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ABSTRACT

In this paper, we present a framework for the insertion and semi-

automated placement of visual annotations into video footage. Vi-

sually overlaid annotations are very common in telecasts (e.g., statis-
tics in sports broadcasts, banner advertisements), where they are
strategically placed by hand, or incorporated into the video stream

using elaborate camera tracking and scene modeling techniques.

Such information is not commonly available for raw or unprepared

videos. We look at the problem of automatically placing annota-

tions within the space and time domains of unprepared videos us-

ing computer vision and image analysis techniques. We use mea-

sures of intensity and color uniformity, motion information, and a
simple model of cluttered screen space to determine regionsin the
video that are of relatively minor importance to the human visua

perception. We present a taxonomy of visual annotations, a subset
of whose we realize as automatically placed video overlays, imple-

mented in our prototype system named DAVid (Digital Annotations
for Video). We conclude with an outlook of potential applications
of these techniques in interactive television.

1. INTRODUCTION

There has been a phenomenal growth in the amount of video ma-
terial available over the past few years. Much of this video in-
formation is in its raw or unprepared form without any augmen-
tation of the visual component of the data. Increasingly, in real-
time video broadcasts, the live video feed is often augmented with
graphical overlays. Advertisements, game scores, and logos are a
few of the several graphical items. In sports broadcasts, graphical
enhancement of the visual feed iscommon [9], [14], [12], [13], [§].
Some exampl es of these include the First-Down Line in American
Football and stetistical annotation overlays in NASCAR. Virtua
product advertisements are now inserted into live video feeds as
an advertising aternative. With the advent of interactive television
(iTV), there has been a shift towards customizing content based
on viewer profiles. With information flowing from the viewer to
the broadcaster as well, greater control lies on the user side in re-
questing content. This means that the video data delivered to the
consumer needs to be augmented with multiple pieces of informa-
tion that are retrieved and overlaid when requested. The augmenta-
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Figure 1: A “Pop Up Video”style annotation, automatically
placed in a music video. The numbers show our final placement
criterion value for this specific frame for a grid of 36 discrete
regions.

tion of general videos with annotations presents useful applications
in sports, entertainment, and personal media among others. For
example, videos of sports broadcasts, instructional/training videos,
navigational videos, or personal home videos can be annotated with
relevant information to produce prepared video segments.

In this paper, we address the problem of automating the process
of placing annotations in videos. Adequate annotation placement
should avoid occlusion of moving objects and informative scene
elements, and should aim to not distract the viewer (e.g., annota-
tions that “jump around” on the screen are of little help). There
is anewly emerging industry of commercial video processing ser-
vices that enables insertion of 2D and 3D annotations into videos,
such as the virtua first-down line in football broadcasts, or vir-
tual advertising. Such material is placed using intricate tracking
equipment and/or considerable human intervention. We are inter-
ested in finding good solutions for the placement problem in videos,
for which no background or supplementary information about the
cameraand 3D scene geometry isavailable. In this scenario, place-
ment needs to be guided by low-level information available from
the video stream aone.

In this paper, we propose the application of computer vision al-
gorithms and image analysis techniques to the defined problem of



insertion and placement of annotations in videos.

Since automated segmentation and object tracking for unprepared
videos is an unsolved research problem, we assume that for anno-
tating moving objects semi-automatic pre-processing of the video
ispossible prior to augmenting it. Also, since some relaevant video
processing algorithms, such as optica flow determinations do not
run at interactive frame rates, we store such frame-to-frame infor-
mation in an offline pre-processing step to allow for interactive an-
notation placement at video run-time.

We have focussed primarily on sports videos but the framework is
applicable to generic videos. Our specific contributions are:

e We present a system framework that captures important ele-
ments of the problem of semi-automatically placing annota-
tionsin arbitrary video.

e We present a short taxonomy of annotations and outline their
properties.

¢ We characterize placement regionsin avideo that are of rela-
tively littleimportance or little perceptual interest to aviewer.
These region properties are elementary in their nature and
can be combined to define meaningful quantitative measures
for regions.

e We evaluate our techniques using the tasks of associating an-
notations with moving players in sports videos and placing
global annotations in the scene.

