
Efficient Similarity Search on Vector Sets

Hailing Yu Wei Niu Divyakant Agrawal Amr El Abbadi Ambuj K Singh
University of California at Santa Barbara

Computer Science Department
Santa Barbara, 93106, USA

{hailing,kevinniu,agrawal,amr,ambuj}@cs.ucsb.edu

ABSTRACT
Similarity search in applications such as multimedia databases has
been gaining a lot of attention in recent years. Due to the curse
of dimensionality, it is hard to improve the query cost of similarity
search in a high dimensional space. The problem is getting even
worse when objects are represented using sets of local feature vec-
tors, since the distance measurement among vector sets is the min-
imum matching distance. In the minimum matching distance, the
vectors from two sets are paired to minimize the sum of the distance
of all pairs while the distance measurements over single feature
vectors do not need the process of pairing. In this paper, we extend
the minimum matching distance to the Euclidean minimum match-
ing distance and the Manhattan minimum matching distance since
Euclidean and Manhattan distances are commonly used in similar-
ity search over single feature vectors. Then we propose a novel
filtering technique to reduce the query cost of similarity search on
both Euclidean and Manhattan minimum matching distances. The
experimental results show that our technique reduces the query cost
significantly.

1. INTRODUCTION
Similarity search has been gaining a lot of attention due to its wide
application in the areas such as image retrieval [8], multimedia [13],
bioinfomatics [3], and spatial databases [9]. A commonly used
method for efficient similarity search is to map objects into points
in a high dimensional space. For instance, in image databases, an
image is represented using a global feature vector, which captures
information about color distribution, texture patterns, and shape de-
scriptors of the image. Similarity of two objects is defined as the
distance between their respective feature vectors, where the dis-
tance is computed using a metric defined in the feature vector space,
such as Euclidean distance or Manhattan distance. Since image
databases usually contain millions of images and the vector space
is a very high dimensional space, finding the images which are sim-
ilar to a given query image is too expensive if we simply compare
the given image to all images in the databases. The high cost is
due to the I/O time of retrieving all images and the computation
cost of comparing each pair. Hence, numerous methods have been
proposed to improve this query cost. These methods can be di-

vided into three classes. Indexing techniques, such as TV-tree [11],
M-tree [4], and X-tree [2], are developed to tackle this problem
by pruning the search space. However, the index structures are
subject to the curse of dimensionality. Dimension reduction tech-
niques have been proposed to map a feature vector to a vector with
lower dimensions. The distance metric in the lower-dimensional
space is a lower bound on the distance metric in the original high-
dimensional space [13, 8]. Therefore images with larger distance
can be pruned in the lower-dimensional space. Moreover, index-
ing and dimension reduction techniques can be combined together
to answer queries more efficiently. Some proposals such as VA-
file [15] and A-tree [14] use compression to reduce the size of
data processed at the filter step, therefore the cost of computing
the query results at the refinement step is improved dramatically.
Recently, Vries et al. [6] considered the problem of improving
query performance as a physical database design problem. They
proposed to use the Decomposition Storage Model (DSM), which
has been used in the context of relational database systems [5], to
store feature vectors. The data of each dimension is maintained in a
separate table. Based on this physical design, the authors presented
a search technique called Branch-and-bound On Decomposed data
(BOND).

In recent years, some applications need an object to be represented
as a set of feature vectors instead of a global feature vector. For
example, in image databases, since images may be rotated, trans-
formed, slightly changed, or presented in different formats for copy-
right protection, in order to still recognize them as similar images,
one feature vector is not good enough to describe an image. Hence
an image is divided into regions, and feature vectors are computed
for each region which then form a set of feature vectors. The simi-
larity of two images uses a distance metric which is based on their
sets of feature vectors. Another example is in handwriting recog-
nition, the different handwritten versions of one character usually
appear clearly different. Therefore it is hard to identify them as
similar if their feature vectors are obtained from their entire im-
ages. However in general, it is possible that parts of the character
are similar, i.e., the distance between the sub-parts of the different
versions is small. Hence it is often beneficial to represent char-
acters using several feature vectors. Kriegel et al. [9] proposed to
use feature vector sets for similarity search on voxelized CAD ob-
jects. The distance measurement on vector sets is defined as the
minimal matching distance of these sets. Even though a lot of work
have been proposed to improve the similarity search on objects de-
noted by single feature vectors, they can not be directly applied to
the similarity search over feature vector sets. Since the distance
metric for objects using sets of feature vectors needs to consider
matchings among several local feature vectors, the computation

cost is much higher than the one on single feature vectors. The
method proposed in [10, 12] to compute the distance among sets
hasO(m3 + m2n) time complexity (m is the number of vectors
in each set,n is the number of dimensions of each vector). Even
with relatively small values ofm, the computation cost becomes
very high, hence in [9], the authors proposed a filter technique,the
extended centroid method, for fast similarity search over sets of
feature vectors. The distance of the extended centroids of two sets
of feature vectors is proved to be a lower bound of the minimum
matching distance of these two sets, therefore some objects can be
filtered out if the distance of their extended centroids is larger than
the given bound.

Due to the popularity of the Euclidean and Manhattan distances
in the context of similarity search, we define two new minimum
matching distance metrics on vector sets which are based on the
Euclidean and Manhattan distances respectively, referred to asEu-
clidean minimum matching distanceandManhattan minimum match-
ing distance. The query type we consider is thesimilarity range
query [1]. We propose a novel filter technique which can be ap-
plied to both distance metrics, and show that the similarity query
cost can be reduced dramatically. Similar to the other approaches
using filter techniques, our query processing algorithm consists of
two steps: filter and refinement. At the filter step, we use our pro-
posed filter to filter out most unqualified objects. During the re-
finement step, the exact distance using the method in [10, 12] is
computed to determine the final results. The filter technique we
proposed is a multi-step filter. In other words, given a similarity
range query, the filter computes the lower bound of the distance of
two objects step by step. At each step, if the computed distance of
one object to the given object is larger than the given bound, this
object is filtered out and will not be considered in subsequent steps.

