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ABSTRACT
Managing access control policies in modern computer sys-
tems can be challenging and error-prone, especially when
multiple access policies are combined to form new policies,
possibly introducing unintended consequences. In this paper
we present a framework for automated verification of access
control policies. We introduce a formal model for systemat-
ically specifying access to resources. We show that the ac-
cess control policies in the XACML access control language
can be translated to a simple form which partitions the in-
put domain to four classes: permit, deny, error, and not-
applicable. We present several ordering relations for access
control policies which can be used to specify the properties
of the policies and the relationships among them. We then
show how to automatically check these ordering relations
using an existing automated analysis tool. In particular, we
translate XACML policies to the Alloy language and check
their properties using the Alloy Analyzer. Our experimental
results demonstrate that automated verification of XACML
policies is feasible.

1. INTRODUCTION
Keeping track of permission grants, organizational policies
and special cases in a modern computer system has become
difficult enough on its own; keeping the policy consistent
across multiple heterogeneous systems is even more diffi-
cult, as each system requires that these grants and policies
be expressed in its own specific control language. Several
unified access policy languages address this problem. If all
the systems use the same access policy language, then ac-
cess policies need only be written once and similarly only
one policy needs to be kept up to date. In this paper we
focus on one particular such language, the OASIS standard
XACML [32].

Having a combined policy is convenient, but such a pol-
icy will inevitably become quite large and complex as all
an organization’s rules get placed in it. It is possible, even

likely, that the act of creating a unified policy out of nu-
merous disparate smaller policies could leave it vulnerable
to unintended consequences. In this paper we investigate
statically verifying properties of access control policies to
prevent such errors. We translate XACML policies into a
simplified mathematical model, which we reduce to a nor-
mal form separating the conditions that give rise to access
permitted, access denied, and internal error results. We de-
fine partial orderings between access control policies, with
the intention of checking whether a policy is over- or un-
der constrained with respect to another one. We show that
these ordering relations can be translated to logical expres-
sions which evaluate to true if and only if the corresponding
relation holds. We use Alloy analyzer to check the truth
value of these logical expressions automatically. Using our
translator and Alloy analyzer, we can check if a combination
of XACML policies does or does not faithfully reproduce the
properties of its subpolicies, and thus discover unintended
consequences before they appear in practice.

In Section 2 we develop a formal model for access policies; in
Section 2.2 we discuss how to transform these models into
a normal form that distinguishes access permitted, access
denied, and error conditions. In Section 4 we define partial
ordering relations among access policies which are used to
specify their properties. We show how to check these prop-
erties automatically in Section 4. Specifically, we discuss a
hierarchy of access policies in Section 4.1 which we use in
Section 4.3 to show how to translate a policy to the Alloy
modeling language. Finally, we report the results of our
experiments in Section 5.

Related Work: Access control itself has been extensively
researched: [25, 29, 26] introduce the process, [3, 4, 27,
28] describe various models for access control, [6, 9, 8, 7] de-
scribe a particular fine grained access control for XML doc-
uments, [5] defines an algebra for composing different parts
of a model into a unified whole and [2, 12, 10] speak of
distributing the control so that it is consistent across a dis-
tributed system.

Access policy languages, too, are not new: [1] describes a
general purpose policy language for authorization systems,
[19] defines a model and language for access control and
[18] and [20] present a framework for enforcing multiple ac-
cess policies by expressing how to combine them in a new
language. We chose XACML because it is a standardized
language with tool support, and so our results are more



likely to be immediately useful.

The problem with access policies becoming large and diffi-
cult to reason about has also been studied, but not in the
general case: [12] speaks of verifying a hierarchy of security
servers to ensure that they are implementing the whole ac-
cess policy, and [23] presents an algorithm for computing the
flow of permissions through the Java security model, to aid
static analysis. Neither of these are exactly what we want:
[12] can prove that the programs you have collectively im-
plement the policy you specified, but their technique cannot
tell you whether you have made a subtle error in creating
your policy in the first place; [23] is more comprehensive but
is specific to Java’s security model.

XACML: XACML is an OASIS standard for specifying ac-
cess policies; it is written in XML [33]. The language com-
prises three classes of objects—individual rules, collections
of rules called policies, and collections of policies called pol-
icy sets. An XACML Policy Enforcement Point, the gateway
that determines whether an action is permitted or not, takes
access requests, which are specially formatted XML docu-
ments that define a set of data that we call the environment.
Policy Enforcement Points yield one of four results: Permit,
meaning that the access request is permitted; Deny, meaning
that the access request will not be permitted; Not Applica-
ble, meaning that this particular policy says nothing about
the request; and Indeterminate, which means that some-
thing unexpected came up and the policy has failed. Which
result is yielded depends on what result the policy dictates,
given the environment defined in the access request.

XACML rules are the most basic object, and have a goal
effect—either Permit or Deny—a domain of applicability,
and conditions under which they can yield Indeterminate
and fail. The domain of applicability is realized in a series
of predicates about the environmental data that must all be
satisfied for the rule to yield its goal effect; the error con-
ditions are embedded in the domain predicates, but can be
separated out into a set of predicates all their own. Policies
combine individual rules and also have a domain of applica-
bility; policy sets combine individual policies with a domain
of applicability.

XACML predicates comprise one of a number of primitive
functions, with mechanisms for extension; we consider only
the core functionality. These functions include simple equal-
ity, set inclusion, ordering within numeric types, and also
more complex functions such as XPath matching and X500
name matching.

