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ABSTRACT
A novel approach for similarity search on the protein struc-
ture databases is proposed. PADS (Protein Alignment by
Directional shape Signatures) incorporates the three dimen-
sional coordinates of the main atoms of each amino acid and
extracts a geometrical shape signature along with the direc-
tion of the given amino acid. As a result, each protein is pre-
sented by a series of feature vectors representing local geom-
etry, shape, direction, and secondary structure assignment
of its amino acid constituents. Furthermore, a residue-to-
residue distance matrix is calculated and is incorporated into
a local alignment dynamic programming algorithm to find the
similar portions of two given proteins and finally a sequence
alignment step is used as the last filtration step. The opti-
mal superimposition of the detected similar regions is used
to assess the quality of the results. The proposed algorithm
is fast and accurate and hence could be used for the anal-
ysis of large protein structure similarity. The method has
been tested and compared with the results from CE, DALI,
and CTSS using a representative sample of PDB structures.
Several new structures not detected by other methods are de-
tected.
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1. INTRODUCTION
Protein structure similarity has been extensively used to

highlight the similarities and differences among related/similar
(homologous) three dimensional protein structures. The
corresponding applications include drug discovery, phylo-
genetic analysis, and protein classification which have at-
tracted tremendous attention and have been broadly stud-
ied within the past decade. The proteins have a primary se-
quence, which is an ordered sequence of amino acid molecules.
However, they appear to conform into a three dimensional
shape, fold, which is highly conserved in the protein evolu-
tion. The fold of a protein highly indicates its functionality
and the potential interactions with other protein structures.
Meanwhile, the protein sequences as well as their structures
may change over time due to mutations, insertions, and dele-
tions during evolution or natural selection. Extensive se-
quence similarity implies descent from a common ancestral
gene, and the occurrence of many topologically superimpos-
able substructures provides suggestive evidence of evolution-
ary relationship [6]. This is because the genetic mechanisms
rarely produce topological permutations. For two given pro-
teins, if the sequences are similar then the evolutionary rela-
tionship is apparent. However the three dimensional protein
structures, due to structural, conformational and functional
restraints placed on them, are much more resilient to muta-
tions than the protein sequences. As a result, the structural
similarity among various protein fragments may be used to
understand the differences in the observed functionalities
and potentially their evolutionary relationships. There are
two main problems in protein structure similarity:

• Complexity. The problem of structure comparison is
NP-hard and there is no exact solution to the protein
structure alignment [7]. A handful of heuristics [2, 3,
4, 6, 10, 11, 13, 14, 19] have been proposed in which,
for the best result, the similarity might need to be
evaluated using a series of techniques in conjunction.
However, none of the proposed methods can guaran-
tee optimality within any given precision! There are
always cases where one heuristic fails to detect, while
some of the others succeed.



Figure 1: Protein Data Bank (PDB) content growth.

• Curse of Dimensionality. The number of discovered
protein structures has been growing very rapidly. Cur-
rently1 the Protein Data Bank (PDB)[1] contains 25,551
protein structures. The growth in the content of PDB
demands faster and more accurate tools for structure
similarity and the classification of the known struc-
tures. Figure 1 demonstrates the growth of PDB in
the past decades.

Let’s start our discussion by providing the definition of
the terms used throughout the paper:

• atom: Any of the Nitrogen(N), Oxygen(O), Hydro-
gen(H), or Carbon(C) atoms found in protein chains.
Carbon atoms that are located on the backbone (core)
of the protein chains are called Cα, and those on the
side chains of the protein are called Cβ. The atoms
that are located closer to the backbone are much more
resilient to topological and mutational changes, com-
pared to those atoms that are further away from the
backbone. When approximating different atom combi-
nations, some molecules may be replaced by an atom.
For instance, the NH+

3 and CO− molecules may be ap-
proximated by just considering the coordinates of their
corresponding N and C atoms.

• amino acid (residue): There exist 20 different amino
acid molecules in nature (Alanine, Glycine, Serine, . . .)
which are the alphabets of proteins. Each amino acid
is labeled by a character (A, B, F, T, ...) and is made
of a number of atoms. All the amino acids have the
main N, O, C, and Cα atoms, however that is not true
of other atoms like Cβ (e.g., Glycine does not have
Cβ). In this paper, the terms amino acid and residues
are used interchangeably.

1as of May 18th, 2004.

• protein: A protein is an ordered sequence of amino
acids. Each amino acid and as a result each protein
chain takes a three-dimensional shape in nature (i.e.
in solvents, reactions, . . .). Given two proteins, they
may be compared by just looking through their amino
acid consitituent sequences or further inspecting their
three-dimensional conformations. Each protein may
be either represented by the sequence of its amino acid
constituents or the actual three-dimensional conforma-
tion that it takes. The topological shape (conforma-
tion) of the protein is one of the very main key factors
in defining its functionalities. Different amino acids
having different atoms may take similar conformations
which facilitates the classification of amino acids ( and
as a result: proteins) into various classes based on their
conformational and chemical properties.