The rest of the paper is organized as follows. Section 2 gives the
definitions of different distance metrics. The proposed filter tech-
nique and related optimizations are presented in Section 3. Sec-
tion 4 shows the experimental results. We conclude the paper with
Section 5.

2. DEFINITIONS
In this section, we first define two distance metrics between two
objects each represented as a set of feature vectors. Then we give
the definition of the type of queries, similarity range queries, which
are considered in this paper.

An objectx is represented as a set of feature vectors,Vx. Let m
be the number of feature vectors in the set,n be the number of
dimensions of a single vector,Vx(i) (1 ≤ i ≤ m) be theith feature
vector inVx, andvx

i,j (1 ≤ j ≤ n) be the value of thejth dimension
of the ith feature vector in a set. For the sake of simplicity, we
assume all sets have the same number of feature vectors and all
feature vectors have the same number of dimensions. If sets contain
different numbers of feature vectors, we extend the smaller vector
sets by adding some zero vectors [9].

There are several distance metrics defined over two feature vec-
tor sets. In [9], the authors argued that similarity can be defined as
the distance metric of the minimum weight perfect matching of two
feature vectors. Hence we define our two distance measurements of
vector sets based on the minimum matching distance. Since the Eu-
clidean and Manhattan distances are commonly used distance mea-
surements to define similarity of objects, we definethe Euclidean
minimum matching distanceandthe Manhattan minimum matching

distancerespectively. Before giving the formal definitions, we first
definethe Euclidean sumandthe Manhattan sumas follows.

DEFINITION 1. Given a setS = {d1, d2, . . . , dn}, the Eu-
clidean sumSsum of setS is defined using the following formula:

Ssum = (

nX
i=1

d2
i)

1/2.

DEFINITION 2. Given a setS = {d1, d2, . . . , dn}, the Man-
hattan sumSsum of setS is defined using the following formula:

Ssum =

nX
i=1

di.

Based on the definitions of the Euclidean sum and the Manhattan
sum, we define the Euclidean minimum matching distance and the
Manhattan minimum matching distance as follows.

DEFINITION 3. The Euclidean minimum matching distance of
two objects is a distance function: DomRm×DomRm → DomR.
LetVx = {Vx(1), Vx(2), . . . , Vx(m)} andVy = {Vy(1), Vy(2), . . . , Vy(m)}
be sets of feature vectors for objectsx andy respectively. The dis-
tance betweenx andy is defined as follows:

dmm = min((

mX
i=1

(‖ Vx(i), Vy(p(i)) ‖2)2)1/2).

Wherep(i) is a permutation of the vectors inVy that minimizes
dmm, and‖‖2 denotes the Euclidean distance.

In this definition, vectorVx(i) from the vector set of objectx matches
one and only one vectorVy(p(i)) from the vector set of objecty,
and the distance betweenVx(i) andVy(p(i)) is computed using the
Euclidean distance. Finally, the Euclidean minimum matching dis-
tance is the one minimizing the Euclidean sum of the distances of
all vector pairs. Similarly, the Manhattan minimum matching dis-
tance can be defined except that the distance of vector pairs is com-
puted using the Manhattan distance and the Manhattan minimum
matching distance is the minimal Manhattan sum of the distance of
all vector pairs.

DEFINITION 4. The Manhattan minimum matching distance of
two objects is a distance function: DomRm×DomRm → DomR.
Let Vx = {Vx(1), Vx(2), . . . , Vx(m)} andVy = {Vy(1), Vy(2),
. . . , Vy(m)} be two sets of feature vectors of objectsx andy re-
spectively. Then the Manhattan minimum matching distance is de-
fined as follows:

dmm = min(

mX
i=1

‖ Vx(i), Vy(p(i)) ‖1).

Wherep(i) is a permutation of vectors inVy minimizingdmm, and
‖‖1 denotes the Manhattan distance.

The type of queries we consider in this paper issimilarity range
query[1]. Given a query objecto and a range valueε, we want to
find all objects in the database which have distances to the query
objecto no larger thanε.

DEFINITION 5. Similarity range query: For a query objecto ∈
Rn, and a query rangeε, the query reports all objectsx in the
database satisfying:

dmm(o, x) ≤ ε.

After having defined the distance metrics and query types, we now
define some terms which are used in our filter techniques. Each
object is represented using a set of feature vectors, which can be
viewed as am × n matrix: each row is a feature vector, and each
column is composed of feature values of all vectors in one dimen-
sion (we will use both dimension and column alternately). For
an objectx, C(j) denotes thejth column. Therefore,Cx(j) =
{vx

1,j , v
x
2,j , . . . , v

x
m,j}T , wherem is the number of vectors in a set.

Two columns of two sets are called acolumn pair if they are in
the same dimension. For example,Cx(1) andCy(1) are the first
columns of setsVx andVy respectively, and they form a column
pair. If the number of dimensions isn, then the number of column
pairs of two vector sets isn. A column-pair minimum matching
distance is defined as follows:

DEFINITION 6. A column-pair minimum matching is a distance
functionf : DomRm×DomRm → DomR. LetCx(j) = {vx

1,j , v
x
2,j ,

. . . , vx
m,j}T andCy(j) = {vy

1,j , v
y
2,j , . . . , vy

m,j}T be the twojth
columns of vector sets for objectsx and y respectively. Then the
minimum matching distance of this column pair is defined as fol-
lows:

dc
mm = min(

mX
i=1

dist(vx
i,j , v

y
pj(i),j)).

