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A q-Matrix Encoding Extending the Parikh Matrix Mapping

Ömer Eğecioğlu

Abstract: We introduce a generalization of the Parikh mapping called the Parikh q-matrix
encoding, which takes its values in matrices with polynomial entries. The encoding represents
a word w over a k-letter alphabet as a (k + 1)-dimensional upper-triangular matrix with
entries that are nonnegative integral polynomials in variable q. Putting q = 1, we obtain
the morphism introduced by Mateescu, Salomaa, Salomaa, and Yu [6] which extends the
Parikh mapping to (k + 1)-dimensional (numerical) matrices. The Parikh q-matrix encoding
however, produces matrices that carry more information about w than the numerical Parikh
matrix. In fact it is injective. The entries of the q-matrix image of w under this encoding is
constructed by q-counting the number of occurrences of certain words as scattered subwords
of w. This construction is distinct from the Parikh q-matrix mapping into k-dimensional
upper-triangular matrices with integral polynomial entries introduced by Eğecioğlu and Ibarra
[2].
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1 Introduction

By Parikh’s theorem [7], the commutative image of any context-free language is a semilinear set, and is there-
fore also the commutative image of some regular set. Consider the (ordered) alphabet Σk = {a1 < a2 < · · · < ak}
and for w ∈ Σ∗, define by |w|ai

the number of occurrences of ai in w. The Parikh mapping is a morphism

Ψ : Σ∗ → INk

where IN is the set of nonnegative integers and Ψ(w) = (|w|a1 , |w|a2 , · · · , |w|ak
) is the Parikh vector.

The Parikh mapping is an important concept in the theory of formal languages. Various languages accepted
by automata that are more powerful than pushdown automata have been shown to have effectively computable
semilinear sets. For example, it is known that every language accepted by a pushdown automaton augmented with
reversal-bounded counters has a semilinear Parikh map [4]. The fact that the emptiness problem for semilinear
sets is decidable implies that the emptiness problem for these automata is decidable. This fact has a number of
applications in formal languages (e.g., [3]) and formal verification (e.g., [5]).

The Parikh matrix mapping introduced in [6] is a morphism ΨMk
: Σ∗ →Mk+1 where Mk+1 is a collection

of (k+1)-dimensional upper-triangular matrices with nonnegative integral entries and unit diagonal. The classical
Parikh vector Ψ(w) appears in the image matrix as the second diagonal.

In [2] the Parikh q-matrix mapping was introduced. It is a morphism Ψk
q : Σ∗ → Mk(q) where Mk(q) is a

collection of k-dimensional upper-triangular matrices with nonnegative integral polynomials in q as entries. The
diagonal entries of Ψk

q (w) are

(q|w|a1 , q|w|a2 , · · · , q|w|ak )

which readily encodes the Parikh vector. In addition, it can be shown [2] that viewing w ∈ Σk as a word in Σk+1

with |w|ak+1 = 0, the Parikh q-matrix Ψk+1
q (w) evaluated at q = 1 is precisely the (k+ 1)-dimensional numerical

Parikh matrix ΨMk
(w).

It is a basic property of the Parikh matrix mapping that two words with the same Parikh matrix have the same
Parikh vector, but two words with the same Parikh vector in many cases have different Parikh matrices [1]. Thus,
the Parikh matrix gives more information about a word than a Parikh vector. Similarly, two words with the same
Parikh q-matrix have the same Parikh matrix (and therefore the same Parikh vector), but there are cases in which
two words with the same Parikh matrix have different q-matrices. Thus the Parikh q-matrix gives more information
about a word than the Parikh matrix. We show that the Parikh q-matrix encoding introduced here is injective, and
for q = 1, it also reduces to the (k + 1)-dimensional numerical Parikh matrix mapping.

