
An Efficient Topology-Adaptive Membership Protocol for Large-Scale
Network Services

Lingkun Chu Jingyu Zhou Tao Yang

Abstract

A highly available large-scale service cluster often requires the
system to discover new nodes and identify failed nodes quickly
in order to handle a high volume of traffic. Determining
node membership efficiently in such an environment is critical
to location-transparent service invocation, load balancing and
failure shielding. In this paper, we present a topology-aware
hierarchical membership service which divides the entire clus-
ter into membership groups based on the network topology
among nodes so that the liveness of a node within each group
is published to others in a highly efficient manner. Our design
also supports the deployment of service clusters in multiple
data centers through membership proxies which update mem-
bership information incrementally so that membership com-
munication across data centers is minimized as much as possi-
ble. We compare our approach with other two alternatives: an
all-to-all multicasting approach and a gossip based approach.
Our evaluation shows that the proposed topology-aware ap-
proach is scalable and effective in terms of high membership
accuracy, short view convergence time, and low communica-
tion cost.

1 Introduction

Many Internet services are hosted in large-scale clusters with
thousands of machines. Component and network failures in
such an environment are common and occur frequently due to
hardware failures, software bugs and operational errors [17].
The cluster configuration can also change dynamically when
the service evolves, for example, new nodes can be added
into the the cluster for service replacement, upgrade or ex-
pansion. To make the service available all the times, multiple
hosting centers are often deployed across countries and traf-
fic is shifted among them based on locality, load, availability
and operational needs. Service components inside a cluster of-
ten rely on a membership protocol to learn what services are
available locally in a hosting center or among hosting centers.
In this way, internal and external service invocations can be ef-
fectively executed by knowing the availability in advance. The

role of a membership service is to maintain a yellow page di-
rectory of available services hosted on all cluster nodes. When
a consumer node plans to acquire a certain service, it looks
up the yellow page directory and gets a set of appropriate
nodes which can serve the request. Component availability
information provided by the membership service should be as
complete and accurate as possible to avoid sending requests
to a non-functioning node. Once the information of available
nodes is obtained, a consumer node in a system can make a
well-informed decision, for example, load balancing based on
the random polling technique [20]. Since the scale of an In-
ternet service in a large site can grow quickly, it is important
to develop a membership protocol which is incrementally scal-
able from a small cluster to a large-scale cluster with thousands
of nodes hosted in multiple data centers [2].

The architecture of a membership service can be central-
ized, where a stand-alone server provides membership infor-
mation to all the service nodes, or distributed, where every
consumer maintains its own yellow page directory. Examples
of the centralized approach can be found in distributed file sys-
tems, such as Google FS [10], where the membership service
is often integrated with the directory service. Although the
centralized approach is simple to implement, it is not scalable
and the membership server is a single point of failure. Fur-
thermore, it introduces an additional delay during a service
invocation since the membership server needs to be contacted
first to look up the actual server node. Such overhead is not
acceptable in a web site where low response time under a high
volume of traffic is desired.

In this paper, we focus on a decentralized approach for
large-scale service clusters [20, 21]. In this approach, mem-
bership information is made available to every node that needs
to invoke external services and this information is maintained
as soft state to minimize management overhead and data in-
consistency [18]. More specifically, each node is able to ac-
cess entire yellow page directory inside a service cluster. This
simplifies management and makes the service easy to extend
by allowing a node to seek services from any other nodes. In
addition to the aliveness information, our membership service
also maintains relative stable information of each node, such as
application service name, partition ID, machine configuration,

1

 {lkchu, jzhou, tyang}@cs.ucsb.edu
 Ask Jeeves Inc., Piscataway, NJ 08854
Department of Computer Science, University of California at Santa Barbara, CA 93106

* This work was supported in part by Ask Jeeves, NSF grants CCF-0234346,
 ACIR-0086061.

etc. Dynamic information such as workload is not covered by
the membership protocol itself. Instead, external protocols,
such as random polling load balancing scheme can be built on
the top of our membership service.

The proposed approach considers the following require-
ments. First, the design should minimize communication and
computation overhead of maintaining membership informa-
tion at each node. Secondly, the scheme should be scalable
to thousands of nodes in a single service cluster and to mul-
tiple data hosting centers. Thirdly, the membership service
needs to be complete, accurate and responsive. It should detect
any status change, i.e., node departures and joins (complete),
and the detection should be correct (accurate) and as quick
as possible (responsive). Previous research has not provided
a complete solution to meet all of the above requirements.
Directory-based membership services studied in [5, 12] only
focus on peer-to-peer environments in wide area networks or
a small-scale cluster. The requirement for low communication
overhead for high traffic web sites is more demanding than
previous studies.

In this paper, we propose a topology-aware membership
scheme for large-scale clusters to meet the above require-
ments. Since a large-scale cluster is often grouped through a
layer-3 switch, our scheme automatically divides cluster nodes
into subgroups based on the communication layer setting by
the system administrator. A leader is elected for each group
from time to time when a failure occurs. Group leaders form
a hierarchical tree structure to exchange membership informa-
tion across groups. Across multiple data centers, a member-
ship proxy protocol is developed to distribute membership in-
formation and to enable service invocation from one data cen-
ter to another.

The rest of the paper is organized as follows. Section 2
presents the background of the membership service in clus-
tering middleware. Section 3 describes our protocol for mem-
bership service and an extended version for multiple data cen-
ters. Section 4 analyzes the scalability of our approach with a
comparison to two alternatives. Section 5 discusses our mem-
bership service API. Section 6 presents the details of the im-
plementation and our evaluation in a cluster with hundreds of
nodes. Section 7 discusses related work. Section 8 recaps our
findings and concludes the paper.

2 Background

In this paper, we propose a membership service for cluster-
based Internet services. The approach is implemented in the
Neptune framework – programming and runtime support for
building cluster-based Internet services [21]. Additionally, it
can be easily coupled into other clustering frameworks.

Neptune targets cluster-based network services accessible
to Internet users. Requests issued by remote clients enter ser-
vice clusters through protocol gateways such as Web servers
or XML gateways. Inside the service cluster, services are typi-
cally composed of several service components. Persistent data

for service components are usually partitioned and replicated
for incremental scalability and high availability. We use the
term Service Instance to denote a server entity that runs on a
cluster node and manages a data partition belonging to a ser-
vice component. Neptune employs a functionally symmetric
and decentralized clustering design. Each service instance can
elect to provide services (when it is called service provider)
and it can also acquire services exported by other service in-
stances (when it is called service consumer). This model al-
lows multi-tier or nested service architecture to be easily con-
structed.

