
Model-Based Checkpoint Scheduling for Volatile Resource
Environments ∗

UCSB Computer Science Technical Report Number 2004-25

Daniel Nurmi
Department of Computer

Science
University of California, Santa

Barbara
Santa Barbara, CA 93106

Rich Wolski
Department of Computer

Science
University of California, Santa

Barbara
Santa Barbara, CA 93106

John Brevik
Department of Computer

Science
University of California, Santa

Barbara
Santa Barbara, CA 93106

ABSTRACT
In this paper, we describe a system for application check-
point scheduling in volatile resource environments. Our ap-
proach combines historical measurements of resource avail-
ability with an estimate of checkpoint/recovery delay to gen-
erate checkpoint intervals that minimize overhead.

When executing in a desktop computing or resource har-
vesting context, long-running applications must checkpoint,
since resources can be reclaimed by their owners without
warning. Our system records the historical availability from
each resource and fits a statistical model to the observations
using either Maximum Likelihood Estimation (MLE) or Ex-
pectation Maximization (EM). When an application is initi-
ated on a particular resource, the system uses the computed
distribution to parameterize a Markov state-transition model
for the application’s execution, evaluates the expected over-
head as a function of the checkpoint interval, and numeri-
cally optimizes this quantity.

Using Condor as a target platform, we investigate the ef-
fectiveness of this technique fitting exponential, Weibull, 2-
phase hyperexponential and 3-phase hyperexponential dis-
tributions to observed availability data. To verify our method
and compare the distributions each against the same con-
ditions, we use observations taken from the Condor pool
at the University of Wisconsin and trace-based simulation.
We examine the practical value of our approach by observ-
ing an implementation of our system when applied to a test
application that is then run on the “live” Condor system.
Finally, we conclude with a verification of the simulated re-
sults against the experimental observations. Our results in-
dicate that application efficiency is relatively insensitive to

∗This work was supported by National Science Foundation
Grants numbered NGS-0305390 and CCR-0331654.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

the choice of distribution (among the ones we investigate)
but that induced network load is not.

General Terms
Statistical Modeling of Performance Data and Impact on
Optimal Checkpoint Interval Selection

Keywords
distributed systems modeling, resource availability, statisti-
cal analysis, optimal checkpoint interval selection, aperiodic
checkpointing

1. INTRODUCTION
Distributed computing systems as the source of reliable

computational and storage capabilities continue to mature.
However, most of these systems rely on careful administra-
tion of the resources in the system to minimize the rate of
failure as a way of providing reliability to applications. For
example, most successful “grid computing” [3, 10] systems
use machines that are housed and maintained by profes-
sional administrative organizations as opposed to individual
users [11, 24, 25, 35]. In this context, the failure rate of the
resources (e.g. machines, networks, storage devices, etc.) is
relatively low compared to the lifetime of the typical appli-
cation.

In contrast, resource-harvesting systems such as Condor [33]
SETI@Home [31], Folding@Home [40], UUCS [13], and En-
tropia [16, 9] offer vast computing potential by leveraging
the unused capacity of more volatile desktop and “personal”
computing resources. From the perspective of the program-
mer or user wishing to tap this potential, the proffered re-
sources appear less stable for two reasons. First, each re-
source in these settings typically has a primary owner or
user who maintains ultimate physical control over when and
how the resource behaves. Users may reboot the machines
under their control, disconnect them from the network, etc.,
without warning or sanction. Second, resource owners must
be able to reclaim their resources at will from the resource-
harvesting system, since it is typically only the unused ca-
pacity that is available for harvest. Even when these recla-
mations are controlled (e.g., the resource-harvesting system
notices user activity and evacuates any guest load), the ef-

fect on the application is the same as if a resource fails: The
resource is no longer available for processing, and any ap-
plication state stored on that resource is in danger of being
lost.

Checkpointing is an obvious and widely studied technique
for ameliorating the effects of resource volatility in high
performance parallel computing and distributed system set-
tings [4, 7, 18, 34, 36, 37, 38]. However, checkpointing intro-
duces an execution performance overhead on the application
that can be particularly significant in desktop settings. Of-
ten, application checkpoints cannot be stored locally on the
resource, either because security concerns prevent the use of
local persistent storage or because resource owners simply
do not wish to give up disk storage to guest applications.
In this case, the checkpoint state must be stored remotely
over the same network that permits the resource-harvesting
system ingress.

In this paper, we investigate the effects of optimizing
checkpoint overhead on both application execution perfor-
mance and network load in resource-harvesting settings. Our
work automatically derives a checkpoint schedule for an ap-
plication based on the amount of state that must be saved
in each checkpoint, and the historically observed failure and
reclamation behavior of each resource it uses. When an ap-
plication is assigned to a resource by the resource-harvesting
system, our system automatically computes when the appli-
cation should checkpoint.

We assume that either system availability logs or active
health-and-status monitoring systems such as Nagios [23] or
Ganglia [20] are in place to provide a long-term record of
resource availability for each resource. From an automati-
cally derived statistical distribution (in its conditional form
if it is not a “memoryless” distribution) we then compute
the checkpoint schedule for the application that minimizes
the expected execution time using a Markov model simi-
lar to the one proposed in [37]. This computation requires
estimates of the delay imposed on an application when a
checkpoint is generated and when the application recovers
from a checkpoint. Additionally, when the distribution that
is fit is not memoryless, the schedule calculation requires the
elapsed time from the last resource failure until the start of
the application as a parameter (which we assume is derivable
from the availability logs).

We investigate the application of this methodology to
checkpoint scheduling for the Condor [33] system using ex-
ponential, Weibull, and hyperexponential distributions, and
compare the results using both simulation, and observation
of test applications run under Condor. We detail the rele-
vant specific characteristics of Condor, the techniques we use
for automatic model fitting, the checkpoint scheduling algo-
rithm and the results it generates. in terms of application
execution efficiency.

While the problem of checkpoint optimization has been
widely studied, and the general approach we pursue is not
new, our results nonetheless make several significant contri-
butions to this important research domain:

• We develop a new method for computing an optimal
checkpoint schedule based on the original work of Vaidya [37]
and later improved upon by Plank and Elwasif [27]. In
particular, our method combines heavy-tailed statisti-
cal models of machine availability with the Markov
model they propose to compute a checkpoint schedule
that includes the possibility of failure during execu-

tion, during checkpoint, and during recovery.

• We investigate the efficacy of this new theoretically
optimal model using trace-based simulation and com-
pare it to the previously reported optimality results.
Our results indicate that application performance is
insensitive to the choice of distribution but that the
additional network load introduced by checkpointing
is not.

• We have developed a working implementation for com-
puting checkpoint schedules that is compatible with
the Condor [33] resource-harvesting system. Using this
system, we report on empirical results gathered with a
test application in the “live” resource-harvesting set-
ting the Condor team maintains at the University of
Wisconsin.

• We check the validity of the simulation against mea-
surements we gather during each live experiment, so
that we are able to quantify the agreement among the
theory, the simulation, and practice.

We know of no other work that provides a theoretically opti-
mal checkpoint schedule (including failure possibility during
checkpoint and recovery), verifies the results in both simu-
lation and in practice, and quantifies the differences among
all three.

In addition, the utility of this investigation comprises both
academic and practical engineering considerations. The Con-
dor deployment at the University of Wisconsin is a nation-
ally supported computing resource that we intend to use
as a distributed supercomputer for two large-scale scientific
calculations 1. The implementation we have developed and
the results we have gathered with it are specifically for the
purpose of supporting these two application efforts.

