AutoDVS: An Automatic, General-Purpose, Dynamic Clock
Scheduling System for Hand-Held Devices

UCSB Technical Report 2005-04, March 1, 2005

Selim Gurun

Chandra Krintz

Computer Science Department
University of California, Santa Barbara
{gurun,ckrint3 @cs.ucsb.edu

ABSTRACT

We present AutoDVS, a dynamic voltage scaling (DVS) system f
the HP iPAQ hand-held computer. AutoDVS unifies existing DVS
techniques into a single system that significantly reducegower
consumption of popular, general-purpose, iPAQ softwarerem
over, it does so without degrading the user's experienceeper
ably. AutoDVS automatically infers periods of user inteivty
and non-interactivity and applies different DVS policieseach
period type. We have implemented AutoDVS as a freely-ablila
kernel-patch for Familiar Linux and the iPAQ Opie Window Man
ager. We evaluated AutoDVS using real user workloads of iPAQ
software running alone and concurrently. AutoDVS decrease
ergy consumption by 30-70% for interactive programs, by ap t
19% for soft real-time applications, and by 12% when theferei
ent program types run concurrently.

1. INTRODUCTION

Recent advances in embedded device technology have led to th
proliferation of battery-powered devices and, in parécuhand-
held personal digital assistants (PDAs) and web-enablédlare
phones. Worldwide, approximately 30 million PDAs are in,use
and predictions indicate that PDA sales in the US will inseea
from 6.9 million to 17.1 million by 2007. Moreover, the matke
for smartphones is growing even faster, out-pacing saléxD#s
in Europe [16]. As a result of the popularity and improving ca
pability of hand-held devices, users demand increasingiyptex
software for these devices. Moreover, users expect liglgeices
with long battery lives.

Dynamic voltage scaling (DVS) is a technique that attempts t
extend the battery life of hand-held devices without compsing

time.

To enable our empirical evaluation of and investigation DVS
techniques for hand-held devices, we implemented a DV&syst
called AutoDVSfor the HP iPAQ hand-held [3] and its operating
system (OS), Familiar Linux [4] AutoDVS is a set of open-smr
OS and window manager extensions that performs DVS transpar
ently, requiring no application support or programmer ffé\u-
toDVS is also general-purpose, i.e., it is effective for age of
popular iPAQ software, e.g., games, personal assistarueap
tions, and multimedia programs.

AutoDVS couples a number of important extant approaches to
DVS into a unifying system that reduces power consumptidh-wi
out negatively impacting the user’s perception of systemiope
mance. As originally proposed in [5], and employed and eléein
in [14, 12], AutoDVS differentiates between different wia&d
types: periods of user interaction with the device, periatien
the device is idle, and computationally-intensive periods

AutoDVS detects these different types of workload behavior
using two light-weight software sensors. AutoDVS then eypl
multiple DVS techniques to handle each workload type dfielry.
AutoDVS considers both application-specific behaviors ifiter-
active periods) and system-wide behaviors (for non-itéra pe-
riods) to guide its CPU scaling decisions.

AutoDVS captures interactive periods by intercepting Gidres
in the iIPAQ window manager as is similar to the capture of X-
Window mouse and keyboard events in [5]. AutoDVS capturks al
events including user input events and those that updatgowis,
separately, for each application running in the systems €hables
AutoDVS to predict more accurately the length of interaziperi-
ods given recent event histories. We employ a light-weilgigthly
accurate prediction utility called NWSLite that we deveddpin

system performance. DVS enables the CPU to be scaled dynam-prior work [9], to predict interactive period length. AutvB max-

ically according to varying program or workload demand [24,
7, 8]. Next-generation CPUs for mobile computers, such aseth
produced by companies like Transmeta and Intel Corporatvih
support a range of voltage and frequency levels that canjbstad
at runtime. Using such functionality, a DVS system must icieiee
the best frequency level for optimal performance and batifa-

Permission to make digital or hard copies of all or part of tiork for

personal or classroom use is granted without fee providatddbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 2001 ACM 0-89791-88-6/97/05%5.00.

imizes the CPU voltage and frequency for the predicted tnraif
interactive periods — since presumably, the user is mositsento
device performance during this time.