In this paper, we consider both the topological shapes
and the corresponding amino acid sequences of the pro-
tein chains for more efficient similarity comparison. The
main goal of protein structure similarity is to superimpose
two proteins over the maximum number of residues(amino
acids) with a minimal distance among their corresponding
matched atoms. These methods typically employ the three
dimensional coordinates of the Cα atoms of the protein back-
bone and sometimes, in addition, the side chain comprising
Cβ atoms but exclude the other amino acid atoms when
making global structural comparisons. When superimpos-
ing two protein structures, side chain conformations (coor-
dinates of O, C, Cβ , N, H atoms) may vary widely between
the matched residues however the Cα atoms of the backbone
trace and the secondary structure elements, α-helices and
β-sheets, are usually well conserved. However, there are sit-
uations where the local comparison of the side chain atoms
can be of great significance, for instance, in the comparison
of residues lining an active or binding site especially when



different ligands are bound to the same or similar struc-
tures [8]. As a result, depending on what types of questions
one wishes to answer, when comparing protein structures,
the choice of which atom coordinates to consider can be ex-
tremely crucial.

Distances between the atom coordinates or residual fea-
ture vectors or molecular properties are often used to com-
pare protein structures. These molecular properties or re-
lationships among the individual residues are considered ei-
ther separately or in combination with each other as a basis
for structural comparison. Some of these features include:
physical properties, local conformations, distance from grav-
ity center, position in space, global/local direction in space,
side chain orientation, and secondary structure type. First,
each amino acid of the target and query proteins are repre-
sented by a feature vector, and hence each protein is mapped
into an ordered sequence of feature vectors. Comparison of
the features of the query protein and a target protein is
used as a basis to represent the distance/similarity between
their corresponding matched amino acid residues or regions
of interest. Dynamic programming [15, 21] may be used to
discover the similarities/differences between any two protein
structures using any number and combination of features
of individual residues or regional segments. Hence, a local
alignment algorithm based on the structural features is de-
ployed to give the best sequential alignment of the given pro-
tein structures. Subsequently, the structures should be su-
perimposed according to the results of the alignment. How-
ever, a single global alignment of the given protein structures
might be meaningless while dissimilar regions may affect the
overall superimposition drastically. Hence, each domain of
the aligned protein structures should be superimposed in-
dividually and independently to explore local similarities.
These domains are mainly identified from the output of the
structural local alignment. As a result, each of the similar
regions of the two proteins are superimposed on each other,
independent of the other similar regions. The choice of the
features, used for protein 3-D comparison, rely upon the
type of questions that are to be answered.

The rest of the paper is organized as follows: Section 2,
discusses the background and related work. Section 3 intro-
duces the terminology and formulation of the problem and
the proposed technique. Section 4 demonstrates an empiri-
cal performance analysis and the simulation results followed
by Section 5 which concludes the work.

2. BACKGROUND & RELATED WORK
Given two protein chains P = p1 − p2 − ... − pm and

Q = q1 −q2− ...−qn, there are a variety of heuristics to find
optimal structural similarities (global or local) among them.
The techniques map the entire or the best matching regions
of the given structures to each other. These algorithms may
be classified into three main categories based on their choice
of feature vectors and the detail level: i) algorithms incorpo-
rating only Cα atom coordinates as representatives of amino
acid residues and inspecting their inter-atomic distances [10,
11, 19], ii) algorithms incorporating Secondary Structure
Elements (SSE) to find initial alignments and filter out non-
desired segments [2, 11, 13, 14, 20], and iii) algorithms using
geometric hashing as an indexing scheme to retrieve similar
structural alignments [18].

The methods may also be classified based on their choice
of heuristics used to align one structure against the other in
order to determine the equivalent pairs. The term equivalent
pairs is defined as the pairs of atoms (or fragments) from the
given protein chains whose distance is less than a threshold.
The threshold or cut-off value is either a contextual char-
acteristic of the employed method, or provided by the user,
or directly learned from the input dataset. The context and
the domain properties of the applied method determines the
choice of the distance function and the cut-off thresholds,
which explains why different structure similarity methods
may return non-identical, though mostly coherent, results.
There also exist methods which employ a combination of the
listed techniques.

• Dynamic programming methods [3, 15, 19, 21], con-
struct an m × n distance or score matrix M where
each cell of the matrix, Mi,j , corresponds to the dis-
tance or score of matching residue pi of protein A, with
residue qj of protein B. Should distance be used, cells
are filled with the score between the corresponding fea-
ture vectors (consisting of Cα atom coordinates, side
chain atom coordinates, secondary structure assign-
ments, or a combination of other residual properties)
of pi and qj . The score is inversely proportional to
the designated distance value. Starting from the up-
per left corner of the matrix, M1,1, the algorithm seeks
the optimal segments of one protein against the other,
where optimality is defined as the longest segments
with the highest score, or lowest distance value. Fur-
ther heuristics might be applied, i) to merge some of
these segments, ii) to run some variations of dynamic
programming [15, 21] as a refinement step, and/or iii)
to prune the non-desired (below cut-off threshold) seg-
ments.

