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Abstract. Sensor networks monitor physical phenomena over large geographic re-
gions. Scientists can gain valuable insight into these phenomena, if they understand
the underlying data distribution. Such data characteristics can be efficiently extracted
through spatial clustering, which partitions the network into a set of spatial regions
with similar observations. The goal of this paper is to perform such a spatial clus-
tering, specifically δ-clustering, where the data dissimilarity between any two nodes
inside a cluster is at most δ. We present an in-network clustering algorithm ELink
that generates good δ-clusterings for both synchronous and asynchronous networks
in O(

√
N log N) time and in O(N) message complexity, where N denotes the net-

work size. Experimental results on both real world and synthetic data sets show that
ELink’s clustering quality is comparable to that of a centralized algorithm, and is
superior to other alternative distributed techniques. Furthermore, ELink performs 10
times better than the centralized algorithm, and 3-4 times better than the distributed
alternatives in communication costs. We also develop a distributed index structure
using the generated clusters that can be used for answering range queries and path
queries. The query algorithms direct the spatial search to relevant clusters, leading to
performance gains of up to a factor of 5 over competing techniques.

1 Motivation
Sensor networks are being deployed over large networks to monitor physical phenomenon:
to collect, analyze, and respond to time-varying data. The analysis and querying of sensor
data should be done in a distributed manner in order to remove the performance bottlenecks
and to avoid the single point of failure of a centralized node. We address the problem of
discovering spatial relationships in sensor data through the identification of clusters. This
clustering is achieved through in-network distributed algorithms.

Sensing phenomena such as temperature [2] or contaminant flows [5] over large spatial
regions helps scientists explain phenomena such as wind patterns, and varying disease rates
in different regions. For example, Fig. 1 shows the varying sea surface temperature regions
in the Tropical Pacific [2]. Given such a heat map, a geologist can explain that the wind
currents shown in the figure arise due to the pressure variations among the underlying
temperature zones.

The goal of this paper is to partition the network into such a set of zones or clusters,
which have observed similar phenomena. For example, consider the time series of four
sensors (from Fig. 1) that are shown in Fig. 2. Notice that the spatially proximate sensors
follow similar trends. Since our objective is to cluster regions based on the underlying trend,
spatial clustering would group the top pair of sensors (shown in Fig. 2) into one cluster and
the bottom pair into another.

Spatial clustering also serves to prolong network lifetime. Instead of gathering data
from every node in the cluster, only a set of cluster representatives need to be sampled
based on their spatio-temporal correlations. This reduces data acquisition and transmis-
sion costs [9, 14] in a sensor network constrained by storage, communication and power



Fig. 1. Tao: Ocean monitoring with sensors  20
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Fig. 2. Correlations in time series from four sensors

resources. Furthermore, there exists a need in the sensor network community to identify
such clusters where space-stationarity holds. Eiman et al. [10] assume spatial stationarity
of data in order to remove faults and outliers based on neighborhood and history. Guestrin
et al. [14] perform in-network regression using kernel functions assuming rectangular re-
gions of support. Our work addresses this important necessity to discover clusters that are
both spatially stationary and are natural regions of support.

Clustering can be done off-line at the base station, if every node transmits its data to
the central base station. But, this leads to huge communication costs. Besides, the power
consumption for communication is up to three orders of magnitude higher than that for
computation on a sensor node (such as a Crossbow Mica2 mote [3]). Therefore, for power
efficiency, we propose in-network clustering. Furthermore, we regress time-series data at
each node to build models. Clustering on model coefficients not only captures global spatio-
temporal correlations, but also reduces transmission and memory costs. Overall, the con-
tributions of the paper are:

1. We prove that δ-clustering is NP-complete and hard to approximate.
2. We present and design a distributed clustering algorithm called ELink that generates

high quality clusterings in O(
√

N log N) time and in O(N) message complexity, for
both synchronous and asynchronous networks.

3. We present an efficient slack-parameterized update algorithm that trades quality for
communication. Furthermore, we employ the spatial clusters to efficiently answer both
range queries and path queries.

4. Our experimental results on both real world and synthetic data sets show that ELink’s
clustering quality is comparable to that of a centralized algorithm and is superior to
other distributed alternative techniques. Furthermore, ELink performs 10 times better
than the centralized algorithm, and 3-4 times better than other distributed alternative
techniques in communication costs. For the query algorithms, the average communi-
cation gains were up to a factor of 5 over competing techniques.

2 Parameterized Clustering
We first define the clustering problem and discuss its complexity. Then, we briefly discuss
the distance measure used for clustering.

2.1 Clustering: Definition and complexity
A good spatial clustering algorithm should group nodes in a sensor network based on data
characteristics. In order to achieve this, data is regressed locally at each node to build mod-
els [26]. We adopt an auto-regression framework for defining the models (discussed in
Section 2.2). The coefficients of this model are used as the features [15] at each node. We



denote the feature at a sensor node i by Fi. The (dis)similarity between any two features
Fi and Fj is captured by distance d(Fi, Fj). We assume that the distance is a metric, i.e.,
it satisfies positivity, symmetry and triangle inequality. For example, consider the commu-
nication graph CG of a sensor network S as shown in Fig. 3a). Fig. 3b) shows an example
of a distance metric d() between the features of the nodes in S.
Using the dissimilarity threshold δ, a cluster is defined as follows:

Definition 1. (δ-cluster) Given a set of sensors S, their communication graph CG, dis-
tance metric d, and a real number δ, a set of sensors C is called a δ-cluster if the following
two conditions hold.

1. The communication subgraph induced by C on CG is connected.
2. For every pair of nodes i and j belonging to C, d(Fi, Fj) ≤ δ. We refer to this property

as the δ-condition or δ-compactness.

δ-Clustering is defined as the partition of the communication graph CG into a set of disjoint
δ-clusters. Our goal is to find the optimal δ-Clustering, i.e., the clustering with the minimum
number of δ-clusters.

