
Model Checking Interactions of Composite Web Services

Xiang Fu, Tevfik Bultan, and Jianwen Su
University of California at Santa Barbara

Abstract. There are two main challenges in the verification of composite web
services: 1) Asynchronous messaging makes most interesting problems undecid-
able, and 2) rich data representation (XML) and data manipulation (e.g. XPath
query) forbids direct application of model checking tools. In this paper, we present
a top-down specification and verification approach to tackle both of these prob-
lems. In our framework, each peer (individual web accessible program) interacts
with other peers via asynchronous messages. We define a conversation among the
peers as the global sequence of messages exchanged by the peers. We propose a
top-down approach where the set of desired conversations of a web service is
specified as a guarded automaton, which we call a conversation protocol. Guards
of the automata are XPath queries that manipulate message contents. We show
that if four realizability conditions are satisfied by a conversation protocol, the
projections of the protocol to each peer are guaranteed to preserve any LTL prop-
erties satisfied by the protocol. We also present the translation from a guarded
conversation protocol to a Promela specification that can be verified by the SPIN
model checker.

1 Introduction

Web services can be described as web accessible software that provide interfaces for ser-
vice description, discovery and interaction [7]. By introducing a framework for decou-
pling service descriptions from their implementations, web services provide a promis-
ing technology for interoperability and integration. There are many challenges in devel-
oping web services: a) Web services implemented using different platforms (e.g. .Net
or J2EE) should be able to interact with each other; b) It should be possible to modify
an existing web service without modifying other services that interact with it; c) Web
services should be able tolerate pauses in availability of other services and slow data
transmission. Web services address these challenges with the following common char-
acteristics: 1) standardized data transmission via XML, 2) loose coupling among inter-
acting web services through standardized interfaces, 3) asynchronous message passing.

In this paper, we address the specification and verification of interaction in com-
posite web services. We model a composite web service as a set of peers interacting
with asynchronous messages in XML format. Due to the distributed nature of web ser-
vices, it is not possible to assume that their interaction will be controlled by a central
coordinating process. In a typical scenario, the interacting peers will be running au-
tonomously, on different servers belonging to different organizations and no single peer
will have control over the global interaction. Such a distributed nature and asynchronous
message passing make it extremely hard to ensure the “correctness” of the interaction

2

merely through the design of each peer individually. The solution we propose is to use
a protocol which specifies the interaction patterns among communicating web services.
We call such protocols conversation protocols.

In our model of a composite web service, each peer has a queue for all of its in-
put messages and may send messages to the input queues of other peers. To model the
global behavior of the composite web service we define a virtual watcher that records
the sequence of messages as they are sent by the peers [4]. We call the message se-
quences observed by the watcher the conversations of the composite web service. A
conversation protocol defines the set of allowed conversations of a composite web ser-
vice [9]. Our contributions in this paper are: 1) We present a language for specification
of guarded conversation protocols on XML messages. We use XPath expressions [16]
for specification of the guards and the assignments of the protocols, and MSL type ex-
pressions [3] for the message type declarations. 2) We present and implement realizabil-
ity tests for guarded conversation protocols. For a conversation protocol which passes
the realizability tests, we automatically synthesize peers that generate only the conver-
sations specified by the conversation protocol. 3) We present a translator that translates
the conversation protocols to Promela (the input language of the SPIN model checker
[10]), and we show that properties of the conversation protocols can be automatically
verified using the SPIN model checker.

Related Work: In [11] verification and composition of web services specified in
a Petri Net model is investigated. In [8] web service compositions are specified using
message sequence charts and modeled using finite state machines. Both models charac-
terize only individual behaviors of the peers in our model, rather than global behavior of
peers which communicate with asynchronous message passing via unbounded queues.
Also, XML data manipulation is not addressed in [11] or [8].

Realizability of Message Sequence Chart (MSC) Graphs [1] is similar to the real-
izability problem discussed in this paper with the following differences: 1) the MSC
Graph model captures both “send” and “receive” events, while we are interested in the
ordering of “send” events only, 2) our results are on protocols with XML messages and
XPath guards, 3) even if the message contents are ignored, the realizability conditions
used in this paper and in [1] are different, and 4) we implement the realizability checks
for the specification language presented in this paper.

Our previous work on web services focused on formally characterizing conversa-
tions generated by composite web services [4] and realizability conditions for conver-
sation protocols specified as finite state machines with asynchronous messages without
data content [9]. This paper extends the earlier work with 1) a specification language
for conversation protocols with messages with XML data content, 2) extension of the
realizability conditions in [9] to protocols with XML messages, 3) implementation of
the realizability checks and peer synthesis, and 4) a model checking technique for con-
versation protocols via translation to Promela.

2 Web Services

In this section we show how web service standards can be used to specify web services,
using a “stock analysis” service (SAS) example. Fig. 1 shows the overall structure of

3

request()

Service PortOutput
Port

RIlink BRlink

IBlink

Research Dept.

