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ABSTRACT

We present an alternative to visual inspection for detecting damage to civil infrastructure. We describe a real-time decision
support system for nondestructive health monitoring. The system is instrumented by an integrated network of wireless
sensors mounted on civil infrastructures such as bridges, highways, and commercial and industrial facilities. To address
scalability and power consumption issues related to sensor networks, we propose a three-tier system that uses wavelets
to adaptively reduce the streaming data spatially and temporally. At the sensor level, measurement data is temporally
compressed before being sent upstream to intermediate communication nodes. There, correlated data from multiple sensors
is combined and sent to the operation center for further reduction and interpretation. At each level, the compression ratio
can be adaptively changed via wavelets.

This multi-resolution approach is useful in optimizing total resources in the system. At the operation center, Support
Vector Machines (SVMs) are used to detect the location of potential damage from the reduced data. We demonstrate that the
SVM is a robust classifier in the presence of noise and that wavelet-based compression gracefully degrades its classification
accuracy. We validate the effectiveness of our approach using a finite element model of the Humboldt Bay Bridge. We
envision that our approach will prove novel and useful in the design of scalable nondestructive health monitoring systems.
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1. INTRODUCTION

As of 2003, there are 286,196 bridges in the United States,1 many of them has been deteriorating due to age. Bridge
inspectors regularly rate the condition of these structures by visual inspection, but the ratings are usually inaccurate.2 On
the other hand, as new fabrication and integration technologies reduce the cost and size of micro-sensors and wireless
interfaces, it becomes feasible to automate the bridge inspection process. An automated decision support system could
read from a densely distributed wireless network of sensors and actuators placed on bridges and assess bridge health. This
would reduce the variability and error that is quite common in visual inspection studies. It would also enable real-time
monitoring of bridge structure health, which is necessary for immediate action in case of emergencies such as earthquakes.

In this paper, we present our prototype for realizing an emergency response system. We simulate healthy and damaged
bridges using a physics-based Finite Element (FE) model. In order to locate structural damage, we apply a force to the
center of the bridge, and read vibration signatures as real-time streaming data from the sensor network. We feed the data
into a Support Vector Machine (SVM) classifier in order to determine the location of the damage. We further explore
reducing data temporally and spatially using wavelet approximation methods, and quantify its effect on classification
accuracy.

The remainder of the paper is organized as follows: In Section 2, we introduce our testbed and simulation model. We
define the classification problem and present our approach using SVMs. Later, we present the sensornet in our monitoring
framework and discuss various data reduction techniques using wavelets. In Section 3, we discuss the results of our
experiments and their implications for practice. Finally in Section 4, we conclude and discuss avenues for future work.
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2. PROPOSED SOLUTION

Ideally, we need to train a classifier using data from sensors mounted on real bridges. However, this is impractical, because
it would require damaging the structure at various places and levels. Therefore, we resort to a physics-based simulation
model. This enables us to generate data easily and quickly. In addition, advanced computing power in our resort allows us
to build a model that closely reflects the reality. We claim and prove that this simulation-based training and the resulting
classification technique considered here is a promising research direction.

2.1. Environment characteristics

2.1.1. PEER Testbed: Humboldt Bay Middle Channel Bridge

The Pacific Earthquake Engineering Research (PEER) Center is a consortium of western universities working in partnership
with business, industry, and government for identifying and reducing earthquake risks to life safety and economy through
performance-based engineering. PEER’s testbed project seeks to synthesize disparate university research products of
PEER’s research into a coherent methodology and to demonstrate and exercise that methodology on six real facilities: two
buildings, two bridges, a campus of buildings, and a network of highway bridges.

The Humboldt Bay Middle Channel Bridge was selected as one of the testbeds, and all reported modeling efforts are
motivated by its structural configuration. The bridge, as shown in Figure 1, is a 330 meters long, 9-span composite structure
with precast and prestressed concrete I-girders and cast-in-place concrete slabs to provide continuity. It is supported on
eight pile groups, each of which consists of 5 to 16 prestressed concrete piles in soils potentially vulnerable to liquefaction
(under extreme earthquake shaking conditions). The bridge was designed in 1968, built in 1971, and has been the object
of two seismic retrofit efforts by California Department of Transportation (CalTrans): the first one was designed in 1985
and completed in 1987, and the second was designed in 2001 and completed in 2002.