• Bipartite and Clique Detection methods [4, 10, 11],
represent each structure as a graph with its nodes be-
ing Cα atom coordinates or secondary structure ele-
ments or a combination of some other molecular prop-
erties. Each edge of the graph is labeled with the dis-
tance between the corresponding nodes where distance
is defined as the distance between their correspond-
ing feature vectors. Furthermore, they find a maximal
common subgraph whose nodes are very close to each
other, using a tree search algorithm (e.g., depth-first or
breath-first search). Each vertex in the subgraph cor-
responds to a unique vertex in each of the structures.
Some of these methods include a further step, namely
finding a maximal bipartite graph to map the vertices
of one structure to the other. The nodes in the sub-
graph are considered equivalent among the structures.
Finally the equivalent vertices or their corresponding
atoms are directly superimposed. These superimposi-
tion may be further merged for longer matches.

• Match list methods [2, 4, 10], construct two lists, the
first one includes all pairs of atom coordinates (e.g.,
Cα, side chain, or other properties) of protein A with
their counterparts in protein B whose distance is below
a certain threshold (e.g., 3.0 Å ). Similarly the second
list holds all the similar atom pairs of protein B to pro-
tein A with distance below a threshold. The method
chooses the most similar pairs in the list, and merges



them to extend the match pairs to a contiguous se-
quence of existing match pairs of longer length, while
filtering out non-significant matches. Furthermore, the
matching pairs are sorted based on their distance and
length, and all the matched pairs whose length is be-
low a certain threshold T (e.g., T = 3 results in tri-
angular extension) are pruned from further investiga-
tion. For instance (ai−1, bj+1), (ai, bj) and (ai+1, bj−1)
may be merged to achieve an extended triangular pair
[(ai−1, bj+1), (ai+1, bj−1)].

There are also a variety of optimization techniques to dis-
cover the relationship among the features of one structure
against the other. These methods include, Monte Carlo op-
timization, Double dynamic programming, and Genetic al-
gorithms. One important question yet to be answered is
how to assess the quality of the discovered similar patterns.
The final alignment distance (or alignment score) may be
used to evaluate the quality of the matches within a fam-
ily of proteins to infer evolutionary relationships. However
different methods have different notions of similarity score
or distance function. These differences make the alignment
score not a tangible criterion for comparison. Some of the
most frequently used indicators of the quality of a struc-
tural comparison include the Root Mean Square Deviation
(RMSD) and the extent of the match which is the number
of aligned residues. These factors along with the alignment
score may be used to asses the quality of the alignment. We
now describe some of the most popular protein alignment
methods in the literature namely DALI [10, 11], CE [19],
VAST [6, 14], CTSS [3], and PSI [4]:

DALI [10, 11] calculates a distance matrix (DA) for any
given protein A. Each cell DA

i,j contains the intermolecular

distance between the ith and jth Cα atom coordinates of A.
Given two protein chains A and B, DALI seeks the simi-
lar regions, denoted by contact maps, between DA and DB

distance matrices and finds the optimal clique on the con-
tact maps obtained from the structures. DALI uses a Monte
Carlo optimization to search the best 40,000 matches. The
matches are further extended by combining those contact
maps which are common in both distance matrices. Holm
and Sander have further improved this technique by incorpo-
rating a preprocessing filtration step using secondary struc-
ture elements [11]. DALI interactive database search may
respond to a query in 5-10 minutes or 1-2 hours depending
on whether the query protein structure has a sequence ho-
mologue in the database or not [3]. Considering the extent
and fast growth of the PDB protein database, response time
plays an important role in providing an effective search.

VAST structure similarity method [14] performs a hierar-
chical alignment. Given two proteins A and B, it constructs
a bipartite graph on the SSE pairs of protein A against the
SSE pairs of protein B, and an edge is inserted between every
two pairs of vertices (from A and B) having a similarity more
than a cut-off value. An initial SSE alignment is found by
applying a maximal clique algorithm on the bipartite graph,
and is further extended to Cα atom coordinates incorporat-
ing Gibbs sampling. There are cases2 where VAST produces
a lower RMSD alignment with fewer matched residues while

2The alternative alignments between T4 glutaredoxin (PDB
code 1ABA) and Escherichia coli disulfide bond formation
protein (PDB code 1DSB-A).

DALI produces a longer alignment for the cost of larger
RMSD, although both of the techniques use Monte Carlo
refinement. It is unclear whether either is better than the
other. Driven by these cases, the VAST structure simi-
larity technique might be suitable for the identification of
highly conserved core elements of a protein family (e.g., for
a threading experiment), while the DALI structure similar-
ity technique might be useful for the identification of a larger
set of similar sites (e.g., in homology modeling) [6].

PSI [4] extracts feature vectors corresponding to triplet
SSEs and builds an R∗-tree index structure on the feature
space using Minimum Bounding Rectangles (MBR). PSI
builds a Triplet Pair Graph (TPG) on the similar triplet
pairs of query and target proteins and runs Depth-First
Search (DFS) on the TPG graph to find the Largest Weight
Connected Component (LWCC). The LWCC corresponds
to the most similar subset of SSEs of query and target pro-
teins. PSI then constructs a bipartite graph on the subsets
extracted from the LWCC, with the edges indicating the
quality of an alignment of the corresponding SSE pairs.