The basic idea in the construction of the entries of the Parikh q-matrix encoding of w is q-counting the number
of occurrences of certain words as scattered subwords ofw. This is done by keeping track of the indices (positions)
of the letters of the scattered subword in w as exponents of monomials in q.
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The structure of this paper is as follows. Sections 2 gives some basic notation and definitions. Section 3 recalls
the notion of a Parikh matrix mapping introduced in [6] and the fundamental theorem concerning these mappings.
Section 4 presents the polynomials which generalize the count of scattered subwords. Section 5 presents our Parikh
q-matrix encoding and the main results, including Theorem 2, which gives the main properties of the encoding.
Section 6 looks at properties such as injectivity and gives an interpretation of the inverse matrix in terms of mirror
images.

2 Definitions

We start with some basic notation and definitions. Most of these are as they appear in references [6, 1, 2]. The
set of all nonnegative integers is denoted by IN. We denote by IN[q] the collection of polynomials in the variable
q with coefficients from IN. ZZ denotes integers, and ZZ[q] denotes the ring of polynomials in the variable q with
integral coefficients. For an alphabet Σ, we denote the set of all words over Σ by Σ∗ and the empty word by λ. We
use “ordered” alphabets. An ordered alphabet is an alphabet Σ = {a1, a2, . . . , ak} with a relation of order (“<”)
on it. If for instance a1 < a2 < · · · < ak, then we use the notation

Σ = {a1 < a2 < · · · < ak}.

If w ∈ Σ∗ then |w| denotes the length of w. For ai ∈ Σ and w ∈ Σ∗ the number of occurrences of the letter ai in
w is denoted by |w|ai

.
Let v, w be words over Σ. As defined in [6], the word v is called a scattered subword of w if there exists a word

u such that w ∈ u�� v, where �� denotes the shuffle operation. If v, w ∈ Σ∗, then the number of occurrences of
v in w as a scattered subword is denoted by |w|scatt−v . Partially overlapping occurrences of a word as a scattered
subword of a word are counted as distinct occurrences. For example, |acbb|scatt−ab = 2, |acba|scatt−ab = 1.
Notation We also use the symbol Pw,v to denote |w|scatt−v . Using this notation, Pacbb,ab = 2, Pacba,ab = 1, and
Pw,ai

= |w|ai
for any letter ai ∈ Σ.

Notation Consider the ordered alphabet {a1 < a2 < · · · < ak} where k ≥ 1. As in [6], we denote by the symbol
ai,j the word aiai+1 · · · aj where 1 ≤ i ≤ j ≤ k.

For motivation and further issues about the Parikh mapping as well as language-theoretic notions not considered
here, we refer the reader to [8].

3 Parikh matrix mapping

We first describe the extension of the Parikh mapping to matrices as originally defined in [6]. The extension
involves special types of triangular matrices. These are square matrices m = (mi,j)1≤i,j≤k such that mi,j ∈ IN,
for all 1 ≤ i, j ≤ k, mi,j = 0, for all 1 ≤ j < i ≤ k, and moreover, mi,i = 1, for all 1 ≤ i ≤ k. The set of all
these matrices of dimension k is denoted by Mk. Thus Mk is the collection k × k upper-triangular matrices with
entries from IN and unit diagonal. The set Mk is a monoid with respect to multiplication of matrices and has a unit
which is the identity matrix Ik. The main notion introduced in [6] is as follows:

Definition 3. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet, where k ≥ 1. The Parikh matrix mapping,
denoted by ΨMk

, is the morphism:

ΨMk
: Σ∗ →Mk+1,

defined as follows: If ΨMk
(al) = (mi,j)1≤i,j≤(k+1), then for each 1 ≤ i ≤ k + 1, mi,i = 1, ml,l+1 = 1 and all

other elements of the matrix ΨMk
(al) are zero.