High-throughput low-

latency network

Service

cluster

Business

partner XML

gateway

XML

gateway

XML

gateway

Web

Server

Web

Server

Web

server

Index

server

Partition 1

Index

server

Partition 1

Index

server

Partition 1 Index

server

Partition 2

Index

server

Partition 2

Index

server

Partition 2

Doc

server

Partition 2

Doc

server

Partition 2

Doc

server

Partition 2

Doc

server

Partition 1

Doc

server

Partition 1

Doc

server

Partition 1

Doc

server

Partition 3

Doc

server

Partition 3

Doc

server

Partition 3

Business

partner

1

4

3
3

3

2

2

Figure 1: A prototype search engine service supported by Neptune

Figure 1 illustrates the architecture of a prototype document
search service supported by the Neptune middleware. In this
example, the service cluster delivers a search service to Inter-
net users and business partners through Web servers and XML
gateways. Inside the cluster, the main search task is decom-
posed into two parts and distributed to index servers and doc-
ument servers. The data for both components is partitioned
and replicated. In Figure 1, there are two index server parti-
tions and three document server partitions. Each partition has
three replicas. The arcs labeled with 1

�
– 4

�
in Figure 1 show a

simplified work flow of serving a client request. 1
�

A search
query arrives at one of the protocol gateways. 2

�
The pro-

tocol gateway contacts the index server partitions to retrieve
the identifications of documents relevant to the search query.
3

�
The protocol gateway contacts the document server par-

titions which translate the list of document identifications to
human understandable descriptions. 4

�
Finally, the protocol

gateway compiles the final results in HTML or XML format
and returns them back to the client. In the above work flow,
the protocol gateway contacts the service instances through the
Neptune consumer module. On the service provider side, the
requests are received by the Neptune provider module, which
subsequently invokes the service-specific handlers to process
the requests.

Among the important features that Neptune needs to provide
in the middleware layer, there are: (1) transparent service loca-
tion and (2) failure isolation. Service component partitions are

2

addressed through location-transparent names (service name,
partition ID). The Neptune consumer module automatically
routes each request to an appropriate node based on the ser-
vice availability and runtime workload. The Neptune provider
module at each node periodically announces a service avail-
ability, or heartbeat message to other nodes. Faulty nodes will
be automatically detected by the discontinuance of heartbeat
messages. This is achieved through soft state techniques [18].
These two features are directly related to the Neptune mem-
bership service.

One straightforward approach of the membership service is
to let every node periodically send its heartbeats to other nodes
and collect heartbeats from other nodes. This is the all-to-all
approach. Each heartbeat packet contains service information
and current load status of a node. Every node builds its own
membership directory based on these heartbeat packets. This
is a fully distributed approach in the sense that every node
maintains its membership directory independently. Neptune
adopts this scheme when a service cluster is in a small scale.
The advantage of this approach is that each node functions in-
dependently and it provides the best fault isolation. Unfortu-
nately, this simple scheme is not scalable. The communication
and computation overhead in maintaining a local yellow page
directory can be significant when a cluster has thousands of
nodes as shown in Figure 2. The measurement is done on a
Linux machine with dual 1.4 GHz P-III processors. We vary
the number of heartbeat packets that received by the machine
to emulate the expansion of the cluster. If each node sends a
1024-byte heartbeat packet per second, the heartbeat packets
can consume 4MB/s bandwidth for a cluster with 4000 nodes,
which is 32% of the raw bandwidth of a Fast Ethernet link.

Another alternative approach widely used in wide-area net-
work applications is gossip style membership service [23]. In
a gossip style approach, each node randomly picks up a set
of neighbor nodes and sends them its current membership di-
rectory. The recipient nodes then update their own directories
based on the new information. Given an error tolerance, this
approach can control the amount of heartbeat traffic by select-
ing an appropriate number of neighbor nodes. This capability
is essential in wide-area services where bandwidth is limited,
network latency is high and multicast is not available. When
it comes to low latency and high bandwidth system area net-
works, a gossip style membership services has the problem
of slow convergence time and high communication overhead
for maintaining a complete view of the service cluster. Fur-
thermore, its probabilistic property does not guarantee 100%
accuracy, which can be unacceptable for some high reliable
services.

The purpose of the Time-To-Live (TTL) field in an IP packet
header is to prevent packets falling into infinite routing loops,
which can occur when due to misconfiguration, instability dur-
ing routing repair and etc. The TTL field puts an upper limit
on these looping packets. It indicates the maximum number
of hops a packet may transit. When an IP packet passes a
router, the router decrease the TTL by one. Then the count
reaches zero, the packet will be discarded and an ICMP ”time

0 1000 2000 3000 4000
0

1

2

3

4

5

Cluster Size (in number of nodes)

C
P

U
 lo

ad
 (

%
)

CPU Overhead

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Cluster Size (in number of nodes)

R
ec

ei
ve

d
M

ul
tic

as
t P

ac
ke

ts
 p

er
 S

ec
on

d

Bandwidth Overhead

Figure 2: All-to-all approach is not scalable.

exceeded” message will be sent back to the originator of the
packet. The network tool, traceroute, uses this feature to dis-
cover the routing path from a host to another. Then the network
topology can be derived from these routing pathes.

In this paper, we use this feature to limit the scope of mul-
ticast packets so that we can form multicast groups based on
the network topology, which can automatic adapt to the net-
work topology and effectively conform the multicast traffic to
the network topology.

3 Hierarchical Membership Service

This section presents the details of our proposed hierarchical
membership service for large scale service clusters. Figure
3 shows an overview of the hierarchical membership service.
It contains two parts: (1) a tree-based membership protocol
which deals with a large scale service cluster hosted in one
data center, (2) a membership proxy protocol which coordi-
nates service invocation across multiple data centers. Now we
illustrate the details of these protocols.