Consider the network in Fig. 3a). If δ = 5, then nodes c and e cannot belong to the same
cluster since d(Fc, Fe) = 6 > 5, and for the same reason, nodes c and d cannot belong
to the same cluster. Hence, the two possible minimal clusterings are as shown in Fig. 3c).
Next, we present the complexity results for optimal clustering.
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Fig. 3. For the communication graph in a) and distance matrix b), and δ = 5, the minimal possible
clusterings are shown in c).

Theorem 1. Given a set of sensors S, a communication graph CG, a metric distance d,
and a real number δ:

1. The decision problem “Does there exist a partition of graph CG into m disjoint δ-
clusters?” is NP-complete.

2. It is not possible to approximate (in polynomial time) the optimal solution to δ-clustering
within ratio nφ where φ > 0, unless P=NP.

Proof. The proof is based on a reduction from the clique cover [19] problem. The clique-
cover problem (G = (V, E), c) states that the decision problem “Does there exist a parti-
tion of graph G into c disjoint cliques?” is NP-complete.

Given an instance I of the clique-cover (G = (V, E), c), we map it into an instance I ′
of δ-clustering (CG, d, δ, m) as follows: Define CG as a clique of size |V |. Set δ equal to
1 and m equal to c. For every pair of vertices i, j ∈ V , define d() as shown.

d(Fi, Fj) =

{
1 if eij ∈ E,
2 otherwise.



Note that d() satisfies the metric properties. Output the solution of I ′ as the solution for
I . From the above mapping, we can see that I has a solution iff I ′ has a solution. Also,
there exists a one to one correspondence between the solutions of I and I ′; so, the above
reduction is approximation preserving. Since clique cover denies any approximation within
ratio nφ, therefore the same bound holds for δ-clustering as well. ��

Since optimal δ-clustering is a hard problem, even in a centralized setting, we propose
an efficient distributed algorithm that generates high quality clusterings. But first, we ex-
plain features and distance measures.

2.2 Feature model and distance
In order to discover the global spatio-temporal patterns in a sensor network, spatial clus-
tering should be performed on the underlying trend rather than on the raw time-series data.
Therefore, we construct a data model at each node to capture the structure in the data (e.g.,
the trends and cycle in the four sensors observed in Fig. 1). Each node models data using
an Auto-Regression (AR) model. The general ARIMA model [26] captures the seasonal
moving averages (MA) along with the daily up and down trends (AR). At a node i, the set
of model coefficients represent the feature Fi.

In an AR(k) model, the time series of an attribute X at any node is modeled as Xt =
α1Xt−1 + . . . + αkXt−k + εt where α1, . . . , αk are the auto-regression coefficients and εt

is white noise with a zero mean and non-zero variance. Given m such data measurements
at a single sensor node, the problem of finding auto-regressive coefficients can be stated
in matrix notation as Y = XTα + e where Y is a m × 1 column of known Xt values,
X is k × m matrix of known explanatory variables (Xt−1, . . . , Xt−k) and α is a k × 1
column of unknown regression coefficients. Under basic assumptions of e = N(0, σ2I),
the minimization of least squares errors leads to the solution α̂ = (XXT)−1

XY.
Next, we discuss the distance d(), between models. Consider the models at three nodes:

N1 : xt = 0.5xt−1 + 0.4xt−2 + εt (1)

N2 : xt = 0.5xt−1 + 0.3xt−2 + εt (2)

N3 : xt = 0.4xt−1 + 0.4xt−2 + εt (3)

Node N1 is more correlated to N2 than to N3, because of the importance of higher order
coefficients. Therefore, simple euclidean or Manhattan distance between the coefficients
will not suffice. We need to consider a weighted euclidean distance on the model coeffi-
cients. Such distances are metrics. This motivates us to formulate the clustering problem in
the context of metric spaces, rather than euclidean spaces.

3 Distributed Clustering Algorithm
In this section, we present and analyze a distributed algorithm, ELink, for in-network clus-
tering. In the experimental section, we present three other alternative techniques: a central-
ized spectral clustering algorithm, and two other distributed clustering techniques, Span-
ning forest and Hierarchical for comparison. Section 9 discusses the drawbacks of extend-
ing the traditional clustering algorithms such as k-medoids-, hierarchical-, and EM- [8, 13,
23] based algorithms to this particular problem setting.

At the termination of the ELink algorithm, the communication graph CG is decomposed
into disjoint δ-clusters. Each cluster is organized as a tree, referred to as a cluster tree,
with the root as the designated leader. A node i inside a cluster Ci maintains a 3-tuple
〈ri, Fri , p〉. The first is the root id, ri; the second is the root feature, Fri ; the third is the id
of the parent, p, in the cluster tree.



3.1 ELink clustering

The key idea behind ELink is to grow clusters from a set of sentinel nodes to the maximal
extent, i.e., until they are δ-compact, and then start growing another set of clusters from
a different set of sentinel nodes, reiterating this process until every node is clustered. A
definite order is imposed on the scheduling of the different sentinel sets; and moreover,
a new sentinel set begins expanding only after the previous set has finished clustering. A
node in the new sentinel set does not start expanding either until it is contacted by a node
in the previous sentinel set (in an explicit signalling approach), or until its predefined timer
expires (in an implicit signalling approach). Although both the techniques are guaranteed
to run in O(

√
N log N) time and in O(N) message complexity, the implicit signalling

technique is designed for synchronous networks, whereas the explicit signalling technique
is designed for asynchronous networks. We first give an overview of the general ELink
algorithm, and then explain both the techniques in detail.

3.2 Algorithm

In order to understand the sentinel sets, we begin with a decomposition of the sensor net-
work. To simplify the discussion, we assume a square grid of N nodes. Spatially, the entire
topology is recursively broken down into cells at different resolutions (levels) in a quadtree
like structure. The root cell is at level 0. Every cell elects a leader node [11, 16]1. Sen-
tinel set Sl comprises of all the cell leaders at a particular level l (as shown in Fig. 4), for
0 ≤ l ≤ α, such that

∑α
l=0 |Sl| = N . Since |Sl| = 4l, the depth of the hierarchy, α, evalu-

ates2 to log4(3N +1)−1. The parents of all the nodes in the sentinel set Sl comprise the set
Sl−1. Initially, the single sentinel in S0 begins expanding its cluster until it is δ-compact.
Then, all the sentinels in S1 are either explicitly or implicitly signalled to start expanding.
This process is carried recursively at every level. The expansion of each sentinel is carried
out only using the edges of the communication graph CG.