2. RELATED WORK

Scientific work in the area of overlay of annotation elementsin 2D
scene views falls under two basic categories. We have problem
domains where some a priori information about the environment
is available. These include environments such as real-time video
broadcasting where avirtual model of the environment and/or cam-
eramotion information is present, which can be used to determine
the part of the scene in view. In real-time broadcasts, graphical an-
notations are primarily overlaid by a human operator or based on
elaborate sensor-based scene object tracking systems [12, 13]. The
technology behind these systemsis highly sophisticated and expen-
sive. Systems that fall in this category include the proprietary 1st
and Ten [12] technology, RaceFx [13], Sports Enhancement [14]
solutions, Sports Production Systems [9], and Virtual Product Inte-
gration [8] systems.

The placement of annotations associated with elements in a scene
has been a recent topic of research in 3D virtual and augmented
reality environments. Bell et. a. [4] describe a view management
system where they address the problem of determining spatial lay-
out of the projections of objects in a 3D scene on the view plane.
They propose algorithms that use rectangular extents to approxi-
mate on the view plane the occupied space comprised by the pro-
jections of visible parts of 3D objects, and aso unoccupied space,
where new objects can be placed. Their decision is aided by the
availability of avirtual model. Label placement in augmented re-
ality view management has al so been explored by Azumaand Fur-
manski [3]. However, their sole objective is to detect and prevent
overlaps among annotations.

The second category in the area of video annotations is concerned
with raw video data without any geometry or tracking information.

The defining characteristics here are very different from the above
category that uses a-priori knowledge. In the past, placement of
annotations in such unprepared videos has not been significantly
explored. Proprietary approaches [8] address the insertion of ad-
vertisements in video feeds using computer vision but specifically
with respect to placing them by detecting and utilizing the space
provided by existing billboards on the field in live sports broad-
casts. It is possible to pre-process video feeds with semi-automated
tracking software such as 2d3's Boujou[1] to reconstruct a camera
path and some 3D feature points, which enables some of the anno-
tation methods from the first category. In this paper, however, we
are concerned with placing simple 2D annotations in video regions
of low visual interest.

Research in video segmentation and analysis provides us with many
elements required to solve this problem using computer vision and
image analysis techniques [7, 2, 5, 6]. In this paper, we propose
theintegration of various techniques from these areas to design and
develop a prototype system that aids the augmentation of videos
with annotations.

3. TAXONOMY OF ANNOTATIONS

Our objective is to design a framework that lets the user associate
annotations with arbitrary elementsin the video. Annotations typi-
caly fall under two basic categories - 1) Object Annotations and 2)
Global Annotations.

3.1 Object Annotations

These are associated with specific objects in the scene. For ex-
ample, a race car annotation, or a player’s name and statistics in
game sports. The annotations stay on screen as long as the object
is present. It follows that placement of these annotations requires
that the object be identified and tracked in each frame of the video
sequence for the entire duration of timethat the objectisin view. In
our system, we support semi-automatic identification and tracking
of objects in the video. This is discussed in Section 5.1. Object
annotations can be further classified into two categories:

Object Followers

These annotations are placed close to the object in the scene such
that they do not occlude the object itself or any important informa-
tion around it. To predict the presence or absence of such impor-
tant information from a plain video is one of the contributions of
this paper. The annotation follows the motion of the object in the
scene.

Screen-Stabilized

These annotations are placed in a fixed area on the scene and a
dynamic follower line points from the annotation to the object as
the object moves in the video. The region where the annotation
is placed is determined by analyzing the video for the duration of
time when the object isin view. The exact placement is determined
by a perceptual measure expression that ranks different candidate
regions.