Figure 1. View of Humboldt Bay Middle Channel Bridge (Courtesy of Caltrans)

2.1.2. Simulation Model

Figure 2 shows the Finite Element (FE) model of the bridge. In this model, the bridge deck system is simulated by three
continuous beams connected by two perfect hinges. There are eight piers labeled from 1 to 8. Experience has shown that
damages to bridges usually occur at the lower ends of bridge piers, where the structure is subjected to large cyclic loading.
Thus, we simplify the problem by assuming that damage can only happen at the lower end of each pier. The damage
is represented by a plastic hinge, 1/8 up from the bottom of the pier in question. The plastic hinge effect is achieved by
composing the pier of two beam-column elements (one 7/8ths of the height of the pier, and the other 1/8th), and varying the
material properties of the shorter (bottom) element. In particular, we reduce Young’s Modulus. Each pier is also connected
to the bridge deck by a perfect hinge. The bridge is fixed at each pier base and at both ends. Material and geometric
properties of different element types are listed in Table 1.

2.1.3. ”Hammer-like” force

For the “hammer-like” force that creates the vibration used to determine the location of the damage, we considered a 1 KN
impact force at the bridge center in the transversal direction. The simulation model calculates the dynamic response of the
bridge under the impact load, and a simulated sensor located in the center of each span records the acceleration at 100Hz
in the transversal direction for five seconds. The sensors are shown as double-pointed arrows in Figure 2. Figure 3 shows
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Figure 2. Finite Element Model of the Humboldt Bay Middle Channel Bridge

Area Young’s Modulus Shear Modulus Moment of Inertia (Y axis) Moment of Inertia (Z axis)
m2 KN/m2 KN/m2 m4 m4

Deck 9.0 3.0e+9 1.2e+7 7.0 70.0
Pier 3.6 3.0e+9 1.2e+7 2.7 0.432

Table 1. FEM Model Element Parameters

a recorded acceleration time history of the bridge middle point. In the real world, the acceleration time histories can be
recorded by an accelerometer installed at corresponding locations.
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Figure 3. Acceleration time history of bridge middle point under impact load

2.1.4. Problem Definition and Dataset

As mentioned earlier, we assume that only plastic hinges appearing at the lower end of piers are considered as potential
damage scenarios. For our initial efforts, we further refine the problem by assuming that only one pier is damaged at a
time. The bridge contains eight piers, and therefore, eight potential plastic hinges locations corresponding to eight possible
classes of damage. The problem that we consider in this paper can be restated as follows: classify a given vibration
signature into one of these eight classes.

In this study, based on the common assumption by field engineers, we focus on reducing material strength by 10% to
50%. The reduction below 10% would be considered too low to be distinguished, and the reduction over 50% would be a
structural failure rather than a damage. We generated 1700 cases of vibration signatures by reducing the Young’s Modulus
by 0%, 20% and 50%. Cases of 20% and 50% represent typical instances of small and large damage. These damage
patterns are divided into two sets: (1) two thirds (1133 cases) of the dataset was used to train the SVM models, and (2) the
other third (567 cases) was used as a test set. The accuracy of the classifiers is measured against the test set.



In order to study the noise tolerance of this methodology, the 1700 cases above contain synthetic noise, which is
generated as follows: we assume that the noise for each time step follows an independently identical Gaussian distribution
with mean 0. The real world contains a high ambient noise. Therefore, we used 20 times the typical resolution (0.0001
m/s2) of an accelerometer as the standard deviation for the normal noise distribution.

2.2. Application of Support Vector Machines (SVM)

2.2.1. Related Work

Vibration signatures have been used to build non-linear neural network (NN) models of structures such as bridges.3 The
input to the model is a characterization of “hammer-like” forces, and the output is the response signature of the bridge. The
neural network mimics the structure, and any potential damage is detected when the output differs from that of a healthy
structure.

2.2.2. Description of SVMs

Our aim is to solve a nine-way classification problem: either conclude that the bridge is healthy, or determine the damage
location among the eight possible alternatives. Given the high dimensionality of the input (4500 features corresponding
to the vibration signature of nine sensors, each sensor sampling for 5 seconds at 100Hz), we chose SVMs for classifica-
tion. SVMs solve a quadratic problem4 with no local minimums, and therefore its response time is shorter compared to
other algorithms like NNs. Furthermore, classifying new data takes a constant amount of time due to SVMs being linear
discriminants.

