
Efficient On-Stack Replacement for Aggressive Specialization of
Java Programs

In submission, please do not distribute

Sunil Soman Chandra Krintz

UCSB Technical Report #2004-24, September, 2004
Computer Science Department

University of California, Santa Barbara
{sunils,ckrintz}@cs.ucsb.edu

Abstract
On-stack replacement (OSR) is a technique used by dynamic and adaptive compilation systems to en-

able program specialization. Using OSR, an executing method can be recompiled (de- or re-optimized),
and its runtime stack invocation frame dynamically replaced with that of the new version, whenever as-
sumptions made for specialization are invalidated. Despite its potential, OSR is only used to a very lim-
ited degree in production Java Virtual Machines (JVMs). Two reasons for this are the limited forms of
OSR-based specializations available and the restrictions on compiler optimizations (and hence execution
performance) imposed by extant OSR designs.

In this paper, we address these limitations by extending an existing JVM OSR implementation so that
it is more amenable to optimization. Moreover, our OSR version can be used to implement aggressive spe-
cializations that are invalidated by events external to the executing code. We present a novel specialization
for write-barrier avoidance for generational garbage collection (GC) using our system that reduces pro-
gram startup time by 6% on average. We also evaluate our approach for specialization in a JVM that
implements multiple GCs in a single system and dynamically switches between them. Our OSR implemen-
tation reduces the overhead of this system by 6% on average. Finally, we show that our system has the
potential to significantly improve performance if used to avoid the checks that guard speculatively inlined
virtual method calls. We detail our OSR implementation and its empirical analysis in the open source Jikes
Research Virtual Machine (JikesRVM) for Java from IBM Research.

1 Introduction

On-stack replacement (OSR), originally developed for Self-91 [9], is a technique that enables a method to

be automatically replaced by the system while it is executing. In particular, the system replaces the runtime

stack activation frame of the method with that of the new version, and continues execution at the same point

within the new version. Past work has effectively employed OSR within dynamic compilation systems to

enable optimized code to be debugged dynamically [14], to defer compilation of method regions to avoid

compilation overhead (and improve dataflow) [9, 23, 11, 19], and to optimize (i.e. promote) methods that

execute unoptimized for a prolonged period within a single invocation [15, 11, 19].

1

We are interested in using OSR for an aggressive specialization system that we are developing for Java.

Our end goal is to enable significantly higher levels of performance than are available today from extant

Java Virtual Machines (JVMs) [1, 19, 22], by customizing the VM for an executing application. Prior work

in this area has shown that program performance can be significantly improved using application-specific

garbage collection [21]. To enable efficient execution and the ability to switch between GC systems

automatically, the VM in this prior work specializes the program for the underlying GC system (e.g. inlines

allocation sites) and uses OSR (and method invalidation 1) to replace methods if a GC switch occurs.

This prior work shows, however, that significant overhead is required to enable automatic GC switching

– negating the benefits of the switching system in many cases. The primary overhead in this system is

imposed by OSR: OSR limits optimization opportunity by not allowing optimization to occur across OSR

points. This limitation is not specific to the GC switching system; it also is imposed by all prior approaches

to OSR implementation [14, 11, 23]. For specializations for which invalidation can be triggered by an

external event, e.g., GC switch or class loading, this limitation is particularly severe – resulting in very

poor code quality – since OSR points are frequent (at every thread-switch point 2).

To address this limitation, we present a new OSR implementation that is more amenable to optimiza-

tion and that can be employed for both existing OSR uses, e.g., method promotion and debugging, and

for uses for which OSR is triggered in response to an external event. Our implementation facilitates opti-

mization through the use of a novel state recording system that is independent of the code (and so does not

restrict dataflow) and that is updated incrementally by the compiler during optimization.

In addition to employing our OSR system to improve the performance of automatic GC switching,

we also present two other aggressive, OSR-based, specialization techniques enabled by our implementa-

tion. The first is a novel technique in which we specialize code for JVMs that employ generational garbage

collection, a popular GC type that enables good performance for a wide range of programs [24, 18]. Gener-

ational GCs segregate the heap based on object lifetimes and collect the younger generations independently

of the older generations. One disadvantage of generational GCs is that they require write barriers for each

pointer assignment. Write barriers are checks that record whether the assignment results in a reference

1Method invalidation is the process of recompiling and replacing future invocations of a method with a new version.
2We assume a single processor, multi-threaded JVM system.

2

from an older-generation object to one in a younger generation. Such references must be remembered and

considered when the younger generations are collected (so that all live objects are correctly identified).

Our specialization relies on the observation that until there are objects in the older generation (i.e. a

collection has occurred and objects have been promoted), write-barriers are unnecessary and introduce

startup overhead. For programs that do not allocate enough to cause a garbage collection, write-barriers

are pure overhead. We therefore optimize code without write-barriers. If a garbage collection occurs and

objects are promoted to an older generation, we recompile the code to include write-barriers. We employ

OSR to ensure that currently executing methods are replaced with correct versions.

Our second specialization is an OSR-based implementation of a well-known technique for improving

virtual method dispatch performance, called guarded inlining [12]. Using this technique, if the compiler

can determine the likely runtime type of the receiver object, it inlines the appropriate method. The compiler

inserts checks (guards) immediately prior to the inline points that verify that the runtime object type is as

expected. If it is not, control transfers to code that invokes dynamic dispatch. For our specialization, we

omit the checks thereby improving the performance of methods for which compiler assumption holds. If

class loading occurs that invalidates an assumption, we replace any executing methods using OSR.

Our OSR system is an extension of an implementation of OSR for deferred compilation [11]. In

addition, we couple existing techniques for OSR implementation used in an automatic GC switching sys-

tem [21] and in Self-93 for dynamic debugging of optimized code [14] with a novel state collection process

that together enable improved code quality and efficient on-stack replacement of methods. We employ the

state-of-the-art, open-source, Jikes Research Virtual Machine from IBM T. J. Watson Research Center as

our implementation infrastructure. We detail our extensions and present results from our empirical evalu-

ation of the performance of the system. Our results indicate that OSR introduces very little overhead and

in combination with our specializations can enable significant performance improvements. In summary,

we make the following contributions with this paper:

• The design and implementation of a freely-available, general-purpose OSR implementation that
enables extant uses of OSR to be implemented as well as those for more-aggressive specialization
(in which external events can trigger OSR).