Wherepj(i) is a permutation of the elements inCy(j) minimizing
dc

mm.

Note that a column-pair minimum matching distance is a special
case of the minimum matching distance, since it can be treated as
vector sets where each vector is one-dimensional. In Definition 6,
the distance betweenvx

i,j andvy
pj(i),j is either computed using the

Euclidean distance or the Manhattan distance, we refer to them as
the Euclidean-based column-pair minimum matching distanceand
the Manhattan-based column-pair minimum matching distancere-
spectively.

3. DIVIDE-AND CONQUER FILTER (DCF)
In this section, we present the algorithms to compute the filter val-
ues for both Euclidean minimum matching distance and Manhattan
minimum matching distance. Then we give the theoretical analysis
and discuss some optimization issues.

3.1 DCF Algorithm for the Euclidean Mini-
mum Matching Distance

We first describe Divide-and-conquer Filter for the Euclidean mini-
mum matching distance, then we present the algorithm for process-
ing similarity range queries where the Euclidean minimum match-
ing distance is considered.

Given a query objecto with vector setVo, for any objectx with
vector setVx in the search databaseDB, the Euclidean sum of
all Euclidean-based column-pair minimum matching distances is a
lower bound of the Euclidean minimum matching distance between
setsVo andVx. Since the distance of each column pair can be com-
puted separately, our filter technique computes the lower bound col-
umn by column. During the computation, if the partial Euclidean
sum of the considered column-pairs inVo andVx is larger than the
given boundε, the Euclidean minimum matching distance between
object o and objectx will be larger thanε, hence objectx can-
not be in the result set and does not need to be considered further.
Since our filter technique relies on the Euclidean-based column-
pair minimum matching distance of a column pair, we first give the
algorithm on how to compute it, which is shown in Algorithm 1

Algorithm 1 Compute the Euclidean-based column-pair minimum
matching distance

Input:
x andy are two objects with vector setsVx andVy ;
Cx(j) andCy(j) are the twojth columns ofVx andVy ;
//j denotes one dimension;
Procedure:
SortedCx(j) in ascending order and results are stored inCs

x(j);
SortedCy(j) in ascending order and results are stored inCs

y(j);
sum = 0;
for i from 1 to m do

vxs
i,j from columnCs

x(j);

vys
i,j from columnCs

y(j);

sum+ = (vxs
i,j − vys

i,j)
2;

end for
sum = sum1/2;
Output:
Returnsum.

In Algorithm 1, we first sort the two columns, then pair the ele-
ments in these two column based on their sorted order. The entire
process is shown in Figure 1. Algorithm 1 returns the Euclidean-
based column-pair minimum matching distance of two columns.
Theorem 1 guarantees the correctness of this algorithm.

THEOREM 1. The Euclidean-based column-pair minimum match-
ing distance of a column pair is the Euclidean distance of these
two columns where the elements in these two columns are paired
up based on their sorted order.

Proof: We use induction to prove Theorem 1. Figure 2(a) shows
the basic case: columnsC1 andC2 contain two elements. Assume
they are ordered, i.e.,a1 ≤ a2 andb1 ≤ b2. the column pair of
minimum matching distance betweenC1 andC2 is ((a1 − b1)

2 +

(a2 − b2)
2)1/2. Since in this case, there are only two options of

pairing: a1 ↔ b1 anda2 ↔ b2, or a1 ↔ b2 anda2 ↔ b1. We
need to prove that

((a1 − b1)
2 + (a2 − b2)

2)1/2 ≤ ((a1 − b2)
2 + (a2 − b1)

2)1/2.

Since,

V
1,j
x

V
2,j
x

V
m,j
x

V
1,j
y

V
1,j
y

V
1,j
y

V
1,j
xs

V
2,j
xs

V
m,j
xs

V
1,j
ys

V
2,j
ys

V
m,j
ys

Cx(j) Cy(j) Cx(j) Cy(j)
ss

sorted

paired order

Figure 1: The demonstration of Algorithm 1

a bk+1 k+1

a bk k

a bi i

a bi+1 i+1

a bj j

C1 C2

a1 b1

C1 C2

a1 b1

a2 b2
a2 b2

(a) (b)

Figure 2: Proof of Theorem 1

e = ((a1 − b1)
2 + (a2 − b2)

2)− ((a1 − b2)
2 + (a2 − b1)

2)

= −2a1b1 − 2a2b2 + 2a1b2 + 2a2b1

= 2(b2 − b1)(a1 − a2).

We havea1 ≤ a2 andb1 ≤ b2, thereforee ≤ 0, i.e.,a1 ↔ b1 and
a2 ↔ b2 are the pairs which achieve the column-pair minimum
matching distance of columnsC1 andC2.

In the induction hypothesis step, we assume Theorem 1 is correct
when the number of elements in two columns isk. We need to
prove that the statement holds fork+1. The two columns withk+1
elements are shown in Figure 2(b), wherea1 ≤ a2 ≤ . . . ≤ ak+1

andb1 ≤ b2 ≤ . . . ≤ bk+1. If ak+1 is paired withbk+1, thenai

will be paired withbi according to the induction hypothesis since
1 ≤ i ≤ k. In this case, the statement in Theorem 1 holds since
a1 ≤ a2 ≤ . . . ≤ ak+1 and b1 ≤ b2 ≤ . . . ≤ bk+1. Now
we need to prove thatak+1 has to be paired withbk+1 in order
to achieve the column-pair minimum matching distance between
C1 andC2. Now we assumeak+1 is not paired withbk+1, i.e.,
ak+1 is paired withbj andbk+1 is paired withai without loss of
generality, as shown in Figure 2(b). Similar to the basic case, since

ai ≤ ak+1 andbj ≤ bk+1, if the pairs areai ↔ bk+1 andak+1 ↔
bj , we have the result that((ai − bk+1)