We implement object-based annotations as a combination of the
above two categories. The region around an object is evaluated for
the presence of any other important scene elements. This evalua-
tion is done multiple times during the lifetime of the object. The
best location isthen picked and the annotation overlaid in that posi-
tion. The annotation stays there (screen-stabilized) as long as there



isno sceneinformation (predicted by strong motion and varying re-
gion uniformity) that it isinterfering with and as long as the object
does not drift too far from or collides with the annotation. If this
happens, the surrounding region isre-evaluated for agood location
(object-follower)

3.2 Global Annotations

Global annotations are not associated with any particular object in
the scene. Examples of these annotations include banners and ad-
vertisements in videos or game-rel ated annotations in sports videos
(cf. Figures 1 and 6). The annotations are placed based on the anal-
ysis of the entire frame, a sequence of frames, the current camera
shot, or the whole video. In section 4, we characterize the region
properties that influence the placement of global annotations. A
subcategory of global annotations is 3D perspective annotations.

3D Perspective Annotations

These annotations are aligned as per the geometric 3D structure
of the region they are placed in. This requires 3D structure deter-
mination of the scene in view. These annotations provide a more
realistic appearance as they are designed to be merged into the 3D
scene.

In this paper, we focus on object annotations and global nonper-
spective annotations. Video annotations can be pre-timed using the
preprocessed tracking information (e.g., acertain tracked player en-
tersthe field of view), or pop up dynamically, based on events that
the computer would detect automatically (e.g. camera shot bound-
aries), or on user interaction (e.g. mouse clicksiniTV).

4. ELEMENTARY PERCEPTUAL DESCRIP-

TORS

This section presents the primary ideas behind identifying regions
that are suitable for annotation placement. We identify and charac-
terize a few basic types of properties for video regions. We refer
to these as Elementary Perceptual Descriptosance each of these
characteristic properties is distinctly perceivable by the human vi-
sual system. In this paper, we identify homogeneity, motion, and
clutter as elementary perceptual descriptors. More generaly, this
can be extended to include other distinct perceptual descriptors
such as texture similarities or a higher-level domain-specific de-
scriptor such as semantic content. Different types of scene regions
can beidentified on avisual level by a combination of the three ba-
sic descriptors discussed in the following subsections. We derive a
measure of the interest level or degree of importance of aregion as
a combination of these properties. In our system we identify unin-
teresting or relatively lessimportant regionsin the video, which are
potential locations for placing annotations. We utilize this know!-
edge to direct the placement of scene annotations.

For example, in sports videos, there typically exists a foreground
region with considerable amount of action resulting from the pres-
ence and motion of severa large- to medium-sized objects. The
background region is mostly devoid of interesting activity. Within
the foreground region, distinct sub-regionsinclude players, thefield,
and other specific game-related artifacts. The background region
a so consists of multiple sub-regions such as the stands, billboards,
and other scene backdrop regions (e.g., sky patches). All of these
regions have specific properties.

4.1 Homogeneous Regions

We characterize homogeneous regions as regions that are uniform
with respect to a visual homogeneity metric that is qualitatively de-
termined based on the video. These regions are a logical choice
for annotation placement as they typically contain less information
and appear less prominent to the human eye. Each distinct homo-
geneous region, Ry, isthe set of all connected pixels that satisfy a
certain uniformity criterion. A region is bound by aregion bound-
ary, which isthe set of pixelsthat separate it from other regions.

Ry = {< pi > |i1 < H(p;) < iu}

where < p; > = {zs,y: }, H(p) gives the uniformity metric value
at each pixel, and 4; and 7,, are the lower and upper bounds for the
metric in each region.

The regions being distinct, Ni=Y Ry, = 0.

We segment each frame of the video, in which an annotation has
to be placed into distinct homogeneous regions. The uniformity
metrics that we consider are intensity and color.

Intensity Uniformity

To support the placement of annotations associated with regions
that are uniform in their intensity, we implement video frame seg-
mentation based on intensity as the uniformity criterion. We use
the NTSC-standard luminance value as our gray-level intensity for
each pixel in acolor video. To segment the frame, we grow regions
such that each segmented region eventually adheres to the region
uniformity criterion as stated above. We implement the Seeded
Region Growing [2] approach to segment the frame into regions
as defined above. The seeded region growing approach is based on
the conventional region growing postulate but the pixel aggregation
technique is closer to watershed algorithms. Regions are grown
starting from an initial set of seed points that are approximately
representative of the region’s uniformity. The seeded region grow-
ing method is sensitive to noisy images. To overcome this problem,
we apply the SUSAN [11] noise filtering algorithm. The SUSAN
filter preserves the image structure and hence there is no degrada-
tion of edges or corners in the image. This helps in maintaining
region coherence in the video frame image.