3.1 Tree-based Membership Protocol

The tree-based membership protocol deals with a large scale
service cluster hosted in one data center. It exploits the net-
work topology of a cluster to build a hierarchy of membership
groups, which can greatly reduce network traffic in maintain-
ing the membership service. The basic idea of this approach
is to automatically form small size multicast groups based on

3

��������

�����

	�����

	�
��
����

������������ ������ ������ ������ ������������

��
����� ��
����� ��
�����

��
�����

������ ������

�����

	�����

�����
��

�����

	�����

����

����� !����
���"�
�����

����������

�������

#$�
#$�

#$�

	������

Figure 3: A Hierarchical Membership Service.

network topology using TTL values. Inside each group, nodes
periodically send heartbeat packets to each other. A group
leader is elected to detect local status changes and to relay the
changes. Lower level group leaders join a higher level group
and elect a group leader, which in turn can join an even higher
level group. Following this joining process, a tree is finally
formed as shown in Figure 3 in the California data center.

3.1.1 Group Management

Group management is essential to the tree-based membership
service. Its main functions include topology-aware group for-
mation, failure detection, and group leader election.

� Topology-aware Group Formation. The construction
of hierarchical groups is based on the network topology
of a cluster. The idea is to form groups with nodes that
are close to each other in each group. We measure the
distance between two nodes as the TTL count between
them. Each group is associated with a TTL value. We as-
sume each node uses only one IP address to join member-
ship groups. We first present how the formation scheme
works when the network layout fits a specific tree topol-
ogy where each host or router has only one uplink and all
hosts are at the same level from the root router. Then we
extend the scheme to general network topologies.

Tree topology. In this topology, TTL counts fit into a
transitive relation. If there is

�
TTL hops from node �

to node � and from node � to node � , node � can also
reach node � within

�
hops. For example when the TTL

value of a group is one, all nodes in the group are at most
one hop from each other. In terms of physical topology,
nodes in this type of groups are connected by a layer-two
device or within the same VLAN. We call this type of
groups as level 0 groups or local groups. Level 0 group
leaders join a multicast channel with the TTL value set to

two. This forms level 1 groups and their leaders can join
higher level groups subsequently. This process continues
until a tree is formed. In practice, we set a limit on the
maximum TTL value which is no less than the longest
path between two nodes in the cluster. When the maxi-
mum TTL value is reached, the group formation process
stops. We assign different multicast channels for groups
at different levels. Groups at the same level can share
the same multicast channel since packets from a group
will not reach another group at the same level because
of the TTL limit. Otherwise, these two groups should
be merged into one since all the nodes inside the group
can be reached using the same TTL value. Only a base
multicast channel needs to be specified for a cluster. All
other channels can be derived from the base channel and
a TTL value. This not only reduces the number of mul-
ticast channels required by the membership service but
also simplifies the administration task. Without the help
of topology-aware group formation, an administrator first
needs to get the complete knowledge of the network lay-
out, manually divides nodes into groups, and then assigns
multicast channels to these groups. Any expansion of the
cluster can undo the previous configuration and make the
cluster hard to manage. For maximum control flexibility,
our implementation also allows administrators to specify
multicast channels at each level.

Other topologies. Now we extend the above scheme to
general cases. We still use TTL values to form groups.
The main difference from the above topology is that
groups at the same level can be overlapped. In other
words, some nodes can belong to multiple groups at the
same level. This is because transitive relation of TTL
counts may not hold in a general topology. Figure 4
shows an example of such topologies. Node � , � and

� are leaders for the level 0 groups. Node � can reach
Node � and Node � within 3 hops. But Node � and
Node � need 4 hops to reach each other. Note that level
1 groups are skipped as each group only has one member.
There are two possibilities when electing group leaders
for the level 2 groups � � and � 	 . Node � can be the
leader for the both groups, or Node � and Node � can be
the leader for Group � � and Group � 	 respectively. Node

� and Node � cannot be the leaders at the same time
since our group leader election algorithm guarantees that
a group leader cannot see other leaders at the same level.
In the former case that Node � is the leader for the both
groups, the higher level group sees Group � � and Group

� 	 as one group represented by Node � . In the latter case,
two leaders, Node � and Node � both join the higher
level group. Thus Group � � and Group � 	 are deemed as
separate groups at the higher level. The two cases make
no difference in the sense that group leaders can always
propagate membership information from or to all group
members. Furthermore, because the operation caused by
an update message at each node is idempotent, redundant

4

messages will not cause confusion.

��������

�	
�����
��	

����	

��������

�	
�����
��	

����	

�

�

�

� � �

������
�

�	
�����
��

�����

� � �

������
�

�	
�����
��

�����

������
�

�	
�����
��

�����

Figure 4: Group overlapping at the same level.(Left) Physical net-
work layout. (Right) membership groups.

� Failure Detection. Since we use multicast to dissemi-
nate heartbeat packets, it is possible these packets can be
lost due to network congestion or overloading senders or
receivers. Thus, we declare a node is dead when no heart-
beat packet is received from the node after a pre-defined
time period, which can be chosen when the probability
of multiple consecutive packet losses during the period
is negligible. Each node in a group performs the failure
detection independently. After the group leader detects a
node failure, it will multicast this information to all the
groups that it joins. For example, if node � is the group
leader for both groups in Figure 4 and it detects node �
fails, node � will multicast this failure in the both level
0 and level 2 groups so that node � also knows of the
failure and notifies other nodes in group � � . Similarly, a
group leader will also inform all other groups when a new
node joins.

� Leader Election. Each group has a group leader and a
backup leader. The backup leader is randomly chosen by
the primary group leader and it will take over the lead-
ership if the primary leader fails. This allows quick re-
covery if only the primary leader fails. When both the
primary and the backup leader fail, an election algorithm
is used to select a new primary leader, which will desig-
nate a backup leader. The leader election is performed
using the bully algorithm [4]. Each node is assigned a
unique ID (e.g., IP address). The member with the low-
est ID becomes the group leader. If there is already a
group leader, a node will not participate the leader elec-
tion in any groups with the same multicast address and
TTL value. For example, if node � is already the leader
for group � � in Figure 4, node � will not participate in
the leader election for group � � although it may have a
lower ID than node � . Eventually, node � will become
the leader of group � � .

3.1.2 Membership Maintenance Protocol

The membership maintenance protocol ensures that every
cluster node has a local copy of the global service directory
and it is complete and accurate. Several sub-protocols are used
to achieve this goal.