• A set of techniques that enable OSR state to be extracted in the presence of compiler optimization.

• A novel specialization technique that enables methods to be optimized as if the underlying GC
system was not generational (avoiding the overhead of write-barriers) and replaced when a GC

3

occurs and write-barriers are required. This technique improves program performance by 2-12%
using a heap size of 500MB for the programs studied.

• An empirical evaluation of our system and specializations that includes measurements of all OSR
overheads. We show that our OSR implementation improves the performance of an existing ap-
proach to an automatic GC switching system by 6% and has the potential to enable additional per-
formance benefits (1-19%) when used for aggressive guard-free inlining of virtual methods.

2 Background and Related Work

On-stack replacement (OSR) [9, 15] is the process of (1) extracting the runtime state from a currently

executing method, (2) recompiling a new version of the method, (3) generating a stack activation frame

for the new version and updating it with the runtime values computed by the old version, (4) replacing

the stack activation frame of the old version with that from the new version, and (5) continuing execution

at the same point within the new version. Given OSR functionality, a dynamic compilation system can

implement very aggressive specializations based on temporary conditions. Then, when these conditions

change as a result of an external event or a runtime check, the compilation system can re-compile (and

possibly re-optimize) the code and replace the currently executing version [14, 13, 11, 23, 19].

Invalidation is a related technique in which future invocations of a method use a different version of

the code. Invalidation is much simpler than OSR since invalidation entails only that a correct version of

the method is generated and that future invocations use the new copy. This is commonly implemented by

replacing the address of the original version with that of the new version in a lookup table.

Both OSR and invalidation have been employed by extant dynamic compilation systems for dynamic

debugging of optimized code [14], to defer compilation of method regions to avoid compilation overhead

(and improve dataflow) [9, 23, 11, 19], and to optimize (promote) methods that executed unoptimized for a

long time without returning [15, 11, 19]. The open-source Jikes Research Virtual Machine (JikesRVM) [1]

from IBM T. J. Watson Research Center is one such system. JikesRVM uses OSR and invalidation for

deferred compilation and method promotion. We extend this system in our work. We first describe the

system and then present our extensions to it.

JikesRVM was designed to enable high-performance Java execution in server environments. The sys-

tem dynamically compiles Java bytecode at the method-level, to x86 (or PowerPC) code. Upon initial

invocation, each method is baseline compiled without optimization. JikesRVM also implements extensive

4

runtime services (garbage collection, thread scheduling, synchronization, etc.) and an adaptive optimiza-

tion system (AOS) [2]. The AOS samples the execution of programs to identify frequently executed, i.e.,

“hot”, methods. The AOS optimizes (and performs any specialization on) hot methods at increasing levels

of optimization; there are currently implements three levels of optimization [7]. To implement sampling,

the system increments a counter for the currently executing method (regardless of how it was compiled) at

each thread switch (approximately every 10ms). Thread-switch points occur at at method prologs, epilogs,

and loop back-edges.

2.1 OSR and Method Invalidation in JikesRVM

To implement method invalidation, JikesRVM simply replaces the address of the method (located in a

shared table in the VM) with that of a compilation stub when an assumption used to specialize a method

is found to be invalid. Stubs are used in JikesRVM to enable lazy compilation of methods; all method

entries in the system initially contain the stub address. When a method is invoked, the compilation stub is

invoked instead which causes the baseline compiler to compile the target method. The stub then replaces

its own address in the table with that of the compiled target method (for future target method invocations)

and continues execution in the method. If the adaptive system later identifies the method has hot (and its

optimization is predicted to be beneficial), the system will optimize the method as described above.

For currently executing methods that were specialized using now-invalid assumptions, JikesRVM re-

places the method using OSR. To implement OSR, JikesRVM inserts an OsrPoint instruction into the

application code at the point at which OSR should be performed. This instruction is implemented simi-

larly to a call instruction: Execution of an OsrPoint causes the method’s execution to be suspended and

control to pass out of the current method into code that handles OSR.

The OsrPoint records the execution state of the method at a particular program point in native code.

The execution state consists of values for bytecode-level local variables, stack variables, and the current

program counter. The execution state is a map that provides the OSR system with runtime values at the

bytecode-level (source-level) so that the method can be recompiled and re-started using another version.

JikesRVM employs a stack resizing mechanism to allow each frame (from a recompiled method) to be

correctly inserted into the stack. All methods that require OSR are replaced when OSR occurs.

5

An OsrPoint can be guarded by a check inserted into the application code, so that the OsrPoint is

executed only when the check fails, e.g., for guarded inlining of virtual methods using a particular object

type. Alternately, an OsrPoint can be inserted without a guard, e.g., for deferred compilation where it is

inserted in place of code that has not yet been compiled. In either case, once an OsrPoint instruction is

executed, the current method will be unconditionally replaced. The use of an unconditional instruction to

initiate OSR requires that checks be added at every point at which OSR is to be performed conditionally,

i.e. whenever some runtime system property changes. Consequently, OSR can be used only in a limited

sense, since every check inserted into the code imposes a performance penalty.

The JikesRVM OSR implementation is similar to that used in other systems for similar purposes [14,

23, 13, 19], although different names are used for OsrPoint, e.g., interrupt points [14] OPC RECOMPILE

instructions [23], and uncommon traps [19]. The implementation, although simple, severely restricts com-

piler optimization. First, all method variables (locals as well as stack) are considered live at an OsrPoint;

doing so artificially extends the live ranges of variables and can significantly limit the applicability of

compiler optimization such as dead code elimination, load/store elimination, and copy/constant propaga-

tion. In addition, OsrPoint instructions are designated as yieldpoints, i.e., points at which control may be

transferred out of the method to ensure that variable definitions are not moved around the OsrPoints. By

“pinning” these instructions, the compiler is unable to perform optimizations across OsrPoints. Therefore,

compiler insertion of many OsrPoints or of OsrPoints along the critical path has the potential to result in

very poor code quality and thus, performance.

2.2 OSR for JikesRVM with Automatic GC Switching Functionality

Recently, Soman et. al proposed an extension to JikesRVM that enables application-specific garbage

collection customization [21]. The system implements multiple garbage collection systems within a single

JikesRVM execution image and can switch between them dynamically in an effort to improve performance.