We use the term root (and tree) in two different contexts. The quadtree has a root,
sentinel S0. Every cluster Ci also has a root, cluster leader ri, which is one of the sentinels
belonging to S0, S1, . . . , Sα. The quadtree is used for the definition of the sentinels and
their signalling. The cluster tree is used for defining the clusters.

The underlying idea behind the ELink algorithm is as follows. We first suppose that the
whole network can be placed in a single δ-cluster; hence, we allot sufficient time for the
cluster from S0 to expand and include every node in the network. In that case, none of the
lower level sentinels in S1, . . . , Sα start, and the single cluster remains intact. Otherwise,
we suppose that the whole network can be partitioned into at most five clusters. So, cluster
formation is initiated from each of the four sentinels in S1. We allow nodes to switch cluster
memberships a limited number of times. This handles the case when the number of clusters
should be less than 5. Now, if the whole network is still not clustered after sentinel set
S1’s expansion, we assume that the network can be decomposed into at most twenty one
clusters (five from the previous levels), and start growing each of the sixteen sentinels in
S2. A sentinel set Sl’s expansion begins only after sentinel set Sl−1 terminates clustering.
The implicit and explicit signalling techniques ensure that expansion happens strictly as
above. Next, we explain how a sentinel node grows its δ-cluster.

1 For routing purposes, the node closest to the cell centroid is elected as the leader.
2 This is precise for a grid network. But, even under the general assumption of uniform network

density [11, 18], α can be bounded by log4(3N +1)+k, for some small positive integer k, which
is sufficient for all the subsequent theorems to hold.
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Once a sentinel node i at level l has been signalled, it examines if it is already clustered.
If so, it does nothing. Else, it elects itself as the leader (root) of cluster Ci and sets Fri = Fi.
Then, it attempts to include every neighbor j in its cluster, if d(Fri , Fj) ≤ δ/2. If node j
is unclustered, it joins cluster Ci. If it is already clustered, we ensure that its reclustering
does not destroy clusters grown from a lower level and that the gain in the clustering qual-
ity (measured by a distance in the metric space) is above a certain predefined threshold φ.
Furthermore, we allow node j to switch clusters at most c times, where c is again a prede-
fined constant. This is done in order to reduce the communication overhead. Constant c is
application specific and is usually small, around 3–5.

If node j decides to be a member of cluster Ci, then j sets its root id to i, and stores the
root feature Fri . It now attempts to expand cluster Ci. This process repeats until no new
nodes can be added. Since the distance between the feature value of any node in the cluster
and the root feature Fri is at most δ/2, triangle inequality ensures that the distance between
the feature values of any two nodes in the cluster is at most δ.

The following example (Fig. 5) illustrates the clustering by a sentinel node D, for δ = 6.
The metric distance of every node to sentinel D is shown in Fig. 5a). Initially, D sets itself
as the root, as shown in Fig. 5b). Since d(FD, FF ) = 1 ≤ 3 = δ/2, node D includes
neighbor F in its cluster C1, and transmits its root feature FD to it. Similarly, neighbors
B and E are included in cluster C1, as shown in Fig. 5c). Nodes D and E cannot expand
further, since all their neighbors are already clustered. Now, node F expands C1 to include
node G, since d(FD, FG) = 2 ≤ 3. In a similar way, node B includes node A in C1, but
does not include node C, since d(FD, FC) = 4 > 3. After this step, none of the nodes in
the cluster can expand, and so the clustering terminates. The final cluster C1 is shown in
Fig. 5d). The complete algorithm is outlined in Fig. 16 (Appendix B).

4 Implicit Signalling Technique
The implicit signalling technique is designed for synchronous networks. This algorithm
ensures that the sentinel set Sl is granted sufficient time to complete expansion, before
sentinel set Sl+1 starts growing. Consider the bounding rectangle [L × L] of the entire
N node network on the x-y plane. If ρ denotes the node density, then ρL2 = N . For
the sake of simplicity, we assume ρ = 1 implying L =

√
N . We assume that the every



node has at most d neighbors. In sensor networks [12], d is assumed to be a constant and
very small compared to N . Let stretch factor γ denote the ratio of the worst case increase
in path length of “expand” messages (for cluster expansion) to the shortest path length
between two nodes using multi-hop communication. Constant γ is usually small, around
0.2–0.4 [18]. For simplicity, assume that the worst-case delay over a hop is a single time
unit. This blurs the distinction between path length and end-to-end communication delay
between two nodes. Let κ denote the worst-case message cost or time (in a synchronous
network) for the root sentinel S0 to cluster with any other node in its level 0 cell (the whole
network).

Note that κ = (1 + γ)
√

N
2 . Similarly, the

A

L

w

t1

w =
√

L
2
(1 + 1/2)

t1 = w(1 + γ)

= κ(1 + 1/2)

Fig. 6. The worst case path length from node
A ∈ sentinel set S1 to cluster any node in the
network is t1.

worst-case time for a sentinel in Sm to clus-
ter with any other node in its level m cell is
κ/2m. Extending this reasoning, a sentinel
in Sl can cluster with any other node in the
entire network in time tl = κ(1 + 1/2 +
..1/2m + .. + 1/2l). Therefore, every node
in Sl is allotted a time interval tl to finish ex-
pansion. Fig. 6 illustrates the interval t1 of a
sentinel node A ∈ S1. Hence, scheduling of
the sentinel set is done as follows. At time
T = 0, sentinel set S0 starts expanding, and
every other sentinel set Sl starts its expansion
at time T =

∑l−1
i=0 ti. The algorithm is outlined in Fig. 17 (Appendix B).

Theorem 2. The implicit signalled ELink algorithm runs in O(
√

N log N) time and re-
quires O(N) messages.

