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ABSTRACT vided into three classes. Indexing techniques, such as TV-tree [11],
Similarity search in applications such as multimedia databases hasM-tree [4], and X-tree [2], are developed to tackle this problem
been gaining a lot of attention in recent years. Due to the curse by pruning the search space. However, the index structures are
of dimensionality, it is hard to improve the query cost of similarity ~subject to the curse of dimensionality. Dimension reduction tech-
search in a high dimensional space. The problem is getting evenniques have been proposed to map a feature vector to a vector with
worse when objects are represented using sets of local feature veclower dimensions. The distance metric in the lower-dimensional
tors, since the distance measurement among vector sets is the minspace is a lower bound on the distance metric in the original high-
imum matching distance. In the minimum matching distance, the dimensional space [13, 8]. Therefore images with larger distance
vectors from two sets are paired to minimize the sum of the distance can be pruned in the lower-dimensional space. Moreover, index-
of all pairs while the distance measurements over single feature ing and dimension reduction techniques can be combined together
vectors do not need the process of pairing. In this paper, we extendto answer queries more efficiently. Some proposals such as VA-
the minimum matching distance to the Euclidean minimum match- file [15] and A-tree [14] use compression to reduce the size of
ing distance and the Manhattan minimum matching distance sincedata processed at the filter step, therefore the cost of computing
Euclidean and Manhattan distances are commonly used in similar-the query results at the refinement step is improved dramatically.
ity search over single feature vectors. Then we propose a novelRecently, Vries et al. [6] considered the problem of improving
filtering technique to reduce the query cost of similarity search on query performance as a physical database design problem. They
both Euclidean and Manhattan minimum matching distances. The proposed to use the Decomposition Storage Model (DSM), which
experimental results show that our technique reduces the query coshas been used in the context of relational database systems [5], to

significantly. store feature vectors. The data of each dimension is maintained in a
separate table. Based on this physical design, the authors presented

1. INTRODUCTION a search technique called Branch-and-bound On Decomposed data
(BOND).

Similarity search has been gaining a lot of attention due to its wide
application in the areas such as image retrieval [8], multimedia [13], L )
bioinfomatics [3], and spatial databases [9]. A commonly used In recent years, some appllc_atlons need an object to be represented
method for efficient similarity search is to map objects into points 25 & set of feature vectors instead of a global feature vector. For

in a high dimensional space. For instance, in image databases, arfX@MPle, in image databases, since images may be rotated, trans-

image is represented using a global feature vector, which capturesiomed, slightly changed, or presented in different formats for copy-

information about color distribution, texture patterns, and shape de- M19ht protection, in order to still recognize them as similar images,
scriptors of the image. Similarity of two objects is defined as the ©N€ feature vector is not good enough to describe an image. Hence

distance between their respective feature vectors, where the dis-2" image is divided into regions, and feature vectors are computed
tance is computed using a metric defined in the feature vector space 0" €ach region which then form a set of feature vectors. The simi-
such as Euclidean distance or Manhattan distance. Since imag;jelamy of two images uses a distance metric which is based on their
databases usually contain millions of images and the vector spaceSets Of feature vectors. Another example is in handwriting recog-
is a very high dimensional space, finding the images which are sim- nition, the different handwritten versions of one character usually
ilar to a given query image is too expensive if we simply compare a_pp_ear_clear_ly different. Therefore it is hard to |den_t|fy them as
the given image to all images in the databases. The high cost igsimilar if their feature vectors are obtained from their entire im-
due to the I/O time of retrieving all images and the computation 29€S- However in general, it is possible that parts of the character
cost of comparing each pair. Hence, numerous methods have beer® similar, i.e., the distance between the sub-parts of the different

proposed to improve this query cost. These methods can be di-versions is small. Hence it is often beneficial to represent char-
acters using several feature vectors. Kriegel et al. [9] proposed to

use feature vector sets for similarity search on voxelized CAD ob-
jects. The distance measurement on vector sets is defined as the
minimal matching distance of these sets. Even though a lot of work
have been proposed to improve the similarity search on objects de-
noted by single feature vectors, they can not be directly applied to
the similarity search over feature vector sets. Since the distance
metric for objects using sets of feature vectors needs to consider
matchings among several local feature vectors, the computation



cost is much higher than the one on single feature vectors. The distancerespectively. Before giving the formal definitions, we first
method proposed in [10, 12] to compute the distance among setsdefinethe Euclidean surandthe Manhattan suras follows.
hasO(m? + m?n) time complexity ¢ is the number of vectors
in each setn is the number of dimensions of each vector). Even
with relatively small values ofn, the computation cost becomes DEFINITION 1. Given a setS = {di,da,...,dn}, the Eu-
very h|gh’ hence in [9], the authors propOSed a filter technimm’ clidean SUFT’SSum of setS is defined Using the fO”OWing formula:
extended centroid methpdbr fast similarity search over sets of
feature vectors. The distance of the extended centroids of two sets
of feature vectors is proved to be a lower bound of the minimum i
matching distance of these two sets, therefore some objects can be Seum = (Z d?)lm-
filtered out if the distance of their extended centroids is larger than i=1
the given bound.