<receive>
IBlink: register()

<invoke>
IBlink: reject()

<invoke>
IBlink: accept()

<invoke>
BRlink: request()

<receive>
IBlink: ack()

<receive>
IBlink: cancel()

<invoke>
RIlink: bill()

<invoke>
RIlink: bill()

Stock Broker Firm

register()

cancel()

Service
Port

Delegate
Port

ack()

<invoke>
IBlink: register()

<On Message>
IBlink: reject()

<On Message>
IBlink: accept()

<receive>
RIlink: report()

<invoke>
IBlink: ack()

<invoke>
IBlink: cancel()

<receive>
RIlink: bill()

<receive>
RIlink: bill()

Investor

reject()

accept()

bill()

Callback
Port

report()
Data
Port <receive>

BRlink: request()

<invoke>
RIlink: report()

Fig. 1. Stock Analysis Service

the SAS. It involves three peers: Investor (Inv), Stock Broker Firm (SB), and Research
Department (RD). Inv initiates the stock analysis service by sending a register mes-
sage to SB. SB may accept or reject the registration. If the registration is accepted,
SB sends an analysis request to RD. RD sends the results of the analysis directly to
the Inv as a report. After receiving a report, Inv can either send an ack to SB or
cancel the service. Then, SB either sends the bill for the services to Inv, or continues
the service with another analysis request.

We now discuss how different parts of the web service in Fig. 1 are modeled using
the web services standards. In particular the message contents are specified as XML
documents with the message types in XML Schema and MSL, expressions on messages
are specified in XPath, the communication ports are specified in WSDL, and the three
peers are specified in BPEL.

XML: Extensible Markup Language (XML) is a markup language for describing
data [15]. As the universal data transfer format over the Internet, XML plays a central
role in specifying semi-structured data in a way that is platform and language neutral,
and in some sense, self-explanatory. It is widely agreed that messages exchanged among
web services should be in the XML format. Similar to HTML, XML tags are written
as <tag> followed by </tag>. However, tags in XML describe the content of the data
rather than the appearance. Fig. 2(a) shows an XML document containing the data for
a register message for the stock analysis service. A register message is sent from
Inv to SB to register for the stock analysis service. It consists of a string containing the
identification of the Inv, a list of stock identifiers that the investor is interested in, and
payment information. XML documents can be modeled as trees where each internal
node corresponds to a tag and leaf nodes correspond to basic types. The document in
Fig. 2(a) corresponds to the tree in Fig. 2(b).

XML Schema and MSL: XML provides a standard way to exchange data over the
Internet. However, the parties that exchange XML documents still have to agree on the
type of the data, i.e., what are the tags that will appear in the document, in what order,
etc. XML Schema [17] is a language for defining XML data types. Model Schema
Language (MSL) [3] is a compact formal model that captures most features of XML
Schema. We use a slightly simplified version of MSL with type expressions defined as:

g ! � j b j t[g] j gfm;ng j g , g j g|g

4

<Register>
<investorID>
1234
</investorID>
<requestList>
<stockID>
AAAA
</stockID>
<stockID>
BBBB
</stockID>
</requestList>
<payment>
<accountNum>
56
</accountNum>
</payment>
</Register>

investorID

Register

1234

requestList

AAAA BBBB

payment

accountNum

56

stockID stockID

Register[
investorID[xsd:int],
requestList[
stockID[xsd:string]{1,10}

],
payment[
creditCardNum[xsd:int] |
accountNum[xsd:int]

]
]

(a) (b) (c)

Fig. 2. An XML document (a), the corresponding tree (b), and its type declaration in MSL (c)

where g is an XML type (i.e. an MSL type expression), � is the empty sequence, b is
a basic type such as string, boolean, int, etc., t is a tag, m and n are positive integers,
and ‘[]’, ‘{}’, ‘,’ and ‘|’ are MSL type constructors. The semantics of MSL type
constructors can be summarized as follows: t[g] denotes a type with root node labeled
t with children of type g; g{m;n} denotes a sequence of size at least m and at most n
where each member is of type g; g1 , g2 denotes an ordered sequence where the first
member is of type g1 and the second member is of type g2; and, g1|g2 denotes a choice
between type g1 and type g2, i.e., either type g1 or type g2, but not both.

Fig. 2(c) shows the MSL type declaration for the register message. Accord-
ing to the MSL declaration, a register message consists of an ordered sequence of
investorID, requestList, and payment, where element investorID is an inte-
ger, requestList is an ordered sequence of elements of type stockID (the size of
the sequence is at least 1 and at most 10), stockID is string, and payment is either a
creditCardNum, which is an integer, or an accountNum, which is also an integer.

XPath: In order to write specifications or programs that manipulate XML docu-
ments we need an expression language to access values and nodes in XML documents.
We use a subset of XPath [16] to navigate through XML trees and return the answer
nodes. The fragment of XPath we use consists of the following operators: node name
test (t), the child axis (/), the descendant axis (//), wildcard (*), self-reference (.),
parent-reference (..), and qualifiers []. An XPath query q is defined with the follow-
ing grammar:

q ! . j .. j b j t j * j /q j //q j q/q j q//q j q[q] j q[exp]

where exp denotes a predicate on basic types (i.e. on the leaf nodes of the XML tree),
b denotes a basic type such as string, boolean, int, etc., and t denotes a tag. Semantics
of each XPath operator can be defined as a function which takes an XML tree and a
set of context nodes (in the same XML tree) as input and returns a set of nodes in
the same XML tree as output. The result of an XPath query is obtained by evaluating
its operators from left to right. The semantics of the XPath operators are defined as
follows. Given a set of XML tree nodes: . returns the same nodes; * returns all of their
children; .. returns their parents; b returns the children that are of basic type b; t returns
the children which are labeled with t; =q executes q on input nodes; ==q executes q on
any descendant of input nodes; q1/q2 executes q1 first and then q2 on the result of q1;

5

q1//q2 executes q1 first, and then executes q2 on descendants of the results returned by
q1; q1[q2] selects from the nodes returned by q1 which makes q2 evaluate to at least
one node; q[exp] returns the nodes in the result of q which makes the expression exp
evaluate to true.

