to have a very
low false positive rate (smaller than 1e-10) and a medium
detection rate between 85% and 95%. In practice, and in
combination with the color cue, we had not one occurrence
of a false detection match and a couple of posture misclas-
sifications per hour. A formal evaluation is in preparation.
The accuracy of the centroid KLT feature’s location (which
we used as the input pointer’s location) with respect to some
fixpoint on the hand can not be guaranteed because of the
entirely object-independent tracking method. This was only
of concern for the registered manipulation tasks, as the other
interaction techniques involve pointer location transforma-
tions or are location independent. The precision of this fea-
ture’s motion was very good, even minute movements of the
hand were tracked and evaluated with ease.

Robustness is the method’s ability to deal with differ-
ent environmental conditions, including different lighting
(fluorescent and incandescent lighting, sunlight), different
users, cluttered backgrounds, occlusions (by other objects
or self-occlusion), and non-trivial motion. Using multi-cue
vision methods, in our case pure grey-level information in
combination with color validation and segmentation, can
overcome some of the problems associated with the uncer-
tainties of unconstrained environments. In particular, our
methods are designed be invariant to the automatic image
quality adjustments of digital cameras, such as white bal-
ance, exposure, and gain control. Three conditions will still
violate our assumptions and might impact recognition and
tracking negatively: An extremely over- or under-exposed
hand appearance does not contain a sufficient amount of
skin-colored pixels for successful detection, based on the
fixed HSV histogram-based segmentation. Second, if the
color changes dramatically in between two consecutive suc-
cessful posture classifications, the tracking degenerates into
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single-cue grey-level KLT tracking. Since the system up-
dates its color model periodically, it is able to cope with
slowly changing lighting conditions, however. Third, shad-
ows cast onto the hand change the appearance dramatically
and can currently not be handled during detection and they
also impact tracking.

None of the system’s functionality explicitly detects or
models hand occlusions. However, brief occlusions of the
tracked hand with foreign objects or the other hand do gen-
erally not cause all KLT features to be lost. Thus, unless
very prominent skin-colored gradients exist on nearby ob-
jects, the Condensation-based global constraint imposed by
the tracker has a good chance of settling the features back
on the hand once the occlusion has passed. Head (and thus
camera-) motion with a motionless hand can currently not
be distinguished from the inverse hand motion. In this case,
feature tracking is in fact more reliable because the whole
scene including foreground and background merely under-
goes an apparent translation, as opposed to non-linear trans-
formations caused by objects moving relative to each other.

The implemented CV methods are largely camera-
independent: The detection and posture recognition clas-
sifiers were trained with images taken with different still
picture cameras, while the system was successfully tested
with three different digital video cameras. In addition, none
of the training images was shot with as short a focal length
lens as our mobile camera has. These facts suggest that the
entire system will run with almost any color camera avail-
able.

5. The Wearable Computer
5.1. Hardware Setup

Figure 5: A user wearing the display and camera. All other
devices are stowed in a conventional backpack and need not
be accessed.

The hardware setup of our system produces output
through a head-worn display (HMD, Sony Glasstron LDI-
A55), atop which we mounted a small digital camera (“Fire-

Fly”, Point Grey Research), see Fig. 5. The camera has a
horizontal FOV of 70° and its pitch for a normal head posi-
tion is adjusted to cover the range from almost straight down
to horizontal. The live video stream is fed into the display
to achieve an optical see-through effect. This also allevi-
ates problems with the HMD’s small 30° FOV because it
make 70° FOV available to the wearer. The resulting spa-
tial compression takes users a few minutes to get used to,
partially because of the scale change of visual feedback, but
no adaptation problems were reported after that time. Use
of this fisheye-style lens reduced the tunnel effect that most
video see-through mixed reality displays exhibit.

The high FOV is important for interface functionality as
well because the hands are visible along with the a more
forward-facing view direction. It allows interaction meth-
ods where the input plane is co-located with the interaction
plane, as opposed to decoupled as with the mouse and com-
puter screen.

A laptop computer, stored along with batteries and a few
adapters in a conventional backpack, receives the video in-
put, processes it as detailed in section 4, adds the output
information from the three applications described in the fol-
lowing subsection, and sends the result to the display as an
NTSC signal. Note that no other input device such as a
Twiddler keyboard or 3D mouse are used, instead, the inter-
face is combined into a single head-worn unit. Other than
more traditional wearable computers, our system only con-
sists of these three parts, laptop, HMD, and camera, making
it a fairly easy to assemble and relatively inexpensive mo-
bile computer.

5.2. User Application
The application we used to test the functionality of our VBI
was custom built for this purpose and designed to demon-
strate the suitability of VBIs for the mobile use. We thus
made certain assumptions about the area and situation of
deployment, which will be described as well. No multi-
modal interface capability was provided as we wanted to
focus on the computer vision aspect, however the addition
of a speech recognition component is likely to be beneficial
for many aspects of usability and flexibility.