DEFINITION 2. Given a setS = {d1,ds,...,d,}, the Man-

Due to the popularity of the Euclidean and Manhattan distances hattan sumS..., of sets is defined using the following formula:
in the context of similarity search, we define two new minimum

matching distance metrics on vector sets which are based on the
Euclidean and Manhattan distances respectively, referredEo-as
clidean minimum matching distanaadManhattan minimum match- g _ Z d.

ing distance The query type we consider is tisémilarity range s i

query[1]. We propose a novel filter technique which can be ap-

plied to both distance metrics, and show that the similarity query

cost can be reduced dramatically. Similar to the other approachesBased on the definitions of the Euclidean sum and the Manhattan
using filter techniques, our query processing algorithm consists of sum, we define the Euclidean minimum matching distance and the

two steps: filter and refinement. At the filter step, we use our pro- Manhattan minimum matching distance as follows.

posed filter to filter out most unqualified objects. During the re-

finement step, the exact distance using the method in [10, 12] is

computed to determine the final results. The filter technique we ~ DEFINITION 3. The Euclidean minimum matching distance of
proposed is a multi-step filter. In other words, given a similarity two objects is a distance function: DoRf"* xDom R™ — DomR.

range query, the filter computes the lower bound of the distance of LetVe = {Vz(1), Vz(2),..., Va(m)} andV, = {V}, (1), Vy(2),..., Vy(m)}
two objects step by step. At each step, if the computed distance ofbe sets of feature vectors for objeatandy respectively. The dis-

one object to the given object is larger than the given bound, this tance betweem andy is defined as follows:

object is filtered out and will not be considered in subsequent steps.

The rest of the paper is organized as follows. Section 2 gives the m

definitions of different distance metrics. The proposed filter tech- = min((O_ (|| Va (i), Vo (p(0)) [|2)*)"?).

nique and related optimizations are presented in Section 3. Sec- i=1

tion 4 shows the experimental results. We conclude the paper with

Section 5. Wherep(i) is a permutation of the vectors i, that minimizes

dmm, and||||2 denotes the Euclidean distance.

2. DEFINITIONS

In this section, we first define two distance metrics between two
objects each represented as a set of feature vectors. Then we giv
the definition of the type of queries, similarity range queries, which
are considered in this paper.

In this definition, vectol/; () from the vector set of objeatmatches
Bne and only one vectdr, (p(i)) from the vector set of objeg,

and the distance betwe&h (i) andV, (p(i)) is computed using the
Euclidean distance. Finally, the Euclidean minimum matching dis-
tance is the one minimizing the Euclidean sum of the distances of
all vector pairs. Similarly, the Manhattan minimum matching dis-
tance can be defined except that the distance of vector pairs is com-
puted using the Manhattan distance and the Manhattan minimum
matching distance is the minimal Manhattan sum of the distance of
?II vector pairs.

An objectz is represented as a set of feature vectbis, Let m

be the number of feature vectors in the setbe the number of
dimensions of a single vectdr, (i) (1 < i < m) be theith feature
vectorinV,, andv; ; (1 < j < n) be the value of thgth dimension

of the ith feature vector in a set. For the sake of simplicity, we
assume all sets have the same number of feature vectors and al
feature vectors have the same number of dimensions. If sets contain

different numbers of feature vectors, we extend the smaller vector  peginiTion 4. The Manhattan minimum matching distance of

sets by adding some zero vectors [9]. two objects is a distance function: DoRi" x Dom R™ — Dom R.
There are several distance metrics defined over two feature vec- v, ()} be two sets of feature vectors of objectand y re-

tor sets. In [9], the authors argued that similarity can be defined as gpectively. Then the Manhattan minimum matching distance is de-
the distance metric of the minimum weight perfect matching of two fined as follows:

feature vectors. Hence we define our two distance measurements of

vector sets based on the minimum matching distance. Since the Eu-

clidean and Manhattan distances are commonly used distance mea- m

surements to define similarity of objects, we defihe Euclidean Ao = mm(z | Va (i), Vi (p(3)) |11)-

minimum matching distan@ndthe Manhattan minimum matching P



Wherep(3) is a permutation of vectors ii, minimizingd,, and
lll: denotes the Manhattan distance.