Example 3.1. Let Σ be the ordered alphabet {a < b < c}. Then the Parikh matrix mapping ΨM3 represents
each word over Σ∗ as a 4 × 4 upper triangular matrix with unit diagonal with nonnegative integral entries. As an
example ΨM3(ab

2) = ΨM3(a)ΨM3(b)ΨM3(b). Thus

ΨM3(ab
2) =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 2 0
0 1 2 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
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Furthermore

ΨM3(ab
2ac2a) =

⎡
⎢⎢⎣

1 1 2 0
0 1 2 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ΨM3(a)ΨM3(c)ΨM3(c)ΨM3(a) =

⎡
⎢⎢⎣

1 3 2 4
0 1 2 4
0 0 1 2
0 0 0 1

⎤
⎥⎥⎦ (1)

The main property of the Parikh matrix mapping is the following theorem:

Theorem 1. ([6], Theorem 3.1) Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet, where k ≥ 1 and assume
that w ∈ Σ∗. The matrix ΨMk

(w) = (mi,j)1≤i,j≤(k+1), has the following properties

1. mi,j = 0, for all 1 ≤ j < i ≤ k + 1,

2. mi,i = 1, for all 1 ≤ i ≤ k + 1,

3. mi,j+1 = Pw,ai,j
, for all 1 ≤ i ≤ j ≤ k.

As a corollary

Corollary 1. ([6], Corollary 3.1) Let Σ = {a1 < a2 < · · · < ak} The matrix ΨMk
(w) has as its the second

diagonal the Parikh vector of w, i.e., (m1,2,m2,3, . . . ,mk,k+1) = Ψ(w) = (|w|a1 , |w|a2 , · · · , |w|ak
).

4 Index enumerator of scattered subwords

Next we introduce a collection of polynomials Pw,ai,j
(q) indexed by w ∈ Σ∗, and ai,j = aiai+1 · · · aj , with

1 ≤ i ≤ j ≤ k. These polynomials will “q-count” the numbers Pw,ai,j
defined above for general v and w. To

construct Pw,ai,j
(q), we consider a factorization

w = uiaiui+1ai+1 · · ·ujajuj+1 (2)

with us ∈ Σ∗ for i ≤ s ≤ j + 1. The numbers

Ii = |ui|+ 1, Ii+1 = |ui|+ |ui+1|+ 2, . . . , Ij = |ui|+ |ui+1|+ · · ·+ |uj |+ j − i+ 1 (3)

are simply the indices (positions) in w where the letters ai, ai+1, . . . aj appear respectively, in the factorization (2).
To construct the polynomial Pw,ai,j

(q), we form the monomial

qIi+Ii+1 ···+Ij  
______(4)

in IN[q] corresponding to each such factorization, and add up the resulting monomials. Thus

Pw,ai,j
(q) =

∑
w=uiaiui+1 ···ujajuj +1

qIi+Ii+1+···+Ij  
_________(5)

where the exponents are the indices of ai, ai+1 . . . , aj in w as given in (3).

Example 4.1. Suppose Σ = {a < b < c} and w = ab2ac2a. If i = 1, j = 3, then ai,j = abc and writing
the indices and underlining the positions of a, b and c for each appearance of abc as a scattered subword of w, we
obtain

1 2 3 4 5 6 7 Positions Contribution

Factorization : a b b a c c a 1, 2, 5 q8

Factorization : a b b a c c a 1, 2, 6 q9

Factorization : a b b a c c a 1, 3, 5 q9

Factorization : a b b a c c a 1, 3, 6 q10

Consequently
Pw,abc(q) = q8 + 2q9 + q10.

Similarly, we find that

Pw,a(q) = q + q4 + q7 Pw,ab(q) = q3 + q4

Pw,b(q) = q2 + q3 Pw,ac(q) = q7 + q8

Pw,c(q) = q5 + q6 Pw,bc(q) = q7 + 2q8 + q9
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Since the summation in the definition (5) of Pw,ai,j
(q) is over all occurrences of ai,j in w as a scattered

subword, the following proposition is immediate:

Proposition 1. Let Σ = {a1 < a2 < · · · < ak} and 1 ≤ i ≤ j ≤ k. Then Pw,ai,j
(1) = Pw,ai,j

(= |w|scatt−ai,j
).