For example, given the XML document in Fig. 2, the query //payment/* re-
turns the node labeled accountNum, /Register/requestList/stockID/string
returns the nodes labeled AAAA and BBBB, //stockID[string=AAAA]/string re-
turns the node labeled AAAA, and //[int>0] returns the nodes labeled 1234 and 56.

XPath queries can be combined with operators and predicates on basic types to
form XPath expressions. Note that since XPath queries can result in a set of values,
XPath expressions are also evaluated on a set of values. For example, //[int>0] + 1

is an XPath expression which will evaluate to two values, 1235 and 57, for the above
example.

SOAP and WSDL: Simple Object Access Protocol (SOAP) [12] is a standard
messaging protocol for exchanging XML documents. Built upon XML Schema and
SOAP, WSDL (Web Services Description Language) [13] is an XML-based language
used to publish the public “hook-up” interfaces of Web services. In WSDL, message
types are declared using XML Schema. For example, the WSDL specification for the
SAS example contains a message type declaration for the Register message XML
Schema, which corresponds to the MSL type declaration in Fig. 2(c). In WSDL, each
port can host one or more functions, and the input/output message types are specified for
each function. For the SAS example, the WSDL specification for the SB contains a port
declaration called Service Port with three input functions: register, cancel, and
ack. Hence, using the WSDL type and port declarations we can specify the messages
that are serviced by each peer.

BPEL: The simple function call model employed by WSDL makes it hard to cap-
ture long running complex composite web services. Many competing standards such
as BPEL (Business Process Execution Language for Web Services) [2], WSCI (Web
Service Choreography Interface) [14] have been proposed to address this problem.

In a BPEL specification, a partner link connects a pair of port declared in the WSDL
specification. A BPEL specification for a peer also includes the control flow with the as-
sociated receive and send operations through the partner links and WSDL ports. BPEL
has many control structures, such as “sequence”, “while”, “switch”, etc. The atomic op-
erations in BPEL are: “invoke”, “receive”, and “reply” for sending and receiving mes-
sages; and “assign” for updating values of the variables. Assignments are conducted on
complex type variables with XPath expressions to identify the sources and the destina-
tions of the assignments statements. The state machines for the peers in Fig. 1 can be
specified using one BPEL specification for each peer.

3 Conversation Protocols

Although parts of the SAS example in Fig. 1 can be specified using the existing stan-
dards no languages can specify the global interaction among them. We propose a top-
down approach in which the interaction patterns among communicating web services
are specified as conversation protocols: A conversation protocol is a guarded automaton

6

Conversation {
Schema{
PeerList{Customer,Broker,ResearchDept},
TypeList{
Register[
investorID[xsd:int],
orderID[xsd:int],
requestlist[
stockID[xsd:int]{1,10}

],
payment [
accountNum[xsd:int] |
creditCard[xsd:int]

]],
Reject[
investorID[xsd:int],
orderID[xsd:int],
comment[xsd:string]],

Accept[
investorID[xsd:int],
orderID[xsd:int],
comment[xsd:string]],...

},
MessageList{
register{Customer->Broker:Register},
reject{Broker->Customer:Reject},
accept{Broker->Customer:Accept},...

}
},

Protocol{
States{s1,s2,...,s12},
InitialState {s1},
FinalStates{s3},
TransitionRelation{
t1{ s1 -> s2 : register, Guard{true} },
t2{ s2 -> s3 : reject,
Guard{ true =>
$reject[
//investorID:=$register//investorID,
//orderID:=$register//orderID]}

},
t3{ s3 -> s4 : terminate,
Guard{ true =>
$terminate[
//investorID:=$register//investorID,
//orderID:=$register//orderID]}

},
t4{ s2 -> s5 : accept,
Guard{ true =>
$accept[
//investorID:=$register//investorID,
//orderID:=$register//orderID]}

},
...

}
}

}

Fig. 3. Conversation Specification for the Stock Analysis Service

that describes the set of desired conversations (sequence of messages) generated by a
set of interacting web services.

A conversation specification consists of a conversation schema that specifies the
peers and the communication channels, and a conversation protocol. Fig. 3 shows parts
of the conversation specification for the SAS in Fig. 1. The abstract syntax of the lan-
guage we developed for specification of conversations is shown in Fig. 4. The non-
terminals name, source, destination, type, and message all denote strings. The nonter-
minal StringList denotes a list of strings separated by commas, and the nonterminal
MslExpList denotes a list of MSL expressions separated by commas. The nonterminal
XPathExp denotes an XPath expression. In a valid specification, source and destination
should be state names, type should be name of an MSL type and message should be a
message name all defined in the specification.