This prior work showed that such a system can produce significant performance improvements (11-14%

for standard benchmarks and up to 44% for short running codes) over a system without dynamic GC

switching functionality. However, these results were for a system that switched immediately prior to the

start of an executing program. For such a configuration, the system can specialize the program (inline

6

allocation sites and include or omit generational write-barriers as appropriate) without the need for OSR

and method invalidation – since the system never switches while the program was executing.

This prior work presented preliminary results on the performance of switching between GC systems

automatically, after the program has started. This configuration requires OSR and invalidation since there

may be methods specialized for the previous GC. The authors of this work showed that the overhead

imposed by the use of OSR is significant and in some cases can negate the benefits enabled by switching.

OSR is implemented in the GC switching system using an extension of the OsrPoints described above,

called OsrInfoPoints. OsrInfoPoints are place-holder instructions inserted in the application code at GC

safe-points (which are the points at which GC can occur – and a GC Switch may be performed). OsrInfo-

Points are similar to OsrPoints except that they are removed from the code at the end of the compilation

and do not appear in the final machine code. As such, they are not unconditional and do not require runtime

checks. Since OsrInfoPoints (like OsrPoints) are intermediate instructions until the final machine code is

generated, the compiler treats them as it does OsrPoints, i.e., it considers them “pinned” and it assumes

that all variables are live, severely restricting compiler optimization.

Such an implementation (for OsrPoints or OsrInfoPoints) works reasonably well when there are only

a small number of OSR points or when OSR is used for deferred compilation (since all variables must be

considered live in the uncompiled code). However, any OSR-based specialization for which invalidation

is triggered by an external event, e.g., GC switch, class loading, etc., requires that there be state recorded

at every point in the method at which a thread-switch can occur (we assume a single processor system in

this work). Since thread-switch points are commonly very frequent (method prologs, epilogs, call sites,

loop back-edges, and exceptions) [19, 1], an instruction-based OSR state extraction mechanism has the

potential for causing very poor code quality for frequently executed (optimized) methods resulting in poor

program performance and possibly negating the benefits enabled by specialization.

3 Improving the Efficacy of On-Stack Replacement

Our extension to the JikesRVM OSR system enables OSR to occur an any point in a method at which

a thread-switch can occur (in JikesRVM at method prologues, method epilogues, loop back-edges, call

sites, exception throws, and explicit yieldpoints) – without incurring the performance penalty of prior

7

OSR implementations. Moreover, our approach does not require that explicit or place-holder instructions

be inserted into the instruction stream to cause OSR. The key to our approach is an implementation of

execution state collection called a VAR MAP which maintains information similar to that in an OsrPoint,

but which is independent of the application code.

A VAR MAP is a per-method list of of bytecode variables that are live at each thread-switch point.

This list is independent of the code and does not impact the live-ness information of the program point.

To ensure that we maintain accurate information in the VAR MAP, we update it incrementally as compiler

optimizations are performed. Figure 1(a) shows an example of a VAR MAP entry.

To update the VAR MAP entries, we defined the following system methods:

• transferVarForOsr(var1, var2): Record that var2 will be used in place of var1, henceforth in the
code (e.g. as a result of copy propagation)

• removeVariableForOsr (var): Record that var is no longer live/valid in the code. Note that, even
though a variable may not be live, we must still remember it’s relative order among the set of method
variables.

• replaceVarWithExpression(var, vars[], operators[]): Record that variable var has been replaced by
an expression that is derivable from the set of variables vars and operators.

Our OSR-enabled compilation system handles copy and constant propagation, dead-code elimination

(DCE), and escape analysis optimization. During copy and constant propagation, whenever a use of a

variable (rvalue) is replaced by another variable (or constant), we use transferVarForOsr to record this in

the VAR MAP. Figure 1(b) shows a simple example of a VAR MAP update following copy propagation.

We handle DCE and escape analysis similarly. When definitions of dead variables are removed, we

need to ensure that if a dead variable is present in the VAR MAP, it is replaced by its rvalue (using

transferVarForOsr). If the definition uses more than one right-hand side variable, we record all uses along

with the operators used to derive the lvalue (we currently only handle simple unary or binary operations).

The JikesRVM optimization that employs escape analysis eliminates variable definitions for those that do

not “escape” a method (or a thread). We replace such eliminated variables (as we do dead variables) with

their rvalues in the VAR MAP.

Similarly to [14], we are unable to ensure accurate recovery of state information for recursive method

calls that have been optimized away using tail recursion elimination. This is because the call frame is

completely eliminated for recursive frames.

8

int c,d;
b = a;
c = b * 4;
callme();
d = a + b;

15: int_move l15i(int) = l8i(int)
18: int_shl l17i(int) = l15i(int), 2
20: call static "callme()V"
25: int_add l19i(int) = l8i(int), l15i(int)

...
14: iload_1
15: istore_2
16: iload_2
17: iconst_4
18: imul
19: istore_3
20: invokestatic #3 //callme()V
23: iload_1
24: iload_2
25: iadd
26: istore_4
...

20: call static "callme()V"
18: int_shl l17i(int) = l8i(int), 2

25: int_add l19i(int) = l8i(int), l8i(int)

...

...

...

source code byte code

...

intermediate code (HIR)

25@main (...LLL,...),..., l8i(int), l15i(int), l17i(int),...

bcindex L: local variable a b c

VAR_MAP entry

 a. Maintaing state information

//b replaced with a

...

...

25@main (...LLL,...),..., l8i(int), l8i(int), l17i(int),...

transferVarForOsr(l15i, l8i);

b. Updating state after copy propagation

Figure 1: (a) Shows how the VAR MAP is maintained for a snippet of Java source (its bytecode and high-
level intermediate representation (HIR) is included). We show the VAR MAP entry for the callme() call
site. The entry contains the next bytecode index (25) after the call site callme, and three local variables
(a: l8i, b: l15i, c: l17i) along with their types. (b) Shows how the VAR MAP is updated after copy
propagation. Variable b: l15i is replaced with a: l8i.

We also update the VAR MAP during live variable analysis. We record variables that are no longer live

at each potential OSR point (i.e. each thread switch point), while still remembering their relative positions

in the map. We set every variable that live-analysis discovers as dead, to a void type in the VAR MAP.