For non-interactive periods, AutoDVS employs two intesctied-
uling techniques. AutoDVS implements variations of PASTkvo
load prediction [24] and Pering’s hysteresis [19] to captOPU in-
tensive periods in the workload and to scale the CPU apatgbyi
AutoDVS also monitors Linux idle process statistics to itifgrop-
portunities to scale-down the CPU.

Our empirical evaluation indicates that AutoDV'S can rechmser
consumption of iPAQ hand-held workloads significantly witl
degrading system performance. We empirically evaluate Bus
for real iPAQ workloads that we collected from actual usefer
repeatability, we play-back the workloaisreal time on the iPAQ
and measure the impact of using AutoDVS and comparative ap-

proaches. We evaluate AutoDVS for single as well as conotirre
workloads. As benchmarks, we use applications that arelédnd
with standard distributions of hand-held operating syste@ur re-
sults show that AutoDVS reduces energy consumption by 36-70
for interactive programs, by up to 19% for soft real-time lagap
tions, and by 12% when these different program types runwenc
rently. Moreover, it does so while maintaining very high gmam
execution quality.
In summary, the contributions of this paper include:

e The design and implementation of AutoDVS, a lightweight
Linux extension that automatically and transparently cegu
power consumption without negatively impacting the user’s
perception of performance by coupling and extending known
CPU scaling techniques effectively.

e A system that accurately predicts periods of interactiaitg

implement AutoDVS, we incorporated and extended existiNgGD
techniques for interval scheduling and interactive tasliedaling.

Interval Scheduling

Interval scheduling techniques [24, 8, 7, 23], divide theklaad
into fixed time intervals. These techniques use measurehient
tory to estimate the workload in a future interval. For exéamthe
PAST interval scheduler [24] assumes that the workloademtxt
interval will be same as the workload in last interval; th& G n
interval scheduler [24, 8] assumes that the next intervahigx-
ponential moving average (using a decay factor) of the Nipusv
intervals. Other interval schedulers use observationi$tis [7]
and more sophisticated statistical estimation methodstf2®ake
the predictions.

Interval schedulers have been shown to be quite limited ¥ D
for workloads that are commonly run on modern hand-held de-

considers non-interactive periods separately to make CPU vices [8]. The primary reasons for this are that extant vl

scaling decisions.

e An empirical evaluation that shows that AutoDVS success-
fully balances low power consumption and system perfor-
mance. We evaluate AutoDVS using real workloads of pop-
ular iPAQ software that we collected from users of our de-
vices.

e An open-source framework for the implementation, inves-
tigation, and empirical evaluation and comparison of DVS
algorithms.

In the following section, we preset background on dynamit vo
age scaling and on existing approaches to DVS that we incatgo
into AutoDVS. We then describe the design and implementatio
of AutoDVS in Section 3. In Section 4, we present the emplirica
evaluation of our system and in Section 5, we conclude.

2. BACKGROUND

In modern CPUs, most energy is dissipated in the form of dy-
namic power consumption [22, 15], which is a function of CPU
voltage and frequency and is approximated by:

PxV3f ()

We can reduce device power consumption by decreasingséa:,

ing down, the voltage and frequency together. Decreasieg fr
guency alone is not attractive since doing so increasesrqumog
execution time proportionally, and thus, commonly offgéts en-
ergy savings. When scaling the voltage, we must also scale th
frequency in the same proportion to meet signal propagakibey
requirements [20]. By decreasing the voltage, we have ttengial

for quadratic power savings with only linear performancsslo

To minimize the effect of voltage scaling on system perfarosa
(while saving energy), dynamic voltage scaling (DVS) pesanust
estimate future workload and choose the most appropriaté CP
level. Accurately predicting future workload is very cleadfing
yet vital for maintaining acceptable performance. Misprtdn
can result in setting the CPU level too high, curtailing ppaav-
ings, or in setting the CPU level too low, producing an unoesjive
system and a very irritated user.