� Bootstrap Protocol. This protocol allows a newly joined
node to quickly build its local yellow-page directory.
When a node joins a group, it first listens to the multi-
cast channel to collect heartbeat packets from other group
members. A group leader is found if a special flag in
its heartbeat packets is set. Then the new node contacts
the leader to retrieve the membership information that the
leader knows. Meanwhile, the group leader also asks the
new node for the membership information that it is aware
of in case that the new node is also a group leader from
a lower level group. The result is then propagated to all
group members using the following update protocol.

� Update Protocol. This protocol determines how an up-
date message is propagated to all nodes in a cluster. When
a level 0 group leader detects a change (a node departure
or a node join), it sends out an update message to the
level 1 group it joins. Other nodes in the level 0 group
can detect the failure by themselves. The leader of the
level 1 group will relay the message to the next higher
level group. This procedure continues until no higher
level group exists. At any level, other group members
relay this message to the groups where they are the group
leaders. In this way, the update message can be propa-
gated to all nodes in the cluster. Figure 5 illustrates the
propagation of an update message. Node � , � and � are
the group leaders of the three level 0 groups respectively.
Node � is the group leader of the level 1 group. Node

� first detects Node � is dead and removes it from � ’s
membership table. Node � then multicasts this informa-
tion to Group � � . Node � and � receive the message and
propagate it to Group � � and Group � � respectively. Other
group members receive this message and delete Node �
from their membership tables. Since node � is the leader
of Group � � , it also relays the message to Group � � .

� � 	
 �
 � � � �

�������

�

� � �
 �
 � � � �

�������

�

 � �
 �
 � � � �

�

 �
 � � � �

�

 �
 � � � ��������

� � 	
� � �

 � �

� �
� � �

 � �

� � �� � 	

 � �

� � �� �

 � �

 � �
� � 	
� � �

 � �
� �
� � �

�

�

�

� �

� �

�

�

Figure 5: Propagation of an update message. The circled numbers
show the propagation order of the update message.

� Timeout Protocol. This protocol is used to remove stale
entries in the yellow-page directory. It works together

5

with the previous discussed failure detection mechanism.
For all nodes that send heartbeat packets to node � , �

purges any of these nodes from its membership directory
after not receiving the corresponding heartbeat packets
for a certain period. If a dead node is detected at a level
greater than 0, membership information that is relayed by
the dead node is also timeouted. This means the member-
ship information relayed by a group leader has the same
life time as the leader itself at each level. Hence, network
partition failures (e.g., switch failures) can be quickly de-
tected. If it is not a network partition but merely a group
leader fails, the backup leader or newly elected leader will
join the same group and exchange the membership infor-
mation with other group members. To minimize the im-
pact of a leader failure, we assign different timeout values
for groups at different levels. Higher level groups are as-
signed with larger timeout values. Thus when a group
leader fails, the lower level group can still have time to
elect its new leader before the higher level group purges
all the nodes of the lower level group.

� Message Loss Detection. When there is a cluster sta-
tus change, update messages are generated to disseminate
the information about the status change. All update mes-
sages are UDP packets. These packets can be lost during
network transmission. To help detect a packet loss, each
host assigns a sequence number for an update message.
Thus the receiver can use the sequence number to detect
lost updates. Since each update about a node departure or
join is very small, we let an update message piggyback
last three updates so that the receiver can tolerate up to
three consecutive packet losses. If more than three con-
secutive packets are lost, the receiver will poll the sender
to synchronize its membership directory.

3.2 Membership Proxy Protocol

We introduce membership service proxies in each data center
to enable exchange of membership information and service in-
vocation across multiple data centers. The proxies in a data
center collect local membership information and exchange the
information with proxies in other data centers.

There are multiple membership proxies for each data center
to improve availability and performance. These proxies form
a membership group and elect a group leader using the previ-
ously discussed tree-based protocol. One difference is that the
multicast channel is predefined and the group only includes
proxies. Then the group leader joins the membership channel
of the service cluster to collect the membership information of
the local data center. All proxies share a single external IP ad-
dress using an IP failover mechanism. When the proxy leader
fails, the newly elected leader will take over the IP address.
Thus, all other data centers always see the same IP address
and communicate with the proxy group leader. Leader proxies
exchange membership information over a VPN (virtual private
network). They use unicast UDP packets to communicate with

each other since multicast over VPN or Internet is generally
available. This will not affect scalability since the number of
data center is usually limited.

When a node in the service cluster seeks a service that is not
available in the local service cluster, it can contact one of the
proxies to see if the service is available in other data centers.
If it is available in another data center, the proxy will forward
this request to one of the corresponding proxies in the remote
data center. The destination proxy will then relay this request
to the appropriate service node and send the results back to
the original proxy. The details are shown in Figure 6: (1) a
node cannot find a desired service in its local service cluster
and forwards the request to one of the local proxies. (2) The
proxy looks up the membership information from the other
data centers and forwards the request to one of the proxies in
the corresponding data center. If it cannot find an appropri-
ate data center, the request will be rejected. (3) The proxy in
the remote data center forwards the request to an appropriate
backend service node. (4) The result is returned from the back-
end service node to the proxy. (5) The second proxy relays the
result to the original proxy. (6) The original proxy returns the
result to the node that issued the request.

VPN over Internet

Data Center
New York

Data Center
California

Proxy

Proxy

ProxyBackend
Service Cluster

Proxy

Proxy
Backend

Service Cluster

1
2

3

4
5

6

Figure 6: Service invocation through proxies.

The detailed proxy protocol works as follows.

� Group Formation. All proxies join a multicast channel
that is reserved exclusively for them and the leader of the
proxy group joins the rest of the cluster. The leader uses
the same base channel as the other leaders do. It increases
the TTL value to find the appropriate group to join. Thus
the leader of the proxy group can appear at any level of
the membership tree. It does not necessarily appear as the
root of the tree.

� IP Failover. A proxy group leader exchanges informa-
tion with other proxy group leaders in the remote data
centers. When it fails, one of the remaining proxies will
take over the leadership as we discussed in Section 3.
Furthermore, the new leader will take over the external
IP address that is exposed to the other data center. There-
fore further communication from the proxy leaders in the
other data centers will be directed to the new leader.