CTSS [3] calculates a spline fitting to approximate the
positions of the Cα atoms and computes, for each residue,
the curvature and torsion values at the Cα positions along
the spline. It further runs a dynamic programming local
alignment algorithm [21] on the curvature-torsion feature
vectors and superimposes the corresponding residues. How-
ever the detected best local alignment is not necessarily the
most optimal structural alignment and the algorithm needs
to perform locally sensitive superimposition to find the best
regions. This is because the shape signatures used in CTSS
do not capture the locality of the amino acids.

Finally, CE [19] performs a combinatorial extension of an
alignment path defined by Aligned Fragment Pairs (AFP)
instead of dynamic programming and Monte Carlo opti-
mization. AFPs are based on local geometry rather than
global features such as orientation of SSEs or overall topol-
ogy. Continuous alignment paths which are made of the
combinations of AFPs are selectively extended for a long
optimal alignments.

The following section introduces the theoretical and for-
mulation of the proposed protein structure similarity tech-
nique.

3. THE PADS METHOD
PADS is a novel method for fast and accurate protein

structure similarity using amino acid directional shape sig-
natures. The algorithm not only exploits the topological
properties of the amino acid and protein structures, but also
incorporates the SSE assignments of the amino acids into
account. PADS starts by identifying the geometrical prop-
erties of each amino acid of the given proteins along with
their directions and their SSE assignments. As a result,
each protein structure is represented by a series of direc-
tional shape signature feature vectors, one for each amino
acid. In the next step, a score matrix is constructed on
the corresponding feature vectors. A local structural align-
ment [21] based on shape, direction and biological features,
detects the optimal local matching regions among the two
proteins. For each of the locally matched regions (pertain-
ing to length and score constraints), a sequence alignment



is performed to facilitate a visualization of the sequence
similarities. Thereafter, the best locally matched regions
are topologically superimposed. The corresponding RMSD
value, length of the aligned fragments, and sequence align-
ment score are reported for the assessment of the quality of
the match. A linear time least-square solution to superim-
pose the ordered sets of protein feature vectors is applied
(Section 3.4). We sort the results based on their extent(L)
and RMSD value and report a list of top alignments with
the best scores ϕ, where ϕ = L/RMSD.

3.1 Shape signature extraction
Consider a protein structure P made of an ordered set of

amino acids [a1, ..., aN ], where each ai is a vector of three-
dimensional coordinates of atoms such as Cα, C, O, N, H
or other side chain atoms. Hence each amino acid residue
constitutes a 3D polyhedron in 3D Euclidean space. For
instance, if 6 significant atoms (as in Figure 2-a) of ai are
considered, then ai would be represented by a vector of 6
three-dimensional vectors, one for the position of each of its
constituent atoms.

Definition 1. Let S = (v1, . . . , vn) be a polyhedron amino
acid in 3D Euclidean space. Let vi denote an atom of S posi-
tioned at vi = [vix, viy, viz] with molar mass µi. The Center

of Mass3 of S is a multidimensional point, C�(S), and is
defined as

C�(S) = [CS
�x, CS

�y, CS
�z], where

CS
�x =

∑n
i=1

µivix
∑

n
i=1

µi
, CS

�y =
∑n

i=1
µiviy

∑

n
i=1

µi
, and CS

�z =
∑n

i=1
µiviz

∑

n
i=1

µi
.

For instance, let S = (N, Cα) be an amino acid made
of only two atoms, N (Nitrogen: molar mass 14.01 g/mol)
and Cα (Carbon: : molar mass 12.01 g/mol) positioned at
locations [10, 4, 12] and [2, 6, 1], respectively. The center
of mass of S is a 3D point and is calculated as C�(S) =

[ (10×12.01)+(2×14.01)
12.01+14.01

, (4×12.01)+(6×14.01)
12.01+14.01

, (12×12.01)+(1×14.01)
12.01+14.01

]

= [5.7, 5.08, 6.08].

Definition 2. Let S = (v1, . . . , vn) be the polyhedron
amino acid with center of mass C�(S). Shape Signature

of S, σ(S) = (r1, . . . , rn), is defined as the distance between
each of the atoms of S to C�(S):

ri =
√

(vix − CS
�x)2 + (viy − CS

�y)2 + (viz − CS
�z)

2.

For instance, let S be the same amino acid as in the pre-
vious example with C�(S) = [5.7, 5.08, 6.08]. The shape
signature of S is σ(S) = (r1, r2) where

r1 =
√

(10 − 5.7)2 + (4 − 5.08)2 + (12 − 6.08)2 = 7.4 and

r2 =
√

(2 − 5.7)2 + (6 − 5.08)2 + (1 − 6.08)2 = 6.35.

The localized shape signature as described above captures
the general shape of each amino acid and is invariant to ro-
tation and displacement. The invariance property facilitates
the matching of the amino acids solely based on their shape
and topological properties. This is a particularly helpful
summarization since most protein structures in PDB belong
to different coordinate systems. Being able to capture the

3The notations C�(S) and CM are used interchangeably to
denote the center of mass.

local shape of the amino acids and the global shape of a
protein (invariant to rotation and displacement) facilitates
the initial step of protein structure similarity. Meanwhile,
in addition to shape similarity, the location sensitive con-
formation of the amino acids (and as a result protein shape
structure) should also be taken into account. The next defi-
nition captures the conformational property and orientation
of the amino acid structures, by augmenting the direction
of each amino acid molecule onto its corresponding shape
signature.