Conversation Schema: Formally, a conversation specification is a tuple P =
h(P;M);Ai where (P;M) is a conversation schema and A is a conversation proto-
col. A conversation schema is a pair (P;M) where P is a finite set of peers and M a
finite set of message types. Each message type c 2 M is transmitted on exactly one
peer-to-peer channel.

In our specification language messages are XML documents. For each message
type c 2 M , let DOM(c) denote all the XML documents that match to the type decla-
ration of c. Given a set of message types M , we define the message alphabet as � =S
c2M fcg � DOM(c). Each element m 2 � is called a message. Let TYPE(m) 2 M

denote the type of message m. We say that m is an instance of TYPE(m).

7

Spec ! { Schema , Protocol }
Schema ! Schema{ PeerList{ StringList },TypeList{ MslExpList },

MessageList{ MessageList }}
MessageList ! Message j Message , MessageList

Message ! name { source -> destination : type }
Protocol ! Protocol{ States{ StringList },InitalState{ StringList },

FinalStates{ StringList },TransitionRelation{ TransitionList }}
TransitionList ! Transition j Transition , TransitionList

Transition ! name { source -> destination : message , Guard }
Guard ! Guard{ XPathExp => Update }

Update ! name { AssignList }
AssignList ! Assign j Assign , AssignList

Assign ! XPathExp := XPathExp

Fig. 4. Conversation Specification Syntax

Left hand side of Fig. 3 shows the conversation schema for the SAS example. Note
that, in the conversation schema, the message types are declared using MSL, and then
the sender and receiver for each message type are declared using the message list.

Conversation Protocol: Formally, a conversation protocol is a guarded automaton
A = (M;T; s; F;�), where M is the set of message classes, T a finite set of states,
s 2 T the initial state, F � T a set of final states, and � the transition relation. Each
transition � 2 � is of the form � = (s; (c; g); t). Here, s; t 2 T are the source and
the destination states of the transition � , c 2 M is a message type and g is the guard
of the transition. A guard consists of a guard condition and a set of assignments. A
transition is taken only if the guard condition evaluates to true. The assignments specify
the contents of the message that is being sent. Given a transition � = (s; (c; g); t) where
peer p is the sender of the message of type c, then guard g is a predicate of the following
form: g(m; ~m), where m is the message being sent, and the vector ~m contains the last
instance of each message type that is received or sent by peer p.

The syntax for transition guards is shown in Fig. 4 (nonterminal Guard). Each
guard consist of guard condition which is an XPath expression followed by an update
expression which is a list of assignments. Update expressions start with the name of
the message type that is being sent (in XPath expressions messages appear with $ as
prefix), and continue with a list of assignments (nonterminal Update in Fig. 4). Each
assignment has an XPath expression on the left hand side, which evaluates to a node of
the XML message that is being sent. The right side of the XPath expression evaluates
to a node of the last instances of XML messages received or sent by the sender of the
current message.

Right hand side of Fig. 3 shows the conversation protocol for the SAS in Fig. 1.
For example, on transition t4 the conversation protocol goes from state s2 to s5, and a
message of type accept is sent from peer Broker to peer Customer. The assignment
list declares that, in the acceptmessage that is sent, the investorID and the orderID
elements should be same as the investorID and the orderID elements in the last
register message that is received by the Broker peer.

A conversation protocol is only able to remember the last sent message for each
class. This is not a significant restriction based on the web services we have examined.

8

Note that more information about the sent and received messages can be stored in the
states of the conversation protocol. Another approach would be to extend the guard
definition so that the guards can refer to the last ` instances of each message class
where ` is a fixed integer value. Such an extension would not effect the approach and
the results discussed in this paper.

Conversations: Given a conversation specification P = h(P;M);Ai, a configu-
ration of the conversation protocol A = (M;T; s; F;�) is a tuple (t; ~m) where t 2 T
and message vector ~m 2 DOM(c1)�� � �� DOM(ck), k = jM j, keeps track of the latest
instance of each message type. For a vector ~m and message type c, let ~m[c] denote its
projection to DOM(c). A configuration (t1; ~m1) is said to derive another configuration
(t2; ~m2) via a message m 2 �, written as (t1; ~m1)

m
! (t2; ~m2), if there is a transition

(t1; (c; g); t2) 2 � such that

– message m and ~m1 satisfy the guard g, i.e., g(m; ~m1) is true, and
– ~m2[TYPE(m)] = m and ~m1 and ~m2 have same instances for all other message

types, i.e., for all c 2M such that c 6= TYPE(m), ~m1[c] = ~m2[c].

Let A = (M;T; s; F;�) be a conversation protocol and let w = w0; w1; ::: be a
finite word over �, i.e., w 2 ��. A run of A for the word w is a finite sequence of
configurations 0; 1; ::: such that, 0 = (s; (?; :::;?)) where s is the initial state of
the conversation protocol, ? denotes an uninitialized message, and for all 0 � i <
jwj, i

wi! i+1. A word w 2 �� is accepted by the conversation protocol A if there
exists a run for w, such that jwj = (t; ~m) and t 2 F . We define, L(P), the set of
conversations defined by a conversation specification P = h(P;M);Ai, as the set of
words accepted by the conversation protocol A.