The type of queries we consider in this papesiilarity range
query[1]. Given a query objeck and a range value, we want to

3.1 DCF Algorithm for the Euclidean Mini-

mum Matching Distance
We first describe Divide-and-conquer Filter for the Euclidean mini-
mum matching distance, then we present the algorithm for process-
ing similarity range queries where the Euclidean minimum match-

find all objects in the database which have distances to the queryind distance is considered.

objecto no larger tharz.

DEFINITION 5. Similarity range query: For a query objeote
R™, and a query range, the query reports all objects in the
database satisfying:

dmm(0,2) < e.

Given a query objecb with vector setV/,, for any objectz with
vector setV, in the search databadeB, the Euclidean sum of

all Euclidean-based column-pair minimum matching distances is a
lower bound of the Euclidean minimum matching distance between
setsV, andV,. Since the distance of each column pair can be com-
puted separately, our filter technique computes the lower bound col-
umn by column. During the computation, if the partial Euclidean
sum of the considered column-pairslip andV;, is larger than the
given bound, the Euclidean minimum matching distance between
objecto and objectz will be larger thane, hence object: can-

After having defined the distance metrics and query types, we now not be in the result set and does not need to be considered further.
define some terms which are used in our filter techniques. Each Since our filter technique relies on the Euclidean-based column-
object is represented using a set of feature vectors, which can bepair minimum matching distance of a column pair, we first give the
viewed as an x n matrix: each row is a feature vector, and each algorithm on how to compute it, which is shown in Algorithm 1
column is composed of feature values of all vectors in one dimen-
sion (we will use both dimension and column alternately). For Algorithm 1 Compute the Euclidean-based column-pair minimum

an objectz, C(j) denotes theth column. ThereforeC,(j) =
{07,035, ... ,vfn,j}T, wherem is the number of vectors in a set.
Two columns of two sets are calledcalumn pairif they are in
the same dimension. For examp(&, (1) andC, (1) are the first
columns of setd/, andV}, respectively, and they form a column
pair. If the number of dimensions is then the number of column
pairs of two vector sets is. A column-pair minimum matching
distance is defined as follows:

DEFINITION 6. A column-pair minimum matching is a distance
functionf: DomR™ xDomR™ — DomR. LetC. (j) = {vf ;,v5 ;,
v and Gy (5) = {of ;v 5, ... vk 3T be the twojth
columns of vector sets for objectsand y respectively. Then the
minimum matching distance of this column pair is defined as fol-
lows:

m

dym = min(z dist(vy ;, U;":j(i) i)

i=1

Wherep; (i) is a permutation of the elementsd, (j) minimizing

c
Ay, -

Note that a column-pair minimum matching distance is a special

case of the minimum matching distance, since it can be treated as
vector sets where each vector is one-dimensional. In Definition 6,

the distance betweerf ; andv?

(0,5 1S either computed using the

matching distance

Input:
x andy are two objects with vector set. andV;
Cz(j) andCy (j) are the twajth columns ofl, andV;
/lj denotes one dimension;
Procedure:
SortedC; (5) in ascending order and results are store@fi(;);
SortedCy () in ascending order and results are stored'fj{;);
sum = 0;
for 7 from 1 to m do
vy 5 from columnCs (5);
v}% from columnC; (5);
1/3)2.

Y

p— s
sum+ = (v}
end for
sum = sum

Output:
Returnsum.

1/2

In Algorithm 1, we first sort the two columns, then pair the ele-
ments in these two column based on their sorted order. The entire
process is shown in Figure 1. Algorithm 1 returns the Euclidean-
based column-pair minimum matching distance of two columns.
Theorem 1 guarantees the correctness of this algorithm.

THEOREM 1. The Euclidean-based column-pair minimum match-
ing distance of a column pair is the Euclidean distance of these
two columns where the elements in these two columns are paired
up based on their sorted order.

Proof: We use induction to prove Theorem 1. Figure 2(a) shows

Euclidean distance or the Manhattan distance, we refer to them asthe basic case: columi® andC> contain two elements. Assume

the Euclidean-based column-pair minimum matching distamze
the Manhattan-based column-pair minimum matching distaace
spectively.

3. DIVIDE-AND CONQUER FILTER (DCF)

In this section, we present the algorithms to compute the filter val-

they are ordered, i.eq; < a2 andb; < b2. the column pair of
minimum matching distance betweéh andCs is ((a1 — b1)* +

(a2 — b2)?)Y/2. Since in this case, there are only two options of
pairing: a1 < b1 andag < bg, Ora; < bz andas < bi. We
need to prove that

ues for both Euclidean minimum matching distance and Manhattan (a1 — b1)? + (a2 — b2)?)'/? < ((a1 — b2)? + (a2 — b1)?)'/2.

minimum matching distance. Then we give the theoretical analysis

and discuss some optimization issues.