Definition 3. Let S = (v1, . . . , vn) be a polyhedron amino
acid with the center of mass C�. Let vα (for some 0 < α ≤
n) denote the coordinates of Cα atom of S. The Direction of

S,
−−−→
D(S), is defined as the direction of the vector connecting

C� to vα, or in other words
−−−→
D(S) =

−−−→
C�vα.

Figure 2 depicts the steps involved in extracting the di-
rectional shape signature. We excluded Cβ from the shape
signature because not all amino acids possess Cβ (Glycine,
GLY). The Hydrogen(H) side chain atom was also discarded
for the same reason, and due to its dramatic topological vari-
ances in different amino acids.

On the other hand, a good shape signature should not
only capture the topological and shape properties but also
biologically motivated features. As a result, PADS incorpo-
rates the secondary structure assignment of each amino acid
for a more meaningful and efficient structure comparison.
Let P be a protein structure with amino acids [p1, . . . , pN ]
where each pi is a list of the three-dimensional coordinates
of atoms of the ith residue. Different amino acids have dif-
ferent, though unique, number of atoms. For instance, Ser-
ine is an amino acid residue which has only 14 atoms while
Arginine has 27 atoms. Meanwhile PADS incorporates the
distances from C� to the coordinates of Cα, Nitrogen(N)
of the amino group, Carbon(C) and uncharged Oxygen(O)
of the carboxyl group, which are common among all amino
acids and are topologically more resilient than other side
chain atoms.

Definition 4. Let P = [p1, . . . , pN ] be a protein struc-
ture where each pi represents the list of coordinates of atoms
that constitute the ith amino acid of P . The Directional

shape signature of P, P ϑ, is defined as the feature vector
P ϑ = [pϑ

1 , . . . , pϑ
N ] where each pϑ

j is a feature vector

( |
−−−→
C�N |, |

−−−−→
C�Cα|, |

−−−→
C�C|, |

−−−→
C�O|,

−−−−→
C�Cα, SSEj ),

comprising the distances from the center of mass of the jth

amino acid to its N, Cα, C and O atoms(Def. 2) along
with its corresponding direction(Def. 3), and its secondary
structure assignment.

3.2 Structural local alignment
This section introduces the structural alignment proce-

dure to be performed on the extracted directional shape
signatures of the corresponding proteins. Structural local
alignment starts by constructing a score matrix, S, on the
directional shape signatures of the given proteins. This score
matrix is used to structurally align the corresponding signa-
tures in the alignment step [21].

Let P and Q be two protein structures with their corre-
sponding directional shape signatures P ϑ = [pϑ

1 , . . . , pϑ
N ] and
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Figure 2: Shape signature extraction process. (a)
An amino acid molecule consisted of N(NH+

3 ), Cα,
C(CO−), O, R(Cβ), and H atoms. (b) The same
amino acid visualized as a three-dimensional poly-
hedron with its vertices being the coordinates of the
corresponding atoms, after removing the bonds. (c)
Directional Shape Signature Extraction: The dis-
tances between the center of mass CM(or C�) and
all the atoms are calculated (r1, r2, . . .) along with
the direction of the amino acid as:−−−−→

CMCα.

Qϑ = [qϑ
1 , . . . , qϑ

M ], where pϑ
i = [rp

i,1, r
p
i,2, r

p
i,3, r

p
i,4,

−→
vp

i , SSEp
i ],

and qϑ
j = [rq

j,1, r
q
j,2, r

q
j,3, r

q
j,4,

−→
vq

j , SSEq
j ]. The entry Si,j , of

the score matrix S, denotes the symmetric normalized4 score
of replacing the pϑ

i residue by the qϑ
j residue and is defined

Si,j =
4

∑

k=1

(rp
i,k − rq

j,k)−2 + cos(
−→
vp

i ,
−→
vq

j )−1 + SSEPQ
i,j ,

where cos(~U, ~V ) denotes the cosine of the angle between

vectors ~U and ~V , and

SSEPQ
i,j =

{

+G SSEp
i = SSEq

j

−G SSEp
i 6= SSEq

j .

The value of the constant G is empirically chosen to be 10,
which is equal to half of the range of the normalized score
values. The constant G is used to favor the residue pairs
that belong to similar SSEs, and to penalize those that be-
long to different SSEs. This constant is a tuning parameter
of PADS and the user may choose to penalize the residues
which have different SSE assignments with a different value
for G as desired. Once the calculation of the score matrix
is completed, a dynamic programming alignment algorithm
is used to align the given structures. We have deployed
the local alignment algorithm [21] using the affine cost gap
model with opening and extending gap penalty of -5 and -2,
respectively.

Note that, PADS performs two consecutive alignment pro-
cedures, structural alignment and sequence alignment. Struc-
tural alignment aligns the corresponding proteins based on
their directional shape signatures to find the best structurally-
matched-regions. Thereafter, the sequence alignment is per-
formed on the amino acid sequences of the structurally-
matched-regions for further refinement of the alignment,
which is described in the next section.