Figure 2: Uniformity metric for different regions of a soccer
video. Greater values correspond to less uniform regions.

In Section 5, we describe our approach towards automated place-
ment of object-based and global annotations based on evaluation



of regions. We use a uniformity measure based on intensity uni-
formity in aregion as one of our evaluation metrics. We use the
following measure for intensity uniformity of a subregion:
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Higher values of the uniformity measure indicate regions with less
uniformity whereas lower values indicate aregion more uniformin
terms of intensity. The equation basically describes scanning the
region in the horizontal and vertical directions. The sum of the
intensity differences between consecutive pixels is then computed
for both the directions independently. Thisisthen normalized with
respect to the size of the region. This gives information about the
gradient changes along the two directions. The maximum of the
two values is a simple measure of the uniformity of the region.

Figure 2 shows a video frame with values for the above intensity
uniformity measure overlaid on it. We see that the background re-
gions, where a crowd is present, has a higher value of the measure
since there is a lot of variation of intensity in those regions. The
foreground consisting of the playing field however has low values.

Color Uniformity

Color forms an important visual component of any video. Conse-
quently, color-uniform regions are natural candidates for placement
of annotations in the video. To segment based on color, we apply
the color image segmentation algorithm proposed by Comaniciu
and Meer [5]. Their approach is based on the widely successful
mean shift procedure, a nonparametric density gradient estimator.

As with intensity uniformity, we also define a measure for color
uniformity in aregion. The color uniformity measure is computed
by color segmenting the region and is defined as:

Si
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where k is a proportionality constant, S; is the size of the largest
uniform connected component, n is the number of distinct con-
nected components, and S isthe size of entire region.

4.2 Dormant Regions

The entire frame area in most videos can be partitioned into dis-
crete sub-areas based on the motion of pixels in the frame. Thus,
avideo generally consists of moving areas or objects, also referred
to as activeregions that attract the attention of the human eye. The
remaining regions in the frame typically exhibit considerably less
motion and can be labelled as dormantregions. A dormant region
isgenerally part of the screen estate where information can be over-
layed without distracting the viewer. We would like to mention that
adtrict classification is not aways possible, especially in presence
of camera motion. However, as a rule of thumb, regions exhibit-
ing less motion are generally better suited for annotation placement
than those with alot of object motion (exception: see definition of
clutter in Section 4.3).

We partition regions based on their motion in the frame image by
applying two primary methods. The first is a simple differential

motion analysis method. Image difference is computed based on
the pixel intensities for each frame of the video. We would like
to mention that although this method is simple and susceptible to
noise, itisaquick way of extracting the presence of active regions
in the image. To derive the characteristics of motion in the video,
we compute optical flow between subsequent frames in the video.
We apply the Horn and Schunk [7] optical flow agorithm. To de-
termine dormant motion regions in the video, we use this flow in-
formation to segment the video frame and extract regions of low
optical flow. We also enable adjustment of a threshold parameter
that can befine-tuned on ascale such that it is possible to adaptively
control the segmentation of regions based on their motion. Thus,
we can focus on specific regions being segmented on a frame-by-
frame basis.

Figure 3: Metric for dormant regions applied to fixed regions in
a soccer video. Higher numbers correspond to more “motion”
(based on frame-to-frame intensity differences).

If we have a specific region that we want to eval uate for amount of
ongoing motion, we cal cul ate the fraction of the pixelsin theregion
that are classified asmoving. Say N isthetotal number of pixelsin
the subregion and IV,,, isthe number of pixelsidentified as moving
based on the thresholding criterion.

Npm
N

Figure 3 shows the values for the motion measure for the soccer
frame from Figure 2 with motion based on intensity differencesrel-
ative to the previous frame in the video. The threshold for intensity
differences was 25 (out of arange of 255).

My, =

4.3 Noisy and Cluttered Regions

In the earlier sections, we discussed homogeneous regions where
either the intensity or the color within the region area varies only
within a small range. We also discussed regions that feature only
very small amounts of perceptible motion (even in presence of cam-
eramotion), and called them dormant regions.