2. RELATED WORK
There is a great deal of work that we are building upon in

this paper in two separate but related fields. The first field
of interest is that of modeling machine failure/availability
distributions. Work such as [12, 15, 32, 41, 42] typically as-
sume an exponential distribution to model machine lifetime
data for use in their applications. Usually the exponential
is chosen due to the relative simplicity of the distribution as
opposed to an actual belief that the exponential represents
the data accurately. Other works, most notably works by
Long [19] and Plank [27, 28] show that indeed the exponen-
tial is a poor model to employ, but sometimes, as in [27],
the poor fit does not significantly impact their application
of the model. In [14, 39] researchers have suggested the use
of a Weibull distribution to model machine availability dua-
rations, but do not show how well the Weibull fits the data
using more than visual analysis of the fit. Others, includ-
ing [17, 22], obtain good results using a hyperexponential
distribution to approximate machine failure data.

The second field of interest for this paper is that solving
the problem of optimal checkpoint interval selection [7]. A
great deal of literature has been written on this topic, more
than we can comment on here, but we attempt to give the
reader some primary and more recent reading. Fundamen-
tal work was done on finding optimal checkpoint intervals

1We omit further details of the applications themselves for
the purposes of blind submission.

on transaction processing systems [4]. The work contin-
ued, shifting focus to high performance computing environ-
ments and distributed systems [36, 38]. Work in this area
is typically predicated on one of two simplifying assump-
tions. Most authors have assumed that the distribution of
availability times is exponential, because the PDF and CDF
formulas are simple enough to allow closed-form solutions
to the equations involved in finding optimal checkpoint in-
tervals. As mentioned above, it is generally accepted that
this assumption is not realistic; however, the question re-
mains whether making it has any significant impact on per-
formance. Other authors such as Tantawi [34] and Ling [18]
consider the problem for general availability distributions.
Ling makes the common assumption that failures do not
occur during a checkpoint or recovery in order to avoid in-
tractable complexity in their equations while Tantawi cir-
cumvents the assumption by proposing a suboptimal ex-
pression for checkpoint interval selection. While assuming
no failures during checkpoint or recovery is justified when
individual checkpoint and recovery times are insignificant
when compared to time taken performing computation, we
feel the assumption is too restrictive to be applied generally.
Cycle-harvesting environments, the focus of this work, pro-
vide an example of a system in which a job may be required
to make large checkpoints over the network during relatively
small availability durations.

In this work, we build upon the checkpoint interval model
described by Vaidya [37], without however making the as-
sumption that availability is modeled by an exponential dis-
tribution. Since Vaidya’s model makes no inherent assump-
tions regarding failures during recovery or checkpointing,
our approach is free of both of the simplifying assumptions
discussed above.

3. METHODOLOGY
In this section, we give a brief description of the statistical

methods we use to characterize resource availability. These
include the strategies used for fitting statistical distributions
to data and the Markov model we use to derive the formula
for checkpoint overhead to be minimized.

3.1 Fitting a Distribution to Availability Data
In this study, we consider three families of distributions:

exponential, Weibull, and hyperexponential. The exponen-
tial distribution has been used extensively to model resource
availability because it is computationally simple to use and
because of its “memoryless” property, as discussed below,
which allows one to specify a single checkpoint interval through-
out the execution of a job. Long, Muir and Golding [19] and
Plank and Elwasif [27] both note inaccuracies in fitting ex-
ponentials to empirical observations of resource availability;
nonetheless, its simplicity of use has led to widespread use
of exponentials in the study of checkpoint scheduling.

In contrast, the two distribution families that consistently
fit the data we have gathered most accurately are the Weibull
and the hyperexponential. The Weibull distribution is often
used to model the lifetimes of objects, including physical sys-
tem components [30, 2]. Hyperexponentials have been used
to model machine availability previously [22], but it is nu-
merically difficult to find estimators which have statistically
desirable properties for their parameters.

3.2 Probability Function Definitions

We will denote probability density functions using lower-
case f and distribution functions using upper-case F ; we
will subscript these letters to distinguish different families
of distributions. For an exponential distribution, the prob-
ability density function fe and distribution function Fe are
given respectively as

fe(x) = λe
−λx (1)

Fe(x) = 1 − e
−λx (2)

where λ is a positive real number.
The density and distribution functions fw and Fw respec-

tively for a Weibull distribution are given by

fw(x) = αβ
−α

x
α−1

e
−(x/β)α

(3)

Fw(x) = 1 − e
−(x/β)α

(4)

The parameter α > 0 is called the shape parameter, and
β > 0 is called the scale parameter. 2 When α = 1, the
Weibull reduces to an exponential distribution.

Hyperexponentials are distributions formed as the weighted
sum of exponentials, each having a different parameter. The
density function is given by

fH(x) =
k
X

i=1

[pi · fei
(x)], x ≥ 0 (5)

where

fei
(x) = λie

−λix (6)

defines the density function for an exponential having pa-
rameter λi. In the definition of fH(x), all λi 6= λj for i 6= j,

and
Pk

i=1 pi = 1. The distribution function is defined as

FH(x) = 1 −

k
X

i=1

pi · e
−λix (7)

Note that for a hyperexponential distribution, one must
first specify the number of phases k; the distribution is then
determined by an additional 2k − 1 parameters, namely the
λi and all but one of the pi.

3.3 The Distribution of Future Lifetimes
Suppose that resource availability lifetimes are represented

as a random variable X with probability distribution F , and
let t be a nonnegative real number. It is natural to consider
the distribution of future lifetimes beyond t, which we will
denote by Ft(x), based on the conditional distribution func-
tion of F given that X ≥ t. Specifically,

Ft(x) = FX≥t(t + x) =
F (t + x) − F (t)

1 − F (t)
, t ≥ 0 (8)

This function is useful because it computes the proba-
bility that a resource will fail within the next x seconds
given that it has been available for t seconds. Thus when
an application is assigned to a resource, and at any point in
time thereafter, we can compute the probability it will be

2The general Weibull density function has a third parameter
for location, which we can eliminate from the density simply
by subtracting the minimum lifetime from all measurements.
In this paper, we will work with the two-parameter formu-
lation.

terminated within the next x seconds, assuming the model
distribution to be accurate and given the amount of time
the resource has already been available.

In the case of an exponential distribution, the distribution
of future lifetimes (Fe)t reduces to the original distribution
for all values of t; in other words, if availability lifetimes
follow an exponential distribution, the amount of time a re-
source has already been available has no impact on how long
it is likely to remain available. For this reason, the expo-
nential distributions are called memoryless; in fact, they are
the only memoryless (continuous) distributions.

The future lifetime distribution for a Weibull reduces to

(Fw)t(x) = 1 − e
[(t/β)α−(x/β)α]

. (9)

This function clearly depends on t as well as x when α 6=
1. When 0 < α < 1, the probability that a resource will
survive another time unit increases as t increases. For α > 1,
this probability decreases, and when α = 1 the distribution
reduces to an exponential and is therefore memoryless. Thus
a Weibull distribution is capable of modeling different aging
effects, depending on its shape parameter.

The future lifetime distribution for the hyperexponential
distribution defined above is

(FH)t(x) = 1 −

Pk
i=1 pi · e

−λi(t+x)

Pk
i=1 pi · e−λi(x)

!