Proof. First, we prove the bound on time. Since every sentinel set Sl terminates expan-
sion before Sl+1 starts growing, the total running time of the algorithm is bounded by
the scheduling time for the sentinel set for the last level α, combined with its allotted
expansion duration. Therefore, the total running time is T = (

∑α−1
l=0 tl) + tα. Since

t1 < t2 < t3 . . . < tα−1 < tα, and tα < 2κ, T is at most 2κα. Hence, ELink runs in
time O(

√
N log N).

Next, we consider the message complexity. A node sends out a message only in two
cases; first, when it is scheduled as a sentinel, and second, when it has received a message
from a neighbor, which is a member of a different cluster. In the first case, a sentinel node
sends messages to all its neighbors, and since every node has at most d neighbors, the total
cost over all nodes is at most dN . In the second case, a node sends a message only if it
has switched clusters, or has just been clustered for the first time. As a node is restricted to
switch cluster membership at most c times, it will send no more than c+1 messages to each
of its neighbors. Hence, the N nodes will send at most d(c + 1)N messages. Therefore,
ELink’s message complexity is O(N). ��
5 Explicit Signalling Technique
The running time and message complexity of the implicit technique are guaranteed only for
a synchronous network. In order to retain these complexities for an asynchronous network,
we designed the explicit signalling technique, incorporating additional synchronization [4]
into ELink. In this technique, a sentinel in Sl+1 does not begin cluster expansion until it
is explicitly contacted by its parent in Sl. This does not happen until every sentinel in Sl



completes expansion; thus, maintaining the order in sentinel set expansion: S0 → S1 →
· · · → Sα. Next, we give an overview of the synchronization that ensures this ordering.

The synchronization at every level l is divided into two phases. After realizing the
completion of its cluster expansion, each sentinel in Sl begins the first phase, phase 1,
by contacting its quadtree parent. This parent, after being contacted by all its children,
notifies its own parent. This is carried recursively up till the root sentinel, S0. When the
root is contacted by all its quadtree children, implying that all the nodes in Sl have finished
expansion, it starts the second phase, phase 2, by propagating messages recursively down
the quadtree to notify all the nodes in Sl. After receiving such a phase 2 message, each
node in Sl instructs its children in Sl+1 to start ELink.

The complete algorithm is shown in Fig. 18. During the ELink expansion of a sentinel
in Sl, an intermediate node i along every path of cluster expansion, maintains a children
counter to denote the number of children it has in the cluster tree. Node i receives an ack2
message from a child j, when the cluster expansion of subtree rooted at j is complete.
Then, node i decrements the children counter by 1, and if the counter equals 0, then node
i realizes the completion of cluster expansion of the tree rooted at i. Now, if node i is not
the cluster root, it transmits an ack2 to its parent p. Else, it realizes that the entire cluster
expansion has been completed, and contacts its quadtree parent by a phase 1 message.

Theorem 3. The explicit signalled ELink algorithm runs in O(
√

N log N) time and re-
quires O(N) messages.

Proof. First, we prove the bound on time. A node i in the sentinel set Sl completes ex-
pansion in time interval tl (defined in Section 4). Therefore, within 2 ∗ tl time, all ack2
messages denoting the completion of cluster expansion arrive at the sentinel. After this,
there is the additional time of contacting the root sentinel S0 with phase 1 messages, and
then, S0 responding back with phase 2 messages. The worst-case path length from a sen-
tinel in Sm to its quadtree parent in Sm−1 is bounded by κ/2m. Thus, the total time for a
sentinel in Sl, to contact S0 in phase 1 is at most κ(1/2 + 1/22 + .. + 1/2m + .. + 1/2l),
which is the same as tl−1/2. Similarly, the time taken by phase 2 can also be bounded
by tl−1/2. After the completion of two phases, sentinel i contacts the children in Sl+1 via
start messages. This delay is bounded by κ/2l+1. Hence, the total running time for all the
sentinel sets is T =

∑α
l=0 2 ∗ tl +

∑α
l=1 tl−1 +

∑α−1
l=0 κ/2l+1. In a manner similar to the

implicit technique, the first and second summations evaluate to O(
√

N log N), whereas the
third summation evaluates to O(

√
N). Hence, the time complexity is O(

√
N log N).

Now, consider the message complexity. In addition to the two types of clustering mes-
sages transmitted as in the implicit technique, nodes have to deal with four other types of
messages— first, to inform the parents in the cluster tree (ack1) about their children; sec-
ond, to inform the sentinel node about the completion of cluster expansion (ack2); third, the
messages sent up the quadtree while notifying the root (phase 1), and down the quadtree
while receiving a reply (phase 2); fourth, the messages sent to instruct the children (start)
to invoke ELink. In the first and second cases, the total number of messages will be the
same as those needed for cluster expansion as in the implicit technique, which is O(N).
We will now bound the total number of messages in phase 1 and phase 2, μ, over all levels.
Let βl denote the message cost of notifying the root by all the nodes in Sl in phase 1. Then
βl can be recursively expressed as βl = βl−1 + |Sl| ∗κ/2l. Since |Sl| = 4l, this recurrence
yields the solution βl = (2l+1 − 1) ∗ κ. Hence summing over all sets Sl, the total cost of
phase 1 and phase 2 messages, μ, can be expressed as shown below in equation (1).



μ =
α∑

l=1

2 ∗ βl = 2
α∑

l=1

(2l+1 − 1) ∗ κ

= 2κ (4(2α − 1) − α)

= 2κ (2
√

(3N + 1) − log4(3N + 1) − 3) (4)

Since κ = O(
√

N), the total cost of the above term is O(N). The total cost of start

messages is
∑α−1

l=0 |Sl|∗κ/2l+1. In a manner similar to Equation 4, this term also evaluates
to O(N). Hence, the explicit technique’s message complexity is O(N). ��

Note that if optimizing the time complexity was our sole concern, then an unordered
expansion of the sentinel suffices. We can expand all the sentinels simultaneously, subject
to the constraint that a node can switch clusters at most c times. Since 2κ is the worst-case
time for any node to reach any other node in the network, this algorithm will terminate
in O(

√
N) time. The message complexity of this algorithm can be bounded by O(N).

However, this algorithm has poor clustering quality due to excessive contention across
sentinel levels.