3.3 Sequence alignment
For each of the discovered locally matched regions sat-

isfying length and score constraints5, a sequence alignment
[15] is performed to facilitate the visualization of the se-
quence similarities and further refinement. We deployed the
PAM250 [17] scoring matrix for the sequence alignment and
incorporated gap penalty of -10 as is usually the case for the
global sequence alignment. The structural alignment fol-
lowed by sequence alignment provides a good picture of the
local similarities. The aligned residue coordinates passed
through structural and sequence alignment steps are then
passed to the superimposition stage. The next section de-
scribes the details of the superimposition process.

3.4 Optimal Superimposition
The Root Mean Square Deviation (RMSD) is a frequently

used measure to assess the goodness of a topological match
among two sets of coordinates. The RMSD value indi-
cates the average level of deviations among the matched
or aligned residues. Given two ordered sets of residues, a
smaller RMSD indicates a better topological alignment. Af-
ter the proteins are superimposed on each other, only those
4Scores are normalized on the range [1 . . . 20] for all i, j such
that 0 < Si,j ≤ 20 to be similar to that of PAM [5] score
matrix and CTSS.
5Length longer than 10 and Score above the 60% of the
overall average score.



topological matches which are within a certain threshold (e.g
3.0 Å) contribute to the overall RMSD value. Alternatively,
all the topologically matched residues may contribute to the
overall RMSD value. In that case, a longer match would be
found for the cost of a larger RMSD.

Let P M and QM denote the set of matched residues of pro-
tein chains P and Q, respectively, for P M = {p1, . . . , pN}
and QM = {q1, . . . , qN} where |P | ≥ N and |Q| ≥ N . The
RMSD value corresponds to the total distance among the
topologically equivalent residues once they have been opti-
mally superimposed (after the necessary translation/translocation
and rotation) on each other, as follows [8, 12]:

• Calculating the translation vector :

1. Find the coordinate center6 for each set of matched
residues P M and QM from the two structures, as

C(P ) =

N
∑

i=1

pM
i and C(Q) =

N
∑

i=1

qM
i .

2. Translate each structure P and Q such that their
coordinate centers are located at the origin of the
coordinate system: P τ = τ (P ) = P − C(P ) and
Qτ = τ (Q) = Q−C(Q). Hence P τ and Qτ repre-
sent the translated version of protein P and pro-
tein Q respectively.

• Calculating the rotation matrix (Kearsley method [12]):

1. Add a selected combination of sums and differ-
ences7 of the matched pair coordinates and gen-
erate a symmetric 4×4 matrix M.

2. Extract the eigenvalues and eigenvectors of M
through diagonalization. Select the lowest eigen-
value and use its corresponding eigenvector to cal-
culate the 3×3 rotation matrix <.

3. Multiply the translated version of the second struc-
ture by the rotation matrix to produce the super-
imposition of protein Q over protein P, as Q<τ =
<× Qτ .

Finally, calculate the square root of the sum of the Eu-
clidean distance(`2) between each pair of matched residues
of P τ and Q<τ , divided by the number of matched pairs N,
hence

RMSD =

√

√

√

√

N
∑

i=1

`2(pτ
i , q<τ

i ).

Why did we need to perform the superimposition? The de-
tected best local alignment passed from the structural align-
ment step is not necessarily the most optimal alignment be-
cause the directional shape signatures do not include any in-
formation on the proximity/locality of the amino acids (i.e.,
Center of mass (C�) was not taken as part of the directional

6The coordinate center corresponds to the center of mass of
each set of matched residues without taking the masses into
account ( µi = 1, for all i ).
7For more details refer to [8, 12].

shape signature). Including locality features (e.g., center
of mass) in the shape signature would not have been very
meaningful because the proteins have different coordinate
frames. Should the location information be included in the
shape signature, then two very similar proteins with differ-
ent coordinate frames may be reported non-similar because
of their location differences. Additionally, the detected pat-
terns may have very poor RMSD if the gaps produced by
the structural alignment are in turn and twist regions of
the protein structures. The sequence alignment step aims
at eliminating those regions from affecting the superimpo-
sition process. After the local regions are passed to the
superimposition step, the given proteins are translocated
to a common coordinate frame. Once the structures are
in a common coordinate system, they are optimally super-
imposed on each other (with the necessary displacements
and rotations) achieving the minimal RMSD. Finally, after
performing the superimposition, the RMSD values and the
length of the best matched regions are reported. Figure 3
provides a summary of PADS procedure.

4. EXPERIMENTAL RESULTS
We implemented our proposed technique using Java 1.4.1

and ran our experiments on an Intel Xeon 2.4 GHz with 1GB
of main memory. Our experiments incorporated a represen-
tative of PDB database using the PDBSELECT8 method [9]
which does not contain any homologue protein pairs. The
PDBSELECT database is an archive of 2216 non-homologue
protein chains with a total number of 352855 residues (as of
December 2003). Each of the protein pairs from the PDBS-
ELECT protein database has less than 25% sequence iden-
tity (non-homologue). As a result, protein pairs with low
sequence similarity may not be efficiently compared solely
based on a sequence-level similarity procedure and there-
fore introduce a challenging problem where the combination
of structure and sequence alignment may be very helpful.
As mentioned before, PADS incorporates a combination of
structural and sequence alignment for efficient protein sim-
ilarity comparison.