We composed a set of applications that supports building
facilities managers in their daily tasks of performing main-
tenance operations and immediate-attention work requests,
for example investigating a water leak or power failure in a
particular room. The wearer of our mobile system can uti-
lize three main applications: an audio recorder, a digital still
and video camera, and a work order and communication
application. These applications run continuously, however
only one of them is in the foreground at any time. The fore-
ground application is selected by performing a task-switch
gesture for a short period of time, which cycles through the
applications and a “blank screen” mode, one by one. The
applications have the capability to display status informa-
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tion and/or alerts even when running in the background,
such as the voice recorder showing an icon while record-
ing sound, and the communication application displaying
alerts for incoming messages. User input, however, is only
possible in the foreground application.

5.2.1 Voice Recorder

Figure 6: The voice recorder interface in the foreground.
Note that the interface snapshots shown in the various fig-
ures were taken in different environments, illustrating the
ability of our system to adjust to varying backgrounds and
lighting conditions. This snapshot was taken while walking.

A small microphone clipped to the shirt allows audi-
tory recordings, activated by gesture commands that start,
pause, resume, and stop a sound recording. It is then given
a unique numerical identifier which is used to attach it to a
work order reply. We currently do not provide the possibil-
ity to review the recordings and play them back because this
is a straight-forward extension that does not demonstrate
additional interface properties. This interface was designed
with the pointer-based manipulation technique and consists
of three buttons. Naturally, they are selected by moving the
hand pointer (in any posture) over the button and perform-
ing the “select” posture. We chose pointer-based manipula-
tion for three reasons. First, it allows us to snap the pointer
to the default button, so that in most cases only the selection
gesture has to be performed. While this behavior might be
disruptive in a desktop environment, it is a lot more con-
venient within the MUI context. The snap functionality
amounts to a dynamically determined, but then constant off-
set between the input- and manipulation planes. Second, we
placed a restriction on the pointer movement to the horizon-
tal dimension, making the pointing task a linear left-right
motion operation. This makes the interaction much easier
than true 2D selection, especially while walking. Third,
hand movements are translated into proportionally larger
pointer movements to allow for big, easily visible buttons

while not demanding equally extensive hand movements.
This scale factor was determined empirically. Whenever the
hand pointer is in the area of a button (hovering above it),
it is shown with a red border surrounding it. This was im-
plemented to give the user a stronger visual sensation for
what would happen if s/he “selected” at the current loca-
tion. While recording sound, the symbol of a running tape
recorder is shown in the upper area of the screen. When
the recording is stopped, the recording’s identifier is promi-
nently displayed for a short time period. Figure 6 shows the
voice recorder interface in the foreground.

5.2.2 Image and Video Capture

The image capture application has three modes of operation
which are selected via buttons similar to the voice recorder
interface, shown when the application is brought into the
foreground and not actively recording. The interaction tech-
nique with the image/video capture menu is very similar
to that of the voice recorder, only that the buttons are ar-
ranged in a vertical fashion and the pointer movement is
constrained to that dimension. The first mode allows a user
to take a single image of the entire visible area. A count-
down timer is overlaid after activating this mode. A picture
is taken and stored at the end of the count-down, along with
an auditory confirmation. All pictures and video recordings
are also given unique identifiers, briefly displayed at the end
of the capture. We found that users usually decide on a view
and settle their motion after around five seconds, so that is
what we chose as the time delay. This mode is the easiest
to use, but does not introduce a new interaction capability
over the voice recorder interface.

Figure 7: This view shows the image and video capture ap-
plication’s main menu.

The second mode enables snapshots of selective areas
within the camera’s FOV, which demands a way to select
multiple points in the image at the same time. (Implemen-
tations of the same functionality that use only one pointer
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are feasible but less convenient to use.) After selecting this
mode, the computer vision methods search for the left hand
as the nearest distinct skin-colored blob to the left of the
(already tracked) right hand. Once found, the rectangular
area enclosed by both hands is highlighted in the display.
Once the positions of both hands stabilized with respect to
the camera, a picture of the selected area is taken and stored.
It is also displayed to the user for a few seconds, along with
its identifier. Figure 8 shows the highlighted area inside the
region selected by the user’s hands.

Figure 8: Taking a picture with the image recorder applica-
tion. The user has selected the area that is to be recorded,
and the image will be captured if the hands have settled for
five seconds.

The third mode of operation of the image capture appli-
cation records a continuous video stream of the camera’s
entire FOV. It is started with five seconds delay after this
mode is selected, again with a count-down timer indicating
the time delay. The only interaction functionality after the
video starts is to stop the recording, which occurs as soon
as the hand is detected within the interaction initiation area
(within the camera’s FOV).