6 Dynamic Cluster Maintenance
After the clustering of distributed data sources has been carried out, the underlying data dis-
tribution may change3 . This may lead to violations of the δ-compactness conditions within
a cluster, necessitating an expensive re-clustering. In this section, we show that introducing
a small slack [25] locally at each node avoids such global computations. Although this leads
to a degradation in clustering quality, the resulting benefits in communication are huge.

Given a slack parameter Δ, the maximum divergence within a cluster, δ, is reduced to
(δ−2Δ) during the initial clustering, and during any global cluster re-computation. Such a
reduction gives a Δ slack for the feature update at node j for the δ-compactness condition.

Let Fi the feature at node i be updated to F ′
i with the arrival of a new measurement.

Similarly, let the feature at the root of node i, Fri be updated to F ′
ri

. The root node verifies
locally that d(Fri , F

′
ri

) ≤ Δ. Node i verifies the conditions A1, A2 and A3.
If any of these conditions holds then it

d(Fi, F
′
i ) ≤ Δ (A1)

d(F ′
i , Fri) − d(Fi, Fri) ≤ Δ (A2)

d(F ′
i , Fri) ≤ δ − Δ (A3)

follows from triangle inequality that the δ-
compactness property is not violated. If all
the three conditions are violated, a re-clustering
needs to occur. Node i propagates a message
up the cluster tree to the root to obtain the
updated root feature F ′

ri
. After obtaining this feature, node i evaluates d(F ′

i , F
′
ri

) ≤ δ. If
the condition is violated, node i detaches from the cluster, and merges with the cluster of a
neighbor k if d(F ′

i , Frk
) ≤ δ. Else, it becomes a singleton cluster.

If the condition d(Fri , F
′
ri

) ≤ Δ is violated at the root, then the root propagates F ′
ri

down to every node in the cluster tree. Every intermediate node computes its distance to
this feature and decides if it should remain in the same cluster. The details of the update
algorithm are deferred to the full paper [21].

7 Index Structure and Queries
In this section, we first discuss how a distributed index structure is built on the models, and
then, describe how this index structure along with the δ-compactness property is employed
to prune large portions of the sensor network for range and path queries.

3 On the arrival of a new measurement, each node updates its AR model as shown in Appendix A.



7.1 Index structure

The ELink algorithm partitions the network into cluster trees that provide a natural way to
build a hierarchical index structure. Our index structure is similar to a distributed M-tree [7]
built on the feature space, but physically embedded on the communication graph. An index
at node i maintains a routing feature, FR

i , and a covering radius, Ri such that the feature
of every node in the subtree rooted at i is within distance Ri from FR

i . A leaf in the cluster
tree propagates its routing feature FR

i = Fi and covering radius Ri (set to 0 for a leaf node)
to its parent. The parent uses its own feature and the information from all its children to
compute its own routing feature and covering radius. This process is carried on recursively
up to the root of the cluster.

A range query q with radius r on an M-tree retrieves all the nodes whose feature values
are within distance r from the query feature q. The range search starts from the root and
recursively traverses all the paths leading to nodes which cannot be excluded from the
answer set. A subtree rooted at node i can be safely pruned from search, if d(q, FR

i ) >
r + Ri. The whole subtree satisfies the query, if d(q, FR

i ) ≤ r − Ri. Since, each node
stores the information of all its children, node i can prune a child-subtree rooted at j, if the
condition |d(q, FR

i )−d(FR
i , FR

j )| > r+Rj holds; or it can include the subtree completely
in the query if the condition d(q, FR

i ) + d(FR
i , FR

j ) ≤ r − Rj holds. All the above follow
from triangle inequality. Next, we discuss the range and path query algorithms.

7.2 Range querying in sensor networks

Geographic regions exhibiting abnormal behavior similar to that of the El Nino pattern [2]
are of critical interest to scientists. These regions can be discovered by posing range queries
of the form: “Which are the regions behaving similar to node x?” or “Given a query model
q, find all the regions whose behavior is within a specified distance r (measured in terms of
model coefficients) of q?”.

A spanning tree connecting the leaders of different clusters (a backbone network) is
built in order to efficiently route the query to every cluster. A range query can be initiated
from any node in the network. The initiator routes the query to its cluster root, which
forwards it to other cluster roots using the backbone tree. Every root first prunes using the
δ-compactness property (explained next), and then employs the hierarchical index structure
to selectively propagate the query to its children. Results are aggregated, first within the
cluster tree, and then on the backbone network, and returned to the query initiator.

Pruning by the δ-compactness property
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Fig. 7. Pruning conditions for δ = 5: a) cluster
Ci is excluded from the query q1(8, 9) with r =

1, b) cluster Ci is included in query q2(4, 6)

with r = 5.

is achieved as follows. No node in a cluster
will satisfy the query q with radius r if query
q’s distance from the root d(q, Fri ) > r +
δ/2. On the other hand, every node inside the
cluster will satisfy the query if d(q, Fri) ≤
r−δ/2. (These follow from triangle inequal-
ity). If the query doesn’t satisfy either of these
conditions, the root employs the M-tree to
prune the query (as mentioned in 7.1) in or-
der to retrieve the answer set.

The above pruning is now illustrated us-
ing an example in which a model is represented by a tuple of two coefficients. For the sake
of simplicity, assume euclidean distances. Let the root of cluster Ci (shown in Fig. 7) be
Fri :(3, 7) where δ = 5. Fig. 7a) shows that no node inside cluster Ci can intersect the
query q1:(8, 9) with radius r = 1 because d(q1, Fri) = 5.38 > 1 + 5/2. Therefore, Ci can



be completely pruned. On the other hand, every node in the cluster Ci will satisfy the query
q2:(4, 6) with radius r = 5 as shown in Fig. 7b), since d(q, Fri) = 1.414 ≤ 5−5/2. Query
q3:(3, 7) with r = 1 does not fall into either of the cases since d(q3, Fri) = 0 > 1 + 5/2
is false and d(q3, Fri) = 0 ≤ 1 − 5/2 is also false. Therefore, it is injected into the M-tree
root of cluster Ci. The M-tree pruning conditions are employed in this case.