2 + (ak+1 − bj)
2)1/2 ≥

((ai−bj)
2 +(ak+1−bk+1)

2)1/2. It means that in order to achieve
the column-pair minimum matching distance, the pairs should be
ai ↔ bj andak+1 ↔ bk+1 instead ofai ↔ bk+1 andak+1 ↔ bj .
After deciding thatak+1 is paired withbk+1, there arek elements
in each column left. Based on the assumption, they have to be
paired according to the sorted order. Hence, Theorem 1 holds when
the number of elements in each column isk + 1.2

Algorithm 2 DCF algorithm for the Euclidean minimum matching
distance

Input:
q is the query object with vector setVq ;
ε is the given bound;
Procedure:
partial sum = 0;
sumj is thejth column-pair minimum matching distance;
for Each columnj in vector setsdo

SortedCq(j) and results are stored inCs
q (j);

for Each objectx in the search databasedo
SortedCx(j) and results are stored inCs

x(j);
computesumj using Algorithm 1;
partial sum = (partial sum2 + sumj

2)1/2;
if partial sum ≥ ε then

objectx does not need further consideration.
end if

end for
end for
Output:
Return all the objects left.

In Algorithm 2, we give the filtering algorithm. The returned re-
sults are the objects whosepartial sum values are smaller than
the boundε. Theorem 2 guarantees that the result set returned by
Algorithm 2 is a superset of the final result set for the similarity
range query with query objectq and boundε.

THEOREM 2. The Euclidean sum of the Euclidean-based column-
pair minimum matching distance of all column pairs of two sets is
a lower bound of their Euclidean minimum matching distance.

Proof: For two objectsx andy with vector setsVx andVy, | Vx |=|
Vy |= m, and each vector hasn dimensions. Thejth columns are
denoted asCx(j) andCy(j), and their Euclidean-based column-
pair minimum matching distance issumj = (

Pm
i=1(v

x
i,j−vy

pj(i),j)
2)1/2,

wherepj(i) is the permutation minimizingsumj . We need to
prove that(

Pn
j=1(sumj

2))1/2 is smaller than their Euclidean min-

imum matching distance
Pm

i=1(
Pn

j=1(v
x
i,j − vy

p(i),j)
2)1/2, where

p(i) is the permutation in their Euclidean minimum matching dis-
tance. Sincepj(i) is the permutation optimizing each Euclidean-
based column-pair minimum matching distance whilep(i) is the
permutation to minimize their Euclidean minimum matching dis-
tance, for thejth column, the column-pair matching distance using
p(i) is no smaller than the one usingpj(i). Therefore we have:

(
Pn

j=1(sumj
2))1/2 = (

Pn
j=1(

Pm
i=1(v

x
i,j − vy

pj(i),j)
2))1/2

≤ (
Pn

j=1(
Pm

i=1(v
x
i,j − vy

p(i),j)
2))1/2

= (
Pm

i=1(
Pn

j=1(v
x
i,j − vy

p(i),j)
2))1/2.2

In the DCF algorithm, we compute filter values column-by-column.
Theorem 2 guarantees that all objects filtered will not be in the re-
sult sets. After computing the minimum matching distance using
algorithm in [10, 12] at the refinement step, we will answer simi-
larity range queries correctly, i.e., all objects which distances to the
query object is no larger than the given boundε are in the query
result set.

3.2 DCF Algorithm for the Manhattan Mini-
mum Matching Distance

The algorithm for computing the Manhattan-based column-pair min-
imum matching distance is similar to Algorithm 1. The differences
are that we replace the Euclidean distance with the Manhattan dis-
tance in compute a column-pair minimum matching distance, and
replace the Euclidean sum with the Manhattan sum. The algorithm
is shown in Algorithm 3. Now we prove that Algorithm 3 returns
the Manhattan-based column-pair minimum matching distance of
a column pair.

Algorithm 3 Compute the Manhattan-based column-pair minimum
matching distance

Input:
x andy are two objects with vector setsVx andVy ;
Cx(j) andCy(j) are the twolth columns ofVx andVy ;
//l denotes one dimension;
Procedure:
SortedCx(j) in ascending order and results are stored inCs

x(l);
SortedCy(j) in ascending order and results are stored inCs

y(l);
sum = 0;
for i from 1 to m do

vxs
i,j from columnCs

x(j);

vys
i,j from columnCs

y(j);

sum+ =| vxs
i,j − vys

i,j |;
end for
Output:
Returnsum.

THEOREM 3. The Manhattan-based column-pair minimum match-
ing distance of a column pair is the Manhattan distance of these
two columns where the elements in these two columns are paired
up based on their sorted order.

Proof: We use induction to prove Theorem 3. Figure 2(a) shows
the basic case: columnsC1 andC2 contain two elements. Assume
they are ordered, i.e.,a1 ≤ a2 andb1 ≤ b2. the column pair of
minimum matching distance betweenC1 andC2 is | a1 − b1 | + |
a2 − b2 |. Since in this case, there are only two options of pairing:
a1 ↔ b1 anda2 ↔ b2, or a1 ↔ b2 anda2 ↔ b1. We need to
prove that(| a1− b1 | + | a2− b2 |) ≤ (| a1− b2 | + | a2− b1 |).
There are four cases to consider:

• Case 1:a1 ≤ a2 ≤ b1 ≤ b2. We have| a1 − b1 | + |
a2− b2 |= b2−a2 + b1−a1 and| a1− b2 | + | a2− b1 |=
b2 − a1 + b1 − a2. Then we get(| a1 − b1 | + | a2 − b2 |
) = (| a1 − b2 | + | a2 − b1 |), i.e., the inequality holds.