5.2.3 Work Order Scheduler

To complete the functionality set for the test scenario for
the vision-based wearable system, a scheduler was added.
With the aid of this application, the person in the field is en-
abled to retrieve, view, and reply to work requests. Contin-
uous connectivity was not a requirement, rather, the appli-
cation was designed similar to an intermittently connected
mail client that automatically switches from offline to on-
line mode and back, depending on network resource avail-
ability.

As this application was brought into the foreground, up
to three work orders are shown at a time as horizontal bars.
Indicated on them are a title and the status of the order
(open, closed, follow-up). Attachments (pictures, video,

Figure 9: Scrolling through the list of work order sum-
maries. Note that the hand location (big red dot) does
not fall on any of the interaction surfaces. Instead, the
currently pre-selected item is chosen by discrete postures
(“up”/”down” gestures).

sound recordings) are shown as a combination of their iden-
tifiers and type. If there are more work requests than the
screen can hold, the items can be scrolled up and down as
indicated by a special scroll tap area at the top and bottom
of the listed work orders (see fig. 9). Three dedicated, static
hand gestures allow for selection and manipulation of work
requests: One gesture selects the work order above the cur-
rent one, another gesture selects the one below the current
one. Scrolling happens automatically if the top or end of the
visible part of the list was reached. We choose the discrete
posture technique over pointer-based manipulation because
scrolling with pointers is an awkward operation as anybody
who had to scroll while dragging-and-dropping will con-
firm. The third gesture facilitates activation of the currently
selected work order. This brings into the foreground the
work order editor. It displays the entire text of the work
request, which in the presented version consists of unfor-
matted text. Repetition of the gesture used for entering the
editor also signals to change the status of the work request.
A subsequent gesture decides whether an attachment is to
be added or not. Attachments can be selected from the pre-
viously recorded media clips (voice recording, still picture,
or video). The selection process is realized with registered
hand movements. This was decided based upon the fact that
there could be a large set of attachments to choose from
which can be randomly selected. This would make access
in a sequential fashion such as with the work order selec-
tor very inconvenient. The selection gesture picks the cur-
rently highlighted number. The attachment process can be
repeated until all desired attachments are appended to the
work order reply. As the last step, the work order status can
be changed into done or follow-up required. This choice is

10



implemented using the same discrete gestures that the work
order selection is operated with.

Figure 10: The number selector is operated with registered
manipulation. Moving the hand over one of the numbers
and performing a selection gesture picks the respective at-
tachment.

6. Future Work
We have not found a good solution to automatic detection
of tracking loss. Heuristics based on KLT feature loca-
tions provide some clues, but in a few occasions the system
would track some non-hand object. This left the user no
other chance but “catching” the features on the erroneously-
tracked object. We have also not yet implemented a spe-
cific gesture to purposefully end active tracking. Right now
one has to move the hand out of the FOV of the camera so
that the tracking algorithm detects failure and the system
re-initializes.

Depth (the distance from the camera) and world-
referenced 3D information can supply important additional
input parameters, especially for manipulation of virtual 3D
objects. For this to work, the accuracy of the hand loca-
tion has to be improved as well (see subsection 4.4). These
are the main areas that we would like to extend our sys-
tem into. So far, we experimented only with limited two-
handed manipulation, but would like to explore that inter-
action technique more. Recognizing dynamic gestures such
as clapping for interface purposes is also on the horizon of
interesting system extensions.

A formal evaluation of the performance of the CV meth-
ods for gesture detection, tracking, and recognition is in the
making. No multi-modal interface capability is currently
provided because we wanted to focus on the computer vi-
sion aspect for this paper. However, the addition of a speech
recognition component is certainly going to be beneficial
for many aspects of usability and flexibility.

7. Conclusions
We showed different manipulation techniques for hand
gesture-based mobile user interfaces and presented com-
puter vision methods capable of detecting these gestures.
We presented a prototype system that we built to demon-
strate robustness and usability of this vision-based interface
when used as the sole input modality to a wearable com-
puter. Robustness was evidenced with regard to environ-
ment conditions, in particular to indoor and outdoor light-
ing, cluttered backgrounds, concurrent movement of cam-
era and user, user independence, and camera independence.
Good usability results from relatively low interaction laten-
cies and the aforementioned robustness.

The contribution of the presented work is twofold:
Firstly, the system shows the feasibility of vision-based
hand gesture interfaces as the exclusive input modality for
wearables. Secondly, it demonstrates enhanced interac-
tion capabilities through hand gesture recognition, some of
which are difficult to achieve with other modalities. We
conclude that computer vision has reached a stage where it
can effectively replace some physical-device interfaces and
augment others, greatly enhancing the usability experience
of the mobile user.
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