7.3 Path querying in sensor networks
During pollutant leaks and fire hazards, rescue missions need to navigate a safe path from a
source node to a destination node. Ensuring the safety of mission implies that the exposure
to chemical along the path is at least a safe γ distance away from the danger (represented
as a feature) FD. Formally, a path query is posed as “Return a path from the source node x
to destination node y, such that for all the nodes j along the path, d(Fj , FD) ≥ γ”.

Path querying employs pruning similar to a range query. A cluster Ci with root ri is
safe for traversal if d(Fri , FD) > γ+δ/2; it is unsafe for traversal if d(Fri , FD) ≤ γ−δ/2.
Otherwise, the safe and unsafe regions inside a cluster are identified by drilling down the
index structure, as safe and unsafe sub-clusters. Then, every set of spatially contiguous
safe clusters (and sub-clusters) is connected using a safe backbone tree. Thus, the whole
network is partitioned into disjoint set of safe trees.

The source node x forwards the query to the root of its cluster. If the cluster is evaluated
to be unsafe, the root suppresses the query. Else, it dispatches a BFS query using the safe
backbone tree to the root of the cluster (or sub-cluster), which contains the destination y.
The whole path from the destination node y to source node x can be traced back. If node y
does not belong to the same safe backbone tree as node x, then there does not exist a safe
path between these two nodes.

8 Experimental Results
In this section, we first explain our real-world and synthetic datasets, then present inter-
esting alternatives for clustering and querying, and finally evaluate a) the quality and the
communication gains of ELink clustering, and b) the communication benefits achieved by
the query pruning techniques over the presented alternatives. We only report the results for
range queries. Results for path queries are deferred to the full paper [21].

8.1 Data sets

Tao (Spatially correlated dynamic data set): This data consists of daily sea surface tem-
perature measurements of Tropical Pacific Ocean [2]. We obtain a 10-minute resolution
data for a month (December 1998) from each sensor in a 6 × 9 grid. The sensors are
moored to the buoys between 2S–2N latitudes and 140W–165E longitudes. The tem-
perature range was (19.57, 32.79) with μ = 25.61 and σ = 0.67. The neighbors in the
communication graph were defined by the grid. Each node is initialized with a model
trained on the previous month’s data. The temperatures within a day follow regular up-
ward and downward trends, i.e, AR(1), whereas the daily variations in mean were ob-
served to follow an AR(3). Hence, the temperature at every node is modelled as xt =
α1xt−1 + β1μT−1 + β2μT−2 + β3μT−3 + εt. The weight vector for distance computa-
tion is (0.5, 0.3, 0.2, 0.1). Coefficient α1 is updated for every measurement whereas β’s
are updated every day.

Death Valley data (Spatially correlated static data set): This data consists of geographic
elevation of Death Valley [1]. Sensors are assumed to be scattered over the terrain and
the elevation of the terrain at a sensor location is assigned as the sensor feature. The alti-
tude range was (175, 1996). Our performance results are averaged over 5 different random
topologies, each consisting of 2500 samples.



Synthetic data (Spatially uncorrelated dynamic data set): Experiments were conducted
on network sizes ranging from 100 nodes to 800. We used a random placement of nodes
with a uniform probability distribution. Node densities were varied from 0.7 to 0.9. Each
node has on the average 4 nodes within its radio range. Data at every node i is modeled
as, xt = αixt−1 + et where et ∼ U(0, 1) and αi ∼ U(0.4, 0.8). 100, 000 readings were
generated at each node. The range was (10.00, 132.93) with μ = 69.27 and σ = 48.19.
Every node is initialized with α1 = 1. This model is updated for every measurement.

8.2 Performance metrics
Clustering: The clustering quality is measured by the number of clusters generated by each
algorithm.
Communication: Communication overhead is measured by the total number of messages
exchanged for each algorithm. A message can transmit a single coefficient or a data value.
The query cost is the average number of messages required to route the query, and to
aggregate the results back at the originator. The cost of building the inter-cluster leader
backbone network is accounted in the ELink algorithm.

8.3 Alternative clustering and querying techniques
The performance of the ELink algorithm is compared against a centralized algorithm [22]
and two other distributed algorithms that we propose. Our range query algorithm is com-
pared against TAG [20] and our path query algorithm is compared against BFS.

Centralized clustering: There are two kinds of centralized algorithms. In the first, every
update to the raw data is sent to the centralized base station (for baseline comparison in
communication). In the second, an AR model is built at each node, and the model coef-
ficients are sent to the centralized base station if the coefficient changes by more than a
certain threshold [25]. We explain how this threshold is set in Section 8.5. At the base
station, a spectral decomposition algorithm [22] is used for clustering. It computes the
Laplacian L of the affinity matrix and then partitions the network into k clusters using the
k largest eigenvectors of L. If x denotes the distance d(Fi, Fj) between any two nodes i
and j, then we define the affinity matrix a() as follows:

The algorithm is repeated with different values

a(i, j) =

{
x if eij ∈ CG,
0 otherwise.

of k and the smallest k is chosen such that each clus-
ter satisfies the δ-condition.

Spanning forest based clustering: This algorithm
generates sub-optimal clusters in a greedy manner,
but incurs a low communication cost. It consists of two phases. In the first phase, the algo-
rithm decomposes the network into a spanning forest of trees, and in the second phase, it
partitions each tree greedily into subtrees which satisfy the δ-compactness property.

In the first phase, each node selects the neighbor with the smallest feature distance,
and an id smaller than its own id as its parent (to ensure a partial order). By iterative
expansion, this phase decomposes the network into a forest of trees. In the second phase of
the algorithm, these trees are checked for δ-compactness. Variable height at a node stores an
upper bound on the feature distance between the node and any leaf belonging to the cluster
subtree of the node. Every node initializes its height to 0. Beginning with the leaves, each
leaf i sends its height (0) and its feature Fi to its parent p. Each parent node p maintains its
own height, its local feature Fp, and the identifier of the child with the maximal height in a
variable highest child. When it receives a new height from one of its children i, it uses a
temporary variable h to store the value height + d(Fi, Fp), and then examines if the sum
of h and the local height variable at node p exceeds δ. If it does, then node p instructs the



child whose height is the largest (highest child) to detach. Otherwise, node p updates its
height and highest child variables. After receiving the heights of all its children, p sends its
own height and feature Fp to its parent. Every detached subtree forms a new cluster with
the highest child as the root. The time and message complexity of this algorithm is O(N).