2. POLICY SPECIFICATIONS
Let us consider a simple example; a person can vote if they
are 18 or over, and have not voted already. Our environ-
ment, the set of information we are interested in, consists
of the age of the person in question and whether they have
voted already. We can represent this as a Cartesian product
of XML Schema [34] basic types, as follows:

E = P(xsd:int)× P(xsd:boolean)× P(xsd:string)

The first component of the environment E is the age of
the person, the second component is whether or not they
have voted already, and the third component is the action

they are attempting (perhaps voting, but perhaps something
else). We use power sets here because in XACML all at-
tributes describe sets of values, never singletons.

The goal for our policy is that if they are doing something
other than voting, we do not really care what happens, and
we require that there be only one age and one voting record
presented. To do this we can divide E into four sets, Ea, Ev,
Ep and Ed as follows (note that the notation ∃! x P asserts
that there is a unique x that satisfies a condition P ):

Ea = {〈a, v, o〉 ∈ E : ∃! a0 ∈ a ∧ ∃! v0 ∈ v}
Ev = {〈a, v, o〉 ∈ Ea : ∃x ∈ o x = vote}
Ep = {〈{a0}, {v0}, o〉 ∈ Ev : a0 ≥ 18 ∧ ¬v0}
Ed = Ev − Ep = {〈{a0}, {v0}, o〉 ∈ Ev : a0 < 18 ∨ v0}

Here, Ea is the set of all environments whose inputs are not
erroneous, Ev is the set of all environments where voting
is attempted, Ep is the set of all environments where the
person can vote (their attempt to vote is permitted), and Ed

is the set of all environments where the person cannot vote
(their attempt to vote is denied). The XACML specification
for this example is given in Appendix A. In the following
section we will define a concise formal model for XACML
policies.

2.1 Formal Model
Let R = {Permit, Deny, NotApp, Indet} be the set of valid
results. Now, we can define the set of valid policies P as
follows (semantics will be defined later):

Permit ∈ P

Deny ∈ P

∀p ∈ P ∀S ⊆ E Scope(p, S) ∈ P

∀p ∈ P ∀S ⊆ E Err(p, S) ∈ P

∀p, q ∈ P p⊕ q ∈ P

∀p, q ∈ P p	 q ∈ P

∀p, q ∈ P p⊗ q ∈ P

∀p, q ∈ P p� q ∈ P

Here, Permit and Deny are primitive policies that always
return permit or deny. We can also enclose policies in scopes
using the Scope function or attach error conditions to them
the Error function. We can further combine policies using
policy combinators such as ⊕, 	, ⊗ and �; these policy
combinators correspond to the permit overrides (⊕), deny
overrides (	), only one applicable (⊗), and first applicable
(�) operations in the XACML specification. To define the
semantics of these policies, we define a function eff that takes
an environment and policy as inputs and returns a result as
an output: eff : E × P → R; which is defined in Figure 1.

Our semantics are slightly different from that defined in the
XACML standard; specifically, Permit does not override
Indet in ⊕ and similarly with 	. We decided that since
Indet is an error and not a normal condition, for the pur-
poses of analysis error conditions should not be covered up;
using the original semantics does not change the analysis
technique, merely some of the normal form transformations.

Using this notation, we can now model our example as fol-



eff(e, Permit) = Permit

eff(e, Deny) = Deny

eff(e, Scope(p, S)) =


eff(e, p) if e ∈ S
NotApp otherwise

eff(e, Err(p, S)) =


Indet if e ∈ S
eff(e, p) otherwise

eff(e, p⊕ q) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

Indet if eff(e, p) = Indet
∨ eff(e, q) = Indet

Permit if (eff(e, p) = Permit
∧ eff(e, q) 6= Indet)

∨(eff(e, q) = Permit
∧ eff(e, p) 6= Indet)

Deny if (eff(e, p) = Deny
∧ eff(e, q) 6= Permit
∧ eff(e, q) 6= Indet)

∨(eff(e, q) = Deny
∧ eff(e, p) 6= Permit
∧ eff(e, p) 6= Indet)

NotApp otherwise

eff(e, p	 q) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

Indet if eff(e, p) = Indet
∨ eff(e, q) = Indet

Deny if (eff(e, p) = Deny
∧ eff(e, q) 6= Indet)

∨(eff(e, q) = Deny
∧ eff(e, p) 6= Indet)

Permit if (eff(e, p) = Permit
∧ eff(e, q) 6= Deny
∧ eff(e, q) 6= Indet)

∨(eff(e, q) = Permit
∧ eff(e, p) 6= Deny
∧ eff(e, p) 6= Indet)

NotApp otherwise

eff(e, p⊗ q) =

(
eff(e, p) if eff(e, q) = NotApp
eff(e, q) if eff(e, p) = NotApp
Indet otherwise

eff(e, p� q) =


eff(e, p) if eff(e, p) 6= NotApp
eff(e, q) otherwise

Figure 1: Semantics of policies

lows:

S0 = {〈a, v, o〉 ∈ E : ∀x ∈ a x < 18} (1)

S1 = {〈a, v, o〉 ∈ E : ∀x ∈ v x} (2)

S2 = {〈a, v, o〉 ∈ E : ∃x ∈ o x = vote} (3)

S3 = {〈a, v, o〉 ∈ E : ¬∃! a0 ∈ a} (4)

S4 = {〈a, v, o〉 ∈ E : ¬∃! v0 ∈ v} (5)

r1 = Err(Scope(Deny, S0), S3) (6)

r2 = Err(Scope(Deny, S1), S4) (7)

p = Scope(r1 	 r2 	 Permit, S2) (8)

Here, S0 is the set of environments that fail the age re-
quirement, S1 is the set of environments that fail the voting
requirement, S2 is the set of environments where someone’s
trying to vote, etc.