(10)

A hyperexponential is only capable of modeling increas-
ing expected lifetime. One can show this by demonstrating

that the failure rate function fH (x)
1−FH(x)

is a decreasing func-

tion of time for any hyperexponential; this is a straightfor-
ward but tedious calculus exercise. Intuitively, throughout
the lifetime of a hyperexponentially distributed object, the
condition that it has survived as long as it has makes it in-
creasingly probable that its lifetime is governed by one of the
longer phases of the hyperexponential, and so its expected
future lifetime will increase.

3.4 Parameter Estimation
Each of the above-mentioned statistical distributions in-

volves some number of unspecified parameters which must
be estimated in order to “fit” a particular distribution to the
observed data. Given a set of sample data points {x1...xn},
there are many common techniques for estimating the pa-
rameters, including both visual inspection (e.g. using a
graph) and analytic methods. The generally accepted ap-
proach to the general problem of parameter estimation is
based on the principle of maximum likelihood. The maxi-
mum likelihood estimator (MLE) is calculated for any data
set, based on the assumptions that each of the sample data
points xi is drawn from a random variable Xi an that the
Xi are independent and identically distributed (i.i.d.). The
method defines the likelihood function L, depending on the
parameters of the distribution, as the product of the den-
sity function evaluated at the sample points. For example,
in the case of the Weibull distribution, L is a function of α

and β given by

L(α, β) =
Y

i

f(xi) =
Y

i

αβ
−α

xi
α−1

e
−(x/β)α

.

Intuitively (and precisely in the case of a discrete distri-
bution), maximizing L is equivalent to maximizing the joint

probability that each random variable Xi will take on the
sample value xi. Large values of the density function corre-
spond to data that is “more likely” to occur, so larger values
of L correspond to values of the parameters for which the
data was “more likely” to have been produced. Thus, the
MLE for the parameters is simply the choice of parameters
(if it exists) which maximizes L. We find that the MLE value
for λ in an exponential distribution is simply the reciprocal
of the sample mean x̄. MLE values for the Weibull param-
eters can be found using standard optimization routines on
log L.

Finding MLE parameters for hyperexponential distribu-
tions is somewhat more difficult. It is necessary to specify
the number k of phases in the distribution before it even
makes sense to employ MLE methods; we are then left with
an optimization problem in 2k − 1 variables. Even for small
values of k, this problem is often too complex for commonly
available computers to solve, especially for larger data sets.

One therefore needs to use another method in practice
to estimate hyperexponential parameters. We use the EM-
pht software package [8] in place of the MLE approach for
all estimated hyperexponentials in this paper. EMpht im-
plements the estimation maximization (EM) algorithm de-
scribed in [1]. While this method often yields a good fit with
the data (as is evidenced by our results) it is not guaran-
teed to converge to the MLE solution. As for the problem
of specifying k, we have found that, in practice, a 2- or 3-
phase hyperexponential is sufficient to model accurately the
data sets of interest. In fact, for many data sets the 3-phase
hyperexponential produced by the EMpht software is for all
practical purposes identical to a 2-phase (because two of the
λi values become equal).

We have implemented a software system that takes a set
of measurements as inputs and computes both the MLE
Weibull and exponential as well as the EM-based hyperex-
ponential automatically. Perhaps unsurprisingly, the quality
of the numerical methods that we use is critical to the suc-
cess of the method. In particular, the MLE computations
may involve hundreds or thousands of terms (the data sets
can be quite large) requiring robust and efficient techniques.
At present, the implementation uses a combination of the
Octave [26] numerical package, Mathematica [21] (for solver
quality), and the aforementioned EMpht. The resulting sys-
tem, however, takes data and automatically determines the
necessary parameters for each model.

3.5 Optimal Checkpoint Intervals
The optimal interval between checkpoints in an applica-

tion execution balances the cost (in terms of lost execution
time while each checkpoint is generated) with the cost of re-
covering from a failure by restoring execution from the last
checkpoint. If the application checkpoints too often, with
respect to the duration of resource availability, a great deal
of time is wasted taking checkpoints instead of doing useful
computation. On the other hand, if the application check-
points too infrequently, then the amount of useful work lost
while the program “backs up” to the last checkpoint be-
comes unacceptable. While many solutions to this problem
have been proposed, we have chosen to use the description
due to Vaidya [37] for this work because it takes into account
the possibility that a failure could occur while a checkpoint
is generated, and during checkpoint recovery. In a resource-
harvesting context, we believe that failure (due to reclama-

C

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

I

START
T+C

Figure 1: Diagram of a single checkpoint interval.
We wish to find the value of T which maximizes time
spent performing useful computation on volatile re-
sources.

tion) during checkpointing and/or recovery is more likely
than in other settings.

The interval between checkpoints is composed of a com-
putation phase whose duration is T seconds (to which we
will sometimes refer as the work time interval) and a check-
point phase using C seconds. If the application is restarting
after a failure, it will begin with a recovery phase of duration
R seconds. Figure 3.5 shows the decomposition of a single
checkpoint interval. Note that we are making the explicit
assumption that recovery, computation, and checkpointing
occur sequentially without overlap.

With this phased model of application execution, one can
compute the expected time spent during the work associated
with a single checkpoint interval using a three-state Markov
model (shown in Figure 2). This model begins in state 0 and
ends at state 1; state 2 is used to model failures. Thus, from
either state 0 or state 2, transition to state 1 represents com-
pletion of the interval without a failure; if there is a failure,
the transition is to state 2, and the model continues until
it reaches state 1. The transition probabilities between the
states depend on both the work time interval selected and
the statistical model chosen for the future lifetime distribu-
tion. These probabilities and the cost functions associated
with visiting each state are given by the following equations,
in which Λ represents the set of parameters intrinsic to the
distributions used to model resource availability.

P01(Λ, C, T) = 1 − F (Λ, C + T)

K01(C, T) = C + T

P02(Λ, C, T) = F (Λ, C + T)

K02(Λ, C, T) =

Z C+T

0

t · f(Λ, t)

F (Λ, C + T)
dt

P21(Λ, R, T, L) = 1 − F (Λ, L + R + T)

K21(R, T, L) = L + R + T

Resource
Failure

Resource
Failure

2

No Failure

No Failure

0
Interval Begin

Failure Occurred

Interval End
1

Figure 2: Three-state Markov model describing a
single checkpoint interval in a long-running job.

P22(Λ, R, T, L) = F (Λ, L + R + T)

K22(Λ, R, T, L) =

Z L+R+T

0

t · f(Λ, t)

F (Λ, L + R + T)
dt

Vaidya’s work defines these equations explicitly in terms
of the exponential distribution and (because the exponen-
tial is memoryless) uses them to calculate a single periodic
checkpoint interval for the application’s execution duration.

Our work generalizes this approach to use other distri-
butions (in our case, Weibull and hyperexponential, but in
fact one can use any family of distributions in this context,
as long as one has a method for estimating parameters and
evaluating the above expressions numerically) and to com-
pute a checkpoint schedule as a sequence of intervals for the
application.

Denote by Γ the expected value of the amount of time to
move from state 0 to state 1 in the Markov model. Γ can be
calculated from the above formulas as

Γ = P01 · K01 + P02 · (K02 + K22 ·
P22

P21
+ K20) (11)

Note that Γ
T

measures the factor by which we can expect
the amount of time spending useful work to be multiplied
within a work time interval. Therefore the problem of find-
ing an optimal work time interval can be expressed as the
problem of minimizing Γ

T
with respect to T . We use the

Golden Section Search method as implemented in Numeri-
cal Recipes [29] for this optimization problem. Define Topt

to be the optimal work time interval.
Note that the probability and cost calculations made above

must be made considering future lifetime distributions. There-
fore, when calculating P01, K01, P02, and K02 in the cases
of the Weibull and hyperexponential distributions, we must
take into account the amount of time that the specific re-

source that the application is using has already been avail-
able, since, as noted above, the future lifetime distribution
changes as time passes. On the other hand, since a fail-
ure has just occurred if we are in state 2, the other Pij and
Kij formulas are calculated using the ordinary unconditional
versions of the distributions.