We identify local and stack variables by their relative positions in the Java bytecode. Maintaining the

relative positions of variables in the VAR MAP allows us to restore a variable’s runtime value to the

correct variable location. In addition, we load dummy (i.e. null) entries on to the the operand stack for

dead stack operands since, although a dead stack variable will not be used after the current program point

in the new version of the method, we must preserve the stack height and the order of variables on the stack

for correct execution.

During register allocation, we update the VAR MAP with the actual register and spill locations for the

variables, so that they can be restored from these locations during on-stack replacement. The VAR MAP

contains symbolic registers corresponding to each variable. We update symbolic registers with a physical

register or a stack location upon allocation by querying the map maintained by the register allocator for

every symbolic register that has been allocated to a physical register. We record spilled variables via the

spill location that the allocator encodes as a field in the symbolic register object.

Upon completion of compilation, we encode the VAR MAP of the method using the compact encoding

used for OsrPoints in the original system [11]. The encoded map contains an entry for each potential OSR

9

point. Each entry consists of the register map, which is a bit map that indicates which physical registers

contain references (which a copying garbage collector may update). In addition, the map contains the

current program counter (bytecode index), and a list of pairs (local variable, location) (each pair encoded

as two integers), for every inlined method (in case of an inlined call sequence). The encoded map remains

in the system throughout the lifetime of the the program and all other data structures required for OSR-

aware compilation (including the original VAR MAP) are reclaimed during GC.

3.1 Handling Special Cases

There are several cases that we must handle specially to enable correct state collection and to enable

efficient code generation. These cases include call site return values, inlined allocation sites in the GC

switching system, and machine-specific instruction selection and optimization.

One of the types of program points at which OSR can occur in an optimized method is the call site.

Control transfers out of the method at the call site and returns to the program point immediately following

the call when control transfers back to the method. Therefore, if OSR is required for the calling method,

our system must enable execution to occur in the new version of the method at the instruction following

the call. If the called method returns a value, the OSR value must correctly extract that value from the

execution state so that it is available in the new version of the method.

Commonly, return values are stored in specific registers (as dictated by the compiler’s calling conven-

tion). For example for the x86 architecture, JikesRVM stores the return value in registers eax and edx for

optimized code. For such calling conventions, we restore the return value from the appropriate register

into the correct local or stack value (in the execution state) during OSR. However, we cannot simply insert

code into the specialized (original version of the) method after the call to record this state since these

instructions will be skipped when control is transferred to the machine-code equivalent of the bytecode

instruction that follows the method invocation bytecode. We, therefore, keep track of the return value type

and the variable in which the value should be restored in the VAR MAP. During OSR, we restore the value

directly from the appropriate register(s).

We handle exception throws and yieldpoints as we do call sites. Moreover, we do not perform OSR

for methods in their epilogues since no further processing within the method body will be performed.

10

In the GC switching system, allocation sites are inlined (if the class type has been resolved) using the

allocation routines of the underlying GC system as part of the specialization. Since OSR can be triggered

during garbage collection, we handle OSR for inlined allocation sites specially. In JikesRVM, an inlined

allocation routine is divided into a fast path and a slow path [3, 5]. The fast path contains the actual inlined

allocation sequence, however, the slow path is a call to a system allocation method which will cause a

GC if memory is constrained. Control may transfer out of the application thread only at the slow path

allocation call, however, we need to ensure that the OSR process will restore execution to the “correct”

program point (i.e. the fast path), so that the new instruction is re-executed. To enable this, we update

the OSR VAR MAP program counter entry so that control is restored to the new instruction (and not the

following bytecode instruction as is done for the call).

We also handle platform (x86) specific compiler transformations and optimizations. JikesRVM uses

the BURS (bottom-up rewriting system) [7] to convert the intermediate code (after all optimizations have

been performed on it) to final architecture-dependent code. BURS will encode floating point instructions

on the Intel architecture, to make use of floating point registers. We need to update our var map to record

stores of operands into the x86 floating point registers. We use transferVarForOsr for this purpose, passing

in the operand that is to be stored along with the floating point register that it is to be stored in.

On the Intel architecture, the optimizing compiler tries to use the accumulator register for simple binary

arithmetic and logic operations (e.g., ADD, SUB, MUL, OR, so on). We use transferVarForOsr to record

any variable definitions that are being replaced by an implicit use of the accumulator register.

3.2 Triggering On-Stack Replacement

The other component required to enable on-stack replacement is the use of an appropriate OSR-triggering

mechanism. There are two ways to trigger OSR (shown in Figure 2), depending on how OSR is to be used.

• Compiler-driven or Eager. The compiler inserts a call that is guarded by a condition that checks the
validity of the specializing assumption to a system method that performs OSR. This is the approach
employed by the JikesRVM OSR implementation.

• External or Lazy. OSR is triggered externally by a runtime event that renders a specializing assump-
tion invalid. An OSR method is invoked by the runtime event which in turn either either patches
the code of the executing method(s) with code that invokes the rest of the OSR process, or that
reroutes the return address of each method that is the callee of a method to be OSR’d. The return
is rerouted to invoke the rest of the OSR process. This approach does not require the insertion of
conditional calls into the application code, nor does it require OSR to be performed on all methods

11

bar

foo

osr_helper {
...
}

old return address

trigger OSR

ltype1 local1 = new Object();

bar();

{

void foo(ptype1 param1, ptype2 param2, ...) {

if(!specialization_cond_valid)

//osr will be unconditionally triggered here

 OsrPoint this, param1, param2, local1, ...
}
...
}

b. OSR triggered lazily by external eventa. OSR triggered by compiler inserted OsrPoint

Figure 2: Triggering On-Stack Replacement. In (a), the compiler inserts a special OsrPoint instruction
which is guarded by a condition. OSR will be triggered when this instruction executes. In (b), OSR is
triggered lazily by an external event (thread) that will reset bar’s return address to “call” the osr helper.

(that require it) at once. However, it does require inspection of the runtime call stack. This approach
was employed in Self-91 for debugging optimized code [14].