� Heartbeat. Each proxy leader periodically sends heart-
beat packets to all other data centers. These heartbeat
packets include a summary of membership information

6

of the local data center. Each proxy leader sends these
heartbeat packets sequentially to the other leaders using
well-known IP addresses. If the size of the membership
summary is too big, the summary is broken into multi-
ple heartbeat packets. When a proxy leader receives such
a heartbeat packet, it relays the packet to the local proxy
group through the group’s multicast channel. The content
of the summary of membership information can be spec-
ified through the membership service API, which will be
shown in Section 6. Generally, the summary does not
include the detailed machine information. It only has
the availability of service information, which is much
smaller.

� Update Message. When a proxy leader learns of a status
change in its local data center and this change also up-
dates the membership summary, the leader informs other
proxy leaders immediately using UDP unicast. When
other proxy leaders receive the message, they update their
membership directories to reflect this change and mean-
while they relay this message to other proxies in their lo-
cal data centers.

4 Scalability Analysis

In this section, we present a simplified analysis of the hierar-
chical approach with comparison to two alternatives: the all-
to-all approach and the gossip approach. We assume multicast
is used to disseminate messages to a group of nodes, and uni-
cast is used for one to one communication, such as gossip mes-
sages. We also assume the total number of nodes in the cluster
is � , the size of a membership description for each node is �
bytes.

We are interested in the communication cost, failure detec-
tion time, and view convergence time for all nodes. Failure de-
tection time is how quickly a failure can be detected by other
nodes. View convergence time is the interval when all nodes
notice a status change after the change occurs. In the following
analysis, we focus on single node failure.

There are often trade-offs between communication cost and
failure detection time. We introduce a metric bandwidth detec-
tion time product that combines bandwidth consumption and
failure detection time. Assume the bandwidth consumption
of a scheme is � bytes per second when the cluster status is
stable, the metric is calculated as �

� � �
� �
 � � � � , where

 � � � � is the detection time of a node failure. Protocols with
lower �

� �
values are better, because they use less time to

detect a failure with a fixed bandwidth.

4.1 Failure detection time

Let � , � , and � be the average size of one node’s information,
the total number of nodes, and the total bandwidth, respec-
tively. The failure detection time and �

� �
are calculated as

follows.

� All-to-all. The multicast frequency is limited by � �
�

� � � � since each node receives heartbeats from all other
nodes and sends out one heartbeat per multicast cycle.
Thus each node consumes � � � bandwidth per cycle.
If the protocol assumes a node is dead after not hearing consecutive heartbeats from the node, the failure detec-
tion time is

 � � � � � � � � � $
�

� & (� $ * , �
� � � & (

� � � $ *

In practice, each node often fixes its multicast frequency,
which is independent of the number of nodes. This makes
the failure detection time as a constant. But the total
amount of network bandwidth will become

& (� $ * .

� Gossip. Each gossip message contains a local view of
group membership, which is � � � bytes. We do not
count the broadcast message in the gossip scheme since
it can be eliminated under optimization. The frequency
of gossip can be calculated as � � �

� � � � . Its failure
detection time is shown in the following formula. The
detailed calculation can be found in [23].

 � � � � � & (7 8 : � *
�

� & (� $ 7 8 : � * , �
� � � & (

� � � $ 7 8 : � *

If we assume the gossip approach can consume
& (� $ *

amount of bandwidth, the failure detection time will drop
to

& (7 8 : � * .

� Hierarchical. Assume the size of each group is limited
to A nodes, the height of the membership tree is limited
by

7 8 : B � . Adding up the number of groups at each level,
we get the number of total groups

C � �
A

D �
A $

D E E E D �
A G H J L � � � M �

A M �

The multicast frequency is � � �O P � � � B � Q since each

group has A nodes which consume � � A $ bandwidth.
If the protocol assumes a node is dead after not hearing consecutive heartbeats from the node, the failure detec-
tion time is

 � � � � �
�

� & (� * , �
� � � & (

� � � *

If each node fixes its multicast frequency as the all-to-all
approach does, the total amount of network bandwidth
will become

& (� * and the failure detection time will be-
come a constant.

In a word, the hierarchical scheme is the most scalable ap-
proach in terms of the bandwidth detection time production.

7

4.2 View convergence time

View convergence time includes the failure detection time and
the time to disseminate this information to all other nodes.
Similarly, we can define a metric bandwidth convergence time
product to measure the effectiveness of the three approaches:

� �
� �

� � � � � � � � � � � . For the Gossip and the flat scheme,
the view convergence time is the same as the failure detection
time since all nodes maintain their views independently. Thus,
their bandwidth convergence time product are

� �
� �
 �

� � � � �

and
� �

� �
 �
� � � � � � � � �

respectively. For the hierarchical scheme, the view conver-
gence time is the failure detection time plus the time to dissem-
inate this information along the hierarchical tree whose height
is

� � � � � . An update message will first travel up to the root of
the tree and propagate down to the bottom of the tree. Assume
the network transmission time of an update message is

�
, the

whole propagation will take �
� � � � � � . Thus, the convergence

time is

� � � � � � � � �
� � � � ! " #

�
� � � � � � �
 � � � #
 � � � � � � � �
 � � � % � �

� �
 �
� � � �

Again, the hierarchical scheme has the best scalability in terms
of the bandwidth convergence time product.

5 Membership Service API

The membership service API allows all nodes to share the
same configuration file to simplify the management task. The
configuration file specifies some necessary parameters such as
the basic membership multicast channel, multicast frequency,
maximum tolerated packet losses, and the shared memory key
to store the yellow page. Users can specify these parameters
using an external configuration file. Figure 7 gives an example
of such a configuration file. The section “*SYSTEM” specifies
the global parameters as discussed before. The section “*SER-
VICE” specifies parameters for each service that is hosted on
the machine. In this example, we have two services, a cache
service and an HTTP service. Service names are specified in
the brackets. The standard parameter “PARTITION” specifies
the local partition number hosted on the machine. Each ser-
vice can also have additional service specific parameters. For
example, the HTTP service has an additional parameter “Port”
to specify the port number of the service. These parameters
will be sent as key-value pairs together with other membership
information.