From the same considerations, note that if we use a non-
memoryless distribution as our model for resource availabil-
ity, we obtain an aperiodic schedule of Topt values rather
than a single value. This schedule takes the form of a se-
quence of Topt values computed from the beginning of the
application’s execution time. We denote Topt(i) to be the ith
such value. Topt(0) is the first interval and it is computed for
the time that the application is initiated using the amount
of time, denoted Telapsed, that has elapsed since the resource
running the application has failed. Each successive value of
Topt(i) can then be computed based on the amount of time
the resource will have been available at the beginning of each
work time interval. Note that the schedule remains valid for
as long as the resource is available without interruption. Af-
ter a failure occurs, of course, we need to calculate a new
schedule of Topt values.

The schedule we derive in this way is “optimal” in the
same sense that Vaidya’s model is optimal: Given the infor-
mation we have at the beginning of execution, and assuming
the accuracy of our model, this schedule minimizes Γ

T
and

thus is the best we can do; in fact, the schedule is optimal
at the beginning of each checkpoint interval, again assuming
our model in which checkpoint and recovery durations are
known constants.

We have written a small, portable routine which imple-
ments the evaluation and optimization of Γ

T
to find Topt,

taking as input the distribution model chosen, the distribu-
tion parameters, the value of Telapsed (ignored in the case of
exponential distributions), and values for C and R.

4. THE CONDOR SYSTEM
Condor [5, 33] is a resource-harvesting system designed

to support high-throughput computing. Under the Condor
model, the owner of each machine allows Condor to launch
an externally submitted job (i.e. one not generated by the
owner) when the machine becomes idle. Each owner is ex-
pected to specify under what conditions on, e.g., load aver-
age, memory occupancy, keyboard activity, etc., his or her
machine can be considered idle. When Condor detects that
a machine has become idle, it takes an unexecuted exter-
nal job from a queue it maintains and assigns it to the idle
machine for execution. If the machine’s owner begins using
the machine again, Condor detects the local activity and
evacuates the external job. The result is that resource own-
ers maintain unfettered access to their own resources, and
Condor uses them only when they would otherwise be idle.

When a process is evicted from a machine because the
machine’s owner is reclaiming it (e.g., begins typing at the
console keyboard), Condor offers two options: Either the
evicted Condor process is checkpointed and saved for a later
restart, or it is killed. Condor implements checkpointing
through a series of libraries that intercept system calls to
ensure that a job can be properly restarted. Using these
libraries, however, places certain restrictions on the system
calls that the job can issue (forking or threaded processes
are disallowed, for example). “Vanilla” jobs, however, are
unrestricted but will be terminated (and not checkpointed)

when the resource is reclaimed. Condor’s extensive docu-
mentation [6] details these features to a greater extent.

In this study, we take advantage of the vanilla (i.e., terminate-
on-eviction) execution environment to build a Condor occu-
pancy monitor. A set of monitor processes is submitted to
Condor for execution. When Condor assigns a process to
a processor, the process wakes periodically and reports the
number of seconds that have elapsed since it began execut-
ing. When that process is terminated (due to an eviction)
the last recorded elapsed time value measures the duration
of the occupancy the sensor enjoyed on the processor it was
using. We associate availability with Internet address and
port number; therefore, if a monitor process is subsequently
restarted on a particular machine (because Condor deter-
mined the machine to be idle), the new measurements will
be associated with the machine running the process, thus
allowing us to accumulate data for an individual machine.
For each machine Condor uses, then, our system records a
sequence of availability durations and time stamps (in UTC
units) indicating when those durations occurred.

Note that Condor does not make guarantees about which
individual machines it will use, or when it will use them. As
a result, the number of measurements in each trace, and the
durations between measurements, are highly variable. In our
study, Condor used a pool of over 1000 different Linux work-
stations to run the monitor processes over an 18-month long
measurement period which is ongoing, of which we obtained
data for approximately 640 machines. Thus the model fit-
ting component of our overall system computes distributions
from up-to-date availability measurements that cover the
period from April 2003 until October 2004 (the time of this
writing).

5. EXPERIMENTAL EVALUATION
We evaluate the method we have outlined in two ways,

both of which use the Condor resource-harvesting system as
a target execution platform. First, we use discrete event sim-
ulation based on the execution traces gathered from Condor
described in the previous section. Using simulation, we com-
pare the effectiveness of exponential, Weibull, and hyperex-
ponential models against the same set of execution traces.
Second, we examine their respective effectiveness using the
“live” Condor system and a test application. We repeatedly
launch the application in Condor, and when it is given ac-
cess to a host, we compute checkpoint intervals for that host
based on availability data we have recorded over the previ-
ous 18 months. Because the conditions change from execu-
tion run to execution run, we compare the in vivo results in
terms of their average efficiency. Finally, for completeness,
we verify the simulations using post-mortem trace data we
record during the actual Condor runs.

5.1 Simulation Method and Results
From a database of machine availability observations gath-

ered from the Condor pool, we identify traces with at least
50 observations in them. There are approximately 1000
workstations in the Condor pool to which we have access.
The Condor scheduler decides (based on load, job priority,
etc.) which machines will be allocated and when. After 18
months of observation, some machines were only chosen a
few times. We discard these machines from our analysis, as
we do not believe their measurement histories are sufficient
to effect a good model fit.

For the remaining machines, we divide each trace in to a
“training set” containing the first 25 values occurring chrono-
logically and an “experimental set” containing the remain-
ing values. We then use each training set to calculate MLE
parameters for an exponential model and a Weibull model
and EM parameters for both 2-phase and 3-phase hyperex-
ponential models. Thus, we model the training set for each
trace by four different distributions.

The simulation is designed to capture “steady-state” ef-
ficiency, as opposed to the interplay between the length of
a particular simulated job and the computed checkpoint in-
tervals. Rather than choosing an arbitrary length for a sim-
ulated job, as in [27], or sampling from a distribution of
job lengths, we choose instead to simulate a job that begins
before the first measurement in each training set and con-
tinues to run after the last measurement in the experimental
set. That is, we examine the efficiency of execution while
the job is running, under the assumption that its lifetime
is significantly longer than the simulated time period. To
be precise, define the efficiency of a job execution to be the
amount of useful computation time divided by the total time
spent computing, recovering, and checkpointing. Note that
for each work time interval, the expected efficiency is just
the reciprocal of the quantity Γ, defined in the “Methodol-
ogy” section, evaluated at Topt.

Our goal is to compare the effectiveness of each model
as a function of the checkpoint overhead cost. To do so,
we consider both application efficiency and the amount of
network load generated when each distribution is used to
compute a checkpoint schedule. We only consider the case
where the checkpoint cost C is equal to the recovery cost
R, since this assignment reflects our experience with ex-
ecuting long-running jobs in the vanilla Condor universe.
Typically, we submit a set of jobs to the Condor pool which
are then scheduled individually on various workstations at
the University of Wisconsin according to an internal (and
hidden) scheduling algorithm used by Condor. When Con-
dor eventually runs a process on a workstation, it insulates
the workstation from any persistent state the process gen-
erates. Thus, each process (in the vanilla universe) must
manage its own checkpointing through a network connec-
tion to a system outside of Condor’s control. On this set of
external machines, each application runs a set of processes
that “feed” checkpoints to newly initiated processes inside
the Condor pool and collect checkpoints as those processes
continue to execute.