We extended JikesRVM to implement the lazy OSR trigger since it eliminates the need for runtime

checks in the application code. To enable this, we modify the return address of the specialized method’s

callee so that it will jump to a special system method (a OSR helper) that performs OSR for the specialized

method. This OSR helper method suspends the application thread, extracts the execution state from the

specialized methods stack frame, and sets up the new stack frame. To preserve register values contained

in registers for the execution of specialized methods, the OSR helper saves all registers (volatiles and non-

volatiles) into its stack frame. Since the OSR helper is not directly called from the specialized code, we

must “fake” a call to the OSR helper. This involves setting the return address of the OSR helper to point

to the current instruction pointer in the specialized code upon entry to the OSR helper. This process also

requires that we update the stack pointer for the OSR helper appropriately.

4 Aggressive OSR-Based Program Specialization

In addition to the empirically evaluating our OSR extensions for a GC switching system for JikesRVM,

we also implemented two aggressive OSR-based specializations. The first is a novel specialization for

generational garbage collection systems and the second is a specialization in which we remove the runtime

checks that guard inlined call sites of de-virtualized methods.

4.1 Specialization for Generational Garbage Collection Systems

Generational garbage collectors make use of the weak generational hypothesis [18, 24] which states that

most dynamically allocated objects (between 80 to 90%) have very short lifetimes. Consequently, objects

12

can be segregated into separate parts of the heap, a nursery region for young (newly created) objects, and, a

mature space for old objects. As objects age in the heap they are promoted from the nursery to the mature

space. This separation enables nursery objects to be garbage collected more frequently than mature space

objects.

Generation collectors require write barriers [25, 16, 4] (instructions in the execution stream) that record

of references from mature objects to nursery objects. This record enables the nursery to be collected

independently of the rest of the heap since it identifies nursery objects that are live solely because they are

pointed-to by a mature object. Write-barriers are inserted into the application code by the compiler at every

pointer store (i.e. putfields, array stores in Java bytecode) and thus, can degrade program performance.

Researchers have found, however, that with intelligent write-barrier code, the benefits that result from

maintaining separate generations outweigh the write barrier cost for many programs [4, 6].

However, for applications that do not allocate enough memory during their lifetime to cause a GC,

e.g., short running programs or programs with small to medium dynamic memory requirements, the write-

barrier cost (no matter how efficiently write-barriers are implemented) is pure overhead that can be sig-

nificant. Such applications have become more plentiful as the cost of memory for modern processors has

plummeted and larger and larger memory sizes have become available.

To address this limitation, we have developed a novel specialization technique in which we avoid

inserting write-barriers until the first garbage collection commences. That is, we optimize code without

write-barriers so that the program executes at full speed. If a GC occurs and objects are promoted to the

mature space, our system invalidates methods that are optimized and require write-barriers and OSRs any

such method that is currently executing. During compilation, we identify methods with pointer stores as

possible OSR/invalidation candidates. We use this information to avoid needlessly processing methods

without pointer stores.

Our compiler checks the heap size, heap residency, and whether any GCs have occurred to decide

when to apply write-barrier specialization. The compiler does not perform this optimization when GC

has occurred (objects have been promoted to the mature space) or when the maximum heap size is below

500MB (set arbitrarily but based on our experience with Java programs). Heap residency is the ratio of

allocated pages to total pages in the system. When this ratio exceeds 0.6 (identified empirically), the

13

compiler inserts write-barriers, i.e., does not specialize the method. Otherwise, the compiler optimizes

the method without write-barriers and logs whether the method contains pointer stores. Only hot methods

are optimized (and hence specialized) in our system using the adaptive optimization system of JikesRVM

described previously. All unoptimized, cold methods have write-barriers inserted by the baseline compiler.

Using this specialization, programs that perform no GC have no write-barrier overhead imposed on them;

however programs that do exercise the GC system can have their startup time reduced and are able to reap

the benefits of generational collection (with only minor OSR overhead imposed at the first GC).

4.2 Specialization for Virtual Method Dispatch

To investigate the generality of our OSR system, we used it to evaluate a well-known form of specializa-

tion for virtual method dispatch for object-oriented programs. Virtual method dispatch is a technique for

dynamically binding method call sites to their implementations. The cost of executing virtual methods is

higher than for static methods since the underlying object type must be looked up at runtime to find the

method to dispatch. The authors in [17] overview many such techniques.

One such optimization is to specialize the caller code with (possibly inlined) statically dispatched

version(s) of the call for the likely object type(s) [12, 15, 7]. To ensure that this code executes correctly,

these systems insert checks (guards) into to the code just prior to the specialized code. The guard tests

whether the runtime type of the object is that which was assumed. If the guard fails, another branch is taken

that implements dynamic dispatch. Regardless of the correctness of the assumption, the guard is executed.

This imposes overhead on the executing code that can be significant if guards are executed frequently.

Efficient guard tests [17, 10, 8] and analysis techniques that identify when the guards can be omitted [10]

have been proposed in the literature and employed in production systems to reduce this overhead.

OSR can also be used to remove guard tests. To evaluate its efficacy, we removed all guard tests

for optimized methods that inline virtual methods that currently (given the classes loaded) have a single

implementation. During class loading, we check to see if any loading event violates the assumptions used

to remove the guards. When a violation occurs, we invalidate the method and perform OSR as necessary.

JikesRVM currently implements preexistence [10], a technique originally described for the HotSpot

VM, in which guards are removed from methods when the compiler can determine that the receiver object

14

cannot be of an as-yet-unknown class type. Preexistence precludes the need for OSR of executing method

since it guarantees that once a method begins execution, the object type will not change. The method

must be invalidated, however, so that future invocations of the methods are correct. OSR-based check-

removal specialization is complementary to preexistence and enables additional checks to be removed. We

extended the JikesRVM implementation of preexistence to enable OSR-based check removal and evaluated

the efficacy of combining the two techniques.

5 Empirical Evaluation

To evaluate the efficacy of our OSR implementation, we measured the performance of our system for

a number of different aggressive specializations (GC switching specialization, generational write-barrier

removal, and guard-free dynamic dispatch). We first detail the experimental methodology we used for our

experiments and then present our results.

5.1 Experimental Methodology

We gathered our experimental results using a dedicated 2.4GHz x86-based single-processor Xeon ma-

chine (with hyperthreading enabled) running RedHat Linux 9. We implemented our version of on-stack

replacement into the JikesRVM version 2.2.0 with jlibraries R-2002-11-21-19-57-19 and the JikesRVM

GC switching system described in [21] (and made freely available via the authors’ web site).