Thus the polynomials Pw,ai,j
(q) “q-count” the number of occurrences of aiai+1 · · · aj as a scattered subword

of w.

5 The Parikh q-matrix encoding

We denote by Mk(q) the collection of k-dimensional upper-triangular matrices with entries in IN[q]. Let Ik
denote the identity matrix of dimension k. We define a mapping

Ψ : Σ× IN → Mk+1(q)

as follows. The matrix Ψ(al, j) corresponding to a pair al ∈ Σ = {a1 < a2 < · · · < ak} and j ∈ IN, is defined as
the matrix obtained from Ik+1 by changing the (l, l+1)-st entry in Ik+1 to qj . Thus if Ψ(al, j) = (mi,j)1≤i,j≤k+1,
then mi,i = 1 for 1 ≤ i ≤ k + 1, ml,l+1 = qj , and all other entries of the matrix Ψ(al, j) are zero.

Example 5.1. When the alphabet is Σ = {a < b < c},

Ψ(a, j) =

⎡
⎢⎢⎣

1 qj 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , Ψ(b, j) =

⎡
⎢⎢⎣

1 0 0 0
0 1 qj 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , Ψ(c, j) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 qj

0 0 0 1

⎤
⎥⎥⎦

Remark 2. The matrix Ψ(al, j) differs from the matrix Ψ(al) introduced in [6] in the definition of the Parikh
matrix mapping only in the (l, l + 1)-st entry: In Ψ(al) this entry is 1, whereas in Ψ(al, j) it is qj . We note that
the matrices Ψ(al, j) specialize to Ψ(al) for q = 1, for any value of j.

We now define a mapping (which we again denote by Ψ ) from Σ∗ to Mk+1(q) by setting Ψ(λ) = Ik+1 and

Ψ(w1w2 · · ·wn) = Ψ(w1, 1)Ψ(w2, 2) · · ·Ψ(wn, n), wi ∈ Σ, 1 ≤ i ≤ n.

We refer to Ψ as the Parikh q-matrix encoding.

Example 5.2. Let Σ be the ordered alphabet {a < b < c}. Then Ψ(ab2) = Ψ(a, 1)Ψ(b, 2)Ψ(b, 3). Thus

Ψ(ab2) =

⎡
⎢⎢⎣

1 q 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
0 1 q2 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
0 1 q3 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 q q3 + q4 0
0 1 q2 + q3 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Furthermore

Ψ(ab2ac2a) =

⎡
⎢⎢⎣

1 q q3 + q4 0
0 1 q2 + q3 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦Ψ(a, 4)Ψ(c, 5)Ψ(c, 6)Ψ(a, 7)

=

⎡
⎢⎢⎣

1 q + q4 + q7 q3 + q4 q8 + 2q9 + q10

0 1 q2 + q3 q7 + 2q8 + q9

0 0 1 q5 + q6

0 0 0 1

⎤
⎥⎥⎦

Note that for q = 1, this is the matrix ΨM3(ab
2ac2a) displayed as (1).

Remark 3. The Parikh q-matrix encoding is not a morphism for arbitrary q. For example over Σ = {a < b}
Ψ(ab) = Ψ(a, 1)Ψ(b, 2) �= Ψ(a, 1)Ψ(b, 1) = Ψ(a)Ψ(b)
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Remark 4. Neither the Parikh matrix mapping of [6] nor the Parikh q-matrix mapping of [2] is injective. We will
later show that the Parikh q-matrix encoding Ψ is injective. On the other hand, both Parikh matrix mapping and
the Parikh q-matrix mapping are morphisms, whereas Parikh q-matrix encoding is not.