2.2 Policy Transformations
We would like to perform analysis on this model, and it
would be easier to do this analysis if we could bring the
model into a normal form. To do this, first we define equiv-

f : P → P
f(Scope(Scope(X, S), R)) = f(Scope(X, R ∩ S))
f(Scope(Err(X, S), R)) = f(Err(Scope(X, R \ S), S ∩R))
f(Scope(X ⊕ Y, S)) = Scope(f(X), S)⊕ Scope(f(Y ), S)
f(Scope(X 	 Y, S)) = Scope(f(X), S)	 Scope(f(Y ), S)
f(Scope(X ⊗ Y, S)) = Scope(f(X), S)⊗ Scope(f(Y ), S))
f(Scope(X � Y, S)) = Scope(f(X), S)� Scope(f(Y ), S)
f(Scope(P, S)) = Scope(f(P ), S)

if no other rules apply
f(Err(Err(X, S), R)) = f(Err(X, R ∪ S))
f(Err(Scope(X, S), R)) = f(Err(Scope(X, S \R), R))

if S ∪R 6= ∅
f(Err(X ⊕ Y, S)) = Err(f(X), S)⊕ f(Y )
f(Err(X 	 Y, S)) = Err(f(X), S)	 f(Y )
f(Err(X ⊗ Y, S)) = Err(f(X), S)⊗ f(Y )
f(Err(X � Y, S)) = Err(f(X), S)� f(Y )
f(Err(P, S)) = Err(f(P ), S)

if no other rules apply
f(Permit) = Permit
f(Deny) = Deny

Figure 2: eff-preserving transformations for reduc-
tion to normal form

alence:

P1 ≡ P2 iff ∀e ∈ E eff(e, P1) = eff(e, P2)

We call a function f that takes a policy and returns another
policy an eff-preserving transformation if ∀p ∈ P f(p) ≡ p.

For any given policy, we want to regard the subset of E that
will give a Permit result, the subset of E that will give a
Deny result, and the subset of E that will give an Error
result independently. We define the shorthand 〈S, R, T 〉,
where S, R and T are pairwise disjoint, as follows:

〈S, R, T 〉 = Err(Scope(Permit, S)⊗ Scope(Deny, R), T )

We call this triple notation and refer to individual nodes
〈S, R, T 〉 as triples.

Now that we have a framework for transforming policies, we
would like to transform an entire policy with Scope, Error
and combinators alike into a single triple. We know that for
any policy P a triple PT that is equivalent to it exists: the
triple is just PT = 〈{p ∈ P : eff(p) = Permit}, {p ∈ P :
eff(p) = Deny}, {p ∈ P : eff(p) = Error}〉. However, this is
not a constructive definition. To transform the policies to
the triple form, we define two functions f and g, both eff-
preserving transformations, such that g(f(p)) is a triple for
all p. The f function transforms the policy into an equiva-
lent one that is composed of triples joined by combinators.
The g function combines triples joined by combinators into
a single triple. The two together generate the triple repre-
sentation. We define f in Figure 2, and g in Figure 3.

As an example, applying f to the policy p defined in Equa-



g : P → 〈S, R, T 〉
g(〈S1, R1, T1〉 ⊕ 〈S2, R2, T2〉) = 〈(S1 ∪ S2) \ (T1 ∪ T2),

(R1 \ (S2 ∪ T2)) ∪ (R2 \ (S1 ∪ T1)), T1 ∪ T2〉
g(〈S1, R1, T1〉 	 〈S2, R2, T2〉) =

〈(S1 \ (R2 ∪ T2)) ∪ (S2 \ (R1 ∪ T1)),
(R1 ∪R2) \ (T1 ∪ T2), T1 ∪ T2〉

g(〈S1, R1, T1〉 ⊗ 〈S2, R2, T2〉) =
〈(S1 ∪ S2) \ ((S1 ∩ S2) ∪ T1 ∪ T2),
(R1 ∪R2) \ ((R1 ∩R2) ∪ T1 ∪ T2),
T1 ∪ T2 ∪ (S1 ∩ S2) ∪ (R1 ∩R2)〉

g(〈S1, R1, T1〉 � 〈S2, R2, T2〉) = 〈S1 ∪ (S2 \ (R1 ∪ T1)),
R1 ∪ (R2 \ (S1 ∪ T1)), T1 ∪ (T2 \ (S1 ∪R1))〉

g(〈S1, R1, T1〉) = 〈S1, R1, T1〉
g(P1 ⊕ P2) = g(g(P1)⊕ g(P2)) if no other rules apply
g(P1 	 P2) = g(g(P1)	 g(P2)) if no other rules apply
g(P1 ⊗ P2) = g(g(P1)⊗ g(P2)) if no other rules apply
g(P1 � P2) = g(g(P1)� g(P2)) if no other rules apply

Figure 3: eff-preserving transformations for 〈S, R, T 〉
reduction

tion (8) leads to the following:

p = Scope(Err(Scope(Deny, S0), S3)

	Err(Scope(Deny, S1), S4)

	Permit, S2)

f(p) = Err(Scope(Deny, S2 ∩ S0 \ S3), S3 ∩ S2)

	Err(Scope(Deny, S2 ∩ S1 \ S4), S4 ∩ S2)

	Scope(Permit, S2)

Note that the function f pushes all Scope forms down to
the leaves of the policy tree, and all Err forms down to just
above the leaves.