We use the temporal logic LTL to express properties of conversations. We define the
set of atomic propositions as follows: Each atomic proposition is either of the form c
where c is a message class (i.e., c 2M), or c.pred, where c 2M and pred is a predicate
over the content of c. We denote that a message m 2 � satisfies an atomic proposition
 by m j= , where

m j= iff

�
TYPE(m) = if 2M
TYPE(m) = c ^ pred(m) = true if = c:pred

LTL formulas are constructed from atomic propositions, logical operators ^;_;:,
and temporal operators X, G, U, and F. The semantics of LTL temporal operators can
be easily defined on finite length conversations [9]. Given a conversation specification
P and each LTL property �, we say that P j= �, iff for all w 2 L(P), w j= �.

For example, two sample LTL properties of the conversation protocol in Fig. 1 are:

1. G($register ! F($accept _ $reject)): Each register will be eventually
followed by a reject or accept message.

2. G($register//stockID== a! F($request//stockID== a)): Every stockID
appeared in the registermessage will eventually appear in the requestmessage
from Broker to ResearchDept.

Note that in the second property a denotes a constant value.

9

A conversation specification P over a schema (P;M) is finite state if for each c 2
M message type c has a finite domain. Given a finite state specification, we can translate
the guarded automaton of a finite state conversation protocol to a standard automaton
without any guards and then use the results for finite state LTL model checking. In
particular, we can prove the following:

Theorem 1. Given a finite-state conversation specification P = h(P;M);Ai where
M = fc1; :::; ckg, and an LTL property �, determining P j= � takes jT jDOM(c1)j � � �
jDOM(ck)j2

O(j�j) time.

The above result follows from the size of the standard automaton constructed from the
given conversation protocol specification and the results on LTL model checking [5].
Note that the exponential complexity in the size of the LTL formula is not a prohibitive
factor since sizes of typical LTL formulas tend to be small. In section 5 we exploit the
above result by translating conversation protocols to input language of the SPIN model
checker and then use SPIN model checker to verify properties of conversations.

4 Realizable Protocols and Peer Synthesis

In this section, we give a formal model for a composite web service which consists of
multiple peers communicating with asynchronous messaging. A composite web service
is a tuple S = h(P;M);A1; :::;Ani, where (P;M) is a conversation schema, n = jP j
and eachAi is an implementation for peer pi 2 P . For each peer pi, its implementation
Ai is a guarded automaton (M in

i ;M
out
i ; Ti; si; Fi; �i), where M in

i (M out
i) are incoming

(outgoing) message types for pi, and Ti, si, Fi are the set of states, the initial state, and
the set of final states, resp. Each transition � 2 �i has a source state q1 2 Ti and a
destination state q2 2 Ti and is in one of the following three forms: 1) �-move where
� = (q1; �; q2), which only changes the state, 2) consuming an input message where � =
(q1; ?a; q2) and a 2 M in

i , which changes the state and removes the consumed message
from the input queue, or 3) producing an output message where � = (q 1; (!b; g); q2)
and b 2 M out

i and g is the transition guard, which changes the state and appends the
produced message to the input queue of the receiving peer.

The global configuration of a composite web service S is a (2n+3)-tuple of form
(Q1; t1; :::; Qn; tn; w;~s;~c) where for each j 2 [1::n], Qj 2 �

� is the content of the in-
put queue of peer pj , tj is the state of pj , w 2 �� is the sequence of messages recorded
by the global watcher, and message vectors ~s;~c record the latest sent and consumed
instances (resp.) for each message type. It is straightforward to define a derivation rela-
tion between two configurations based on the transition relations of the peers such that
 ! 0 if and only if there exists a peer pi and a transition � 2 �i such that executing
the transition � in configuration results in the configuration 0 [9]. Note that each send
operation appends the message 1) to the input queue of the receiver and 2) to the global
watcher at the same time.

A run of S is a finite sequence of configurations = 0; 1; 2; ::: that satisfies the
following conditions: 0 = (�; s1; :::; �; sn; �; [?; :::;?]; [?; :::;?]) is the initial con-
figuration, where si is the initial state of pi for each i 2 [1::n], and for each i � 0,
i ! i+1, and jj = (�; s01; :::; �; s

0
n; w;~s;~c) is the final configuration, where for each

10

peer pi, s0i 2 Fi. A finite word w 2 �� is a conversation of a composite web service
S if there exists a run = 0; 1; 2; ::: of S such that, the value of the watcher in the
final configuration is w. Let L(S) denote the set of conversations of S.

Given a composite web service S and an LTL property �, we say that S j= �, iff for
all w 2 L(S), w j= �. We say that a composite web service S over a schema (P;M)
has finite message content if for each message type c 2M , DOM(c) is finite. In contrast
to Theorem 1 we have the following property: Given a composite web service S with
finite message content and an LTL property �, testing S j= � is undecidable [9].

We now formalize the relationship between a conversation protocol and a composite
web service. A composite web service S conforms to a conversation specification P iff
L(S) � L(P), and S realizes P iff L(S) = L(P).