We ran all of our experiments using the adaptive optimization JikesRVM system (described in Sec-

tion 2). Since the hot-method selection process using this configuration is non-deterministic, the set of

methods optimized and consequently, execution time across runs using the same input, shows significant

variability. To reduce this non-determinism and to ensure that our results can be reproduced, we profiled

each program off-line 100 times and collected the list of methods selected by the JikesRVM and their

optimization level. We then composed the intersection set of these methods into a file which is read by the

VM system at startup. The compiler consults this list of methods whenever a method is to be compiled,

and if found, it optimizes the method directly at the indicated optimization level. This setup is similar to

that used in other JikesRVM studies [20, 21]. and is called a pseudo-adaptive configuration.

15

We execute each benchmark 10 times and turn off hot-method sampling for the final three runs. The

values we report are the average of these last three runs. As such, the results we report for the clean

system (without our extensions) contain no compilation overhead. For the experiments that exercise OSR

and invalidation, the compilation time introduced by each is included in the results. We report total (first

run) compilation overhead separately . We compiled the JikesRVM boot image methods at the highest

optimization level and used the Generational Mark-Sweep (GMS) garbage collector in each system.

5.2 Results

In Figure 3, we present the performance impact of our OSR system for the JikesRVM GC switching

system (described in Section 2). The graphs in the figure compare the execution time performance for a

clean version of JikesRVM system without the GC switching functionality (Clean), for the JikesRVM GC

switching system without our extensions (Switch-OrigOSR), and for the GC switching system with our

OSR extensions (Switch-NewOSR). All configurations use the generational mark-sweep (GMS) garbage

collector and the switching systems never switches. The x-axis is heap size; the y-axis is time in seconds.

The y-axis range for db and mtrt is a little over 10 seconds, as opposed to 5 seconds for the rest of the

benchmarks.

Although, the dynamic GC switching system has significant potential to outperform a VM built with

a single garbage collector, its benefits are greatly reduced in the presence of support for on-stack replace-

ment and invalidation, as reported in [21]. Our goal, therefore, is to improve the performance of the GC

switching system when it does not switch, i.e. to obtain performance levels similar to that of a clean ver-

sion of JikesRVM when both systems employ the same GC. This will enable the GC switching system to

significantly improve performance when actually switching GCs at runtime. We therefore, compare our

system to the clean system running the GMS collector, which is considered to enable the best performance

in the JikesRVM, and to the original switching system with the same collector, without switching.

For most benchmarks and heap sizes, our system (Switch-NewOSR) outperforms the original switch-

ing system. Moreover, it enables much less performance variance across heap sizes. The most significant

improvements are enabled for the jess, db, compress, and mtrt benchmarks. Over all heap sizes for jess,

compress, and db, Switch-NewOSR improves performance by over 26%, 3%, and 1.5% on average, re-

16

0 200 400 600 800

Heap Size (MB)

5

6

7

8

9

10
E

xe
cu

ti
on

 T
im

e
(s

ec
)

compress Clean
Switch-NewOSR
Switch-OrigOSR

0 200 400 600 800

Heap Size (MB)

0

1

2

3

4

5

E
xe

cu
ti

on
 T

im
e

(s
ec

)

jess Clean
Switch-NewOSR
Switch-OrigOSR

0 200 400 600 800

Heap Size (MB)

15

20

25

E
xe

cu
ti

on
 T

im
e

(s
ec

)

db Clean
Switch-NewOSR
Switch-OrigOSR

0 200 400 600 800

Heap Size (MB)

5

10

15

E
xe

cu
ti

on
 T

im
e

(s
ec

)

mtrt
Clean
Switch-NewOSR
Switch-OrigOSR

0 200 400 600 800

Heap Size (MB)

5

6

7

8

9

10

E
xe

cu
ti

on
 T

im
e

(s
ec

)

mpegaudio Clean
Switch-NewOSR
Switch-OrigOSR

0 200 400 600 800

Heap Size (MB)

5

6

7

8

9

10

E
xe

cu
ti

on
 T

im
e

(s
ec

)

javac Clean
Switch-NewOSR
Switch-OrigOSR

0 200 400 600 800

Heap Size (MB)

2

3

4

5

6

7

E
xe

cu
ti

on
 T

im
e

(s
ec

)

jack Clean
Switch-NewOSR
Switch-OrigOSR

Pct. Degredation Pct. Improvement
Switch-NewOSR Switch-NewOSR

Benchmark over Clean over Switch-OrigOSR
compress 3.71% 3.22%
jess 3.06% 25.74%
db 3.09% 1.54%
javac 13.05% -1.70%
mpegaudio 11.07% -2.13%
mtrt -1.80% 18.70%
jack 5.88% 1.0%

Geo. Mean 5.33% 6.16%

Figure 3: Execution performance of the baseline JikesRVM (Clean), the JikesRVM GC switching system
using the original OSR version (Switch-OrigOSR), and the switching system using our general-purpose
OSR implementation (Switch-NewOSR). The table summarizes the data (i.e. the impact of Switch-
NewOSR) across heap sizes.

17

spectively. For the mtrt benchmark, Switch-NewOSR significantly reduces the performance fluctuation of

the original switching system, improving overall average performance by 19%.

Switch-NewOSR performs similarly to the original switching system for javac, jack, and mpegau-

dio. At some heap sizes for these benchmarks, the original system performs slightly better than Switch-

NewOSR. We believe that this is due to measurement variance (described in the previous subsection).

We also include a table in the figure that summarizes the impact of our new OSR implementation.

Column 2 is the average (mean) percent degradation (Switch-NewOSR over Clean). Column 3 is the av-

erage (mean) percent improvement (Switch-NewOSR over Switch-OrigOSR). On average, the our system

degrades performance of JikesRVM (without switching functionality) by 5%. However, it improves per-

formance by 6% over the original switching system on average – and so it is a significant step toward our

goal.