The f function transforms a policy to a collection of expres-
sions of the form Err(Scope(A, B), T ) (where A ∈ {Permit,
Deny}, B, T ⊆ E, and B ∩ T = ∅) combined using ⊕,	,⊗
and �. Since eff(X ⊗ Scope(Y, ∅)) = eff(X), we can further
rewrite these expressions in the form Err(Scope(Permit, S)
⊗ Scope(Deny, R), T ) combined with ⊕,	,⊗ and � where
S = B and R = ∅ if A = Permit and S = ∅ and R = B if
A = Deny. Since S, R and T are all pairwise disjoint this
is exactly the required form for our triple notation. Hence,
after applying the function f we have a set of subpolicies in
our triple notation combined with ⊕,	,⊗ and �. We define
the function g in Figure 3. The transformations for function
g all preserve the disjointness property, and using the func-
tion g we can transform the policy generated by function f
to a single triple 〈S, R, T 〉 for some S, R, T ⊆ E.

When we apply the function g to our example we get the

following:

f(p) = Err(Scope(Deny, S2 ∩ S0 \ S3), S3 ∩ S2)

	Err(Scope(Deny, S2 ∩ S1 \ S4), S4 ∩ S2)

	Scope(Permit, S2)

= 〈∅, S2 ∩ S0 \ S3, S3 ∩ S2〉
	〈∅, S2 ∩ S1 \ S4, S4 ∩ S2〉
	〈S2, ∅, ∅〉

g(f(p)) = 〈S2 \ (S0 ∪ S1 ∪ S3 ∪ S4),

((S0 ∪ S1) \ (S3 ∪ S4)) ∩ S2,

(S3 ∪ S4) ∩ S2〉

Now that we have our policy into a form that is convenient
for analysis, we can begin to prove things about it.

3. PROPERTIES OF POLICIES
In this section we will show that properties of policies can
be expressed based on several partial ordering relations. For
example, we might want to prove that a (possibly very com-
plex) policy at least protects as much as some simpler policy,
and similarly we might want to guarantee that a (possibly
very complex) policy does not say anything outside of its
scope. Such properties can be expressed using the ordering
relations defined below.

Let P1 = 〈S1, R1, T1〉 and let P2 = 〈S2, R2, T2〉 be two poli-
cies. We define the following partial orders:

P1 vP P2 iff S1 ⊆ S2

P1 vD P2 iff R1 ⊆ R2

P1 vE P2 iff T1 ⊆ T2

P1 vP,D,E P2 iff P1 vP P2 ∧ P1 vD P2 ∧ P1 vE P2

Note that, we can define a partial order for for any combina-
tion of of P , D and E. We define P1 v P2 ≡ P1 vP,D,E P2.
We can regard P1 v P2 as stating that for any e ∈ E where
eff(P1, e) 6= NotApp, eff(P2, e) = eff(P1, e).

To demonstrate the use of these ordering relations, let us
create a new policy; people are permitted to check the cur-
rent results of the election, for exit polls. We encode this
with the following policy

S5 = {〈a, v, o〉 ∈ E : ∃x ∈ o x = getresult}
r3 = Scope(Err(Permit, S4), S5)

where S4 is defined in Equation (5). Now, we can create a
composite policy as follows pc = p⊕r3, where p is defined in
Equation (8). This policy has a bug—specifically, it permits
people under 18 to vote in certain circumstances—and we
will demonstrate the usefulness of our technique by showing
this. First, we perform our translations on this new policy
as above, getting:

g(f(r3)) = 〈S5 \ S4, ∅, S4 ∩ S5〉
g(f(pc)) = 〈((S2 \ (S0 ∪ S1 ∪ S3 ∪ S4))

∪(S5 \ S4)) \ (((S3 ∪ S4) ∩ S2) ∪ (S4 ∩ S5)),

(((S0 ∪ S1) \ (S3 ∪ S4)) ∩ S2)

\((S5 \ S4) ∪ (S4 ∩ S5)),

((S3 ∪ S4) ∩ S2) ∪ (S4 ∩ S5)〉



where S0, S1, S3 and S4 are from Equations (2) to (5). Using
set algebra we can simplify the expression for policy pc to

g(f(pc)) = 〈 (S2 \ (S0 ∪ S1 ∪ S3 ∪ S4))

∪ (S5 \ ((S3 ∩ S2) ∪ S4)) ,

((S0 ∪ S1) ∩ S2) \ (S3 ∪ S4 ∪ S5),

((S3 ∪ S4) ∩ S2) ∪ (S4 ∩ S1 ∩ S5)〉

Now, we insist that this combined policy deny anyone trying
to vote who is under 18. This is itself a policy, which we call
pv:

pv = 〈∅, (S0 ∩ S2) \ (S3 ∪ S4), (S3 ∪ S4) ∩ S2〉

The interesting thing here is whether or not pv vD pc, i.e.,
does the policy pc deny every input that is denied by pv.
That would mean that everyone trying to vote who is under
18 is denied, and that our policy combination has not done
any harm. However, the environmental tuple

e = 〈{17}, {true}, {vote, getresult}〉

demonstrates that that is not the case. Input e passes the
second part of the Permit requirement and so is permitted
by pc (which means that it is not denied by pc) but denied
by pv, i.e., e demonstrates that pv 6vD pc. The error is
that, we do not enforce that only one action be given in the
third component of the input, and because of this we have
the surprising result that someone who is under eighteen and
has already voted, but asks for the voting results at the same
time as trying to vote will be permitted, and so can cast any
number of ballots. To fix this, we could insist upon a new
condition, that ∃! x ∈ o; or we could use ⊗ instead of ⊕,
which would ensure that only one of the sub-policies could
be definitive on any given point (and so turn eff(e, pv) into
an Indet result instead of a Permit); or we could decide that
only people who have voted already can check the results.