After Condor initiates a process, the process first con-
tacts one of the external checkpoint managers and requests
a checkpoint from which it will continue to execute. We
model this initial start-up as a recovery operation at the
beginning of an availability period in our simulation. As
the process continues to execute, it generates checkpoints
at various intervals and sends them over the network to a
checkpoint manager. The applications we have written to
use Condor in this way attempt to consume all of the avail-
able local memory in an attempt to limit the number of
separate processes they require. As a result, each recovery
and checkpoint (except for the first recovery) is the same
size, and that size is approximately the size of the available
memory on each machine. At some point in the execution,
Condor terminates the process without warning and, later,
re-initiates it on some workstation (possibly the same one,
but most likely not) in the Condor pool. Thus the overall ap-

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 200 400 600 800 1000 1200 1400 1600

W
o
rk

 E
ff
ic

ie
n
cy

Checkpoint Time

weibull
exponential

hyper
hyper3

Figure 3: Simulation experiment: average percent
machine utilization using exponential, Weibull, and
hyperexponential distributions to compute check-
point schedules.

plication consists of individual processes that are constantly
scheduled and terminated by Condor using checkpoints and
recoveries of equal length.

To simulate this state of affairs, we consider each machine
availability trace individually. For each availability trace,
and each of the four models we have fit to its training set,
we iterate setting C = R to values ranging from 50 to 1500
seconds. During the duration of time covered by the ex-
perimental set in each machine trace, a simulated job first
spends R seconds recovering. If, during the initial recovery
period, the machine trace indicates that the resource has
failed, the amount of elapsed time is recorded as recovery
overhead, and the simulation skips to the next availability
duration for the machine. Otherwise, the simulation com-
putes Topt based on the observation that R seconds have
elapsed and assigns Topt seconds of work to the job. If the
experimental set indicates that the machine does not fail
during this period, the job spends C seconds taking a check-
point, computes the next value of Topt, and continues. If,
at any point, the machine trace indicates that the resource
has failed, the period of simulated time back until the last
checkpoint completed is recorded as lost work.

When the time period in the experimental set is exhausted,
the simulator outputs the fraction of the resource occupancy
time that the simulated application spent computing useful
results (as opposed to checkpointing, recovering, or recom-
puting lost work). This entire process is repeated for each
combination of model and availability trace.

Figure 3 shows the results of our simulation using fits of
exponential, Weibull, and hyperexponential models to ma-
chine availability. On the x-axis we indicate the time, in
seconds, necessary to effect one checkpoint or recovery, and
on the y-axis we show the fraction of time the application
spends doing useful work. Because the overhead varies by
machine, each data point represents the average overhead ra-
tio across all machines in the simulation. The figure shows
that all four distributions yield approximately the same av-
erage efficiency across machines. In Table 1 we show each
average from the figure along with its 95% confidence inter-

CTime Exp. Weib. 2-phase Hyperexp. 3-phase Hyperexp.

50 0.754 ± 0.013 0.767 ± 0.012 (e,2,3) 0.754 ± 0.014 0.762 ± 0.013
100 0.677 ± 0.017 (2) 0.688 ± 0.016 (e,2,3) 0.669 ± 0.017 0.679 ± 0.017 (2)
200 0.600 ± 0.020 0.614 ± 0.019 (e,2,3) 0.597 ± 0.020 0.606 ± 0.020 (2)
250 0.576 ± 0.020 0.584 ± 0.021 0.581 ± 0.020 (e) 0.591 ± 0.020 (e,2)
400 0.518 ± 0.020 0.535 ± 0.020 (e) 0.543 ± 0.020 (e) 0.551 ± 0.020 (e,w,2)
500 0.489 ± 0.020 0.508 ± 0.021 (e) 0.521 ± 0.020 (e,w) 0.528 ± 0.020 (e,w,2)
750 0.433 ± 0.020 0.456 ± 0.021 (e) 0.476 ± 0.021 (e,w) 0.483 ± 0.021 (e,w)
1000 0.390 ± 0.020 0.416 ± 0.021 (e) 0.441 ± 0.021 (e,w) 0.447 ± 0.021 (e,w)
1250 0.356 ± 0.020 0.388 ± 0.020 (e) 0.409 ± 0.021 (e,w) 0.416 ± 0.021 (e,w,2)
1500 0.329 ± 0.019 0.363 ± 0.020 (e) 0.387 ± 0.021 (e,w) 0.391 ± 0.021 (e,w)

Table 1: 95% confidence intervals for mean efficiency for various checkpoint sizes of the four tested distribu-
tions.

val. We indicate statistically significant differences within
each row between the results for two distributions by plac-
ing within each cell symbols standing for any distributions
whose efficiencies were statistically significantly smaller for
that checkpoint duration. (In this scheme, “e” stands for ex-
ponential, “w” for Weibull, “2” for 2-phase hyperexponen-
tial, and “3” for 3-phase hyperexponential.) For example,
the (e,w) in the 500-second row of the 2-phase hyperexpo-
nential column indicates that the efficiency for the 2-phase
hyperexponential with a checkpoint duration of 500 seconds
is statistically significantly larger than those for exponential
and Weibull distributions with the same checkpoint dura-
tion; on the other hand, the absence of such symbols in the
250-second Weibull cell indicates that its value is not sta-
tistically significantly larger than those for any of the other
distributions. We measure statistical significance using two-
sided paired t-tests between each pair of distributions at
each checkpoint duration, at a significance level of .05.

Although the differences are small within some rows, the
table shows that for checkpoint durations shorter than 250
seconds, the Weibull-based checkpoint schedule outperforms
the others. For longer checkpoint intervals, the 3-phase hy-
perexponential generally does best.

These results support those reported in [27], in which the
authors assert that an exponential model of machine avail-
ability can be used to develop a checkpoint schedule that is
close to optimal. However, since other work has hypothe-
sized the effectiveness of heavier-tailed models for machine
availability [17, 22] and the potential for their use to deter-
mine checkpointing intervals [18, 34], we wish to quantify
the difference precisely.

To do so, we generate a synthetic machine availability
trace containing 5000 values in which each availability du-
ration is drawn randomly from a heavy-tailed Weibull dis-
tribution with known parameters. To determine the param-
eters, we compute the MLE Weibull parameter values for a
machine trace chosen at random. For the chosen machine,
the MLE value for the shape parameter α is 0.43, and that
for the scale parameter β is 3409.

Using our synthetic trace, we repeat the simulation ex-
periment for C = 50 and C = 500 as these two cases reflect
the conditions we observe in our empirical study (described
in the next subsection). Table 2 details the results. For
the Weibull cases, we use the known parameters. That is,
the Weibull model used to compute checkpoints intervals
is precisely the same model that was used to generate the

C Weib. Exp. 2-p Hypexp. 3-p Hypexp.

50 0.891 0.896 0.862 0.895
500 0.685 0.695 0.690 0.670

Table 2: Application efficiency when machine avail-
ability is defined by a Weibull distribution with
shape = 0.43 and scale = 3409. Each exponential
and hyperexponential fit uses all 5000 values.

C Weib. Exp. 2-p Hypexp. 3-p Hypexp.