The results in Figure 3 measure the execution
 BCB/ms OSR Space Ohead

Benchmark Clean NewOSR % Degred. (KB) (KB)
compress 19.56 14.25 27.15% 4.50 3.71
db 11.15 7.00 37.22% 7.30 6.04
jack 15.47 9.10 41.18% 50.16 37.86
javac 18.75 10.75 42.67% 179.77 148.23
jess 11.15 7.64 31.48% 43.84 33.30
mpegaudio 17.90 10.94 38.88% 36.14 28.46
mtrt 8.51 7.57 11.05% 27.44 36.6251076.57 43039.43
Geo. Mean 14.57 9.58 32.38% 42.20 36.44

Figure 4: Compilation overhead. BCB/ms is byte-
code bytes per millisecond required for optimization
of the hot methods. The final two columns show the
compilation (collectable) and runtime space over-
head, respectively, introduced by our system.

time for the benchmarks, that each of the systems

enables. However, compilation time is also an im-

portant factor in the performance of a dynamic and

adaptive compilation system. We present the com-

pilation overhead introduced by our new version

of OSR to the right in Table 4. We show data for

the clean system (without GC switching function-

ality) and the Switch-NewOSR system. The data

we present is the bytecode bytes per millisecond (BCB/ms) required for optimized compilation. The level

of optimization is the same for both systems (and specified in the profile used as described in Section 5.1).

On average across benchmarks, there are 12,193 bytecode bytes optimized. Since our system must track

OSR state information at every thread switch point throughout the optimization process, it introduces 33%

more overhead per bytecode byte over the clean system. On average across the benchmarks studied, this

translates into an additional 440 milliseconds of overhead.

The final two columns of the table show the space overhead required for by our general-purpose OSR

implementation. Column 5 shows the total space in KB required during compilation for all of the methods

18

optimized in each program; this space is available for garbage collection once compilation completes for

each method. This space consists of the un-encoded data structures that our system uses for the VAR MAP.

Column 6 shows the total space in KB that is kept in the system to enable OSR. This space consists of the

compactly encoded OSR map that is used to map runtime values in a currently executing method to storage

locations in the bytecode. This information is required to enable recompilation and execution continuation

within a new version of an OSR’d method. On average, our system introduces 50KB of collectable space

overhead and 42KB of permanent space overhead. The javac benchmark requires significantly more space

overhead than the others due to a much larger number of optimized methods.

5.2.1 OSR-Based Specialization for Generational Write-Barrier Removal

We next present results for our OSR-based specialization for write-barrier removal for generational garbage

collectors. For this specialization, we employ the popular JikesRVM Generational Mark/Sweep (GMS)

collector as we did in the previous results. During compilation, the optimizing compiler checks the max-

imum heap size value to ensure that it is large enough to warrant specialization (>=500MB) and that the

heap residency (ratio of total pages allocated) is low (<=0.6). In addition, the compiler checks whether

any garbage collections have occurred and, if not, optimizes the code without write-barriers.

If a GC occurs (requiring write-barrier execution due to promotion of nursery objects), we perform

OSR and invalidation to update optimized code with the correct version – both for future invocations and

for currently executing methods. However, in case of OSR, we replace the currently executing specialized

method with its baseline compiled equivalent. Consequently, OSR introduces only a very small runtime

penalty. The compiler marks methods that have been specialized so that OSR and invalidation only occurs

for those methods. Our goal with this specialization is to reduce the overhead of write-barriers for programs

that require no garbage collection and to improve the startup performance of those programs that do.

We present our results in Table 1. We compare the performance of the Switch-NewOSR system (with-

out switching) with and without write-barrier specialization using a heap size of 500MB. Column 2 and

3 show the execution time performance in seconds without and with the specialization (which we refer to

as WBSpec), respectively. Column 3 shows the percent improvement enabled by WBSpec. The final two

columns show the OSR overhead imposed (column 4 is the number of OSRs and column 5 is the total time

19

Switch-NewOSR (w/o Switching)
w/o WBSpec with WBSpec

Benchmark ET (secs) ET (secs) % Impr. # WBs Elim # OSRs OSR Time (ms)
compress 7.39 7.24 2.03 % 1277 0 0.00
jess 3.09 2.88 6.80 % 7307524 7 3.29
db 17.01 15.87 6.70% 26851799 0 0
javac 6.54 6.41 1.99 % 2561614 1 0.60
mpeg 6.72 6.49 3.42 % 5464574 0 0.00
mtrt 6.70 5.99 10.60 % 2511488 0 0.00
jack 4.24 4.14 2.36 % 4974796 5 2.65

Em3d 1.07 0.98 8.41 % 1561718 0 0.00
MST 0.26 0.24 7.69 % 1744291 0 0.00
Perimeter 0.26 0.23 11.54 % 3170977 0 0.00

Geo. Mean 5.23 4.96 6.10 % 1810558 1.27 0.65
Geo. Mean Spec98 7.31 6.94 4.80 % 1716051 1.82 0.93

Table 1: Performance impact of write-barrier specialization for a heap size of 500MB using the GMS
garbage collection system

for all OSRs). For many of the benchmarks, no OSR is required since 500MB is sufficient for each of the

benchmarks. For those benchmarks that require OSR, the overhead is very small.

On average for the SPECJVM benchmarks (first 7 in the table) WBSpec improves performance by 5%

on average. For benchmarks that require garbage collection, this 5% benefit occurs during the initial part

of the program’s execution, i.e., during program startup. We also include data for benchmarks from the

Olden-Java Benchmark Suite (JOlden) in the table (Em3d, MST, and Perimeter). These benchmarks are

very short running and require no garbage collection given a maximum heap size of 500MB – hence, these

benchmarks are ideal candidates for write-barrier specialization. The average improvement in execution

time for the JOlden benchmarks is 9% and 6% across all of the benchmarks in the table.

5.2.2 OSR-Based Specialization for Guard-Free Dynamic Dispatch

We next present results for removing inline guards from virtual methods. To protect against executing

incorrect code, we employ OSR to invalidate code without checks when class loading occurs that causes

invalidation of the assumptions made by the compiler.

Figure 5 shows the results. The figure presents the results for the three benchmarks that require inline

guards; we also include jack input size 10 since it also uses a guard. The number of static guards removed

is shown at the top of each bar. The y-axis is the percent reduction in execution time due to guard removal.

In all of our experiments, we turn on preexistence (described in Section 4.2), which eliminates many of

the guards. However, even with only a few static guards to remove, our system enables improvements of

20

19% and 16% respectively, for jess and mtrt. Removing only a single guard enables an improvement of

1-2% for the two inputs of jack.