Hierarchical clustering: The second distributed algorithm, Hierarchical clustering, grows
the clusters in a hierarchical fashion using a notion of optimality absent in the spanning
forest algorithm. Every cluster maintains a feature diameter and spatially neighboring clus-
ters whose merger increases the diameter the least are merged in a bottom-up hierarchical
fashion [23].

For a given cluster, every neighboring cluster is a candidate for merger if it does not
violate the δ-condition. A fitness value is defined for all the candidates. The candidate with
the minimum fitness is called the best candidate. A pair of clusters merge if they are the
best candidates with respect to each other. This merger continues recursively until there is
a single cluster in the whole network or no further mergers are possible.

Assuming that k clusters (trees) have been generated, we now explain how two neigh-
boring trees Ci and Cj merge. Every cluster Ci maintains its diameter mi. Clusters Ci and
Cj verify the condition: mi + d(Fri , Frj ) + mj ≤ δ. If they violate the condition, then
Ci and Cj rule each other out as candidates for merger; else, they evaluate the fitness of
the possible merger. The fitness of the merger is determined by mij , the diameter of the
merged cluster. If mi ≥ mj then mij is set to max(mi, mj + d(Fri , Frj )), else it is set to
max(mj , mi + d(Fri , Frj )). Cluster Ci chooses the optimal candidate based on these val-
ues: best candidatei = argminj mij . Clusters Ci and Cj merge if best candidatei = j
and best candidatej = i. The time and message complexity of this algorithm is O(N2).

TAG querying: TAG [20] is a tiny aggregation scheme, distributed as a part of the TinyDB
(Tiny Database) package that runs on motes [3]. TAG uses a SQL like declarative query
interface to retrieve data from the network. It consists of two phases. In the distribution
phase, the query is pushed down into the network using an overlay tree network, and in the
collection phase, the results are aggregated continually up from the children to parents and
reported to the base station. We evaluate the pruning benefits achieved by our range query
algorithm by comparing it to TAG.

8.4 Clustering quality

Figs. 8 & 9 compare the clustering quality of ELink with the competing schemes, for vary-
ing δ. The threshold decrease required to switch a cluster, φ, was set to 0.1δ, and the max-
imum number of switches allowed, c, was set to 4. The Implicit and Explicit signalled
ELink algorithms output the same clusters, except that the Explicit ELink has a higher
communication cost than the Implicit one due to additional synchronization. The cluster-
ing quality of these algorithms is almost as good as the centralized scheme for all the data
sets. Notice that ELink generates better clustering quality than the Hierarchical and Span-
ning forest algorithms. The Hierarchical algorithm performs better than Spanning forest,
as it employs the fitness function to optimize the diameter. Results for the synthetic data
set [21] were similar, except that there was an increase in the number of clusters due to
little data correlations among spatial neighbors.

8.5 Communication costs

In this section, we evaluate the cluster update handling algorithm and the scalability of
our algorithms in terms of their communication costs. Computational costs are negligible
compared to communication costs in a sensor network. For brevity, we only report the
representative results.
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Update handling: Every node in the centralized algorithm has to update the base station
if the local model violates the slack Δ; hence, the algorithm incurs a huge communication
overhead. Even if the slack condition (A1) is violated locally, the ELink update algorithm
(in section 6) does not generate any messages if the conditions A2 and A3 are satisfied.
Since these conditions require the cluster root feature Fri , and a node in the centralized al-
gorithm does not maintain Fri locally, the centralized algorithm cannot prune by conditions
A2 and A3. Due to these reasons, the communication cost of ELink algorithms is 10 times
lower than the centralized algorithm as seen in Fig 10. As the slack is increased (effec-
tively reducing the δ parameter), the quality of clustering decreases for all the algorithms
as shown in Fig 11.

Scalability: Fig. 12 & 13 depict the scalability of the algorithms with time, and with the
size of network. Fig. 12 shows the log scale plot of the scalability of algorithms on the
Tao data set. We have included an extra plot for the centralized algorithm, in which every
update to a raw value at a node is sent to the centralized base station. This figure illustrates
that communication benefits obtained by modeling alone are an order of magnitude com-
pared to raw data updates, whereas modeling combined by in-network clustering brings the
cost down by another order of magnitude. Fig. 13 shows the scalability of algorithms with
network size. We see the superior scalability of ELink based algorithms. This is because
all the distributed techniques confine the updates locally, whereas the centralized scheme
incurs a huge overhead of transmitting the model coefficients to the base station. Further-
more, Hierarchical clustering also incurs a huge cost since every merger decision has to
be propagated to the cluster leader in order to evaluate the best candidate. Since Explicit
ELink algorithm has additional synchronization costs, it incurs a larger overhead than the
Implicit ELink algorithm.
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8.6 Range querying

Figs. 14 & 15 show the average per-query cost when the range query algorithm is run
separately on each clustering algorithm on both the data sets. The query point was sampled
uniformly from the nodes. The query radius r was varied from (0.7δ, 0.9δ) for the real
data and (0.3δ, 0.7δ) for the synthetic data. TAG is shown for comparison. Since TAG
builds an overlay tree and aggregates the results back, the average number of messages
per query is fixed and is equal to twice the number of edges in the spanning tree. In the
real data set in Fig. 14, the clustering was compact, and hence ELink and Hierarchical
pruned many clusters using the δ-compactness property, thus decreasing the query cost 5
times. But, as the query radius increased, the benefits of pruning by the δ-compactness
property decreased, the pruning was now primarily due to the distributed index structure.
Fig. 15 shows that there were less communication benefits for the synthetic data set. This
is because the data was not spatially correlated.
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9 Related Work
The general problem that the paper addresses—clustering of data distributions —has been
extensively studied in statistics, machine learning and pattern recognition literature. There
are three basic types of clustering algorithms: partitioning, hierarchical and mixture of
Gaussian models. Partitioning algorithms such as k-means for euclidean spaces, or k-
medoids for metric spaces (e.g. PAM, CLARANS [23]) represent each of the k clusters by



a centroid or an object. For our problem, distributed k-medoids would be communication
intensive because in every iteration, all the medoids would have to be broadcast throughout
the network so that every node computes its closest medoid. In hierarchical clustering (e.g.
CURE [24]), the most similar pair of clusters are merged in each round, finally resulting in
a single cluster. Our distributed hierarchical clustering technique is based on the same idea.
But, this incurred a huge communication cost because of the exchange of data in in every
round of merger.