Given a conversation specification P = h(P;M);Ai, let �i(A) denote the projec-
tion of the conversation protocol A onto a peer p i 2 P . �i(A) is a guarded automaton
obtained fromA by replacing each move for a message that is not related to peer p i with
an �-move, and dropping guards of the transition edges that are labeled with incoming
messages. Let �(P) = h(P;M); �1(A); :::; �n(A)i be the composite web service
derived from the conversation specification P . Of course the interesting question is, if
L(�(P)) = L(P), i.e., is the conversation specification and the composite web service
which corresponds to its projection generate the same set of conversations? Below we
present a set of realizability conditions which ensures that this is the case.

Realizability Conditions: In [9] we defined three realizability conditions for guard-
less conversation protocols. Here we extend these conditions by presenting an extra
condition for the transition guards (i.e., that concerns the message contents). Then the
realizability check is implemented by checking the first three realizability conditions on
the skeleton of the conversation protocol (i.e, without considering the guards), and then
checking the fourth realizability condition on the guards.

For a conversation protocol A = (M;T; s; F;�), its skeleton is a standard (guard-
less) automaton A0 = (M;T; s; F;�0) where each transition � 0 2 �0 is generated by
dropping the guard of a corresponding transition � in �. Note that the language recog-
nized by skeleton A0, i.e., L(A0) is a subset of M�, while L(A) � ��.

The skeleton of a conversation protocols is realizable if it satisfies the following
three realizability conditions [9]:
1) Synchronous compatibility: A conversation protocol skeleton is synchronous com-
patible if when we project the skeleton onto each peer and construct the Cartesian prod-
uct of the projections, the resulting automaton does not contain a state where a peer p i
is ready to send a message to peer pj but peer pj is not ready to receive the message.
2) Autonomy: A conversation protocol skeleton is autonomous if for each peer p i and
each finite prefix w of a conversation, at most one of the following three conditions
hold: a) the next transitions of pi (including transitions that are reachable through �-
transitions) are all send operations, b) the next transitions of p i (including transitions
that are reachable through �-transitions) are all receive operations, or c) p i is either in a
final state or it can reach a final state through �-transitions.
3) Lossless join: A conversation protocol skeleton is a lossless join if we project the
conversations allowed by the protocol to the alphabet of each peer and compute the join
of the projected sets, the result is equal to the original conversation set.

11

Finally, we need a new fourth realizability condition that restricts the guards of a
conversation protocol as follows:
4) Deterministic guards: To check the deterministic guard condition, for each peer p i,
we analyze the projected automaton�i(A). We determinize�i(A) as a guardless stan-
dard FSA, ignoring the guards. Each state in this determinized automaton corresponds
to a set of states in �i(A). For each state in the determinized automaton we collect
all the transitions which have the same source, destination and message classes in the
corresponding states in �i(A). We require that at each state for all send transitions at
that state there can be at most one guard for each message type, i.e., if there are two
send transitions with the same message type, their guards have to be identical.

Theorem 2. Let P = h(P;M);Ai be a conversation specification where A has de-
terministic guards and the skeleton of A is synchronous compatible, autonomous, and
lossless join. Then L(�(P)) = L(P).

The proof can be easily extended from our results for conversation protocols without
message contents and guards in [9].

5 Translation to Promela

In this section, we discuss the translation of a conversation protocol to Promela, the
input language of the SPIN model checker [10]. We first introduce the mapping of an
MSL type declaration to a Promela type definition, and then we show how to translate
an XPath expression into an equivalent Promela code based on this mapping.

Translating MSL Type Expressions: Each MSL simple type has a counterpart in
Promela. For example, “xsd:int” and “xsd:boolean” are mapped to Promela types
“int” and “bool”, respectively. As strings are used solely as constants in our frame-
work, all string constants in a protocol are collected and declared as symbolic constants
using an “mtype” declaration in Promela and the type “xsd:string” is mapped to
type “mtype”. MSL complex types are mapped to “typedef” record constructs in
Promela. In the following we present the Promela translation for the Register type
declared in Fig. 2(c).

typedef t2_requestlist{
int stockID [10];
int stockID_occ;

}
typedef t3_payment{

int accountNum;
int creditCard;
mtype choice;

}
mtype {m_accountNum, m_creditCard};

typedef Register{
int investorID;
int orderID;
t2_requestlist requestlist;
t3_payment payment;

}

In the above Promela code, two additional type declarations are generated for ele-
ments requestlist and payment (prefixes "t2 " and "t3 " are generated to avoid
name collisions). Since element stockID has max occurrence of 10, it is declared as an
array in the translation, and an additional variable stockID occ is used to record the
actual occurrence of stockID. Also, note that, in the mapping of payment, an addi-
tional variable choice is declared to record which element of payment (accountNum
or creditCard) is selected in each instance.