We have trained eight SVMs, one for each possible damage location. Note that each location corresponds to a pier
in the bridge. Since SVMs solve a two-way classification problem, each one gives an estimate to whether the bridge is
damaged at the corresponding pier. If none of the SVMs signal a damage, the bridge is considered to be healthy. If two or
more SVMs signal a potential damage, we classify the output as incorrect.

Figure 4. Elements of an Integrated Health Monitoring Framework

2.3. Sensor network

A significant challenge of our framework is the need to integrate multiple sensor streams to develop local and global
health-state indicator variables that need to be queried and monitored by the system. The indicators may be defined
either as user-specified aggregates (or other functions) over instantaneous values of several streams, or as pre-computed
aggregates.



The sensor network shown in Figure 4 consists of a dense network of heterogeneous and homogeneous sensors with
remote data collection, access, and control features. In this paper, we focus on one type of sensor data, i.e., vibration
signatures. Analyzing data from thousands of sensors with long term and near real-time assessment requires building
power-aware data mining system solutions. A majority of algorithms focus on hierarchical data mining, where sensor data
are aggregated in a routing hierarchy towards a central processing center. Such in-network data compression approaches are
well motivated by the nature of sensor data collected, which exhibit strong spatio-temporal correlations.5 The processing
center queries the sensor data using a drill-down approach. The utilization of our scheme in the sensor network is two-fold:
(1) at the lowest level of the hierarchy, each sensing node removes the temporal redundancy in its stream of data. (2) In all
other higher levels of the hierarchy, each communication node detects correlations among the information propagated from
the lower level nodes and reduce the amount of information to push further up the hierarchy. The hierarchy in Figure 4 is
a 2-level hierarchy. In general, the level of the hierarchy will increase with the scale of the monitoring framework, i.e., the
number of sensing nodes and the number of communication nodes.

2.3.1. Sensing nodes

Sensing nodes are basic components in sensor networks. Each sensor integrated in a sensing node is a separate data source
and monitors the physical environment by sampling physical signals. In other words, each sensor generates a discrete time
series that contains temporally redundant information. Reducing the time series (data-stream) to include only potentially
interesting events will help save the system energy: temporal data reduction is cheap since it involves only computation at
a single sensor, and incurs no communication overhead. Therefore, data reduction is an essentially important in-network
computation task. There has been a substantial amount of research work on data reduction especially in the context of
sequence databases. Signal processing tools such as Discrete Fourier Transform6–8 and Discrete Wavelet Transform9, 10

are widely explored dimensionality reduction techniques. Piecewise constant approximation and its variations11 are also
straightforward and easy to implement, which give reasonably good results.

We use wavelets in our solution, since it allows summarization of a sensor stream incrementally at multiple resolutions.
Multiple resolutions allow changing the compression ratio adaptively as will be explained later in this section. Wavelets
are a mathematical tool for hierarchical decomposition of signals.12 Among these, Haar wavelets constitute the simplest
wavelet basis, as they are easy to understand and implement. Encoding a set of readings in a sensor network using Haar
wavelets is addressed in.13, 14

Figure 5. Each normalized coefficient ci in the Haar decomposition tree is computed as normi ∗ [Avg(leftChildSubtree) −

Avg(rightChildSubtree)], where normi is an appropriate scaling factor for resolution i.

Resolution Averages Details
0 2 0 -1 3 1 5 4 -2 -
1 1 1 3 1 1 -2 -2 3
2 1 2 0 1
3 1.5 -0.5

Table 2. Haar Wavelet Decomposition. Resolution 0 shows the original signal. Pairwise averaging and differencing is performed on
averages at resolution i− 1 to get averages and differences at resolution i.