4. AUTOMATICALLY PROVING PROPER-
TIES OF POLICIES

Given the formal model defined in Section 2.1 and proper-
ties defined in Section we would like to check properties of
access policies automatically. To do this we first formalize
the syntax of formulas we use to specify subsets of E. Then
we discuss how policies constructed using these formulas and
policy combinators can be translated to the Alloy language.
One can check properties of access policies by translating
them to SAT problems. Instead of targeting a SAT problem
directly, our translator targets the Alloy language, which is
in turn translated into a SAT problem by the Alloy Ana-
lyzer. This approach simplifies our translator and permits
us to remain closer to the syntax of the original problem
statement.

4.1 Policy Classes
In Section 2.1, we defined our formal model using subsets of
E for the definition of Scope and Err. Since E is the Carte-
sian product of the power sets of what are in most cases in-
finite sets, analyzing these properties would seem to require
enumerating these subsets, an impossible job. Fortunately,
we are translating from XACML to our foreign model, and
totally arbitrary subsets are not possible in XACML. We
can structure the subsets we will get from XACML policies

in a more useful fashion: they end up looking like the sets
S0, S1, . . . , S4 in Equation (1).

To formalize this, we fix the following notational conve-
niences: for elements e ∈ E, we name the components of
e to be e[0], e[1], . . . , e[n]. We use s, s0, s1, . . . , sn to denote
set variables, c, c0, c1, . . . , cn to denote scalar variables, and
C, C0, C1, . . . , Cn to denote constants. Finally, BP is a set
of basic predicates which we will define below. We fix our
structure in the following fashion: all subsets of E are spec-
ified in the form {e ∈ E : P}, where there are no free vari-
ables save e in P and P is defined as follows:

P → BP | ∀c ∈ s P | ∃c ∈ s P

| ∃! c ∈ s P | ∃! c ∈ e[i] P

| P ∧ P | P ∨ P | ¬P

Below, we will define four different basic predicate sets with
increasing expressive power, such that BP1 ⊆ BP2 ⊆ BP3 ⊆
BP4. Which version of BP is used is important for trans-
lation. For example, if a policy can be written using only
predicates from BP1 then we can make certain guarantees
about its translation that may not hold if we must simulate
predicates from a larger BP .

Our first class is that of policies using only enumerated types
(which obviously have finite domains) and the simple opera-
tions ¬, =, ∈, ⊆. We define the first class of basic predicates,
BP1, as follows:

SCAL → c | C

BSET → s | e[i]

SET → SET ∪ SET | SET ∩ SET

| SET \ SET | {SCAL} | BSET

BP1 → SET ⊆ SET | SCAL ∈ SET

| SCAL = SCAL | true | false

We can express all set definitions on unordered and enumer-
ated types that are permitted in XACML using the expres-
sions above.

Given a set in the form S = {e ∈ E : P} where P is defined
based on the above syntax, one can generate a boolean logic
formula B which encodes the set S. The encoding will map
each e ∈ E to a valuation of the boolean variables in B and
B will evaluate to true if and only if e ∈ S. Based on such an
encoding we can convert questions about different policies
(such as if one subsumes the other one) to SAT problems and
then use a SAT solver to check them. For example, we can
generate a boolean formula which is satisfiable if and only if
an access policy is subsumed (i.e., v) by another one. If the
SAT solver returns a satisfying assignment to the formula,
then we can conclude that the property is false, and generate
a counterexample based on the satisfying assignment. If the
SAT solver declares that the formula is not satisfiable then
we can conclude that the property holds. Details of such
a translation for the Alloy language is given in [14], and as
we will show below the policies specified with the syntax
described above can be translated to Alloy language.

The second class of basic predicates extends the first one to
handle types which have a total order relation <, as well.



We define BP2 as follows:

BP2 → BP1 | SCAL < SCAL

Sets described using this class of predicates can also be
translated to a boolean logic formula. We can encode a
type with a domain of n ordered elements using n2 boolean
variables, one for each pair of values in the domain.

The third class of policies extends the second class to include
infinite domains. Although the syntax for BP2 and BP3 are
the same for BP3 we permit E to be composed of power
sets of infinite domains. Note that we cannot translate sets
described using such predicates directly to boolean logic for-
mulas. So instead we limit the scope of our investigations:
we artificially limit the size of the set to a given fixed size
and then perform analysis upon it as though it were a finite
enumerated set of that size. The problem is that if no coun-
terexample is found, then that does not necessarily mean
that no counterexample exists—perhaps if we had increased
the scope just a little more we would have found one. The
small scope hypothesis (discussed in [15], and tested and
confirmed for some data structure algorithms in [21]) sug-
gests that small scopes could be sufficient in practice. Note
that if a counterexample is found, that counterexample is
definite and can be translated into an error in the original
policy.

The fourth and final class of policies extends the third class
to handle arbitrary Boolean functions, with any scalars or
sets as arguments. We also handle one special function on
sets, that being the magnitude operation.

BP4 → BP3 | f(SET, . . . , SCAL, . . . ) | |SET |

To translate sets described using such predicates to boolean
logic formulas we use uninterpreted functions, i.e., we create
a Boolean variable for encoding the value of a boolean func-
tion and we create a (bounded) integer variable for encoding
the size of set. We generate constraints which guarantee that
the value of the function is the same if its arguments are the
same. Other than this restriction the variables encoding the
functions can get arbitrary values. Note that this brings an
extra level of imprecision to our analysis. We were not able
to trust the positive results because of the scope restriction,
but now it is also possible that counterexamples may be
spurious, and will need to be validated against the original
policy. However, we think that such automated analysis can
still be useful in uncovering errors in access policies.