12

Translating XPath expressions without function calls: Before discussing the
translation algorithm, let us first study one example. Given two messages regInfo1
and regInfo2 of type Register, the query “Is there any stockID that appears in both
messages?” can be captured by the boolean XPath expression $regInfo1//stockID

== $regInfo2//stockID. The translation of this XPath expression to Promela is as
follows, and note that prefix “v_” is attached to message name to avoid name collisions.
bool b1 = false;
int i1=0, i2=0;
do :: i1 < v_regInfo1.requestlist.stockID_occ ->

do :: i2 < v_regInfo2.requestlist.stockID_occ ->
if ::v_regInfo1.requestlist.stockID[i1] == v_regInfo2.requestlist.stockID[i2]

-> b1 = true;
:: else -> skip;
fi;
:: else -> break;

od;
:: else -> break;

od;

The main body of the above Promela code is a nested loop that searches for the
array indices which makes the equality test succeed. Integer variables i1 and i2 are
used as indices, and boolean variable b1 is used to record the final result.

The translation algorithm we used in our implementation generates the above code
in two stages. In the first stage, each XPath query is symbolically evaluated while
recording the required information to generate the Promela code for enumerating all the
nodes that match the query. The second stage generates the Promela code by traversing
the trees generated in the first stage.

An XPath expressions consists of a set of XPath queries (as described in Section 2)
which are combined using operations and predicates on basic types (such as addition,
equality, etc.). Each XPath query consists of a set of XPATH operators. In the first stage
of the algorithm, we traverse each XML query in the XPath expression from left to right,
one operator at a time. During this traversal we generate a tree. The root node of the tree
(at level 0) corresponds to the root node of the XML tree. A node in level i is obtained
by applying the operator i to a node in level i� 1. The leaf nodes of the generated tree
correspond to XML nodes which match the corresponding query. Some nodes in the
generated tree correspond to arrays and represent all the elements in an array. We call
such nodes parameterized nodes. At the end of the first stage we end up with one tree
for each XPath query in the XPath expression. We can generate Promela code which
traverses all the XML nodes that match an XPath query by traversing the tree generated
for it in the first stage. Note that, in order to to do that, we need to generate loops for
the parameterized nodes.

The second stage generates the Promela code for the XPath expression using the
trees generated in the first stage. The generated code consists of a set of nested loops
which are used for traversing arrays. The innermost statement in each nested loop block
corresponds to the input XPath expression where each XPath query in the XPath ex-
pression is replaced with a string that corresponds to the XML nodes which match that
query. For the above example, the innermost statement is:
v_regInfo1.requestlist.stockID[i1] == v_regInfo2.requestlist.stockID[i2] -> b1 = true;

which corresponds to the XPath expression
$regInfo1//stockID == $regInfo2//stockID

where XPath queries

13

$regInfo1//stockID and $regInfo2//stockID

are replaced with strings
v_regInfo1.requestlist.stockID[i1] and v_regInfo2.requestlist.stockID[i2]

Note that, the indices i1 and i2 indicate that this statement is generated within a
pair of nested loops which will enumerate all the elements in the two arrays.

Translating XPath expressions with function calls: We support two function
calls: position() and last(). They are useful to enumerate and traverse through
XML documents. For example, XPath expression
$request//stockID = $register//stockID[position()==last()]

assigns stockID of a request with the last stockID in register. The Promela
code generated for the above query is given below. The key point in the translation
is to map each appearance of a position() and last() to an integer variable, and
update values of these variables in the translated code. We omit the details of the code
generation for function calls due to lack of space.

/* calculate last() */
//last() replaced by i1
int i1=0;
int i2=0;
//position() replaced by i3
int i3=0;
do
:: i2 <

v_register.requestlist.stockID_occ
-> i1++;

i2++;
:: else -> break;
od;

/* calculate the statement */
i2 =0;
do
:: i2 < v_register.requestlist.stockID_occ

-> i2++;
/* update position() */
i3++;
if
:: (i3==i1) ->

v_request.id =
v_register.requestlist.stockID[i2];

:: else -> skip;
fi;

:: else -> break;
od;

Translating a Conversation Protocol: Finally, we briefly present the layout of the
Promela translation of a guarded conversation protocol below.

/*1. type declaration */
typedef Register{ ... }

/*2. message variables */
Register v_register; ...

/*3. system variable */
mtype = {m_register, m_reject ... };
mtype state;
mtype msg;

/*4. local variables */
int i1, i2 ...

active proctype GProtocol{
/* 5. initialize all variables */
do

::
/* 6. evaluate last() calls */
/* 7. evaluate guards of each transition */

... bGuard_1 = true ...
if

/* 8. each transition */
//transition 1

:: state == s1 && bGuard1
-> state = s2;

msg = m_register;
... assignmentlist ...

/* 9. termination code for final states */
:: state == s3 -> break;

fi;
od;

}

The first part of the translation contains type declarations which is followed by
variable declarations for messages. There are two system variables: “state” is used
to record the current state of the guarded automaton, and “msg” is used to record the
current message that is being transmitted. The main body of the protocol is a “do” loop.
During each iteration of the loop, first the enabling conditions of all the transitions are
evaluated and the results are stored in boolean variables (one for each transition). Then,
using a nondeterministic “if” statement an enabled transition is nondeterministically
chosen and executed. Finally, if the current state is a final state, the protocol can jump
out of the loop and terminate.

14

6 Experimental Results and Conclusions

We ran experiments on samples from major web service solution vendors and web ser-
vice standard specifications. The following table summarizes our datasets and the cor-
responding experimental results. All conversation protocol source files, Promela trans-
lations, and verification results can be downloaded at web address [6].