Besides the above external configuration files, users can also
control the membership service using the membership service
library. The library allows a service to disseminate service sta-
tus information along with the membership multicast packets.
The API of the membership service library is shown in Fig-
ure 8. MService is constructed from an external configuration

*SYSTEM
SHM_KEY = 999
MAX_TTL = 4
MCAST_ADDR = 239.255.0.2
MCAST_PORT = 10050
MCAST_FREQ = 1
MAX_LOSS = 5

*SERVICE
[HTTP]

PARTITION = 0
Port = 8080

[Cache]
PARTITION = 2

Figure 7: An example confi guration fi le.

file. If the configuration file is not available, default values
will be used and later on they can be updated by the ‘con-
trol’ function. The ‘run’ function will create a set of threads
(as shown in Figure 10) for the membership service. The
function ‘register service’ publishes a real service through the
membership service. It also publishes a list of partitions that
the node is in charge of. For example, a node that calls ‘regis-
ter service(”Retriever”, ”1-3”)’ in a search engine cluster will
announce that it hosts the document retriever service for the
partition 1, 2 and 3. The function ‘update value’ is called
when the service code wants to update its service status or
other service associated values, such as a list of available ser-
vice methods. Once a value is updated, the membership ser-
vice will include it into its multicast packets and propagate
this information to other nodes. The value can be deleted by a
‘delete value’ call.

class MService {
MService(const char *configuration);
˜MService();
void control(int cmd, void *arg);
int run(void);
int register_service(const char *name,

const char *partition);
int update_value(const char *key,

const void *value, int size);
int delete_value(const char *key);

};

Figure 8: API of the membership service library.

In order to access a yellow page directory provided by a
membership service, a client program needs to link with the
membership client library. The library provides safe access
to the membership information collected by the daemon pro-
cess. The client program can be in the same service process
or another separate process. Figure 9 shows the client API. A
MClient object is initialized based on a provided shared mem-
ory key, which is the communication token between the mem-
bership service and the client. When a client wants to seek a
service, it calls ‘lookup service’ and specifies the service name
and the partition list that it desires. We support regular ex-
pressions both in the service name and the partition list. The
matched nodes are stored in a MachineList. Each of its ele-

8

ments is a list of attributes and values that describe a machine.
These attributes can include the information of the machine
configuration and service configuration.

typedef pair<char *key, void *value> Attribute;
typedef vector<Attribute>* Machine;
typedef vector<Machine> MachineList;
class MClient {

MClient(const char *shm_key);
˜MClient();
int lookup_service(const char *service,

const char *partition,
MachineList *machines);

};

Figure 9: API of the membership client library.

6 Implementation and Evaluation

In this section, we first illustrate our implementation of the
hierarchical membership service. Then we evaluate it with
comparison to the other two alternative approaches. The main
objective is to evaluate the scalability of the hierarchical ap-
proach in terms of failure detection time, view convergence
time and network overhead. Furthermore, we evaluate the ef-
fectiveness of failover using our membership proxy protocol
across two data centers.

6.1 Implementation

We have implemented the membership service in C++ on
Linux. The membership service can be run as a standalone
daemon or be linked with other client code that provides the
actual service. In the latter case, the actual service can publish
the service configuration along with the machine configura-
tion through the membership protocol. In our implementation,
we use the random polling approach to balance the workload
among replicas [20]. Therefore, we do not need to propagate
load information which changes frequently. If load informa-
tion is desired, an external protocol can be built on the top of
our membership protocol to propagate load information. For
example, the protocol can propagate load information only to
interested nodes which have recently seeked the service from
the service node. The details of these protocols are beyond the
scope of this paper.

Figure 10 shows the components of our implementation
and their relations to external entities. The components in cir-
cles are threads associated with specific tasks. The Announcer
thread collects the machine information from the /proc file
system and the service information from the IPC channel of
the service. Then it constructs a multicast packet to include
these information, and sends the packet to the multicast chan-
nels the node has joined. It also answers the polling requests
from other nodes to facilitate the random polling load balanc-
ing strategy.

The Receiver thread listens to the multicast channels that the
node has joined. When a packet arrives, Receiver will update

SHM
Local

Service Status
Data Structure

/proc File
System

Annoucer

Multicast Channels

Receiver

Status
Tracker

Informer

SHM
External

Service
Code

Client
Code

Contender

Figure 10: Components of the hierarchical membership implemen-
tation (Circles and eclipses represent active entities, rectangles repre-
sent data structures and arrows show the information flow).

the shared memory structure to reflect the new information.
We use shared memory to allow fast access by service clients
that may reside in different processes. The shared memory
block is split into two parts: (1) a local part that contains all
the nodes that a node is directly connected to via the multicast
channels. (2) an external part which contains information of
external groups. This information is relayed through its group
leader. The difference is that a node is responsible for de-
tecting a failure in the local part of the membership while it
depends on its group leader to tell the aliveness of an external
node.

The Status Tracker thread periodically checks the entries
in the shared memory block and purges any expired entries.
When there is expiration, it checks if the failed node is its
group leader. If it is, the Tracker will assume the backup leader
as the new leader. If there is no backup leader, the Tracker
wakes up the Contender thread to initiate an election process
for the new group leader. When there is a status change, the
Tracker wakes up the Informer thread to propagate the change
to other groups members if the node itself is a group leader.

Besides relaying changes to other group members, the In-
former thread of a group leader also listens on a well known
UDP port. Thus, the Receiver thread on a newly joined node
can poll Informer to get an entire yellow page. Furthermore,
the Receiver is also responsible for detecting any loss of up-
date packets. If there is an unrecoverable loss, the Receiver
will also poll the corresponding node to get a complete image.

6.2 Experiment settings

All the experimental evaluations were conducted on a rack-
mounted Linux cluster with 100 dual 1.4 GHz Pentium III
nodes. Each node runs RedHat Linux (kernel version 2.4.20).
There are two Layer-3 switches with 100Mb links. One ac-
commodates 50 nodes each. These two switches are connected
by a Gigabit link.

For our hierarchical protocol, we manually designate mul-
ticast channels to emulate multiple networks. Each multicast
channel hosts 20 nodes. Therefore, there are five networks for
100 nodes and these five networks form a second level net-
work.

For Gossip scheme, mistake probability is set to 0.1%,
which represents the bound that any node may make an er-

9

roneous failure detection. This is a relatively loose require-
ment for the Gossip scheme. As discussed before, each gossip
message accounts for a number of network packets and the
broadcast packets are not counted.

In the following experiments, we fix the multicast or gossip
frequency as one packet per second for all three schemes. For
the all-to-all scheme and the hierarchical scheme, we set the
maximum packet losses as 5 before we declare a node is dead.
We vary the number of nodes from 20 to 100 with the number
of networks from 1 to 5. The average packet size carrying
the membership information of each node is measured as 228
bytes for all three schemes.