We first summarize wavelet encoding using Haar wavelets. Haar encoding is the recursive pairwise averaging and
differencing of the underlying data at multiple resolutions as depicted in Figure 5. Consider the following example, where
we have the underlying signal s = [2 0 -1 3 1 5 4]. We first perform pairwise averaging and differencing on s. For all



i, 1 ≤ i ≤ |s|/2 = 4, we compute two values as A1[i] = (s[2i-1] + s[2i])/2 and D1[i] = (s[2i-1] − s[2i])/2. We get
signals A1 = [1 1 3 1] and D1 = [1 -2 -2 3]. In the next step, we perform pairwise averaging and differencing on A1, and
compute A2 = [1 2] and D2 = [0 1]. Finally, we compute A3 and D3 using A2. The signals A3, D3, D2, and D1 together
constitute the Haar wavelet decomposition for signal s. The whole decomposition is given in a tabular format in Table 2.
In the rest of the paper, we will focus on approximation coefficients Ai such that the higher the resolution i is the higher
the compression ratio. As demonstrated in,15 this simplification achieves an excellent accuracy in the statistical analysis
of raw sensor data.
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Figure 6. Sensors numbered from 1 to m are connected with a communication node. For each sensor, si denotes the raw signal, and
A(si) denotes a high-resolution approximation.

Once the approximation at an appropriate resolution is computed, it is propagated to the parent communication node.
From this point on, we drop the subscript and use the capital letter A to denote an approximation at a pre-determined
resolution i.

2.3.2. Communication nodes

Typically the number of sensors deployed in field increases with the size of the infrastructure being monitored. Our testbed
is an example of a small infrastructure. However, large monitoring networks consist of thousands of sensing nodes. The
size of the sensing network adversely affects the computational capability of the overall low-bandwidth, battery-powered
network of sensors, since the amount of streaming data to deal with grows linearly with the number of sensors. Fortunately,
the measurements across sensors are expected to exhibit correlations.5 For this purpose, we employ a correlation detection
filter at intermediate communication nodes to reduce data spatially. Reducing the number of sensors renders our algorithms
more scalable for large sensor networks consisting of thousands of sensor nodes. This approach is similar to in-network
aggregation.

Consider the example shown in Figure 6, where si denotes the raw signal at sensor node with identifier i. The commu-
nication node receives m different sensor approximations as A(s1),. . .,A(sm). Each approximation A(si) denotes a vector
of a pre-determined length. We denote all measurements collected as a matrix X = [A(s1) . . . A(sm)]. On this matrix X ,
we compute CC, the m×m matrix of correlation coefficients. Let C denote the covariance matrix, then

CC(i, j) = C(i, j)/
√

(C(i, i) ∗ C(j, j)) (1)

Once we compute CC, we can cluster approximations such that in each cluster Gi, every sensor pair is correlated within a
given threshold τ , i.e.,

Gi = {j|τ < CC(i, j) (2)

We can safely disregard all but cluster centers A(si). The retained approximations are propagated further up the hierarchy.

2.4. Reducing the complexity of computing correlations

Computing a correlation matrix is expensive especially if the number of sensors m is large. Therefore, we use a faster,
but a less accurate algorithm for computing this matrix. The computation problem is an all-pairs query such that given a
threshold value τ , we have to find all sensor pairs, whose correlation coefficient is greater than or equal to τ . From this
point on, we refer to this problem as ε-correlation, where τ = (1 − ε2/2). Note that this definition restricts us to only



positive correlations. The correlation coefficient between si and sj can be reduced to the Euclidean distance between their
corresponding normalized sequences.16 We normalize a sequence s[1], s[2], s[3], . . . , s[N ] as follows:

ŝ[k] =
s[k]− µs

σs

k = 1, 2, . . . , N (3)

where µs is the arithmetic mean and σs =
√

∑N

k=1(s[k]− µs)2.

THEOREM 2.1. The correlation coefficient of two sequences si and sj is corr(si, sj) = 1 − 1
2
d2(ŝi, ŝj), where d(ŝi, ŝj)

is the Euclidean distance between ŝi and ŝj .