50 0.891 0.896 0.817 0.897
500 0.691 0.695 0.671 0.695

Table 3: Application efficiency when machine avail-
ability is defined by a Weibull distribution with
shape = 0.43 and scale = 3409. Each exponential
and hyperexponential fit only the first 25 values.

artificial trace. For the exponential cases, we use MLE-
determined model and the the hyperexponentials we use the
EM-determined models. Thus, the Weibull results are opti-
mal and the others are approximate. Clearly, using either an
exponential or hyperexponential to model the heavy-tailed
Weibull data causes only a slight loss of efficiency.

Table 2 compares efficiency when all 5000 measurements
are used in the respective MLE and EM fits. That is,
each fit is made as accurate as possible for the data set
through the use of all the data points. In Table 3 we com-
pare efficiency when only the first 25 measurements are used
to compute the exponential and hyperexponential models.
Clearly, using either an exponential or hyperexponential to
model the heavy-tailed Weibull data causes only a slight
loss of efficiency. Moreover, using only the first 25 values
to fit the MLE exponential and EM hyperexponentials does
not degrade the accuracy with which each approximates the
Weibull-generated trace.

While the different statistical models of machine avail-
ability yield approximately the same application efficiency,
they do not result in the same amount of generated network
traffic. In Figure 4 we show the number of megabytes trans-
ferred if each checkpoint were 500 megabytes in length as a
function of checkpoint duration. As in Figure 3, along the
x-axis we show the time required to checkpoint or recover,
but on the y-axis we show the average number of megabytes
that traversed the network. Note that the duration C or
R associated with a 500-megabyte transfer depends on the

CTime Exp. Weib. 2-phase Hyperexp. 3-phase Hyperexp.

50 110296 ± 10317 (2,3) 108687 ± 11448 (2,3) 95535 ± 8952 99788 ± 10495
100 80323 ± 7400 (2,3) 78638 ± 8163 (2,3) 60777 ± 5740 64692 ± 7306
200 59153 ± 5317 (2,3) 57557 ± 5820 (2,3) 39603 ± 3641 43415 ± 5122 (2)
250 53404 ± 4775 (2,3) 68561 ± 17864 (2,3) 35171 ± 3225 38926 ± 4601 (2)
400 42350 ± 3802 (2,3) 40638 ± 4125 (2,3) 27487 ± 2494 30553 ± 3645 (2)
500 37546 ± 3407 (2,3) 35809 ± 3678 (2,3) 24474 ± 2248 27193 ± 3291 (2)
750 29746 ± 2794 (2,3) 28041 ± 3002 (2,3) 19664 ± 1868 21671 ± 2673 (2)
1000 25099 ± 2427 (2,3) 23398 ± 2590 (2,3) 16897 ± 1652 18458 ± 2314 (2)
1250 21970 ± 2172 (w,2,3) 20310 ± 2308 (2,3) 15031 ± 1502 16262 ± 2065
1500 19693 ± 1983 (w,2,3) 18137 ± 2112 (2,3) 13671 ± 1390 14549 ± 1860

Table 4: 95% confidence intervals for mean bandwdith for various checkpoint sizes of the four tested distri-
butions.

 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000
 110000
 120000

 0 200 400 600 800 1000 1200 1400 1600

M
e
g
a
b
yt

e
s

Checkpoint Time

weibull
exponential

hyper
hyper3

Figure 4: Bandwidth consumed: average network
load (in megabytes) when exponential, Weibull,
and hyperexponential distributions to compute
checkpoint schedules when each checkpoint is 500
megabytes in size.

speed of the network linking the resource with the check-
point storage location. As described in the next subsection,
most of the available machines in the Condor pool have at
least 512 megabytes of memory, motivating our choice of 500
megabytes as a representative size. Table 4 shows the av-
erage values and their respective 95% confidence intervals,
and notation for statistically significant differences within a
single row identical to that in Table 1 in Note that in this
table, significantly larger values are undesirable, as they cor-
respond to more consumed bandwidth.

From the table, we see that the exponential-based check-
point schedule significantly (and substantially) underper-
forms all of the other approaches. The most bandwidth-
parsimonious approach is that of the 2-phase hyperexpo-
nential, although the 3-phase does almost as well and, as we
saw before, tends to outperform the 2-phase in application
efficiency.

From these results, we conclude that while the application
efficiency is insensitive to the choice of availability model,
there is a noticeable difference in the network load generated
by the different models.

The reason for this difference is that checkpoint overhead
comprises both the delay associated with a checkpoint or
recovery and the amount of lost work that must be recom-
puted from the last successful checkpoint when a failure oc-
curs. The heavy-tailed models tend to produce longer inter-
vals between checkpoints, which results in fewer checkpoints
generated but more lost work on average at the time of each
failure. On the other hand, the exponential model favors
shorter intervals, more checkpoints, and less lost work. It is
curious that these factors balance almost precisely to pro-
duce the same application efficiency in the range of check-
point costs we have investigated.

5.2 Empirical Method and Results
While the simulation permits a quantitative comparison

of exponential, Weibull, and hyperexponential models using
the same machine traces, it includes several simplifications
that could affect the results in practice. First of all, the
checkpoint and recovery costs (C and R respectively) are
held constant in each simulation. Variation of network per-
formance, particularly in the wide area, makes these costs
variable when the system is actually used. Also, Condor im-
poses some additional overhead at job start-up and termi-
nation that is difficult or impossible to determine externally
using our measurement methodology. Finally, if the models
we use are sensitive to inaccuracies in the parameters sup-
plied to them, the simulation results could be misleading.

To gauge the impact of these issues, we have developed
an instrumented test process that implements the recovery-
execution-checkpoint cycle that we have simulated. Because
the target applications for this system are memory-intensive,
our test process generates and recovers from checkpoints
that are 500 megabytes in size. We made this choice be-
cause most of the machines in the Linux Condor pool have
at least 512 megabytes of memory, and because one of the
applications that we intend to deploy with the checkpoint
system routinely fills all of the memories in the machines it
uses.

However, we report results for a test application, as op-
posed to the two real applications that will use this system
initially, for two reasons. First, the engineering effort re-
quired to instrument fully the working applications is signif-
icant. Each is a complex, carefully engineered distributed
program that already includes fault-tolerance features. Be-
fore integrating these codes with our system, we first wanted
to determine the extent of the expected performance im-

Distribution Avg. Total Time Sample Size
Weibull .689 768808 85
Exponential .680 749695 81
2-phase Hyper. .726 789304 84
3-phase Hyper. .676 718094 89

Table 5: Average application efficiency observed us-
ing four distributions and the Condor pool with
the checkpoint manager located at the University
of Wisconsin.

provement. Second, we were concerned that instrumenting
the codes might introduce programming errors which affect
the correctness of the internal algorithms. As a result, we
opt for a test application that performs only the checkpoint-
ing functions (the computation phase is simply a tight loop)
to generate the following results.

In the experiment, we repeatedly submit copies of the
test process to Condor. When Condor assigns a process
to a machine, the process opens a network connection to
a checkpoint manager. The checkpoint manager initiates a
500-megabyte transfer to the process in order to emulate
an initial recovery of the available memory, and the test
process times the transfer 3. If the test process is terminated
during the initial transfer, the checkpoint manager detects
the failed connection and records the amount of time as
recovery overhead.