In this section, we define a class of video regions that do not fall
under either of the above categories and hence cannot be extracted
by applying their individual methods. These are the regions that
exhibit considerable amount of clutter, also referred to as noise. A
typical example of a cluttered or noisy region is the presence of a



crowd or an audience in the background in a sports video. Much
of the visual data in these regions is indiscernible and carries very
little important information about the video. We identify cluttered
regions as regions with a high potential for the placement of anno-
tations.

These regions are likely non-uniform in their intensity or color.
Also, the optical flow in these regions is not homogeneous, and
hence cannot be segmented directly. We approach cluttered region
identification with the detection of crowds in the background of
sports videos in mind.

There is considerable variation of intensity in images of crowds
of people when camera motion is present. Also, random motion
existsin such crowd regions. In this scenario, we observe that clut-
tered regions exhibit an interesting property. When analyzed for
optical flow on a frame-by-frame basis, cluttered regions are com-
posed of a considerable number of optical flow vectors associated
with pixels in the region. These flow vectors are typically spread
out spatially over the entire region. This type of an optical flow
pattern arises due to the combined effect of several factors. Inde-
pendent motion among the crowd probably plays only avery small
role. More important factors are the low resolution of information
in these regions, random variation of intensity which is accentuated
due to cameramotion, and the limitations of optical flow techniques
to detect accurate flow patterns in such regions. We characterize
cluttered regions by a simple model that captures this artifact.

We compute the optical flow for each pixel in the region according
to [7]. Therange of flow magnitude over all the pixelsin the region
is then thresholded to classify pixels as static or moving. Let V;,
be the set of all pixelsthat are classified asmoving in theregion R.
We compute the mean center position of the set of pixels, V7,,.

X Xy

T = 7y - M
We then determine the standard distance deviation S,, about the
mean center of the set of pixels classified as moving.
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Szy, the standard distance deviation gives a measure of the two-
dimensional spatial dispersion of the moving points. Higher values
of Sz, indicate a greater degree of random optical flow, or clutter,
in the region. Note that the standard distance deviation measure
has ahigher likelihood of identifying clutter only if some minimum
percentage of pixels are classified as moving. Therefore, we con-
sider only the pixels that satisfy this criterion, i.e., the magnitude
of their flow vector is greater than a certain threshold (by default:
50 out of a (normalized) range of 255).

A lower value of S, indicates amore concentrated pattern of flow,
possibly signifying object motion and islesslikely to be classified
as clutter. Thissimple model for clutter can be used to distinguish
between multiple regions and provide an estimate of the regions
that are composed of a greater degree of indiscernible information
or clutter. Figure 4 shows the raw optical flow values for our soc-
cer video frame, from which clutter is derived. Our simple clutter
metric works well for the detection of cluttered backgrounds in ab-
sence of high frequency textures in large-area foreground motion.

Figure 4: Optical Flow is an important component of our
“Clutter” metric. This Image depicts the overall amount of op-
tical flow for each region, and lists the number of pixels (out of
a possible 5002) affected by optical flow in each region and the
sum of all optical flow vector magnitudes.

A more complicated approach, such as probability modeling for
clutter as proposed in [6] may be useful for the more generic case.

5. ELEMENTARY DESCRIPTORS COMBINED
In the preceeding sections, we identified and characterized three
basic Elementary Perceptual Descriptots describe regions for
annotation placement. We now consider combining these descrip-
torsto perform two specific tasks: placing object-based annotations
and global annotations. The underlying objective in both is to se-
lect aregion among multiple pre-defined subregionsin the video to
place an annotation in. The requirement is to avoid placing the an-
notation in regions where it occludes important information in the
scene. This requires that the perceptually most suitable (most uni-
form and least affected by motion, or simply very cluttered) region
in the video be selected to place the annotation. We combine the
perceptual properties of uniformity in intensity or color, motion,
and clutter to compute a placement suitability estimate for each of
the considered subregions.

5.1 Placement of Object-based Annotations
In this section, we discuss the system component that associates an-
notations with objects in the video and computes their placement.
We assume that scene objects generally exhibit motion and con-
sist of aminimum number of pixels. We enable identification and
tracking of scene objects.