Problem Set Size Realizability Check Verification
Source Name #msg #states #transition C1 C2 C3 C4 Promela length StateVector(Byte) Time(sec) Depth

- SAS 9 12 15
p p p p

1904 204 166 405
ConvSetup 4 4 4

p p p p
340 32 43 187

IBM MetaConv 4 4 6
p � p p

- - - -
Conversation Chat 2 4 5

p p p p
354 36 0 243

Support BuyStuff 5 5 6
p p p p

436 40 0.08 245
Project Haggle 8 5 8

p � p p
- - - -

AMAB 8 10 15
p p p p

783 52 0.01 475
BPEL1.1 shipping 2 3 3

p � p � - - - -
spec. loan 6 6 6

p � p p
- - - -

auction 9 9 10
p p p p

767 64 71 543
Collaxa.com StarLoan 6 7 7

p p p p
624 80 0.02 357

auction 5 7 6
p p p p

462 64 78 254

As shown in the table, four of six examples from IBM, one of three examples from
BPEL, and two examples from Collaxa.com satisfy all the realizability conditions. All
failed examples do not satisfy autonomous property, mostly due to scenarios where two
peers are in a racing to send each other a message. Since neither the BPEL standard nor
the IBM conversation project clarify the assumptions about the underlying communi-
cation infrastructure, we suspect that these failed examples may be originally designed
assuming synchronous communication.

We generated Promela translations for all examples which satisfy realizability con-
ditions, and checked one property for each example. For example, we checked the fol-
lowing LTL property for the SAS protocol, where index and value are two predefined
constants.
G((index < v_register.requestlist.stockID_occ

&& v_register.requestlist.stockID[index] == value) ! F(v_request.stockID== value))

This property states that if some stockID appears in the registration request, then it
should eventually appear in the request from Broker to ResearchDept. For all other
examples, we checked LTL properties in the form “G(p ! Fq)”. For some of the ex-
amples we intentionally checked properties that were not satisfied by the specification.
The rightmost four columns of the table present the performance of the SPIN. Since we
used the bitstate hashing optimization provided by SPIN, memory consumption for all
examples are similar (around 20MB), so we gave the size of the State Vector to indi-
cate the size of the state space. As suggested by the table, verification cost increases
with the number of states, and transitions, and especially with the Promela translation
size. SAS example has the highest verification cost, because its XPath expressions are
the most complicated among all examples. There are some examples with verification
time less than one second, this is because SPIN detect the error and ends the exhaustive
search early. All the realizability tests were completed in a fraction of a second for all
the examples.

15

In this paper, we studied verification of composite web services in terms of their
conversations (i.e. message interactions). The novelty of the model beyond our earlier
models is a specification language that uses XML schema and XPath, which brings
our model much closer to standards such as BPEL. We obtained sufficient conditions
for realizability of conversation protocols and implemented the algorithm to check re-
alizability. We also developed an algorithm to translate conversation specifications to
Promela.

Design of composite web services has many challenging problems and developing
tools and techniques for studying global behavior of web services is an interesting topic.
This paper presents a promising approach to meeting some of the challenges.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs. In
Proc. 28th Int. Colloq. on Automata, Languages, and Programming, 2001.

2. Business process execution language for web services (BPEL), version 1.1. available at
http://www.ibm.com/developerworks/library/ws-bpel.

3. A. Brown, M. Fuchs, J. Robie, and P. Wadler. MSL a model for W3C XML Schema. In
Proc. of 10th World Wide Web Conference (WWW), pages 191–200, 2001.

4. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: A new approach to design
and analysis of e-service composition. In Proceedings of the Twelfth International World
Wide Web Conference (WWW 2003), pages 403–410, May 2003.

5. E.M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

6. Experimental data sets. available at http://cs.ucsb.edu/˜fuxiang/tacas data/.
7. Christopher Ferris and Joel Farrell. What are web services? Comm. of the ACM, 46(6):31–31,

June 2003.
8. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of web service

compositions. In Proceedings of the 18th IEEE International Conference on Automated
Software Engineering Conference (ASE 2003), 2003.

9. X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification and
verification of reactive electronic services. In Proc. 8th Int. Conf. on Implementation and
Application of Automata (CIAA 2003), volume 2759 of LNCS, pages 188–200, 2003.

10. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Boston, Massachusetts, 2003.

11. S. Narayanan and S. A. Mcllraith. Simulation, verification and automated composition of
web services. In Proceedings of the 11th International World Wide Web Conference, 2002.

12. Simple object access protocol (soap) 1.1. W3C Note 08, May 2000.
(http://www.w3.org/TR/SOAP/).

13. W3C. Web services description language (WSDL) version 1.1. available at
http://www.w3.org/TR/wsdl, 2001.

14. Web Service Choreography Interface (WSCI) Version 1.0.
http://www.w3.org/2003/01/wscwg-charter.

15. Extensible markup language (XML). available at http://www.w3c.org/XML.
16. XML Path Language version 1.0. available at http://www.w3.org/TR/xpath.
17. XML Schema. available at http://www.w3c.org/XML/Schema.