Remark 5. Just as in the case of the Parikh matrix mapping and the Parikh q-matrix mapping, it is not true for
the Parikh q-matrix encoding that if L is a context-free language, then its image is some suitable extension of the
notion of semilinearity to matrices over IN[q]. This is a direct consequence of Theorem 3 and the similar negative
result concerning the Parikh matrix mapping ([6], Remark 3.2).

Now we give a characterization of the entries of the matrix Ψ(w) in terms of the polynomials Pw,ai,j
(q)

introduced in section 4.

Theorem 2. Let Σ = {a1 < a2 < · · · < ak} be an ordered alphabet, where k ≥ 1 and assume that w ∈ Σ∗. The
matrix Ψ(w) = (mi,j(q))1≤i,j≤k+1, has the following properties

1. mi,j = 0, for all 1 ≤ j < i ≤ k + 1,

2. mi,i = 1, for all 1 ≤ i ≤ k + 1,

3. mi,j+1 = Pw,ai,j
(q), for all 1 ≤ i ≤ j < k + 1.

Proof. The proof of the parts 1. and 2. are immediate. We now prove property 3. Assume that |w| = n. The proof
is by induction on n. If n ≤ 1, the assertion holds. Assume now that part 3. holds for all words of length n and let
w be of length n+ 1. Write w = w′aj where |w′| = n and aj ∈ Σ. Then

Ψ(w) = Ψ(w′)Ψ(aj , n+ 1)

Assume that

Ψ(w′) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 m′
1,2 · · · · · · m′

1,k+1

0 1 · · · · · · m′
2,k+1

...
...

...
...

...
...

...
... 1 m′

k,k+1

0 0 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

= M ′

By the inductive hypothesis the matrix M ′ = Ψ(w′) has property 3. We have

Ψ(aj , n+ 1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
...

...
...

...
...

...
0 . . . 1 qn+1 . . . 0
...

...
...

...
...

...
0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

where the matrix differs from Ik+1 only in the entry in position (j, j + 1) where it is qn+1 instead of 0. Let
M = Ψ(w). Then

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 m′
1,2 · · · · · · m′

1,k+1

0 1 · · · · · · m′
2,k+1

...
...

...
...

...
...

...
... 1 m′

k,k+1

0 0 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
...

...
...

...
...

...
0 . . . 1 qn+1 . . . 0
...

...
...

...
...

...
0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

If M = (mr,s)1≤r,s≤k+1, then

mi,j+1 = m′
i,j+1 +m′

i,j · qn+1 for all 1 ≤ i ≤ j, (6)

and for all other indices, mr,s = m′
r,s. But these are immediate from the definition of the polynomials Pw,ai,j

(q)
which satisfy

Pw′aj ,ai,j
(q) = Pw′,ai,j

(q) + Pw′,ai,j−1(q) · qn+1 for 1 ≤ i ≤ j ≤ k, (7)

and the proof follows by induction.
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Theorem 3. Suppose Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗. Let Ψ(w) be the Parikh q-matrix encoding by
(k + 1)-dimensional matrices over IN[q]. Then Ψ(w) evaluated at q = 1 is the Parikh matrix ΨMk

(w).

Proof. Combine Theorem 2, Theorem 1, and Proposition 1.

Corollary 6. Let Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗. Suppose the vector of second diagonal entries of the
matrix Ψ(w) is (m1,2(q),m2,3(q), · · · ,mk,k+1(q)) ∈ IN[q]k. Then

(m1,2(q),m2,3(q), · · · ,mk,k+1(q)) = (Pw,a1(q), Pw,a2(q), · · · , Pw,ak
(q))

and at q = 1, this vector evaluates to the Parikh vector (|w|a1 , |w|a2 , · · · , |w|ak
) ∈ INk.

6 Injectivity and matrix inverses

The Parikh matrix mapping and the Parikh q-matrix mapping are not injective mappings. For instance over
the ordered alphabet {a < b < c} one has Ψ(acb) = Ψ(cab) [6] as well as Ψq(acb) = Ψq(cab) [2]. Injectivity
properties of the Parikh matrix mapping was studied for the binary alphabet in [1].