• Case 2:a1 ≤ b1 ≤ a2 ≤ b2. We have| a1 − b1 | + |
a2− b2 |= b2−a1 + b1−a2 and| a1− b2 | + | a2− b1 |=
b2−a1+a2−b1 ≥ b2−a1+b1−a2 sincea2 ≤ b1. Therefore
(| a1 − b1 | + | a2 − b2 |) ≤ (| a1 − b2 | + | a2 − b1 |).

• Case 3:b1 ≤ b2 ≤ a2 ≤ a1. This case is similar to Case
1, and we can obtain that(| a1 − b1 | + | a2 − b2 |) = (|
a1 − b2 | + | a2 − b1 |).

• Case 4:b1 ≤ a1 ≤ b2 ≤ a2. The analysis for this case is
similar to Case 2, we can get(| a1 − b1 | + | a2 − b2 |) ≤
(| a1 − b2 | + | a2 − b1 |).

In conclusion, we have(| a1 − b1 | + | a2 − b2 |) ≤ (| a1 − b2 |
+ | a2 − b1 |), which means thata1 ↔ b1 anda2 ↔ b2 are the
right pairs to achieve the column-pair minimum matching distance
of columnsC1 andC2.

The following part of the proof is similar to that for Theorem 1
with some slight changes. In the induction hypothesis, we assume
Theorem 3 is correct when the number of elements in two columns
is k. We need to prove that the statement holds fork + 1. The
two columns withk + 1 elements are shown in Figure 2(b), where
a1 ≤ a2 ≤ . . . ≤ ak+1 andb1 ≤ b2 ≤ . . . ≤ bk+1. If ak+1

is paired withbk+1, thenai will be paired withbi according to
the assumption in the assumption step since1 ≤ i ≤ k. In this
case, the statement in Theorem 3 holds sincea1 ≤ a2 ≤ . . . ≤
ak+1 andb1 ≤ b2 ≤ . . . ≤ bk+1. Now we need to prove that
ak+1 has to be paired withbk+1 in order to achieve the column-pair
minimum matching distance betweenC1 and C2. Now without
loss of generality, we assumeak+1 is not paired withbk+1, i.e.,
ak+1 is paired withbj and bk+1 is paired withai, as shown in
Figure 2(b). Similar to the basic case, sinceai ≤ ak+1 andbj ≤
bk+1, if the pairs areai ↔ bk+1 andak+1 ↔ bj , we have the
result that| ai − bk+1 | + | ak+1 − bj |≥| ai − bj | + | ak+1 −
bk+1 |. It means that in order to achieve the column-pair minimum
matching distance, the pairs should beai ↔ bj andak+1 ↔ bk+1

instead ofai ↔ bk+1 andak+1 ↔ bj . After deciding thatak+1 is
paired withbk+1, there arek elements in each column left. Based
on the assumption, they have to be paired according to the sorted
order. Hence, Theorem 3 holds when the number of elements in
each column isk + 1.2

The DCF algorithm for the Manhattan minimum matching distance
is slightly different from the algorithm for the Euclidean minimum
matching distance given in Algorithm 2. Instead of using the Eu-
clidean sum of column-pair minimum matching distance, we use
the Manhattan sum of the Manhattan-based column-pair minimum
matching distance of all pairs. The algorithm is given is Algo-
rithm 4. The following theorem guarantees that there are no false
positives.

Algorithm 4 DCF algorithm for the Manhattan minimum matching
distance

Input:
q is the query object with vector setVq ;
ε is the given bound;
Procedure:
partial sum = 0;
sumj is thejth column-pair minimum matching distance;
for Each columnj in vector setsdo

SortedCq(j) and results are stored inCs
q (j);

for Each objectx in the search databasedo
SortedCx(j) and results are stored inCs

x(j);
computesumj using Algorithm 1;
partial sum = partial sum + sumj ;
if partial sum ≥ ε then

objectx does not need further consideration.
end if

end for
end for
Output:
Return all the objects left.

THEOREM 4. The Manhattan sum of the Manhattan-based column-
pair minimum matching distance of all column pairs of two vector
sets is a lower bound of the Manhattan minimum matching distance
of these two vector sets.

Proof: For two objectsx andy with vector setsVx andVy, | Vx |=|
Vy |= m, and each vector hasn dimensions. Thejth columns
are denoted asCx(j) andCy(j), and their column-pair minimum
matching distance issumj =

Pm
i=1 | vx

i,j − vy
pj(i),j |, where

pj(i) is the permutation minimizingsumj . We need to prove thatPn
j=1 sumj is smaller than their Manhattan minimum matching

distance
Pm

i=1

Pn
j=1 | vx

i,j − vy
p(i),j |, wherep(i) is the permu-

tation in the minimum matching distance. Sincepj(i) is the per-
mutation optimizing each column-pair minimum matching distance
while p(i) is the permutation to minimize the minimum matching
distance, forjth column, the column-pair matching distance using
p(i) is larger than the one usingpj(i). Therefore we have:Pn

j=1 sumj =
Pn

j=1(
Pm

i=1 | vx
i,j − vy

pj(i),j |)

≤Pn
j=1(

Pm
i=1 | vx

i,j − vy
p(i),j |)