Since,



a; < ap+1 andb; < by, ifthe pairs arer; < bpy1 andag4+1 <

/_\ b;, we have the result thdta; — by11)? + (ar1 — bj)3)"/? >
((a; —bj)*+ (ars1—Dbri1)?)'/2. It means that in order to achieve

cx() oy() Qs((j) C}s/(j) the column-pair minimum matching distance, the pairs should be
a; < bj andakH — bk+1 instead Ofai — bk+1 andakﬂ > bj.
v vY. v v s After deciding thatuy 1 is paired withb,1, there arg: elements
L) L L L) in each column left. Based on the assumption, they have to be
v v v v paired according to the sorted order. Hence, Theorem 1 holds when
2 1j 2 2 the number of elements in each columitis- 1.0
Algorithm 2 DCF algorithm for the Euclidean minimum matching
distance
X xs ys Input:
Vm,j Vlyy i Vm,j Vm,j q .2 the query object with vector sét,;
paired order ¢ is the given bound;
Procedure:
partial_sum = 0;
Figure 1: The demonstration of Algorithm 1 sum; is the;jth column-pair minimum matching distance;
for Each columry in vector setsio
SortedCy (j) and results are stored @ (5);
C1 c2 C1 c2 for Eachch{)}ectn in the search databalég )
- - SortedC (j) and results are stored @ (5);
al =——> Dbl al = bl computesum, using Algorithm 1;
2 <~ h2 partial_sum = (partial,squ + suij)l/Q;
a2 b2 : if partial_sum > e then . '
a, : o} objectz does not need further consideration.
end if
a. ) Output: _
J J Return all the objects left.
a, by In Algorithm 2, we give the filtering algorithm. The returned re-
sults are the objects whogertial_sum values are smaller than
Aiy Byt the bounce. Theorem 2 guarantees that the result set returned by
Algorithm 2 is a superset of the final result set for the similarity
@ ) range query with query objegtand bound:.

Figure 2: Proof of Theorem 1 THEOREM 2. The Euclidean sum of the Euclidean-based column-

pair minimum matching distance of all column pairs of two sets is
a lower bound of their Euclidean minimum matching distance.
e=((a1 — b1)* + (az = b2)?) = ((a1 — b2)* + (a2 — b1)?)

= —2a1b1 — 2a2b> + 2a1b> + 20201 Proof: For two objects: andy with vector setd/, andV,,, | Vi |=|
Vy |= m, and each vector hasdimensions. Thgth columns are
= 2(b2 = b1)(a1 — az). denoted ag”, (j) andCy(j), and their Euclidean-based column-
: air minimum matching distancedsm; = (3™, (v, —v? ., )%)/?
We havea; < az andb; < bs, thereforee < 0, i.e.,a; « b; and P 9 am; = (3L (v UPNM) )

a» < by are the pairs which achieve the column-pair minimum Wherep; (i) is the permutation minimizingum;. We need to

matching distance of columr; andCs. prove tha(}-7_, (sum;*))"/? is smaller than their Euclidean min-
imum matching distanc® [, (37, (vf; — v¥ ;) )%)"/?, where

In the induction hypothesis step, we assume Theorem 1 is correcty ;) is the permutation in their Euclidean minimum matching dis-
when the number of elements in two columnskis We need to  tance. Since; (i) is the permutation optimizing each Euclidean-

prove that the statemgnt holds for-1. The two columns wittk+-1 based column-pair minimum matching distance whi(é) is the
elements are shown in Figure 2(b), whefie< as < ... < ap1 permutation to minimize their Euclidean minimum matching dis-
andby < by < ... < bgya. If ata is paired withbg11, thena; tance, for thejth column, the column-pair matching distance using

will be paired withb; according to the induction hypothesis since p(4) is no smaller than the one usipg(s). Therefore we have:
1 < i < k. In this case, the statement in Theorem 1 holds since
a1 < az < ... < agyr andby < ba < ... < bry1. Now n 2\\1/2 n m z Y 2\\1/2
we need to prove thaty,, has to be paired witfbk+1+in order (2251 (sum;)) (2o Qi (v =0, 0,5)7))
to achieve the column-pair minimum matching distance between " m o v N2\ 1/2
C7 andC2. Now we assume1 iS not paired withbgq, i.e., = (Za‘:l(zizl(”m - ”p(i),y') )
ak+1 IS paired withb; andby1 is paired witha, without loss of
m

generality, as shown in Figure 2(b). Similar to the basic case, since = (3°7%, (327, (vil; — vg(i)yj)Q))l/z.D



In the DCF algorithm, we compute filter values column-by-column.
Theorem 2 guarantees that all objects filtered will not be in the re-
sult sets. After computing the minimum matching distance using
algorithm in [10, 12] at the refinement step, we will answer simi-
larity range queries correctly, i.e., all objects which distances to the
guery object is no larger than the given boundre in the query
result set.