6.3 Bandwidth Consumption

First, we compare the bandwidth consumption for three
schemes in Figure 11. Bandwidth consumption is measured
on each node by counting the incoming heartbeat packets.
Then all numbers are added up to get the aggregated band-
width consumption. We vary the number of nodes from 20
to 100. For the hierarchical approach, this corresponds to the
number of networks from 1 to 5. When there are 20 nodes,
all the schemes use the same amount of bandwidth. When the
number of nodes grows, the hierarchical scheme has the least
total bandwidth consumption and has close to linear growth.
On the contrary, the bandwidth usage for both the all-to-all
scheme and the gossip scheme grows quadratically with the
number of nodes. These results are in line with our analysis
results in Section 4. The average bandwidth consumption for
each node remains constant in the hierarchical approach and
grows linearly for the other two approaches. This suggests that
the hierarchical approach is more scalable in terms of network
bandwidth usage.

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

Number of Nodes

B
an

dw
id

th
 O

ve
rh

ea
d

(M
B

 p
er

 s
ec

on
d)

Communication Cost

All−to−all
Gossip
Hierarchical

Figure 11: Bandwidth consumption

6.4 Failure detection time

Figure 12 shows the failure detection time for three schemes.
We kill the membership service daemon process on a node to
emulate the node failure. During the test, each node dumps
its membership directory to a disk file when there is a change.

Since the clocks on all the nodes may not be well synchro-
nized, we send a start message to all nodes when the test be-
gins. After the test, we find the earliest time when the failure is
recorded in these log files as the failure detection time, and the
latest record time of the failure as the view convergence time.
When there is one network, the hierarchical scheme reduces
to the all-to-all scheme. We can see from the figure that when
the number of nodes grows, the hierarchal scheme and the all-
to-all scheme have the same constant detection time which is
roughly the maximum number of packet losses times the mul-
ticast period. On the other hand, the detection time of the gos-
sip scheme increases logarithmically along with the number of
nodes. It also has the longest detection time when there are 20
nodes. Both the hierarchical and the all-to-all schemes have
similar shorter failure detection time than the gossip scheme.
This experiment results also corroborate our analysis in Sec-
tion 4.

20 30 40 50 60 70 80 90 100
0

5

10

15

20

Number of Nodes

D
et

ec
tio

n
T

im
e

(s
ec

on
ds

)

Failure Detection Time

ALl−to−all
Gossip
Hierarchical

Figure 12: Failure detection time

6.5 View convergence time

Figure 13 compares the view convergence time. The hierar-
chical scheme has the similar view convergence time as the
all-to-all scheme. This is because they have the same failure
detection time and when a failure is detected, group leaders
can quickly propagate this information to all nodes. Figure 13
also shows the view convergence time of the gossip scheme is
the largest among the three schemes and it grows along with
the number of nodes. Again, the hierarchical and the all-to-all
schemes perform better than the gossip scheme.

6.6 Discussion

From the above experiments, we can see that gossip scheme
performs the worst. Using the same amount of network traffic,
it has the longest detection and convergence time. When the
number of nodes scales up, the gossip scheme increases band-
width usage quadratically. The reason is that each gossip has
to carry a host’s local view of the group membership, while
the other two protocols use much smaller message size. If the

10

20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Number of Nodes

C
on

ve
rg

en
ce

 T
im

e
(s

ec
on

ds
)

View Convergence Time

All−to−all
Gossip
Hierarchical

Figure 13: View convergence time

gossip protocol is organized into a hierarchical fashion [23, 9],
the detection time and convergence time will be longer due to
cross group gossips. However, it is shown that Gossip proto-
col is useful for large groups where each member only needs a
partial view of group membership [9]. Gossip style approaches
are also attractive when efficient multicast is not available such
as wide-area applications. We focus on protocols, such as the
all-to-all scheme and the hierarchical scheme that allow each
member to quickly manage a global view. The hierarchical
scheme is better than the all-to-all scheme for its less band-
width consumption and comparable performance. In a word,
our experiments have shown that the hierarchical approach is
the most scalable among three approaches.

6.7 Effectiveness of Membership Proxy

In this experiment, we examine the effectiveness of the mem-
bership proxy protocol for a prototype search engine hosted in
two data center, one of which is in the east coast and the other
in the west coast. At second 20, the document retrieval service
in the data center A fails. It recovers at second 40. Figure 14
shows the response time and throughput of the search engine
service during the 60 seconds runtime. When the retrieval ser-
vice fails in data center A, the overall throughput drops a little
during the failure detection time. After that, the throughput
matches the request arrival rate and the response time goes
above 200ms. This is because the membership proxy is able
to get the retrieval service from data center B with the cost of
communicating through Internet instead of a high speed sys-
tem area network. In our setting, the round trip time between
two data centers is about 90 milliseconds. Thus, the service
is still available during the failure with the help of the mem-
bership proxy protocol. When the retrieval service recovers
in data center A, the response time quickly drops since all the
requests are again serviced locally.

� �� �� �� �� �� ��
�

���

���

���

���

���

���

�	
��	
����	�
��	�����	�
	��������� �	
��	
����	�
��	�����	�
	�����	��
	��

�����
	���������������
���	�
	��

�	�����	����	

� �� �� �� �� �� ��
�

���

���

���

���

���

���

�	
��	
����	�
��	�����	�
	��������� �	
��	
����	�
��	�����	�
	�����	��
	��

�����
	���������������
���	�
	��

�	�����	����	

� �� �� �� �� �� ��
�

��

��

��

��

��

�����	�����	� �	�!

�"��#$"�#

�	%#	�
���
	

Figure 14: Effectiveness of membership proxy

7 Related Work

previous research on membership or failure detection proto-
cols is rooted in multiprocessor machines, which requires pre-
cise and reliable membership services. Their studies empha-
size on theoretical aspects of protocols [3, 6, 16, 7]. In a
cluster environment, we can relax some of these requirements
to provide a feasible and efficient membership protocol. This
paper emphasizes on the design and implementation aspect of
our hierarchical membership service.

Stok et al. described a hierarchical membership protocol
which is most similar to ours. Compared to our work, the
main difference is that their protocol requires all nodes have
synchronized clocks so that the execution steps of the protocol
can be synchronized. Additionally, there is no implementation
of the protocol in the paper [22].