Only three benchmarks required guards for in-

0%

5%

10%

15%

20%

Jack_10 Jack_100 Jess_100 Mtrt_100

1
1

9

17

Figure 5: Pct. improvement due to OSR-protected
inline guard removal. Above each bar is the static
number of guards removed.

lined virtual methods. Moreover, class loading did

not trigger OSR or invalidation. This is due to our

experimental setup and the implementation of the

benchmarks themselves. Since we average the last

3 of 10 runs, all classes are loaded during measured

runs. Therefore, the compiler removes guards for

methods that are guaranteed not to require OSR.

Moreover, the benchmarks themselves do not implement a large number of virtual methods that are over-

ridden. We plan to include other, more “object-oriented” benchmarks and identify other ways of measuring

the impact of our system (yet that generate results with low variance that are repeatable) for the final ver-

sion of this paper, should it be accepted. However, we believe that the results for mtrt and jess indicate the

considerable potential of this specialization.

6 Conclusion

With this paper, we describe a novel implementation for on-stack replacement (OSR) for JikesRVM an

adaptive optimization system for Java. Our version of OSR is amenable to optimization yet enables re-

placement of any executing method at any point at which a thread-switch can occur. Our implementation

enables compiler optimization to occur across OSR points since, during optimization, we update a map that

maintains the execution state necessary for OSR. We use the system to improve the performance of a GC

switching system available for JikesRVM, by 6% on average. The switching system, without switching, is

now within 5% of the clean system without the switching functionality.

We also show that our version of OSR is useful for implementing aggressive specializations. We

present a novel OSR-based write-barrier specialization for generational garbage collectors that improves

performance by an additional 6% on average. In addition, we use our system to implement and measure

the potential of OSR-based, guard-free, aggressive inlining of dynamically dispatched methods. For the

benchmarks with guards available for removal, our system enables performance improvements of 1-19%.

21

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.

Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño Virtual Machine. IBM Systems Journal, 39(1):211–221, 2000.

[2] M. Arnold, S.J. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive optimization in the jalapeño jvm. In ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), October 2000.

[3] S. Blackburn, P. Cheng, and K. McKinley. A garbage collection design and bakeoff in jmtk: An efficient extensible java
memory management toolkit. Technical Report TR-CS-03-02, Department of Computer Science, FEIT, ANU, Feb 2003.
http://eprints.anu.edu.au/archive/00001986/.

[4] S. Blackburn and K. McKinley. In or out? putting write barriers in their place. In ACM SIGPLAN International Symposium
on Memory Management (ISMM), 2002.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Water? High Performance Garbage Collection in Java With
MMTk. In International Conference on Software Engineering, Edinburgh, Scotland, May 2004.

[6] S. M. Blackburn and A. L. Hosking. Barriers: Friend or Foe? In International Symposium on Memory Management
(ISMM04), To appear, October 2004.

[7] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. Serrano, V. Shreedhar, H. Srinivasan, and J. Whaley. The
Jalapeño Dynamic Optimizing Compiler for Java. In ACM Java Grande Conference, pages 129–141, June 1999.

[8] B. Calder and D. Grunwald. Reducing indirect function call overhead in c++ programs. In ACM Symposium on Principles
of Programming Languages (POPL94), 1994.

[9] C. Chambers and D. Ungar. Making Pure Object-Oriented Languages Practical. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’91), pages 1–15, 1991.

[10] D. Detlefs and O. Agesen. Inining of Virtual Methods. In European Conference on Object-Oriented Programming
(ECOOP), 1999.

[11] S. Fink and F. Qian. Design, Implementation and Evaluation of Adaptive Recompilation with On-Stack Replacement. In
International Symposium on Code Generation and Optimization (CGO), March 2003.

[12] G. Aigner and U. Hölzle. Eliminating Virtual Function Calls in C++ Programs. In European Conference on Object-Oriented
Programming (ECOOP), 1996.

[13] U. Hölzle. Optimizing Dynamically Dispatched Calls with Run-Time Type Feedback. In Proceedings of the SIGPLAN’94
Conference on Programming Language Design and Implementation, 1994.

[14] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with dynamic deoptimization. In ACM Conference on
Programming Language Design and Implementation (PLDI), June 1992.

[15] U. Hölzle and D. Ungar. A Third Generation Self Implementation: Reconciling Responsiveness With Performance. In
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’94), 1994.

[16] Anthony L. Hosking, J. Eliot B. Moss, and Darko Stefanović. A comparative performance evaluation of write barrier
implementations. In Andreas Paepcke, editor, OOPSLA’92 ACM Conference on Object-Oriented Systems, Languages and
Applications, volume 27(10) of SIGPLAN Notices, Vancouver, British Columbia, October 1992. Association for Computing
Machinery.

[17] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A Study of Devirtualization Techniques for a Java
Just-In-Time Compiler. In ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’00), October 2000.

[18] H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetimes of objects. Communications of the ACM,
26(6):419–429, 1983.

[19] M. Paleczny, C. Vick, and C. Click. The Java HotSpot Server Compiler. In USENIX Java Virtual Machine Research and
Technology Symposium, pages 1–12, 2001.

[20] N. Sachindran, J. Eliot, and B. Moss. Mark-copy: Fast copying gc with less space overhead. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’03), pages 326–343, 2003.

[21] S. Soman, C. Krintz, and D. F. Bacon. Dynamic Selection of Application-Specific Garbage Collectors. In International
Symposium on Memory Management (ISMM04), To appear, October 2004.

[22] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani. Overview of
the IBM Java Just-in-Time Compiler. IBM Systems Journal, 39(1):175–193, 2000.

[23] T. Suganuma, T. Yasue, and T. Nakatani. A Region-Based Compilation Technique for a Java Just-In-Time Compiler. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation, June 2003.

22

[24] D. Ungar. Generation scavenging: A non-disruptive high performance storage recalamation algorithm. In ACM Software
Engineering Symposium on Practical Software Development Environments, Apr 1992.

[25] Paul R. Wilson and Thomas G. Moher. A card-marking scheme for controlling intergenerational references in generation-
based garbage collection on stock hardware. SIGPLAN Notices, 24(5):87–92, 1989.

23