The above suffices for modeling every function in core XACML,
with the exception of the higher order functions. Those
functions invariably operate on sets, complicate the analysis,
and—if these functions are restricted to using the predicates
that we can model directly—can ultimately be expressed us-
ing the predicates we can already handle.

In the above we defined the syntax for four policy classes and
argued that properties of policies described with the above
syntax can be translated to SAT problems. Our analysis
tool instead targets the modeling language Alloy [16, 13,
14]. Alloy permits a more literal translation of our model,
simplifying the translation tremendously. After introducing
Alloy briefly, we will show how we translate our four classes
of policies to Alloy.

4.2 Alloy
Alloy is a declarative modeling language out of MIT equipped
with an analyzer that can verify assertions about models
written in the language. Alloy analyzer achieves this by
converting assertions to Boolean logic formulas which are
fed to a SAT solver. Alloy is based in first order relational
logic, and is intended to model complex structures. It does
so through extensive set manipulation, and this manipu-
lation permits an easy translation from our mathematical
model. Alloy has been used to automatically extract ob-
ject models [17, 31], to analyze the behavior of filesystem
synchronization utilities [24], to model virtual functions [22]
and to automatically check structural properties of data on
the heap [30].

Alloy models consist of sets of concrete objects, called signa-
tures, facts about these sets, and relations on these sets. Dis-
tinguished subsets of signatures are possible; these new sig-
natures are said to extend the superset. Unlike some other
modeling languages, Alloy does not require that these rela-
tions be completely specified. After defining signatures and
facts about them, one can ask Alloy to verify that certain
properties hold in all possible models that conform to the
facts given, or that there exists a model capable of satisfying
all the facts given. Alloy cannot, in general, prove assertions
about all possible models; it can, however, prove assertions
for all models within a fixed scope, which is what we have
to settle for analyzing access policies in general as well.

One oddity about Alloy is that it unifies singleton sets and
scalars; this is done for technical reasons, but it has some
implications for our translation that will be discussed in the
next section as they arise.

4.3 Translation to Alloy
The general structure we will be using here is as follows: to
prove that P1 v P2, we need to prove that each individual
component of P1 is a subset of each individual component
of P2. This part of the generated Alloy code is as follows:

static sig P1 extends Triple {} {

...

}

static sig P2 extends Triple {} {

...

}

assert Subset {

P1.permit in P2.permit

P1.deny in P2.deny

P1.error in P2.error

}

That is, we define two models P1 and P2, and then check
that the components of the one are contained in the other.
Since Alloy unifies sets and singletons, in can do double
duty as set membership and subset testing. Similarly we
do not need to specifically handle the conversion of scalar
variables to singleton sets.

We can translate P1 and P2 in our mathematical model in
the following manner. First, we distinguish predicates out-
side of existential and universal quantifiers from predicates



translate(〈r, s, t〉) ⇒
permit = translateP ′(r)

deny = translateP ′(s)

error = translateP ′(t)

For predicates outside quantifier formulas
translateP ′(P ′

1 ∩ P ′
2) ⇒ translateP ′(P ′

1) & translateP ′(P ′
2)

translateP ′(P ′
1 ∪ P ′

2) ⇒ translateP ′(P ′
1) + translateP ′(P ′

2)
translateP ′(¬P ′

1) ⇒ E - translateP ′(P ′
1)

translateP ′(∀c ∈ s P ′′) ⇒ extract(all c: translateP ′′(s)
| translateP ′′(P ′′))

translateP ′(∃c ∈ s P ′′) ⇒ extract(some c: translateP ′′(s)
| translateP ′′(P ′′))

translateP ′(∃! c ∈ s P ′′) ⇒ extract(one c: translateP ′′(s)
| translateP ′′(P ′′))

translateP ′(BP ) ⇒ translateBP (BP )

For predicates inside quantifier formulas
translateP ′′(P ′′

1 ∩ P ′′
2 ) ⇒ translateP ′′(P ′′

1 ) && translateP ′′(P ′′
2 )

translateP ′′(P ′′
1 ∪ P ′′

2 ) ⇒ translateP ′′(P ′′
1 ) || translateP ′′(P ′′

2 )
translateP ′′(¬P ′′

1 ) ⇒ ! translateP ′′(P ′′
1 )

translateP ′′(∀c ∈ s P ′′) ⇒ extract(all c: translateP ′′(s)
| translateP ′′(P ′′))

translateP ′′(∃c ∈ s P ′′) ⇒ extract(some c: translateP ′′(s)
| translateP ′′(P ′′))

translateP ′′(∃! c ∈ s P ′′) ⇒ extract(one c: translateP ′′(s)
| translateP ′′(P ′′))

translateP ′′(BP ) ⇒ translateBP (BP )

Figure 4: Basic translation rules

inside: that is, we split P into P ′ and P ′′ as follows:

P ′ → BP | ∀c ∈ s P ′′ | ∃c ∈ s P ′′

| ∃! c ∈ s P ′′ | ∃! c ∈ e[i] P ′′

| P ′ ∧ P ′ | P ′ ∨ P ′ | ¬P ′′

P ′′ → BP | ∀c ∈ s P ′′ | ∃c ∈ s P ′′

| ∃! c ∈ s P ′′ | ∃! c ∈ e[i] P ′′

| P ′′ ∧ P ′′ | P ′′ ∨ P ′′ | ¬P ′′

We translate tuples according to the rules in Figure 4, and
some of these tuples will create auxiliary sets much like the
sets S0, S1, S2, S3 (Equations (2) to (5)) we used in Sec-
tion 2.1. The function extract defines a new subset of the
environment E based on its argument (which is a formula)
and then returns the name of this subset. So extract(e)
would return Si and generate the following definition: sig

Si extends E {} { e }.