=
Pm

i=1(
Pn

j=1 | vx
i,j − vy

p(i),j |). 2

3.3 Theoretical analysis
The minimum matching distance using the methods proposed in [10,
12] has time complexityO(m3 + m2n) for each pair of vector
sets, wherem is the number of vectors in one set, andn is the
number of dimensions of a single vector. Assume the number of
vector sets in the image database isN , hence the time complex-
ity of a similarity range query isO(Nm3 + Nm2n). In our pro-
cessing algorithm for similarity range search, the time complex-
ity consists of two parts: the filter value computation cost, and
the refinement cost. The filter value computation cost is the time
of the DCF algorithm. Since the time complexity of computing
a column-pair minimum matching distance of two vector sets is
O(mlog(m)), the time complexity of computing the filter value
between the query object and an objectx in the database in the
worst case isO(nmlog(m)). Assume the filtering effectiveness of
the DCF algorithm isf (0 ≤ f ≤ 1), the number of objects filtered
after the filter step isfN . Then the number of objects needs to be
processed at the refinement step is(1− f)N . Hence the time com-
plexity is(Nnmlog(m)+(1−f)N(m3+m2n)). In other words,
the time complexity depends on the effectiveness of the filter and
the cost of the refinement step, i.e., the larger the value off is, the
less time is spent on the refinement step, hence the faster the query
processing is.

When comparing the effectiveness of the DCF algorithm and the
extended centroid method [9], the extended centroid is not applica-
ble to the Euclidean minimum matching distance. since the ex-
tended centroid method was proposed for a minimum matching
distance which is different from our Euclidean minimum match-
ing distance. We do not compare DCF for the Euclidean minimum
matching distance with the extended centroid method. In the case
of the Manhattan minimum matching distance, we can adapt the ex-
tended centroid method. Now we introduce the extended centroid
method for the Manhattan minimum matching distance. Assume
all vector sets contain the same number of vectors,m, the extended
centroid of a vector setVx is defined as follows.

DEFINITION 7. The extended centroid of a vector setVx is a
vectorV̄x = V̄x(1), V̄x(2), . . . , V̄x(n), and

V̄x(j) =
Pm

i=1 vx
i,j

m
.

Where1 ≤ j ≤ n, n is the number of dimensions of a vector in
Vx, m is the number of vectors inVx, andvx

i,j is the value at the
ith row andjth column.

In the extended centroid method, given two vector setsVx andVy,
we first compute the extended centroids for both vector sets,V̄x

and V̄y, then the Manhattan distance of̄Vx and V̄y, ¯dx,y, can be
computed. For a given boundε, if m × ¯dx,y ≥ ε, the Manhat-
tan minimum matching distance betweenVx andVy must be larger
thanε. In other words,m × ¯dx,y is a lower bound of the Manhat-
tan minimum matching distanceVx andVy, which is given in the
following theorem.

THEOREM 5. Given two objectsx andy, assume their vector
sets beVx andVy and their extended centroids bēVx and V̄y. The
Manhattan distance between̄Vx andV̄y multiplied bym is a lower
bound of the Manhattan minimum matching distance betweenx
andy.

Proof: The Manhattan distance between̄Vx andV̄y is

¯dx,y =
Pn

j=1 | V̄x(j)− V̄y(j) |

=
Pn

j=1 |
Pm

i=1 vx
i,j

m
−
Pm

i=1 v
y
i,j

m
|.

Then we have

m× ¯dx,y =
Pn

j=1 |
Pm

i=1 vx
i,j −

Pm
i=1 vy

i,j |

=
Pn

j=1 |
Pm

i=1 vx
i,j −

Pm
i=1 vy

p(i),j |

≤Pn
j=1

Pm
i=1 | vx

i,j − vy
p(i),j |

=
Pm

i=1

Pn
j=1 | vx

i,j − vy
p(i),j |

= the Manhattan minimum matching distance between x and y.

Wherep(i) is the permutation in the Manhattan minimum matching
distance.2

However we can show that the bound computed using the extended
centroid method is smaller than the one given by the DCF filter,
i.e., they satisfydcentroid ≤ dDCF ≤ dmm, wheredcentroid and
dDCF are the filter values of the extended centroid method and
DCF respectively. This relation can be proved as follows. Given
objectsx andy, we have

m× ¯dx,y =
Pn

j=1 |
Pm

i=1 vx
i,j −

Pm
i=1 vy

i,j |

=
Pn

j=1 |
Pm

i=1 vx
i,j −

Pm
i=1 vy

pj(i),j |

=
Pn

j=1 |
Pm

i=1(v
x
i,j − vy

pj(i),j) |

≤Pn
j=1

Pm
i=1 | vx

i,j − vy
pj(i),j |

= the filter value of the DCF algorithm.

Hence in the Manhattan minimum matching distance, DCF has bet-
ter filtering performance than the extended centroid method.

3.4 Optimization Issues
Even though Algorithms 2 and 4 can be directly used as a filter for
the Euclidean and Manhattan minimum matching distances respec-
tively, we consider several optimization issues that may enhance
the filter efficiency. Although the order of dimensions in which
we compute the column-pair minimum matching distance does not
affect the filtering effectiveness, since DCF algorithm is based on
step-by-step computation of the filter values, we do want to find a
good order of dimensions so that the filter values can accumulate
fast and more objects can be filtered early. As a result, the compu-
tation cost at the filtering step is reduced.

According to the definitions of the Euclidean and Manhattan min-
imum matching distances, both of them depend on the column-
pair minimum matching distances and larger column-pair mini-
mum matching distances result in larger filter values. Hence we
want to order the dimensions based on the decreasing order of the
column-pair minimum matching distances. Since it is impossible to
know a good ordering in advance without computing the column-
pair minimum matching distances, we have to use statistical infor-
mation along with each dimension. However the data distribution
in each dimension is changed when we compute the column-pair
minimum matching distances, since the data is reordered and paired
using their sorted orders. It is difficult to estimate the column-
pair minimum matching distance using some statistical information
such as the data distribution, and histograms. Hence we propose to
use simple statistics, the mean values of each dimension, which
are not changed after reordering. Given two objectsx andy, we
compute their mean values along each dimension, then order the
dimensions in the decreasing order of their mean differences. The
filter value is computed according to this order. The motivation is
that the larger the difference of the mean values of a column pair,
the more likely that their column-pair minimum distance is larger.
The experimental results in the next section show the effectiveness
of this optimization technique.