To identify the object (during preprocessing), the user pauses the
video at an arbitrary frame and marks an outline around the object.
We employ the active contours approach proposed by Williams and
Shah [15] to iteratively minimize the energy function of the initial
snake (outline) until the object contour is located.

To track the object on a per-frame basis, we apply a combination
of feature tracking and optical flow techniques. The point features
include the set of snake points that lie on the object contour and
additionally chosen features selected inside the object region [10].
The Kanade-Lucas-Tomasi feature tracking algorithm [10] is used



Figure 5: Assuming tracking information for objects in the video (in our case one player and the referee were tracked semi-

automatically in video-preprocessing), we can annotate moving objects, taking into account our metrics in closeby regions and a
preference for regions opposite the object’s screen motion. Annotations are kept stable on the screen until the metric deteriorates

drastically or the distance to the object becomes too large or too small (overlap!)

to track point features and optical flow based motion detection. Ac-
curate object tracking is actually one of the limitations of our cur-
rent system. Tracking has been awell-researched topic in the com-
puter vision community and there exist numerous algorithms, each
with its pros and cons. Our focus in this paper is on the placement
of annotations. We employ the mentioned techniques with the sole
purpose of sustaining our objective of associating annotations with
objects as they move in the spatio-temporal video domain. How-
ever, adifferent, more robust tracking module can beintegrated into
the framework.

We now discuss the placement of object-based annotations and
present results from our system. Placement of object-based an-
notations is established by analyzing the elementary properties of
homogeneity and motion. Typically, for most of the moving scene
objects, scene homogeneity and object motion are thetwo most im-
portant factors that affect annotation placement. We are not likely
to find clutter in the immediate neighborhood of moving objects
(even though that is possible - such as players shot from ground
level with a distant crowd behind them). We combine homogene-
ity and motion measures such that the estimated placement region
for an object annotation maximally avoids occluding other moving
objects and is placed in the more uniform regions of the scene. Let
M denote the value of the combined measure. The combination of
the two factors is done as follows:

k
" e+ My + My, + M, x M2,

The region chosen for placement is the one for which the value of
the above expression is the highest.

Ri H Mi = max(M;c) k N ]....N

M, and M,, are uniformity and motion measures. M, is nor-
malized to the range [0..1]. Lower values of A, and M,, denote
more uniformity and lesser motion respectively. The weight k isa
positional preference weight that can be used to prioritize specific
region choices (such as the top of avideo frame) or reduce or mag-
nify the influence of the combined homogeneity/motion value when
combining this metric with others (such as with clutter, cf. Section
5.2). The N different regions that are evaluated, are selected based
on the annotation size and placement preferences. In thefirstimage
of Figure 5, six different regions are considered around the tracked
player, and an annotation is finally placed to the immediate left of
the player.

The above combination function selects aregion that is a combina-
tion of preferredly more uniform intensity and less motion. Note

that motion has a greater effect on the region selected (M2,0 <
M,, < 1), since non-occlusion of other moving objects is a more
important factor. This has the effect that aregion that is relatively
more uniform but exhibits higher object motion has a lower prob-
ability of being picked than aregion that is less homogeneous and
has alow value for the motion measure.

The sequence of images in Figure 5 shows annotation of moving
objectsin our system. The firstimage shows how the region around
the object is evaluated for the properties of uniformity and motion.
This happens for a number (30) of subsequent frames. Since we
implement a combination of object following and screen-stabilized
annotations (to minimize annotation jitter), we evaluate the initial
region over multiple frames in advance. Selecting the best place-
ment for the next 30 frames guarantees that the annotation will be
screen-stabilized for at least a second (30 fps video). The best re-
gion for that period is then selected and the annotation is placed
there (second image). This region is the screen-stabilized location
where the annotation stays until a switch is required. When the
object drifts too far from the annotation, or the value of the annota-
tion region metric drops due to other objects moving into it, or the
tracked object itself collides with the annotation we recompute the
current region around the object and select a different placement
region (third image). The annotation is then placed in that region
until the next re-positioning is required. A line pointing from the
annotation towards the object is shown if the object moves far from
the annotation, but not far enough to trigger re-positioning (fourth

image).