Proof. The Euclidean distance between ŝi and ŝj is,

d2(ŝi, ŝj) =

N
∑

k=1

(ŝi[k]− ŝj [k])2 =

N
∑

k=1

ŝi[k]2 +

N
∑

k=1

ŝj [k]2 − 2

N
∑

k=1

ŝi[k]ŝj [k] (4)

where
∑N

k=1 ŝi[k]2 =
∑N

k=1 ŝj [k]2 = 1 due to unit normalization. The correlation coefficient corr(si, sj) is equal to the
inner product

∑N

k=1 ŝi[k]ŝj [k] as shown in.16 Therefore, corr(si, sj) = CC(i, j) = 1− d2(ŝi, ŝj)/2

A lower bounding property d(A(ŝi), A(ŝj)) ≤ d(ŝi, ŝj) holds since wavelet transformation is an orthogonal transfor-
mation.12 We use this lower bounding property in pruning out some of the candidate pairs because sensors si and sj
cannot be ε-correlated if

ε < d(A(ŝi), A(ŝj)) ≤ d(ŝi, ŝj) (5)

At each communication node, approximations are inserted into an R*-Tree,17 a variant of R-Tree18 as shown pictorially in
Figure 7. An R*-Tree is a spatial access method, which splits feature space in hierarchically nested, possibly overlapping,
boxes called Minimum Bounding Rectangles (MBR). For notational convenience, we denote each approximation as si.
The ε-correlation can be computed by performing a self-join on this tree. We enlarge each of the MBRs in the tree by ε

2
as

shown in Figure 8 and perform the so-called plane sweep algorithm.19–21 We post process the results in order to discard
false alarms. The system incurs false alarms due to the lower bounding property in distance computations. However, it
does not incur any false dismissals.
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Figure 7. Index structure constructed at a communication node. Each individual point denotes a compressed signal propagated by a
sensing node. For notational convenience, we denote each approximation as si.

This approach is more efficient than a base line approach that considers m × (m − 1)/2 pairs for correlation. Our
approach reduces the computational complexity by filtering out all non-potential candidates using the index structure as
follows: we consider intra-MBR-correlations and inter-MBR-correlations separately. If two sensors reside in the same
MBR, no-pruning is performed, and therefore, they are included in the candidate set. However, if they reside in different
MBRs Ri and Rj , they are considered to be a candidate only if the enlarged MBRs R′

i and R′

j overlap. For example in
Figure 8, none of the sensors in MBR R5 can be ε-correlated with sensors in MBR R4. However, a sensor in R5 can be
ε-correlated with a sensor in R3 since the enlarged MBRs overlap.
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Figure 8. Index structure after MBRs are enlarged by ε/2. We perform a self-join on this modified structure and identify all correlated
sensors.

3. EXPERIMENTAL RESULTS

In this section, we study the classification accuracy of our approaches on the test-bed network. The dataset we use is the
sensor data collected on the Humboldt Bay bridge. The original data is a matrix X of dimensions 1700× 4500. Each row
corresponds to a scenario in which one of the piers is broken. Each sensor records an acceleration time history of 500 time
units length. For each row i, the data at columns (j−1) × 500 to j × 500 denotes the raw data recorded by sensor j (j
goes from 1 to 9). The approximate dataset Xi consists of approximations at resolution i, and is a matrix of dimensions
1700× d4500/2ie.

3.1. SVM results on exact data

As mentioned earlier in Section 2.1.4, the accuracy of SVMs is measured on the hold-out validation set, which contains
567 scenarios of a total of 1700. All classifiers have 100% accuracy in identifying damage on each pier. This reassures us
that the SVMs scale well with high dimensional data. We quantify how SVM accuracy degrades with reducing the size of
dataset using wavelets. The reduction is performed on two separate dimensions: the first is on the temporal dimension, and
the second is on the spatial dimension. We present our results on these two approaches next.

Broken pier number
level 1 2 3 4 5 6 7 8

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94
3 0.94 1.00 1.00 1.00 1.00 1.00 0.94 0.94
4 0.94 1.00 1.00 1.00 1.00 1.00 0.94 0.94
5 0.94 1.00 1.00 1.00 1.00 1.00 0.94 0.90
6 0.94 0.98 1.00 1.00 0.99 1.00 0.94 0.88
7 0.94 0.94 1.00 1.00 0.94 1.00 0.94 0.88
8 0.88 0.88 0.94 0.94 0.94 0.94 0.88 0.88
9 0.88 0.88 0.88 0.88 0.94 0.94 0.88 0.88

Table 3. SVM results on multi-resolution data: Level 0 represents the exact data X = X0. In general, level i represents Xi that contains
wavelet approximation coefficients at resolution i.