Another optimization is on deciding the number of dimensions con-
sidered in the DCF algorithms. This is also a problem of tradeoff
between the computation cost of the filter step and the refinement
step. When we compute filter values, after considering certain
number of dimensions, the number of objects filtered may barely
increase. Thus under this condition, we should terminate the filter-
ing step and initiate the refinement step. There will be a time saving
if the time saved from the filter step is larger than that wasted in the
refinement step. The problem of determining the number of dimen-
sions which should be considered in the filter step is hard since it is
data-dependent, we therefore leave this problem as future work.

4. EXPERIMENTAL RESULTS
In this section we evaluate the effectiveness of DCF for the Eu-
clidean minimum matching distance and the Manhattan minimum
matching distance. The dataset we used in the experiments is from
UCI KDD Archive [7]. The dataset contains 68040 color histograms
of 32 dimensions. We organize them into 4252 vector sets each
containing 16 color histograms. Therefore our dataset comprises
of 4252 feature vector sets, where each vector set is composed of
16 feature vector and each vector has 32 dimensions. We compare
DCF with the extended centroid method, and the algorithm in [10,

12]. We refer to the algorithm in [10, 12] asthe naive algorithm,
because similarity search queries are processed only by comput-
ing the minimum matching distances among objects without con-
sidering the techniques such as pruning, indexing, and dimension
reduction.

The first experiment varies the number of column pairs considered
in DCF for the Euclidean minimum matching distance, where the
boundε in similarity range query is1.3. We compare the perfor-
mance of the DCF and the DCF with optimization. The optimiza-
tion technique is ordering the dimensions according the mean dif-
ferences, as we discussed earlier. Figure 3 shows the results for
DCF and DCF with optimization. TheY axis is the number of ob-
jects filtered. From the curve of DCF, we observe that the number
of objects filtered dramatically increases when around half of the
column pairs are considered. This is due to the fact that the filter
value is accumulated in DCF. Figure 3 also shows the effective-
ness of DCF with optimization. When the number of dimensions is
varied from 1 to 20, the DCF with optimization filters much more
objects than the DCF. It is not surprising to see that both of them
filter out the same number of objects when all dimensions are con-
sidered, since the optimization of reordering dimensions does not
affect the filtering effectiveness. The DCF with optimization filters
more objects earlier than the DCF without optimization. We also
observe that after about 25 dimensions, the number of objects fil-
tered marginally increases, which confirms our observation that the
filtering step should be terminated with the marginal increase in the
filtered objects.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
he

 n
um

be
r

of
 o

bj
ec

ts
 fi

lte
re

d

T
he

 p
er

ce
nt

ag
e

of
 o

bj
ec

ts
 is

 fi
lte

re
d

The number of dimensions is considered

DCF
The DCF with optimization

Figure 3: The impact of number of column pairs considered in
the Euclidean distance

Figure 4 shows the experimental results of DCF for the Euclidean
minimum matching distance where the boundε is varied. Since
both DCF and the DCF with optimization have the same final filter
values after all dimensions are considered, we do not need to dif-
ferentiate them in Figure 4. It is not surprising to see that the num-
ber of objects filtered decreases when the value ofε is increased,
as shown in Figure 4. The results for the total runtime with the
differentε are shown in Figure 5. The performance of DCF is sig-
nificantly better than the naive algorithm. For differentε, the naive
algorithm has similar performance for all values ofε, since all ob-
jects are considered. In contrast, the total runtime in our scheme is
longer when the value ofε is larger, since the number of objects fil-
tered reduces asε is increased. Figure 5 shows that the performance
of the DCF with optimization has better performance than that of
DCF when the similarity thresholdε is small. However, when the
similarity thresholdε is larger,the DCF with optimization has simi-

lar performance to that of DCF. This is due to the fact that although
the DCF with optimization algorithm can filter more objects earlier
to improve the cost of the filtering step, the computation cost at the
refinement step is much larger than that of the filtering step. Hence
the performance does not improve significantly.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.8 1 1.2 1.4 1.6 1.8 2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
he

 n
um

be
r

of
 o

bj
ec

ts
 fi

lte
re

d

T
he

 p
er

ce
nt

ag
e

of
 o

bj
ec

ts
 is

 fi
lte

re
d

Similarity threshold in queries

DCF

Figure 4: The experimental results for different query bounds
in the Euclidean distance

 10

 100

 1000

 10000

 100000

 0.8 1 1.2 1.4 1.6 1.8 2

T
he

 to
ta

l e
la

ps
e

tim
e

(m
s)

Similarity threshold in queries

The naive algorithm
DCF

DCF with optimization

Figure 5: The total runtime for different query bounds in the
Euclidean distance

We conducted similar experiments for DCF under the Manhattan
minimum matching distance and compared it with the naive algo-
rithm, and the extended centroid method. The similarity thresh-
old values we use in the experiments for the Manhattan minimum
matching distance are larger than the ones used in the Euclidean
minimum matching distance. This is because the Euclidean min-
imum matching distance between two vector sets is much smaller
than the Manhattan minimum matching distance between these two
sets. Figure 6 shows the results for DCF and the DCF with opti-
mization when the number of column pairs considered varies. The
behavior is similar to the one given in Figure 3. Since the number
of dimensions considered has no impact on the extended centroid
filter, the number of objects filtered is a constant value, as shown
in Figure 6. When we consider all dimensions in DCF, DCF has
much better performance than the extended centroid filter.