Now, we just need to know how to translate the BP hier-
archy to Alloy. Translating the various sorts of basic predi-
cates in BP1 is mostly straightforward but with minor com-
plications: Alloy equates scalar quantities and sets with only
one element. So, ⊆ is the same operation as ∈. To create
constant elements, we create a field in a structure composed
entirely of static constants which looks like:

static sig CONSTANTS {

x1 : scalar Integer,

x2 : scalar Integer,

...

}

We use constant(C) to describe the operation that inserts
the constant C into this table if it is not already present, and
returns a name to refer to it (for example, CONSTANTS.x1 for
the first field). Since the Boolean constants True and False

are already defined in Alloy we do not need to go through
this operation for Boolean constants, and can translate those
directly.

The e[i]’s are represented as fields of the E structure which
is declared as:

sig E {

age : set Integer,

voted : set Bool,

actions : set String

}

for the environment E defined in Equation (2) for our run-
ning example. We use env(e[i]) to give the translation for the
environmental set e[i]. For the running example, env(e[0]) =
age and env(e[2]) = actions.

The total translation for BP1 can be done as follows:

translateBP (s) ⇒s

translateBP (c) ⇒c

translateBP (e[i]) ⇒ env(e[i])

translateBP (C) ⇒ constant(C)

translateBP (si ∪ sj) ⇒ translate(si) + translateBP (sj)

translateBP (si ∩ sj) ⇒ translate(si) & translateBP (sj)

translateBP (si \ sj) ⇒ translate(si) - translateBP (sj)

translateBP ({c}) ⇒ translate(c)

translateBP (ci = cj) ⇒ translate(ci) = translateBP (cj)

translateBP (c ∈ s) ⇒ translate(c) in translateBP (s)

translateBP (si ⊆ sj) ⇒ translate(si) in translateBP (sj)

Using all of this, we can show as an example, a translation
of S1 in Equation (2) into Alloy which results in:

sig S1 extends E {} { all x : voted | x = False }

For policies of the second class, we add the predicate <. To
accommodate this, we define an Alloy function LessThan

and enforce its transitivity as follows:

fact {

all a,b,c:Type {

LessThan (a, b) = True &&

LessThan (b, c) = True =>

LessThan (a, c) = True

}

}

Now we can simply translate

translate(a < b) ⇒
LessThan(translate(a), translate(b)) = True



As an example, we translate S0 in Equation (1) which looks
like:

static sig CONSTANTS {

x1 : scalar Integer

}

sig S1 extends E {} { all x : age |

LessThan (a, CONSTANTS.x1) = True }

Policies of the third class require no special translation; they
merely require that Alloy be informed of the scope require-
ments when it attempts to analyze the policy.

Policies of the fourth class are accommodated by defining
a new Alloy relation about which we specify nothing. For
example, suppose we wanted to analyze a policy involving
XACML’s embedded XPath matching. Since we will encode
this as an uninterpreted function all we need to know about
XPath matching is that it returns a Boolean value. We
define a set S6 as follows:

S6 = {〈a, v, o〉 ∈ E : xpathnodematch(/actions, o)}

where /actions is an XPath expression. We translate this
by first introducing a new function as follows:

static sig Functions {

expr1 : E -> Bool // xpathnodematch(/actions, o)

}

and we use it in a new subset of E as follows:

sig S6 extends E {} { this.(Functions.expr1) = True }

We make no other claims about Functions.expr1, and as a
result S6 represents an arbitrary subset of E.

5. EXPERIMENTS
Our tool generates Alloy code which is then run through the
Alloy Analyzer to do the analysis. It is targeted for prov-
ing things about v relations, but we can use it for simpler
questions as well.

One such question might be ‘give a tuple e such that eff(e, p) =
Permit’ (where p is defined as in our running example). We
generate the Alloy code for the XACML policy, as normal,
and then append the following:

fun CheckTuple {

some T0.permit

}

run CheckTuple for 2 but 2 Bool, 1 Triple, 8 Type

The numbers after CheckTuple establish how deeply we will
look; we’re looking for such a tuple in a universe where there
are two Boolean values, one Triple (T0, the one generated
through translate(p), 8 domain types (strings, integers, and
the like)), and two elements of everything else. If we run
this, the analyzer tells us that the tuple 〈{Type 6}, {Bool 1},

Figure 5: Run time vs. domain size plotted for P1

and P2

Domain size Comparison
P3 v P4 P4 6v P3

1 10.0 s 12.2 s
2 21.7 s 42.0 s
3 35.5 s
4 63.6 s

Table 1: Median run time of Medico example (P4)
and subset (P3) in seconds

{Type 7}〉 generates a Permit, and further examination of
the output shows that Bool 1 is True, Type 6 is 18, and
Type 7 is the string vote. Through similar means we can
discover that the tuple 〈{18}, {}, {vote}〉 will generate an
error.

For something more interesting, we try to show that pv vD

pc, as we proved manually. Our coda now becomes

assert Subset {

T0.deny in T1.deny

}

check Subset for 2 but 2 Bool, 2 Triple, 10 Type

We get a counterexample almost immediately, giving us the
tuple we constructed in Section 4. If we modify the policy so
as to restrict result checking to only those who voted success-
fully, then the subset relation holds, and no counterexample
is produced.

5.1 Timing Data
These are but small examples, so they do not reflect the time
required to solve large problems that one might reasonably
ask. Since the underlying problem (SAT) is NP complete, it
is reasonable to ask whether these techniques are useful at
all as the problem size increases.