The performance comparison of PADS with other struc-
tural alignment methods is not always possible. One of the
main challenges is the running time comparison of the pro-
posed technique against current existing heuristics. This is
mainly because most of the available techniques are pro-
vided as web services in which the results are notified back
to the user through an e-mail. As a result, the time interval
between submitting a query and obtaining the results does
not truly reflect the running time of the applied method.
There are many factors that may affect the running time.
The servers may include pre-evaluated results for the known
structures, and hence the results may be returned very fast.
They may be using parallel clusters or various hardware se-
tups for faster computation of the results. The DALI [10]
interactive database search9 may report the results back in
5 to 10 minutes or 1 to 2 hours depending on whether the
query protein has a homologue in the database [3]. Mean-
while the most important obstacle is the fact that various
structural alignment techniques may lead to non-identical

8For more information please refer to http://homepages.fh-
giessen.de/ hg12640/pdbselect/
9http://www.embl-ebi.ac.uk/dali/



Input: Protein chains P = [p1, . . . , pN ] and
Q = [q1, . . . , qM ], where each pi and qj represent
the list of coordinates of atoms that constitute the ith

and jth amino acids of P and Q, respectively.

Output: Pairs of aligned/matched fragments of P
and Q, with their corresponding RMSD and fragment
length.
————————————————————————-

1. Directional Shape Signature Extraction:

• Calculate the center of mass for each amino
acid constituent pi and qj , as C�(pi) and
C�(qj), for 1 ≤ i ≤ N and 1 ≤ j ≤ M

• Calculate the distances between each of the
atoms of pi and qj to their corresponding center
of mass C�(pi) and C�(qj) respectively

• Extract the direction of each amino acid
molecule of pi and qj

• Inspect and include the SSE assignment of each
amino acid in the shape signature.

2. Structural local alignment

• Calculate the score matrix for P and Q protein
chains as described in section 3.2

• Run the dynamic programming on the calcu-
lated score matrix to find the best structurally-
matched/aligned fragment pairs of P and Q

• Report the fragment pairs to the next step.

3. Sequence alignment

• Run the global sequence alignment on the se-
quences of the structurally-matched fragment
pairs

• Remove the gapped regions of the alignment
from the fragments, and report the non-gapped
subfragments of the to the next step.

4. Optimal Superimposition

• Find the best rotation and translation matrix
to superimpose the matched fragment pairs
(non-gapped)

• Report the RMSD and the length of the
matched fragment pairs in the sorted order.

Figure 3: PADS structure similarity procedure.

results which makes the quality assessment an even harder
problem. There are cases when the regions found very simi-
lar by one technique are not validated by other techniques10.
Since there is no exact solution to the structural alignment
problem, a combination of various techniques along with
domain expert is needed to evaluate and ascertain all the
similarities.

In the experiments, we discovered motifs not reported
by other alignment tools such as CE [19], DALI [10], and
CTSS [3]. The aligned fragment pairs are reported as a
pair of fragments (r1, r2) where r1 and r2 denote the loca-
tion of the matched fragments in the first and second pro-
tein chains, respectively. One such motif discovered by our
technique was between 1AKT: (made of 147 residues and
1108 atoms) and 1CRP: (made of 166 residues and 2619
atoms) protein chains (having 8.9% sequence identity) with
RMSD 0.58 Å. Figure 4 shows the results of structural align-
ments on 1AKT: and 1CRP: protein chains using CE11 and
PADS, respectively. These results are reported after finding
the best similar regions (fragments) followed by the opti-
mal superimposition of the structures of the corresponding
matched fragments. However, the results are shown at the
sequence level for the sake of visualization. In figure 4(b),
the fragments reported by PADS are demonstrated using the
output of CE as the base for better visual comparison of the
results. The local fragments are identified by three numbers
in the R(L,ϕ) format, where R, L and ϕ = L

R
denote RMSD,

length and the fragment score of the aligned (matched) frag-
ments, respectively. The fragment score denotes the quality
of the matched fragments and the best aligned fragment is
the one with the highest fragment score. PADS reports the
aligned fragment pairs sorted by their corresponding frag-
ment scores in decreasing order.

Table 1 shows a detailed comparison of PADS against
DALI12 [10] on the very same pair of protein chains. Each
column pair (1AKT: , 1CRP: ) indicates the location of the
aligned fragments in the corresponding protein chains. The
correspondence of the detected aligned fragments of PADS
and DALI are noted in rows and labeled with ϕ to indi-
cate the quality of the aligned fragments and their corre-
sponding ranks as reported by PADS technique. There are
some matched fragments reported by PADS, which do not
have counterparts in the results returned by DALI. However,
it is interesting to note that, the fragments matched using
PADS with higher ϕ tend to be those fragment pairs having
a higher level of similarity to their corresponding aligned
fragments as reported by DALI. As a result, highly-ranked
matched fragment pairs reported by PADS, have very sim-
ilar counterparts in the results reported by DALI. We use
DALI to validate the quality of our results, while DALI is
designed with very insightful domain expertise and is ex-
pected to return biologically meaningful results. PADS re-
sults are very similar, though not identical, to that of DALI
and in some cases, the fragment pairs reported by PADS are

10Please refer to Table VI in [19]
11The results of CE were obtained by submitting the corre-
sponding protein chains to CE’s interactive web server at
http://cl.sdsc.edu/ce.html

12The results of DALI were obtained by submitting the
corresponding protein chains to DALI’s interactive web
server hosted by European Bioinformatics Institute at
http://www.ebi.ac.uk/dali/



Table 1: Comparison of detected similar regions between 1AKT: and 1CRP: protein chains using PADS and
DALI methods, where ϕ = Fragment Length

RMSD
ranks the aligned fragment pairs in PADS.