3.2 DCF Algorithm for the Manhattan Mini-

mum Matching Distance
The algorithm for computing the Manhattan-based column-pair min-
imum matching distance is similar to Algorithm 1. The differences
are that we replace the Euclidean distance with the Manhattan dis-
tance in compute a column-pair minimum matching distance, and
replace the Euclidean sum with the Manhattan sum. The algorithm
is shown in Algorithm 3. Now we prove that Algorithm 3 returns
the Manhattan-based column-pair minimum matching distance of
a column pair.

Algorithm 3 Compute the Manhattan-based column-pair minimum
matching distance

Input:
x andy are two objects with vector sets. andV;
Cz(j) andCy (j) are the twdth columns ofV, andV;
/Il denotes one dimension;
Procedure:
SortedC; (5) in ascending order and results are store@'ji{l);
SortedCy () in ascending order and results are stored'jj{l);
sum = 0;
for ¢ from 1 tom do
vy 5 from columnCs (5);
v} from columnCy (5);
ys I’

Vi

sum+ =| vf]
end for
Output:
Returnsum.

THEOREM 3. The Manhattan-based column-pair minimum matc|
ing distance of a column pair is the Manhattan distance of these
two columns where the elements in these two columns are paired
up based on their sorted order.

Proof: We use induction to prove Theorem 3. Figure 2(a) shows
the basic case: columi$, andC> contain two elements. Assume
they are ordered, i.eq; < a2 andb; < bs. the column pair of
minimum matching distance betweéh andC5 is | a; — b1 | + |

a2 — by |. Since in this case, there are only two options of pairing:
a1 < by andas < bs, Ora; < be andaz < b;. We need to
provethat(| a1 — b1 | =+ | as —bo |) < (| a1 —bo ‘ + | as — b1 |)
There are four cases to consider:

e Case Lia; < a2 < b1 < ba. We have| a1 — b1 | + |
as — ba |= by —as+b1 —ar and\ a1 —ba | + | as — by |=
by — a1 + b1 — as. Thenwege(| a1—b1|—|—|a2—b2|
)= (a1 —bz2 |+ | a2 — b1 ), i.e., theinequality holds.

Case 2:a; < by < az < ba. We have| a1 — b1 | + |
as — ba |: bo —ai1+b1—as and\ a1 — ba | —+ | as — b1 |=
bo—a1+az—by > ba—a1+b1—asz sinceas < by. Therefore
(lar =b1|+]az—b2|) < (Jar —b2 [+ [az — b1 ).

Case 3:b1 < by < az < ai. This case is similar to Case
1, and we can obtainth@t a1 — b1 | + | a2 — b2 |) = (]
a17b2|+|a27b1 |)

e Case 4:b1 < a1 < b2 < az. The analysis for this case is
similar to Case 2, we can géta1 — by | + | a2 — b2 |) <
(a1 —=b2 [+ [az2—b1 ).

In conclusion, we have| a1 — b1 | + | a2 — b2 |) < (] a1 — b2 |

+ | a2 — b1 |), which means that, < b, andas < bs are the
right pairs to achieve the column-pair minimum matching distance
of columnsC; andCs.

The following part of the proof is similar to that for Theorem 1
with some slight changes. In the induction hypothesis, we assume
Theorem 3 is correct when the number of elements in two columns
is k. We need to prove that the statement holdsioefr 1. The

two columns withk 4+ 1 elements are shown in Figure 2(b), where
a1 < az < ... < aggr andby < b <o < bpga I agga

is paired withby41, thena; will be paired withb; according to

the assumption in the assumption step sihce ¢ < k. In this
case, the statement in Theorem 3 holds simce< a2 < ... <

akg+1 andb; < b2 < ... < br+1. Now we need to prove that
a1 has to be paired withy_; in order to achieve the column-pair
minimum matching distance betweén and C>. Now without

loss of generality, we assume.; is not paired withbg1, i.e.,

ak+1 is paired withb; and by41 is paired witha;, as shown in
Figure 2(b). Similar to the basic case, singe< ax4+1 andb; <
br+1, if the pairs area; < br4+1 andag+1 < bj, we have the
result thaq a; — brt1 ‘ + ‘ arp+1 — bj |Z‘ a; —bj ‘ + ‘ ap4+1 —

bk+1 |- It means that in order to achieve the column-pair minimum
matching distance, the pairs shouldde— b; andaxt+1 < b1
instead ofa; < biy1 andax11 < b;. After deciding thatiyy: is
paired withb, 1, there are: elements in each column left. Based
on the assumption, they have to be paired according to the sorted
order. Hence, Theorem 3 holds when the number of elements in
each columnig + 1.0

The DCF algorithm for the Manhattan minimum matching distance
is slightly different from the algorithm for the Euclidean minimum
matching distance given in Algorithm 2. Instead of using the Eu-
clidean sum of column-pair minimum matching distance, we use
the Manhattan sum of the Manhattan-based column-pair minimum
matching distance of all pairs. The algorithm is given is Algo-
rithm 4. The following theorem guarantees that there are no false
positives.