Spatial data mining discovers interesting patterns in spatial databases. STING [28], a
spatial clustering technique, captures the statistics associated with spatial cells at different
resolutions, in order to answer range-queries efficiently. But it generates isothetic clus-
ters whose boundaries are aligned to horizontal or vertical axis. WaveCluster [27] finds
the densely populated regions in the euclidean space using the multi-resolution property of
wavelets. It is a centralized scheme. In sensor networks distributed clustering has been stud-
ied for effcient routing purposes rather than for discovering data correlations [30]. Chinta-
lapudi et al. [6] detect the edges of clusters (or phenomenon) in the specific setting where a
sensor node emits only binary values. Instead of clustering, Kotidis [17] aims to determine
the representatives among groups of sensors with similar observations.

10 Conclusions
We considered the problem of spatial clustering in sensor networks, and showed that is
both NP-complete and hard to approximate. We presented a distributed algorithm, ELink,
based on a quadtree decomposition and a level by level expansion using sentinel sets. Our
algorithm generated good quality clustering, comparable to those achieved by centralized
algorithms. Our algorithm is also efficient: it takes O(N) messages and O(

√
N log N) time

for both synchronous and asynchronous networks. Our experiments showed that ELink
outperforms a centralized algorithm (10 times) and competing distributed techniques (3-
4 times) in communication costs of clustering. We also answered range queries and path
queries efficiently based on the δ-compactness property and by using a hierarchical index,
resulting in communication gains of up to a factor of 5 over competing techniques.
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Appendix A: Online Updates to a Model
In this section we show how our model coefficients are updated incrementally. Let us assume that X
is an k × m matrix of m measurements (one set of k input variables per column), α is the k × 1
vector of regression coefficients and y the m × 1 vector of outputs. The Least Squares solution to
the over-determined system XT α = y is the solution of XXT α = Xy. Let P denote XXT and b
denote XY . We can compute α̂ = P−1b, where

Pk = [

kX
i=1

xix
T
i ]−1 and bk =

kX
i=1

xiyi (5)

The operations above will be performed once. When a new vector xm+1 and output ym+1 arrive, the
recursive equations for online model computation can be derived from [29] as:

bk = bk−1 + xkyk (6)

Pk = Pk−1 − Pk−1xk[1 + xT
k Pk−1xk]−1xT

k Pk−1 (7)

α̂k = α̂k−1 − Pk(xkxT
k αk−1 − xkyk) (8)

Appendix B: ELink Algorithms



� ELink clustering at node i (0 ≤ i < N )

l : level of node i in the quadtree.
clustered : boolean variable. Initially false.
m : level of the sentinel it is clustered by.
p : parent of i in the cluster tree. Initially set to i.
ri : root of cluster to which i belongs.
Fi : feature value at node i.
Fri : feature value at root ri.
counter : number of times a node can switch clusters.

Initialized to c.
φ : threshold for switching clusters.

// Procedure executed upon receiving a signal
ELink (i) ::

if (¬clustered) then
ri := i;
clustered := true;
Fri := Fi;
m := l;
send <“expand”, Fri , ri, m> to all neighbors.

receive <“expand”, Frj , rj , n> from a neighbor j ::
if (d(Frj , Fi) ≤ δ/2 & (¬clustered || (n = m

& d(Frj , Fi) < d(Fri , Fi) + φ & counter ≥ 0) ))
then

p := j;
ri := rj ;
Fri := Frj ;
m := n;
if (clustered) then

counter := counter − 1;
clustered := true;
send <“expand”, Fri , ri, m> to all neighbors;
// Explicit Signalling: send <“ack1”> to p.

Fig. 16. ELink clustering algorithm.

� Implicit signalling at node i (0 ≤ i < N )

Sl : Sentinel set to which i belongs.

κ := (1 + γ)
q

N
2

// Worst-case time for the quadtree
root to cluster with any node
in the network.

tl := κ(1+1/2+...+1/2l) // Duration for i to expand.
T imer :=

Pl−1
j=0 tj // Time after which i starts Elink.

T imerExpires ::
ELink (i).

Fig. 17. Implicit signalling technique.

� Explicit signalling at node i (0 ≤ i < N )

children : number of i’s children in the cluster tree.
Initially 0.

quad children : number of i’s children in the
quadtree. Initially 4.

quad parent : i’s parent in the quadtree.
// The rest of the variables are from ELink algorithm.

// A node after sending the expand messages (Fig. 16),
determines that it is a leaf in the cluster tree
if it does not receive any ack1 messages from its
neighbors within a conservative time-out period.

if (i is a leaf)
send <“ack2”> to p.

MessageHandler ::

// This message is received during
// ELink’s cluster expansion.
receive <“ack1”> from j ::

children := children + 1.

receive <“ack2”> from j ::
children := children − 1;
if (children = 0)

if (i = ri) // i is the cluster leader.
send <“phase 1”, l> to quad parent;

else
send <“ack2”, l> to p.

receive <“phase 1”, n> from j ::
quad children := quad children − 1;
if (quad children = 0)

if (i ∈ S0) // the quadtree root
send <“phase 2”, n> to all quadtree children;

else
send <“phase 1”, n> to quad parent ;
quad children := 4. // Reset for the next

round.
receive <“phase 2”, n> from j ::

if (l = n)
send <“start”> to all quadtree children;

else
send <“phase 2”, n> to all quadtree children.

receive <“start”> from j ::
quad parent := j;
ELink (i).

Fig. 18. Explicit signalling technique.