PADS DALI

Rank ϕ Fragment size RMSD (Å) 1AKT: 1CRP: 1AKT: 1CRP:

– [ 1–8 ] [ 4–11 ]
2 11.66 14 1.2 [ 10–23 ] [ 12–35 ] [ 12–15 ] [ 12–15 ]

[ 18–23 ] [ 16–21 ]
– [ 26-29 ] [ 41–44 ]
5 3.7 20 5.4 [ 35–54 ] [ 51–70 ] [ 30–36 ] [ 53–59 ]

[ 43–58 ] [ 69–84 ]
4 6.66 28 4.2 [ 75–101 ] [ 98–125 ] [ 65–81 ] [ 88–104 ]

[ 83–92 ] [ 107–116 ]
[ 93–100 ] [ 118–125 ]

3 7.64 13 1.7 [ 108–121 ] [ 130–142 ] [ 104–112 ] [ 130–138 ]
[ 121–124 ] [ 140–143 ]

– [ 129–133 ] [ 146–150 ]
1 29.31 17 0.58 [ 131–147 ] [ 149–165 ] [ 135–147 ] [ 151–163 ]

a combination of some consecutive fragment pair outputs of
DALI. Meanwhile, running PADS on 1AKT: and 1CRP:
protein chains takes only 0.1 CPU seconds.

Similarly, the reported results on the very same pair of
protein chains were compared against the CTSS [3] algo-
rithm. CTSS reports the best aligned fragment pair between
1AKT: and 1CRP: protein chains to be ([89–113],[140–
164]) with length 24 and RMSD 2.14 Å with a fragment
score of ϕ=11.21. On a relative note, the best aligned
fragment pair reported by PADS is ([131–147],[149–165]) of
length 17, though with an RMSD of 0.58 Å and the fragment
score of ϕ=29.31. Although the best fragment pair reported
by PADS has smaller length however it is aligned with a sub-
stantially better RMSD value (by a factor of 3.6) and higher
quality of the alignment (by a factor of 2.6) noted by ϕ. The
calculation of the value of ϕ in our algorithm is identical with
its counterpart in the CTSS method. The intuition behind
PADS finding a better fragment pair compared with CTSS,
is as follows. The CTSS method approximates each protein
chain by a spline (curve), however PADS represents each
chain as a series of directional shape signatures (a sequence
of polyhedrons in multidimensional space). To give a better
visual example, suppose we would like to represent a snake,
then CTSS approximates its shape with a rope while PADS
approximates the shape using a chain of polyhedral beads
for a more precise approximation.

Figure 5 (Appendix)[16] depicts the linear SSE structure
of 1AKT: and 1CRP: protein chains without running any
alignment, extracted from CATH structural classification
database. A close inspection of Figure 4 and Table 1, for
the best aligned fragment pair reported by PADS ([131–
147],[149–165]), reveals the high similarity of the fragments
on their SSE constitutes. Moreover, the second best aligned
fragment pair ([10–23],[12–35]), not only preserves the sec-
ondary assignment similarity (as suggested by Figure 5),
but also has the significance that both regions are being
the longest regions (sites) which interact with ligands13 and
metals.

13 ligand : An atom or molecule or ion or radical that forms a
complex around a central atom.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduced a novel data representation

technique incorporating multidimensional shape similarity
and data mining techniques for the problem of structural
alignment of protein structure databases. We evaluated the
quality of the results of PADS on a pair of protein chains and
compared the corresponding results with the other methods.
The results demonstrate highly accurate (the reported frag-
ments have very high score with the RMSD value much bet-
ter than all other methods), consistent (the fragment pairs
reported similar by PADS had high overlap with regions
reported similar by other methods) results compared with
DALI, CE, and CTSS protein structure similarity methods,
while running only in fractions of a second. PADS may be
used in colaboration with other protein alignment methods
such as DALI and CE for providing a larger number of frag-
ment pairs. One could potentially use PADS to get an in-
stant feedback of the location and quality of the matched re-
gions, and thereafter run the time-consuming DALI method
to achieve the most accurate results, if desired. We intend
to perform database-against-database structure similarity
search for protein classification and add a 3D visualization
tool to PADS for better assessment of fragment pair discov-
ery.
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APPENDIX
Please find Figure 5 in the next page.



1CRP Structure

1AKT Structure

Figure 5: The linear secondary structure of 1AKT: and 1CRP: protein chains from CATH structural
classification database. Residues marked with dots denote significant sites of ligand and metal interactions.