Figure 7 shows the comparison results of DCF and the extended
centroid method when the similarity thresholdε is varied. The
performance of both DCF and the extended centroid gets worse
when the values ofε are larger. DCF significantly outperforms the

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
he

 n
um

be
r

of
 o

bj
ec

ts
 fi

lte
re

d

T
he

 p
er

ce
nt

ag
e

of
 o

bj
ec

ts
 is

 fi
lte

re
d

The number of dimensions is considered

DCF
DCF with optimization

Extended centroid

Figure 6: The impact of number of column pairs considered in
the Manhattan distance

extended centroid method in terms of filter effectiveness. When
ε is no larger than 10, most of the objects are filtered in DCF.
Similar to the results in Figure 5, the elapsed time of DCF and
the DCF with optimization have similar performance, as shown
in Figure 8. This figure also shows the comparison results of to-
tal runtime among these four methods. We observe that DCF and
the DCF with optimization have superior performance than the ex-
tended centroid method and the naive algorithm, while the extended
centroid method outperforms the naive algorithm.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 6 8 10 12 14 16 18
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
he

 n
um

be
r

of
 o

bj
ec

ts
 fi

lte
re

d

T
he

 p
er

ce
nt

ag
e

of
 o

bj
ec

ts
 is

 fi
lte

re
d

Similarity threshold in queries

DCF
Extended centroid

Figure 7: The experimental results for different query bounds
in the Manhattan distance

5. CONCLUSION
Similarity search is an important class of queries and plays an im-
portant role in a lot of applications, such as multimedia databases,
medical imaging, and CAD applications. A lot of studies have been
mainly focused on improving the query cost of similarity search
over objects represented by feature vectors. Recently, similarity
search on objects which are presented using feature vector sets
is gaining much attention, since the results are more meaningful.
However the existing techniques proposed for similarity search over
feature vectors can not be adapted to this context due to the differ-
ent distance metrics. In this paper, we define two distance metrics
based on the Euclidean and Manhattan distances due to the popu-
larity of the Euclidean distance and Manhattan distance. Then we
propose filtering techniques to accelerate the query processing. The
novel filter technique proposed is Divide-and-Conquer filter (DCF).

 100

 1000

 10000

 100000

 6 8 10 12 14 16 18

T
he

 to
ta

l e
la

ps
e

tim
e

(m
s)

Similarity threshold in queries

The naive algorithm
DCF

Extended centroid
DCF with optimization

Figure 8: The total runtime for different query bounds in the
Manhattan distance

Then we present filtering algorithms for both the Euclidean and
Manhattan minimum matching distances based on this technique.
In DCF, filter values are computed dimension-by-dimension. The
objects are filtered whenever their partial filter values are larger
than the given bound. The experimental results show the superior
performance of our filter technique.

6. REFERENCES
[1] Mihael Ankerst, Bernhard Braunm̈uller, Hans-Peter Kriegel,

and Thomas Seidl. Improving adaptable similarity query
processing by using approximations. InVLDB’98,
Proceedings of 24rd International Conference on Very Large
Data Bases, pages 206–217, 1998.

[2] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel.
The X-tree: An index structure for high-dimensional data. In
Proceedings of the 22nd International Conference on Very
Large Databases, pages 28–39, 1996.

[3] Orhan Camoglu, Tamer Kahveci, and Ambuj Singh. Psi:
Indexing protein structures for fast similarity search, 2003.

[4] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An
efficient access method for similarity search in metric spaces.
Proceedings of the 23rd International Conference on Very
Large Data Bases, pages 426–435, 1997.

[5] G.P. Copeland and S. F. Khoshafian. A decomposition
storage model.Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages
268–279, May 1985.

[6] Arjen P. de Vries, Nikos Mamoulis, Niels Nes, and Martin
Kersten. Efficient k-nn search on vertically decomposed data.
In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 322–333, 2002.

[7] S. Hettich and S. D. Bay. The UCI KDD archive, 1999.
http://kdd.ics.uci.edu.

[8] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot
Siegel, and Zenon Protopapas. Fast nearest neighbor search
in medical image databases. InProceedings of the 22th
International Conference on Very Large Data Bases, pages
215–226, 1996.

[9] Hans-Peter Kriegel, Stefan Brecheisen, Peer Kroger, Martin
Pfeifle, and Matthias Schubert. Using sets of feature vectors
for similarity search on voxelized cad objects. In
Proceedings of the 2003 ACM SIGMOD international
conference on on Management of data, pages 587–598, 2003.

[10] H. W. Kuhn. The hungarian method for the assignment
problem.Naval Res. Logist. Quart, pages 83–98, 1955.

[11] K. Lin, H. V. Jagadish, and C. Faloutsos. The TV-tree: An
index structure for high-dimensional data.VLDB Journal,
3:517–542, 1995.

[12] J. Munkres. Algorithms for the assignment and
transportation problems.J. SIAM, pages 32–38, 1957.

[13] Nick Roussopoulos, Stephen Kelley, and Frederic Vincent.
Nearest neighbor queries. InProceedings of the 1995 ACM
SIGMOD international conference on Management of data,
pages 71–79, 1995.

[14] Yasushi Sakurai, Masatoshi Yoshikawa, Shunsuke Uemura,
and Haruhiko Kojima. The A-tree: An index structure for
high-dimensional spaces using relative approximation. In
Proc. of the 26th International Conference on Very Large
Data Bases (VLDB), pages 516–526, Cairo, September 2000.

[15] Roger Weber, Hans-J. Schek, and Stephen Blott. A
quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In
Proceedings of the 24rd International Conference on Very
Large Data Bases, pages 194–205, 1998.