5.2 Placement of Global Annotations

This section describes the placement of global annotations, i.e., an-
notations that indicate some generic information about the scene
and are typically not associated with a particular scene object. We
approach this aspect by evaluating potential candidate regions for
the elementary properties of uniformity, motion, and clutter. The
candidate regions that we evaluate in the case of Figure 6 are the
four corners and the top and bottom centers of avideo frame. The
formulation however is generic enough to be applied to other de-
fined regionsin avideo. In most sports videos, annotations such as
game score, channel logo, time elapsed/left, or captions appear in
one of the six mentioned regions. Note that the regions do not all
have the same shape (even though in this case they cover the same
overall ared). Annotation material is layed out dlightly differently
for the corners and the top and bottom centers.

The placement of such annotations in TV broadcasts is amost al-
ways predetermined by convention or ahuman operator. Not rarely,



Figure 6: Placement of a global annotation (game score and time) for two different values of our weighting parametdr. In the
left image the annotation gets placed with a preference for uniform regions, in the right video, we have a preference for cluttered

background.

Table 1: Elementary descriptor values for six pre-defined regions

| Elementary Descriptor | Upper Left | Upper Middle | Upper Right | Lower Left | Lower Middle | Lower Right |

Uniformity (Mu) 3.81 4.18 6.70 0.52 0.69 0.10
Motion (Mm) 0.37 0.38 0.46 0.00 0.02 0.00
Clutter (Mc) 3.58 4.87 10.93 0.00 0.22 0.00

Table 2: Final value for the combined measure for region

[ Combined Measure | Upper Left | Upper Middle | Upper Right | Lower Left [ Lower Middle | Lower Right |

I [ 358 | 487 |

1093 |

1328 | 972 | 635 |

such annotations actually occlude part of the game action. Our
automatic placement of these annotations aims to minimize such
occlusions. We use a quantitative perceptua measure for the can-
didate regions, evaluating the regions over timeto find a global best
region (assuming that we do not want to switch the annotation to a
different place at some point in the video). Parameterized formu-
lations of the “goodness’ characteristics are useful in adapting the
results to the particular application.

We use the measures for homogeneity, motion, and clutter as de-
scribed in Section 5. In the regions that we evaluate thereis ahigh
possibility of aregion being either very homogeneous (the soccer
field / icerink) or very cluttered (background crowds). Hence, the
formulation needs to be such that if either of these are detected,
the region should have a strong value for the final measure. Sec-
ondly, in sports videos, most of the action happens in the fore-
ground. The top part of the video can therefore be preferred by
individual weights. Placement of an annotation also requires mo-
tion to be an important factor. If thereisrelatively strong motion in
aregion, for example because of a moving player crossing the re-
gion, the region should be evaluated lower than others. We employ
the following combination of elementary measures to compute a
perceptual value for each region.

The valuefor the clutter measure is computed for each candidate re-
gion in the scene. If the clutter value is greater than a user-defined
threshold (video specific), we assign that value as the final mea-
sure. If clutter is below that threshold, then we compute a measure
for the region that takes into account the uniformity and motion
in the region. Our earlier formulation for object-based annotations

captures thisidea and we apply the same for the global annotations
case;

_ k

T e+ My, + M, + M, x M2,

M, M,,and M, arevalues of the measure for uniformity, motion,
and clutter respectively. The regions are then ranked in increasing
order of the value of M, higher values indicating regions with a
greater potential for placement. In the above expression, lower val-
ues of M, indicate greater uniformity. Hence aregion with greater
degree of uniformity will have larger values for the above expres-
sion and correspondingly a higher rank if the placement order. A
higher value of the motion measure M, resultsin alesser value for
the overall measure. Hence in the case where aregion overlaps with
moving objects, the effect of uniformity of the region decreases.

Note that we can use the weighting factor k to emphasise or de-
emphasize the motion/homogeneity measure in comparison with
the regions that are characterized by clutter. A low value of k (with
aclutter threshold that identifies at least one other region as mostly
clutter) favors placement in the cluttered region, whereas a high
value of k favors homogeneity/low motion.