There are two sides to this. One side is that larger and more
complex policies will inescapably take longer than small poli-
cies. The other is that—in the context of problems in BP3

and BP4, where we must restrain the domains to a certain
finite size—the amount of computation involved as the size
of the domain increases may trigger the exponential worst
case behavior.



To demonstrate that the analysis is still feasible, we have
collected two sets of data. The first, which we have charted
in Figure 5, shows the time required to verify or refute a
relationship between two example policies. It shows how
the technique scales as the size of the domain sets increases.
The second set of data proves and refutes a relationship
between the Medico policy from Section 4.2 of the XACML
specification [32] and a subset of itself. This shows that the
technique is feasible for larger policies. All these benchmarks
were performed on a 1 GHz PowerPC, and all times are the
median of five runs, to smooth out irregularities. In each
case, trials were run until the formula proved too large for
Alloy Analyzer to handle; past the given sizes the analyzer
would fail cryptically. “Domain size” means the number of
elements we are using for our analysis, in each domain; so a
domain size of 8 for our example environment E means we
simulate every e ∈ E where |e[i]| ≤ 8 for each component in
E.

The data indicates that the time required for analysis is
exponential in the size of the scope, which is to be expected
for a SAT based algorithm. However, all times are under
two minutes, and our technique can clearly prove important
properties of these problems in a useful amount of time.

6. CONCLUSION
We have presented a formal model for access policies, and
shown how to analyze interesting properties about such mod-
els in an automated way. We have implemented a tool to
translate XACML policies into this model and to yield code
suitable for analysis. The experimental results indicate that
automated analysis of nontrivial access policies is feasible.

It would be interesting to investigate using predicate ab-
straction to generate more precise models for the functions
that we cannot directly simulate. Translating directly to a
SAT solver may be more efficient than going through Alloy,
but we would have to try it to be sure. We would also like
to experiment on more and larger policies.
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APPENDIX
A. XACML REPRESENTATION OF VOT-

ING EXAMPLE AND ALLOY TRANS-
LATION

<?xml version="1.0" encoding="UTF-8"?>
<Policy

xmlns="urn:..."
xmlns:xsi="...-instance"
xmlns:md="http://www.medico.com/schemas/record.xsd"
PolicySetId="urn:example:policyid:1"
RuleCombiningAlgId="urn:...:deny-overrides">
<Target>

<Subjects><AnySubject/></Subjects>
<Resources><AnyResource/></Resources>
<Actions>

<Action>
<ActionMatch MatchId="urn:...:string-equal">

<AttributeValue DataType="...#string">
vote

</AttributeValue>
<ActionAttributeDesignator

AttributeId="urn:example:action"
DataType="...#string"/>

</ActionMatch>
</Action>

</Actions>
</Target>
<Rule RuleId="urn:example:ruleid:1" Effect="Deny">

<Condition FunctionId="urn:...:integer-less-than">
<Apply FunctionId="urn:...:integer-one-and-only">

<SubjectAttributeDesignator
AttributeId="urn:example:age"
DataType="...#integer"/>

</Apply>
<AttributeValue DataType="...#integer">

18
</AttributeValue>

</Condition>
</Rule>
<Rule RuleId="urn:example:ruleid:2" Effect="Deny">

<Condition FunctionId="urn:...:boolean-equal">
<Apply FunctionId="urn:...:boolean-one-and-only">

<SubjectAttributeDesignator
AttributeId="urn:example:voted-yet"
DataType="...#boolean"/>

</Apply>
<AttributeValue DataType="...#boolean">

True
</AttributeValue>

</Condition>
</Rule>
<Rule RuleId="urn:example:ruleid:3" Effect="Permit"/>

</Policy>

B. ALLOY TRANSLATION
module foo
open std/bool
sig Triple {

permit : set E,
deny : set E,
error : set E

}
sig Type {}
disj sig Integer extends Type {}
disj sig String extends Type {}
static sig E {

env2 : set String, // urn:example:action
env0 : set Bool, // ...::urn:example:voted-yet
env1 : set Integer // ...::urn:example:age

}
static sig S {

static2 : scalar String, // vote
static0 : scalar Bool, // True
static1 : scalar Integer // 18

}
static sig Functions {

lessthan: Type -> Type -> Bool
}
det fun LessThan (a, b: Type) : scalar Bool {

result = if a = b then False else b.(a.(Functions.lessthan))
}
det fun LessEqual (a, b: Type) : scalar Bool {

result = if LessThan (a, b) = True || a = b then True else False
}
det fun GreaterThan (a, b: Type) : scalar Bool {

LessThan (b, a) = result
}
det fun GreaterEqual (a, b: Type) : scalar Bool {

LessEqual (b, a) = result
}
fact {

all a,b,c:Type {
LessThan (a, b) = True && LessThan (b, c) = True => LessThan
(a, c) = True

}
}
sig S0 extends E {} { S.static2 in env2 }
sig S1 extends E {} { env0 = S.static0 }
sig S2 extends E {} { one env0 }
sig S3 extends E {} { LessThan (env1, S.static1) = True }
sig S4 extends E {} { one env1 }
static sig T0 extends Triple {} {

permit = S0 & (E - (S1 & S0 & (E - (E - S2) & S0) + (E - S2) &
S0)) & (E - (S3 & S0 & (E - (E - S4) & S0) + (E - S4) & S0))
deny = (S3 & S0 & (E - (E - S4) & S0) + S1 &
S0 & (E - (E - S2) & S0) & (E - (E - S2) & S0)) &
(E - ((E - S4) & S0 + (E - S2) & S0))
error = (E - S4) & S0 + (E - S2) & S0

}