Algorithm 4 DCF algorithm for the Manhattan minimum matching
distance
Input:
q is the query object with vector s&};;
¢ is the given bound;
Procedure:
partial_sum = 0;
sum; is thejth column-pair minimum matching distance;
for Each columry in vector setslo
SortedCq(j) and results are stored @ (7);
for Each objectr in the search databade
SortedC; (j) and results are stored @ (5);
computesum,; using Algorithm 1;
partial_sum = partial_sum + sumg,
if partial_sum > e then
objectx does not need further consideration.
end if
end for
end for
Output:
Return all the objects left.




THEOREM 4. The Manhattan sum of the Manhattan-based column- DEFINITION 7. The extended centroid of a vector 3¢t is a

pair minimum matching distance of all column pairs of two vector vectorV,, = V,.(1), V.(2),..., V.(n), and
sets is a lower bound of the Manhattan minimum matching distance
of these two vector sets. V. (j) = Tt

T - m '

Wherel < j < n, n is the number of dimensions of a vector in

Proof: For two objects: andy with vector setd/, andV, | Vi |=| Vi, m is the number of vectors ilf;,, andv{; is the value at the
V, |= m, and each vector has dimensions. Thegth columns ith row andjth column.
are denoted a€';(j) andCy(j), and their column-pair minimum

matching distance isum; = S ° vi; —vY . |, where . .
g 5= 2im | s =0, | In the extended centroid method, given two vector $gtandV,,

Dj (ni) is the permutation minimizingum,. We need to prove that 0 o compute the extended centroids for both vector déts,
dZ-Fl sumznls sn;aller t?an thflr Manhz::ttan mlnlml:]m matching andV,,, then the Mgnhattan dis_tance ot andV,, d..,, can be
'Sftan?eziﬂ _Z_j=1 | vi; — Up(i).j l, w ere;?(z) 1S t_ € permu- computed. For a given bound if m x d., > ¢, the Manhat-
tation in the minimum matching distance. Sineg() is the per- tan minimum matching distance betwelgpnandV, must be larger
mutation optimizing each column-pair minimum matching distance thane. In other wordsm x d , is a lower bound of the Manhat-
while p(i) is the permutation to minimize the minimum matching  tan minimum matching distandé, andV,, which is given in the
distance, forjth column, the column-pair matching distance using following theorem.

p(4) is larger than the one using (:). Therefore we have:

diasumy =300 (0 vl = vy 1) THEOREM 5. Given two objects: and y, assume their vector
' sets béV/, andV,, and their extended centroids b& andV,,. The
< (ST e~ ) Manhattan distance betweéf andV,, multiplied bym is a lower
T SEeasL T (@) bound of the Manhattan minimum matching distance between
andy.

=2 (i [V = vy, D). O

. . Proof: The Manhattan distance betweBnandV, is
3.3 Theoretical analysis !

The minimum matching distance using the methods proposed in [10, , = S Ve() = Vy(g) |
12] has time complexityO(m? 4 m?>n) for each pair of vector ‘ = ‘

sets, wheren is the number of vectors in one set, ands the N SR S
number of dimensions of a single vector. Assume the number of = 2;—1 | =5 |
vector sets in the image databaseNis hence the time complex-

ity of a similarity range query i©(Nm?* + Nm2n). In our pro- Then we have

cessing algorithm for similarity range search, the time complex- _

ity cons  the f i mx dey = S0 | ST vk = X v |
ity consists of two parts: the filter value computation cost, and @,y j=1 i=1 Vi, i=1 Vi
the refinement cost. The filter value computation cost is the time

of the DCF algorithm. Since the time complexity of computing =2 I vl - Ug(i),j \

a column-pair minimum matching distance of two vector sets is

O(mlog(m)), the time complexity of computing the filter value <Y X v = v

between the query object and an objecin the database in the

worst case i©)(nmlog(m)). Assume the filtering effectiveness of = S e =Y

the DCF algorithm igf (0 < f < 1), the number of objects filtered EL =L T @

after the filter step ig N. Then the number of objects needs to be = the Manhattan minimum matching distance between x and y.
processed at the refinement steplis- ) N. Hence the time com-

plexity is (Nnmlog(m)+(1— f)N(m®+m”n)). In other words, Wherep(i) is the permutation in the Manhattan minimum matching

the time complexity depends on the effectiveness of the filter and Gisiancea
the cost of the refinement step, i.e., the larger the valygisf the

less time is spent on the refinement step, hence the faster the query o yever we can show that the bound computed using the extended
processing Is. centroid method is smaller than the one given by the DCF filter,