6. RESULTS

We presented some of our results for annotating objectsin the scene
in Section 5.1. Here we evaluate our formulation as described in
Section 5.2, discussing results for the placement of global annota-
tions. To restate, placement for global annotationsis determined as
below:



If M. > M; then
M = M.
else
_ k
T e+ My + M, + M, x M2,

The criterion for determining the value for the final measure istwo-
fold. If theestimatefor clutter in aregion isgreater than athreshold
M;, then the final value is taken as the value for clutter. |f clutter
is not a clear winner in a region, then the final value is a value
dependent on the uniformity and motion metric values as shown in
the equation above. We analyze the six pre-defined regions at the
corners and long edges of the screen. The regions are shown in
Figure 6. Table 5.2 liststhe values for each elementary measure for
each of the six regions.

From thetable, we clearly seethat clutter isdominant in the regions
at the top of the screen. The threshold value for clutter can be used
to extract regions with a high probability of clutter. The clutter
valuesfor thelower regions are clearly not comparable to the values
for regions at the top. We then apply the combined measure that
describes uniformity and motion and determine a ranking for the
regions. The values for this combined measure are shown in Table
5.2, for aclutter threshold of 3 (also shown in Figure 6, left image).

As we see in the table, the region to the lower right part of the
screen has the highest value. Perceptually, too, this region has the
most uniformity and least motion. We can thus rank regions based
on their values. By varying the threshold for clutter and the value
of the parameter k in equation 5.2, we can control the ordering of
regions and the importance attached to individual measures. For
example, if cluttered regions are important for the purpose of an
application, the clutter threshold can be lowered to extract morere-
gions that indicate the property. If on the other hand, we are inter-
ested in regions that show the least motion and have homogeneity,
the value of k& can be raised to elevate the rank of such regions.
Thus a parametric ordering of different regionsin the video is pos-
sible. The result of the ordering for the six regions is shown in
Figure 6. The right image shows promotion of cluttered regions by
lowering the value of k from 7 to 1. Now, the upper right region has
the highest “goodness’ value (10.93). We placed the annotation in
the upper middle region, however, since this region had the high-
est aggregate value for the whole duration of the video clip (shown
values are for this frame only).

7. CONCLUSIONS AND FUTURE WORK
We have presented aframework for the semi-automated placement
of annotationsin arbitrary videos. Our decision for rating regionsin
the videos is based on elementary region properties - homogeneity,
motion, and clutter. We presented a simple model for clutter that is
based on the optical flow field in such regions. We also discussed
methods to combine the elementary properties so as to evaluate an
arbitrary region in the video. These methods were applied to the
specific tasks of annotating moving objectsin the video and placing
global annotations.

Even though we based our metrics mostly on our experiences with
sportsvideos (testswith 8 different soccer videos and several hockey,
ski, and racing videos), the results transfer to other domains. Fig-
ure 1 for example shows the application of an interactive “Pop Up
Music Video” (after the popular VH-1 series). The position of an
annotation that pops up on user request isautomatically determined

using the metrics presented in this paper. Clutter has a lower im-
portance in that domain, but with the clutter threshold set high, the
relative placement indication values for the depicted grid of regions
are useful for avoiding the two performers and some non-uniform
foreground objects (e.g. table in the lower left corner). This exam-
pleillustratesthe potential of our placement techniques for interac-
tive TV applications, in which the positioning of annotations hasto
happen dynamically (e.g. on user request).

One shortcoming of our evaluation model is its reliance on cam-
eramotion for identifying clutter. If the camerais standing till in,
e.g., a soccer video, the crowd in the background is not reliably
recognized as clutter anymore. Instead, it is classified as simply
an inhomogeneous region, and therefore disregarded as a potential
candidate for annotation placement. We intend to extend our clut-
ter model so it is able to recognize cluttered regions even in the
absence of camera motion. We would like to develop fast nonpara-
metric segmentation algorithms that work with the different met-
rics we design and alow for arbitrarily shaped (non-rectangular)
placement regions. Also, we are considering additional elementary
descriptors, such as for example uniform texture.
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