Gossip style membership services are different from
heartbeat-based membership services in the aspect that they
are based on probabilities [23, 13, 9]. This kind of protocols
are more attractive in wide-area applications where full group
membership is not required and multicast is not available. For
instance, SCAMP [9] is a hierarchical variation of gossip pro-
tocols where group members only have partial knowledge of
the group. We focus on the membership service for clustering
middleware that provides full membership knowledge.

There are similar ideas of hierarchically organizing group
members in the research of overlay networks [1]. However,
most of the research is focused on wide area network applica-
tions, where network latency in these works is a concern and
link bandwidth is heterogeneous. Failure detection time and
view convergence time are not the primary goals.

There are many projects on High-Availability systems [14,
11]. Membership services are an essential component for these
systems. Linux-HA provides a heartbeat based membership
service [15]. It provides a hot-standby feature that one ma-
chine can take over another machine’s IP when it is down. But
it only works for small clusters. Our approach is proposed to
manage large clusters and offload the failover feature to clus-
tering middleware, which we think is more appropriate.

Resource monitoring tools, such as Ganglia [19] and the
Network Weather Service [24] provide statistical information
of machine resource or network resource of large scale clus-
ters or computer grids to ease administration tasks. Our work

11

is to provide a complete view of the membership information
to each cluster node to facilitate location transparent service
invocation as well as load balancing.

The Metacomputing Directory Service in Globus project
provides a static view of grid configuration [8]. Our member-
ship service, on the other hand, provides dynamic information,
such as CPU load and service status, which demands frequent
updates. Furthermore, the membership directory is maintained
on each node for efficient access which is required in a cluster
environment.

8 Concluding Remarks

In this paper, we present a hierarchical membership service for
large scale service clusters across multiple data centers. Inside
each data center, we use a tree-based membership service that
divides cluster nodes into multiple hierarchical groups. These
groups are organized into a tree hierarchy to achieve good scal-
ability. Across multiple data centers, we implement a member-
ship proxy protocol to facilitate service invocation. We also
provide a simple but effective interface to ease the administra-
tion task. Our evaluation shows the hierarchical membership
service is scalable and efficient in large scale service clusters.

References

[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.
Scalable Application Layer Multicast. In Proc. of ACM
SIGCOMM’02, Aug. 2002.

[2] E. A. Brewer. Lessons from Giant-Scale Services. IEEE
Internet Computing, 5(4):46–55, 2001.

[3] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-
Bost. On the impossibility of group membership. In Pro-
ceedings of the 15th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC’96), pages 322–
330, New York, USA, 1996. ACM.

[4] R. Chow and T. Johnson. Distributed Operating Systems
and Algorithms. Addison-Wesley, 1997.

[5] F. Cristian. Agreeing on processor group membership in
timed asynchronous distributed systems. Technical Re-
port CSE95-428, Dept. of Computer Science, UC San
Diego, 1995.

[6] C. Fetzer. Enforcing perfect failure detection. In
21st Proceedings of the International Conference on
Distributed Computing Systems (ICDCS2001), Phoenix,
AZ, 2001.

[7] C. Fetzer and F. Cristian. A highly available local leader
election service. Software Engineering, 25(5):603–618,
1999.

[8] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke. A directory service for con-
figuring high-performance distributed computations. In
Proc. 6th IEEE Symp. on High-Performance Distributed
Computing, 1997.

[9] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. Peer-
to-peer membership management for gossip-based proto-
cols. IEEE Transactions on Computers, 52(2), February
2003.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
File System. In ACM SOSP, 2003.

[11] Cluster Infrastructure for Linux.
http://sourceforge.net/projects/ci-linux.

[12] I. Keidar. Moshe: A group membership service for
WANs. In MIT Technical Memorendum MIT-LCS-TM-
593a, 1999., 1999.

[13] D. Kempe, J. M. Kleinberg, and A. J. Demers. Spatial
gossip and resource location protocols. In ACM Sympo-
sium on Theory of Computing, pages 163–172, 2001.

[14] High-Availability Linux Project. http://www.linux-
ha.org.

[15] Linux Heartbeat. http://www.linux-ha.org/heartbeat.

[16] G. Neiger. A new look at membership services. In
Proceedings of the fifteenth Annual ACM Symposium
on Principles of Distributed Computing, Philadelphia,
Pennsylvania, United States, 1996.

[17] D. Oppenheimer, A. Ganapathi, and D. A. Patterson.
Why do Internet services fail, and what can be done
about it? In Proc. of the 4th USENIX Symposium on
Internet Technologies and Systems (USITS ’03), Seattle,
WA, Mar. 2003.

[18] S. Raman and S. McCanne. A Model, Analysis, and Pro-
tocol Framework for Soft State-based Communication.
In Proc. of ACM SIGCOMM’99, pages 15–25, Cam-
bridge, Massachusetts, Sept. 1999.

[19] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E.
Culler. Wide area cluster monitoring with ganglia. In
Proc. of the IEEE Cluster 2003 Conference, Hong Kong.

[20] K. Shen, T. Yang, and L. Chu. Cluster Load Balanc-
ing for Fine-grain Network Services. In Proc. of Inter-
national Parallel & Distributed Processing Symposium,
Fort Lauderdale, FL, Apr. 2002.

[21] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner,
and H. Zhu. Neptune: Scalable Replication Manage-
ment and Programming Support for Cluster-based Net-
work Services. In Proc. of 3rd USENIX Symposium on
Internet Technologies and Systems, San Francisco, CA,
Mar. 2001.

12

[22] P. Stok, M. Claessen, and D. Alstein. A Hierarchical
Membership Protocol for Synchronous Distributed Sys-
tems. In 1st Europen Dependable Computing Confer-
ence, LNCS 852, pages 597–616. Springer-Verlag, Oct.
1994.

[23] R. van Renesse, Y. Minsky, and M. Hayden. A Gossip-
Style Failure Detection Service. In Proc. IFIP Int’l Conf.
Distributed Systems and Platforms and Open Distributed
Processing (Middleware ’98), pages 55–70, 1998.

[24] R. Wolski, N. Spring, and J. Hayes. The Network
Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing. Journal of Fu-
ture Generation Computing Systems, 1998.

13