. . . i-e-1 they satiSf)dcentroid S dDCF S dmm; Wheredcentraid and
When comparing the effectiveness of the DCF algorithm and the ; | .. are the filter values of the extended centroid method and

extended centroid method [9], the extended centroid is not applica- pcg respectively. This relation can be proved as follows. Given
ble to the Euclidean minimum matching distance. since the ex- gpjects: andy, we have

tended centroid method was proposed for a minimum matching

distance which is different from our Euclidean minimum match- ,, dey = Y0 | 0 vy — 7 0 |
ing distance. We do not compare DCF for the Euclidean minimum

matching distance with the extended centroid method. In the case ~ _ T T 0 S oY |
of the Manhattan minimum matching distance, we can adapt the ex- J=1 i=1 707 =1 "p;(1),]
tended centroid method. Now we introduce the extended centroid n m e v

method for the Manhattan minimum matching distance. Assume = Za‘:l | 2035 (v — ”pj(i),j) |

all vector sets contain the same number of vectarsthe extended

centroid of a vector set, is defined as follows. <Y it v = vy |



= the filter value of the DCF algorithm. 12]. We refer to the algorithm in [10, 12] d&kse naive algorithm
because similarity search queries are processed only by comput-
Hence in the Manhattan minimum matching distance, DCF has bet- ing the minimum matching distances among objects without con-
ter filtering performance than the extended centroid method. sidering the techniques such as pruning, indexing, and dimension
reduction.

3.4 Optimization Issues _ _ _ _ _
Even though Algorithms 2 and 4 can be directly used as a filter for The first experiment varies the number of column pairs considered
the Euclidean and Manhattan minimum matching distances respec-in DCF for the Euclidean minimum matching distance, where the
tively, we consider several optimization issues that may enhance Pounde in similarity range query id.3. We compare the perfor-
the filter efficiency. Although the order of dimensions in which mance of the DCF and the DCF with optimization. The optimiza-
we compute the column-pair minimum matching distance does not tion technique is ordering the dimensions according the mean dif-
affect the filtering effectiveness, since DCF algorithm is based on ferences, as we discussed earlier. Figure 3 shows the results for
step-by-step computation of the filter values, we do want to find a DCF and DCF with optimization. Th¥ axis is the number of ob-
good order of dimensions so that the filter values can accumulatejects filtered. From the curve of DCF, we observe that the number
fast and more objects can be filtered early. As a result, the compu-Of objects filtered dramatically increases when around half of the
tation cost at the filtering step is reduced. column pairs are considered. This is due to the fact that the filter
value is accumulated in DCF. Figure 3 also shows the effective-

According to the definitions of the Euclidean and Manhattan min- ness of DCF with optimization. When the number of dimensions is
imum matching distances, both of them depend on the column- varied from 1 to 20, the DCF with optimization filters much more
pair minimum matching distances and larger column-pair mini- ©Objects than the DCF. It is not surprising to see that both of them
mum matching distances result in larger filter values. Hence we filter out the same number of objects when all dimensions are con-
want to order the dimensions based on the decreasing order of theSidered, since the optimization of reordering dimensions does not
column-pair minimum matching distances. Since itis impossible to affect the filtering effectiveness. The DCF with optimization filters
know a good ordering in advance without computing the column- more objects earlier than the DCF without optimization. We also
pair minimum matching distances, we have to use statistical infor- OPServe that after about 25 dimensions, the number of objects fil-
mation along with each dimension. However the data distribution tered marginally increases, which confirms our observation that the
in each dimension is changed when we compute the column-pair filtering step should be terminated with the marginal increase in the
minimum matching distances, since the data is reordered and pairediltered objects.

using their sorted orders. It is difficult to estimate the column-

pair minimum matching distance using some statistical information . " e boF i optmzt, i
such as the data distribution, and histograms. Hence we propose to e

use simple statistics, the mean values of each dimension, which 3500 |-
are not changed after reordering. Given two objecendy, we
compute their mean values along each dimension, then order the
dimensions in the decreasing order of their mean differences. The
filter value is computed according to this order. The motivation is
that the larger the difference of the mean values of a column pair,
the more likely that their column-pair minimum distance is larger.
The experimental results in the next section show the effectiveness
of this optimization technique.
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Another optimization is on deciding the number of dimensions con- ‘ ‘ ‘ ‘ ‘ ‘
sidered in the DCF algorithms. This is also a problem of tradeoff ° 5 e o oo 30 3
between the computation cost of the filter step and the refinement