As part of the initial transfer, the checkpoint manager also
sends the test process a message indicating which model to
use to determine a checkpoint schedule and the parameters
for that model. Using the initial transfer time as a mea-
surement of R and C, the test process then computes one
checkpoint interval Topt using the specified model and sends
the quantities to the checkpoint manager for logging. It then
begins emulating a computation by spinning in a tight loop,
which it interrupts every 10 seconds so that it can send the
checkpoint manager a heartbeat message. The heartbeat
message contains the cumulative time since the process be-
gan running, which the checkpoint manager records as ex-
ecution time. If the job is terminated, the trace of heart-
beats simply ends. At the end of the interval, if the process
has not been terminated, it transfers 500 megabytes back
to the checkpoint manager to emulate a checkpoint, which
it also times. This new time is used as a current measure-
ment of C, and R, and it computes, based on these values
and the amount of time it has been running, a new check-
point interval Topt, and sends this data to the manager for
logging before it begins emulating computation again. If
the transfer back to the checkpoint manager is interrupted,
the manager records the elapsed transfer time as checkpoint
overhead. The manager keeps a log file for each test process
from which the overhead ratio can be calculated post facto.

Tables 5 and 6 show the results of the Condor experi-
ment in terms of the average application efficiency we ob-
served across all machines in two different situations. To
generate the results in Table 5, we locate the checkpoint
manager on a machine at the University of Wisconsin so

3Strictly speaking, it records the time from when it sends
a request for recovery to the checkpoint manager until the
transfer completes, but the latency of the initial request is
insignificant compared with the time for the data transfer.

Distribution Avg. Total Time Sample Size
Weibull .590 491900 48
Exponential .629 491048 40
2-phase Hyper. .659 491454 56
3-phase Hyper. .604 428626 59

Table 6: Average application efficiency observed us-
ing four distributions and the Condor pool with the
checkpoint manager located at our home institution.

Distribution Megabytes Used Megabytes / Hour
Weibull 363356 2734
Exponential 338420 3842
2-phase Hyper. 150166 1313
3-phase Hyper. 329034 2374

Table 7: Average network load (in megabytes) us-
ing four distributions and the Condor pool with
the checkpoint manager located at the University
of Wisconsin.

that all checkpoint traffic would traverse only the campus
network. During the experiment, the average checkpoint
time is 110 seconds. Thus the efficiency values in column 1
may be compared to row 2 of Table 1.

Column 2 of Table 5 indicates the total execution time
for the test application and column 3 shows the number in-
tervals we computed for each method. Table 6 shows the
same data, but for a configuration in which the checkpoint
manager is located at our home institution, which is sep-
arated from the University of Wisconsin by the Internet.
The average checkpoint duration in this case is 475 seconds
making these results most comparable to row 6 of Table 1.
As the previous simulations indicate, as the application runs
for longer and longer periods, the values will converge to the
same average efficiency.

Table 7 shows the average network loads observed for the
various statistical models when the checkpoint manager is
located at the University of Wisconsin; Table 8 shows the
same numbers with the checkpoint manager at our home in-
stitution. The first column of each table may be compared
to the simulation results shown in rows 2 and 6, respectively,
of Table 4, because the average checkpoint times are simi-
lar to the parameters set in these rows. The second column
indicates the total network load, and the third column re-
ports the average number of megabytes per hour transferred
in each case. These results confirm the phenomena that we
observed in our simulation data, namely that the differences

Distribution Megabytes Used Megabytes / Hour
Weibull 167195 1223
Exponential 183339 1344
2-phase Hyper. 96264 705
3-phase Hyper. 110920 931

Table 8: Average network load (in megabytes) us-
ing four distributions and the Condor pool with the
checkpoint manager located at our home institution.

among the various distributions are relatively small for our
efficiency metric but quite considerable for network usage.

5.3 Verifying and Validating the Simulation
To verify the precision with which simulation results match

empirical results, we record the exact conditions that each
empirical experiment experienced while it was running; we
then use these observations as parameters to our simulation
and compare the simulated results to the empirical results.
Note that the checkpoint and recovery durations are difficult
to predict due to fluctuating network performance. By us-
ing the observed durations, however, the simulation should
be able to compute correctly the empirical results.

As Table 9 shows, the simulator yields results that are
almost identical to those observed in practice, shown in
Table 5. Almost all of the real-life traces, when run back
through the simulator, result in output that is identical to
the live experiment output. Thus, in terms of verification,
we conclude that the precision of the simulator sufficient and
that if given accurate inputs it will produce good results.

In terms of validation, however, there are some discrepan-
cies between the empirical results and the results predicted
by the trace-based simulation (as can be seen by comparing
the data in Tables 5 and 6 with Table 1 and Tables 7 and
8 with Table 4). We attribute these discrepancies to three
characteristics of this study that we do not currently model.

First, while the period of time over which we observed the
Condor pool in order to build the database of availability
measurements is 18 months, the experimental period for the
application test runs is approximately 2 days in length. Thus
the experimental availability data are right-censored. This
censoring tends to favor shorter measurements for a number
of reasons. The most obvious reason is that no interval can
be longer than the 2-day period. While such measurements
only account for 1% of the observations, their cumulative
duration constitutes 29% of the total Condor availability.
Additionally, we do not consider any jobs that are execut-
ing at the time that we terminate our experiment; the inter-
rupted availability interval in which such a job is executing
is more likely to be a long interval than a short one, by virtue
of the very fact that longer intervals take up more space on
the time axis. Thus the data values removed by censoring
are skewed toward longer intervals, and it is therefore natu-
ral to expect the empirical data over this short time period
to appear “lighter-tailed” than the trace data used for the
simulations.

Second, as we have mentioned before, the Markov model
we use takes as parameters constant (and equal) values for
C and R. In practice, these values are variable, especially
so when the checkpoints and recoveries traverse a shared
network as they do in our study. Recall that after each suc-
cessful recovery and each successful checkpoint we record
the observed delay for use as a new estimate of R and
C. This method of predicting future checkpoint duration
is likely to be quite inaccurate. Moreover, since this esti-
mate is likely to lose accuracy with time, sequence of short
intervals will be based on more accurate overhead costs that
sequences that contain many long intervals. For the heavy-
tailed distributions, as the sequence length increases so does
the length of the intervals between checkpoints thereby in-
troducing greater potential for estimation error. Finally, we
assume in our investigation that failure is due to resource
reclamation by Condor or machine failure. However, other

Distribution Avg. Total Time Sample Size
Weibull .589 492053 49
Exponential .620 491206 41
2-phase Hyper. .642 491547 59
3-phase Hyper. .602 428719 60

Table 9: Simulation results using variable check-
point and recovery costs recorded during Condor
experiment with the checkpoint manager located at
our home institution.

components in the testbed, most notably the network, can
fail as well and by doing so introduce a source of error. For
example, a temporary network outage would result in the
loss of messages which report checkpoint times, and thus
the simulation would report a large amount of lost work due
to failure to checkpoint; in reality, we believe we are simply
missing a checkpoint time or two for some of the traces.

6. CONCLUSION
To use resource-harvesting systems such as Condor effec-

tively, long-running applications must generate intermedi-
ate checkpoints of their internal state. Each time a resource
is reclaimed by its owner, any applications using the re-
source’s spare cycles are evicted and, without a checkpoint,
must be restarted from scratch. Storing and recovering
from checkpoints, however, can introduce substantial execu-
tion overhead and network load, particularly since resource-
harvesting systems often prohibit the use of persistent stor-
age local to the resource.

Previous research has examined the problem of determin-
ing when, in an application execution lifetime, checkpoints
should be generated so that overhead is minimized. Much of
this work assumes that the availability of the resource used
by the application is adequately described by some proba-
bility distribution, the parameters of which can be derived
from previous observations of the resource.