Note that by Theorem 2, the polynomials which form the second diagonal of the matrix Ψ(w) completely
determine w. This is because the (i, i+ 1)-st entry in Ψ(w) is Pw,ai

(q), which encodes the positions of the letter
ai in w. Clearly, knowing the positions of each letter ai in w for 1 ≤ i ≤ k is equivalent to knowing w completely.
Thus we have

Theorem 4. The Parikh q-matrix encoding is injective: i.e. Ψ(u) = Ψ(v) implies u = v.

The notion of the alternate (signed) Parikh matrix was developed in [6]. It has the nice property that the
inverse of the matrix ΨMk

(w) is the alternate Parikh matrix of the mirror image mi(w) of w. Suppose that
Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗ with Parikh matrix M = (mi,j)1≤i,j≤k+1. Then the alternate Parikh
matrix of w is the matrix M ′ = (m′

i,j)1≤i,j≤k+1 where m′
i,j = (−1)i+jmi,j for all 1 ≤ i ≤ j ≤ k + 1. Then the

following interesting result holds

Theorem 5. (Restatement of [6], Theorem 3.2) Suppose Σ = {a1 < a2 < · · · < ak} and w = w1w2 · · ·wn ∈ Σ∗.
Then the matrix inverse of the Parikh matrix of mi(w) = wn · · ·w2w1 is the alternate Parikh matrix of w.

It can also be shown that there is a similar identity involving the k-dimensional matrices for w and mi(w) for
the Parikh q-matrix mapping (See [2], Theorem 4).

We define the alternate Parikh q-matrix encoding Ψ
′

on Σ∗ as follows: Suppose Ψ(w) = (mi,j(q))1≤i,j≤k+1.

Then Ψ
′
(w) = (m′

i,j(q))1≤i,j≤k+1 where m′
i,j(q) = (−1)i+jmi,j(q) for all 1 ≤ i ≤ j ≤ k + 1. Then

Theorem 6. Given w = w1w2 · · ·wn ∈ Σ∗, the matrix inverse of

Ψ(wn, n)Ψ(wn−1, n− 1) · · ·Ψ(w1, 1) (8)

is the alternate Parikh matrix encoding of w.

Proof. Omitted.

Thus not only we need to reverse the order of the letters as inmi(w), but also their indices. For q = 1, however,
the indices do not matter, and from Theorem 6, we obtain Theorem 3.2 of [6] for the Parikh matrix as a special
case.

Example 6.1. For w = ab2ac2a, the matrix product displayed in (8) evaluates to⎡
⎢⎢⎣

1 q + q4 + q7 q6 + q7 + q9 + q10 0
0 1 q2 + q3 0
0 0 1 q5 + q6

0 0 0 1

⎤
⎥⎥⎦

with inverse ⎡
⎢⎢⎣

1 − q − q4 − q7 q3 + q4 − q8 − 2q9 − q10
0 1 −q2 − q3 q7 + 2q8 + q9

0 0 1 −q5 − q6
0 0 0 1

⎤
⎥⎥⎦

The latter matrix is obtained from the matrix Ψ(w) in (6) by changing the signs of the entries in a checkerboard
fashion as required by the definition of the alternate Parikh q-matrix encoding of w.
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Remark 7. The Parikh matrix mapping and the Parikh q-matrix mapping are non-injective morphisms, and the
latter is a refinement of the former [2]. The Parikh q-matrix encoding introduced in the present paper is injective,
and reduces to the (numerical) Parikh matrix mapping of [6]. It is possible to construct weaker and non-injective
versions of the Parikh q-matrix encoding in a number of ways. One is to set qp+1 = q for some p ∈ IN and keep
track of the positions of the letters in w modulo p only. The encoding is then with upper-triangular matrices with
entries over the quotient ring ZZ[q]/<qp+1−q>.
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