step. When we compute filter values, after considering certain
number of dimensions, the number of objects filtered may barely
increase. Thus under this condition, we should terminate the filter-

ing step and initiate the refinement step. There will be a time saving Figure 4 shows the experimental results of DCF for the Euclidean
if the time saved from the filter step is larger than that wasted in the minimum matching distance where the bounds varied. Since
refinement step. The problem of determining the number of dimen- oth DCF and the DCF with optimization have the same final filter
sions which should be considered in the filter step is hard since itis yg)yes after all dimensions are considered, we do not need to dif-
data-dependent, we therefore leave this problem as future work.  ferentiate them in Figure 4. It is not surprising to see that the num-
ber of objects filtered decreases when the value isfincreased,
4. EXPERIMENTAL RESULTS as shown in Figure 4. The results for the total runtime with the
In this section we evaluate the effectiveness of DCF for the Eu- differente are shown in Figure 5. The performance of DCF is sig-
clidean minimum matching distance and the Manhattan minimum nificantly better than the naive algorithm. For differenthe naive
matching distance. The dataset we used in the experiments is fromalgorithm has similar performance for all valueszpkince all ob-
UCI KDD Archive [7]. The dataset contains 68040 color histograms jects are considered. In contrast, the total runtime in our scheme is
of 32 dimensions. We organize them into 4252 vector sets eachlonger when the value afis larger, since the number of objects fil-
containing 16 color histograms. Therefore our dataset comprisestered reduces asis increased. Figure 5 shows that the performance
of 4252 feature vector sets, where each vector set is composed ofof the DCF with optimization has better performance than that of
16 feature vector and each vector has 32 dimensions. We comparedDCF when the similarity thresholelis small. However, when the
DCF with the extended centroid method, and the algorithm in [10, similarity thresholc is larger,the DCF with optimization has simi-

Figure 3: The impact of number of column pairs considered in
the Euclidean distance



lar performance to that of DCF. This is due to the fact that although T obr ——
the DCF with optimization algorithm can filter more objects earlier oo D enast g = <
to improve the cost of the filtering step, the computation cost at the 3500 |-
refinement step is much larger than that of the filtering step. Hence
the performance does not improve significantly.
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Figure 6: The impact of number of column pairs considered in
102 the Manhattan distance
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€ is no larger than 10, most of the objects are filtered in DCF.
Similar to the results in Figure 5, the elapsed time of DCF and
the DCF with optimization have similar performance, as shown
in Figure 8. This figure also shows the comparison results of to-
tal runtime among these four methods. We observe that DCF and

Figure 4: The experimental results for different query bounds
in the Euclidean distance
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We conducted similar experiments for DCF under the Manhattan
minimum matching distance and compared it with the naive algo-
rithm, and the extended centroid method. The similarity thresh-
old values we use in the experiments for the Manhattan minimum
matching distance are larger than the ones used in the Euclidean
minimum matching distance. This is because the Euclidean min- 5. CONCLUSION
imum matching distance between two vector sets is much smaller Similarity search is an important class of queries and plays an im-
than the Manhattan minimum matching distance between these twoportant role in a lot of applications, such as multimedia databases,
sets. Figure 6 shows the results for DCF and the DCF with opti- medical imaging, and CAD applications. A lot of studies have been
mization when the number of column pairs considered varies. The mainly focused on improving the query cost of similarity search
behavior is similar to the one given in Figure 3. Since the number over objects represented by feature vectors. Recently, similarity
of dimensions considered has no impact on the extended centroidsearch on objects which are presented using feature vector sets
filter, the number of objects filtered is a constant value, as shown is gaining much attention, since the results are more meaningful.
in Figure 6. When we consider all dimensions in DCF, DCF has However the existing techniques proposed for similarity search over
much better performance than the extended centroid filter. feature vectors can not be adapted to this context due to the differ-
ent distance metrics. In this paper, we define two distance metrics
Figure 7 shows the comparison results of DCF and the extendedbased on the Euclidean and Manhattan distances due to the popu-
centroid method when the similarity threshalds varied. The larity of the Euclidean distance and Manhattan distance. Then we
performance of both DCF and the extended centroid gets worse propose filtering techniques to accelerate the query processing. The
when the values of are larger. DCF significantly outperforms the  novelfilter technique proposed is Divide-and-Conquer filter (DCF).

Figure 7: The experimental results for different query bounds
in the Manhattan distance
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Figure 8: The total runtime for different query bounds in the
Manhattan distance

Then we present filtering algorithms for both the Euclidean and

Manhattan minimum matching distances based on this technique.

In DCF, filter values are computed dimension-by-dimension. The
objects are filtered whenever their partial filter values are larger

than the given bound. The experimental results show the superior

performance of our filter technique.
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