3.2. SVM results after temporal reduction

The classification accuracy changes as we reduce the dimensionality of the data by increasing the resolution (higher levels).
Table 3 shows the results for using Haar wavelets with varying resolution. As the resolution increases, the number of



approximation coefficients decreases exponentially. A smaller number of features results in a lower classification accuracy.
However, the classifiers still achieve an excellent accuracy. Even though the largest resolution (level 9 in Table 3) reduces
the total number of 4500 features down to 9 features, the classification accuracy decreases only to 88%.

We perform a similar experiment using different wavelet families such as Daubechies, Symlets, and Coifflets.
However, the experiments show that all wavelet bases show an almost equal classification accuracy provided that the
number of coefficients retained is the same.

sensor # s1 s2 s3 s4 s5 s6 s7 s8 s9
s1 1.00 0 0 0.71 0 0 0.81 0 0
s2 - 1.00 0 0 0.84 0 0 0 0.72
s3 - - 1.00 0 0 0.73 0 0 0
s4 - - - 1.00 0 0 0.94 0 0
s5 - - - - 1.00 0 0 0 0.76
s6 - - - - - 1.00 0 0 0
s7 - - - - - - 1.00 0 0
s8 - - - - - - - 1.00 0
s9 - - - - - - - - 1.00

Table 4. Correlation coefficients matrix computed on X9. The entries (i, j) < τ = 0.7 are shown as 0. Since the correlation matrix is
symmetric, we only show the upper right half.

3.3. SVM results after spatial reduction

Table 4 shows the correlation matrix on X9 for a correlation threshold of τ = 0.7. As one can confirm, there are four
different clusters of correlated sensors: G1 = {1, 4, 7}, G2 = {2, 5, 9}, G3 = {3, 6}, and G4 = {8}. Instead of working
with all nine sensors, we can work with a subset of sensors that includes a sensor from each cluster, e.g., S = {1, 3, 5, 8}.
Other choices are possible as well. We test the classification accuracy on this reduced dataset and compare it with the
accuracy achieved on the whole dataset. As Table 5 shows, the accuracy is the same (except for piers 4 and 5), validating
our approach experimentally.

Broken pier number
1 2 3 4 5 6 7 8

All 0.88 0.88 0.88 0.88 0.94 0.94 0.88 0.88
S 0.88 0.88 0.88 0.94 0.88 0.94 0.88 0.88

Table 5. SVM results on the dataset X9 that contains level-9 approximation coefficients from all nine sensors and the reduced dataset S
that contains level-9 approximation coefficients only from sensors 1, 3, 5, and 8.

4. CONCLUSION AND FUTURE WORK

We have built a system that could replace the visual inspection of bridges, and that could reduce the current variability
and error in measurements. The system eliminates inspection costs and requires only a fraction of time to assess structural
damage. The proposed health monitoring framework consists of a multi-level communication hierarchy that can scale to
large sensornets consisting of thousands of sensors. We selected the Humboldt Bay Bridge as a testbed, and simulated it
using a finite element model. We first applied a force to the center of the bridge, recorded the resulting vibration signatures,
and then trained an SVM classifier on these recordings that detects the location of potential damage. Signals from sensing
nodes travel to the operation center for final inspection through communication nodes in a three-level communication
architecture. We used Discrete Wavelet Transformation for temporal reduction of the signals at sensor level, and for
spatial reduction throughout communication nodes and the operation center. The approach trades off accuracy for efficient
handling and processing of sensor data in order to save the communication overhead and power-consumption.

The study findings show that the proposed system is a feasible approach for structural damage detection. Using low-
dimensional streaming data, the SVM classifier is able to detect the location of damage with a high degree of accuracy.
Furthermore, the SVM has proven to be robust in the presence of noise. Compression via wavelets results in a graceful



degradation of classification accuracy, thus providing a scalable solution for ever growing data in sensor network applica-
tions.

The system presented here is an important step towards building a more sophisticated system working on real bridges
and with other types of structural damage. We are planning a number of extensions and enhancements to our current
approach. These include explicit consideration of relevant utility measures associated with resources (e.g., bandwidth,
power, and inspections) in order to provide a principled approach to decision making in this application. This study will
guide us to determine optimal sensor density and distribution as well as operational characteristics. In addition to modelling
enhancements, we intend to explore the application of these methods on larger and more complex bridges. The results from
these investigations will move us closer to realizing our ultimate goal of real-time decision support for large bridges and
other civil infrastructures.
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