In our work, we examine the effectiveness of four different
probability distributions – exponential, Weibull, 2-phase hy-
perexponential, and 3-phase hyperexponential – as the basis
for determining checkpoint schedules. We use availability
traces taken from the Condor resource-harvesting system
at the University of Wisconsin and simulate both applica-
tion efficiency and generated network load. We also conduct
experiments with the “live” Condor system in which we ob-
serve both efficiency and load for a test application that
can use different models to compute its checkpoint sched-
ule. Finally, we verify and validate our simulations against
the empirical data we have gathered.

Our results indicate that application efficiency is relatively
insensitive to the choice of probability distribution (among
those we investigate) used to model resource availability.
While the differences in average efficiency are for the most
part statistically significant, they are small for the instances
we examine. However, the average network loads generated
by schedules derived from the different distributions are sub-
stantially different. In particular, the checkpoint schedule
generated from the 2-phase hyperexponential results in con-
siderably less bandwidth consumption than when either the
exponential or Weibull are used, and only slightly less con-
sumption than does the schedule generated from the 3-phase

hyperexponential. Moreover, as the duration of checkpoint
and recovery increases, differences in both efficiency and net-
work load become more pronounced. Thus we conclude that
from the perspective of an application user or designer, the
choice of availability distribution has little effect on per-
ceived efficiency, but from the perspective of the resource
and network administration, heavy-tailed hyperexponential
distributions yield considerably better results.

7. ACKNOWLEDGMENTS
The authors wish to thank and gratefully acknowledge

Professor Miron Livny and the Condor Team at the Uni-
versity of Wisconsin for their support of this work. Con-
dor is a production computing environment with demand-
ing users. Even with the conflicting priorities inherent such
an enterprise, the research support provided by the Condor
Team was responsive and professional. Without it, this work
would not have been possible.

8. REFERENCES
[1] S. Asmussen, O. Nerman, and M. Olsson. Fitting

phase-type distributions via the EM algorithm.
Scandinavian Journal of Statistics, 23:419–441, 1996.

[2] C. E. Beldica, H. H. Hilton, and R. L. Hinrichsen.
Viscoelastic beam damping and piezoelectric control of
deformations, probabalistic failures and survival times.

[3] F. Berman, G. Fox, and T. Hey. Grid Computing:
Making the Global Infrastructure a Reality. Wiley and
Sons, 2003.

[4] K. M. Chandy and C. V. Ramamoorthy. Rollback and
recovery strategies for computer programs. IEEE
Trans. on Computers, 2:546–556, June 1972.

[5] Condor home page –
http://www.cs.wisc.edu/condor/.

[6] The Condor Reference Manual.
http://www.cs.wisc.edu/condor/manual.

[7] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message passing systems. Technical Report
CMU-CS-96-181, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA,
Oct. 1996.

[8] Empht home page. Available on the World-Wide-Web.
http://www.maths.lth.se/matstat/staff/asmus/

pspapers.html.

[9] The Entropia Home Page. http://www.entropia.com.

[10] I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann
Publishers, Inc., 1998.

[11] R. Gardner et. al. The grid2003 production grid:
Principles and practice. In HPDC-13, 2004.

[12] A. L. Goel. Software reliability models: Assumptions,
limitations, and applicability. In IEEE Trans. Software
Engineering, vol SE-11, pp 1411-1423, Dec 1985.

[13] A. Gupta, B. Lin, and P. Dinda. Measuring and
understanding user comfort with resource borrowing.
In HPDC-13, 2004.

[14] T. Heath, P. M. Martin, and T. D. Nguyen. The shape
of failure.

[15] R. K. Iyer and D. J. Rossetti. Effect of system
workload on operating system reliabilty: A study on

IBM 3081. In IEEE Trans. Software Engineering, vol
SE-11, pp 1438-1448, Dec 1985.

[16] D. Kondo, M. Taufer, C. Brooks, H. Casanova, and
A. Chien. Characterizing and Evaluating Desktop
Grids: An Empirical Study. In Proceedings of the
International Parallel and Distributed Processing
Symposium (IPDPS’04), Santa Fe, NM, April 2004.

[17] I. Lee, D. Tang, R. K. Iyer, and M. C. Hsueh.
Measurement-based evaluation of operating system
fault tolerance. In IEEE Trans. on Reliability, Volume
42, Issue 2, pp 238-249, June 1993.

[18] Y. Ling, J. Mi, and X. Lin. A variational calculus
approach to optimal checkpoint placement. IEEE
Trans. on Computers, 50:699 – 708, July 2001.

[19] D. Long, A. Muir, and R. Golding. A longitudinal
survey of internet host reliability. In 14th Symposium
on Reliable Distributed Systems, pages 2–9, September
1995.

[20] M. Massie, B. Chun, and D. Culler. he ganglia
distributed monitoring system: Design,
implementation, and experience. Parallel Computing,
30(7), 2004.

[21] Mathematica by Wolfram Research.
http://www.wolfram.com.

[22] M. Mutka and M. Livny. Profiling workstations’
available capacity for remote execution. In Proceedings
of Performance ’87: Computer Performance
Modelling, Measurement, and Evaluation, 12th IFIP
WG 7.3 International Symposium, December 1987.

[23] The Nagios Network Monitor.
http://www.nagios.org.

[24] National Computational Science Alliance.
http://www.ncsa.uiuc.edu.

[25] National Partnership for Advanced Computational
Infrastructure. http://www.npaci.edu.

[26] GNU Octave Home Page. http://www.octave.org.

[27] J. Plank and W. Elwasif. Experimental assessment of
workstation failures and their impact on checkpointing
systems. In 28th International Symposium on
Fault-Tolerant Computing, pages 48–57, June 1998.

[28] J. Plank and M. Thomason. Processor allocation and
checkpoint interval selection in cluster computing
systems. Journal of Parallel and Distributed
Computing, 61(11):1570–1590, November 2001.

[29] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C. Cambridge
University Press, 1992.

[30] M. H. Seo, M. L. Realff, M. C. Boyce, P. Schwartz,
and S. Backer. Mechanical properties of fabrics woven
from yarns produced by different spinning
technologies: Yarn failure in fabric.

[31] SETI@home. http://setiathome.ssl.berkeley.edu,
March 2001.

[32] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
K. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In In Proc.
SIGCOMM (2001), 2001.

[33] T. Tannenbaum and M. Litzkow. The condor
distributed processing system. Dr. Dobbs Journal,
February 1995.

[34] A. Tantawi and M. Ruschitzka. Performance analysis

of checkpointing strategies. ACM Trans. Computer
Systems, 2(2):123–144, May 1984.

[35] TeraGrid. http://www.teragrid.org.

[36] N. Vaidya. On checkpoint latency. In Proceedings of
Pacific Rim Symposium on Fault-tolerant Systems,
December 1995.

[37] N. Vaidya. Impact of checkpoint latency on overhead
ratio of a checkpointing scheme. IEEE Transactions
on Computers, 46(8):942–947, August 1997.

[38] K. F. Wong and M. A. Franklin. Distributed
computing systems and checkpointing. In HPDC,
pages 224–233, 1993.

[39] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked
Windows NT System field failure data analysis.

[40] B. Zagrovic, C. Snow, M. Shirts, and V. Pande.
Simulation of folding of a small alpha-helical protein
in atomistic detail using world-wide distributed
computing. Journal of Molecular Biology,
323:927–937, 2002.

[41] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph,
and J. Kubiatowicz. A resilient global-scale overlay for
service deployment. (to appear) IEEE Journal on
Selected Areas in Communications.

[42] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, U.C.
Berkeley Computer Science Department, April 2001.