The goal of our work is to develop a system for DVS that effec-
tively balances the tradeoff between performance and poomr
sumption iPAQ hand-helds and their applications. The tesul-
toDVS, is general-purpose (unlike other DVS-enabled dpega
systems such as GraceOS [27] for multimedia devices), dntlys
automatic, i.e., it requires no application support or paogmer
effort (as is required in DVS systems such as Chameleon.[T2])

prediction approaches are inaccurate and that it is vefigulif to
identify a general mapping between different CPU loads aatt s
ing levels that works for all applications. Prediction ercauses
minimal power savings or poor performance, e.g., missett)(so
deadlines, significant interruption, etc.

Another limitation of interval scheduling in a practicalttieg
is the identification of an ideal, application-independénterval
length. To enable DVS techniques to detect and respond tmelsa
in workload effectively, the interval length should be vesiyort,
e.g., 10-50ms. Unfortunately, the minimum interval lengtha
practical (non-simulated) setting is impacted by extefaators,
e.g., operating system timer resolution and schedulingtguavhich
force a much longer interval length to be used (100-200ms).

Interactive Task Scheduling

Recent DVS studies have focused on classifying tasks iffereint
groups, each with a customized policy. [5] suggests threagy:
Interactive, periodic, and background tasks. In this systeach
interactive task has an implicit 50 milliseconds deadlirt@al is
known as the user perception threshold. The system pradiks
execution speed using the cumulative distribution fumc{icDF)
of task CPU demand. The system computes task execution speed
for future events using exponential smoothing of previoaisies.
If the event exceeds its pre-determined worst case deddkné¢he
panic threshold), the system scales the CPU to full speed.

A periodic task in this prior work consists of producer-comer
task pairs. Scheduling a periodic task requires that theesyss-
timate the time period between the completion of a produndr a
start of a consumer. The system computes CPU speed such that
producer ends immediately prior to when the consumer stélis
same speed is used for executing the consumer task. Theautho
of this work evaluate their approach using trace-drivenuation
for workstation applications such as Acrobat Reader, Mytscand
Xemacs.

Lorch et al. suggests an approach that specifically targets u
interactivity [14]. The system labels a user event with tpeetof
GUI event that initiates it, such as a key-press, mouséalicdrag
event. Each event type has a separate DVS policy. The authors
of this approach, compute the CPU schedule using PACE [13], a
heuristic that is proven to compute optimal speed when thd CP
can change frequency on a continuous scale and when tadingead
and CDF of task CPU demand is known.

These approaches and similar approaches must overcome a sig
nificant challenge: determining the completion time of & tagh-
out any assistance from the application. The approach?]irrg-
quires task completion time to update task execution titme;ajp-

proach in P] uses task completion time to compute task CDF and
deadline. The solution described in the former work is [Eeci
however, inherently complex; it requires monitoring systealls
and communication between threads. The latter study stgges
simpler approach: an event is complete if a new event is gaste
the idle thread is running and no I/O is ongoing.

3. AUTODVS

Our goal with this work was to produce a practical, implerabit,
and efficient DVS scheduling system for iPAQ hand-helds aeit t
applications based on the findings of the previous work [33,7,
14, 23, 24]. With AutoDVS, we hope to exploit the benefits en-
abled by these algorithms while limiting any negative intgaey
might impose, by using them in combination. We implemented
AutoDVS as a freely-available, lightweight, flexible extén to
Familiar Linux. AutoDVS efficiently monitors executing gn@ams
and uses the resulting performance samples to estimate fioéd
havior and to guide CPU scaling decisions.

The primary functionality of AutoDVS lies within twsensors
and anarbitrator. The sensors detect and predict task-level (sub-
application) and workload behavior; one sensor is resptsméor
application-specific user-interactivity and the otherdsponsible
for the overall workload of the system. In addition, eachseen
determines when CPU scaling is required. We describe trsosen
in greater detail in the subsections that follow.

Each sensor makes scaling requests asynchronously tolihe ar
trator. The arbitrator is a high-priority kernel threadttivaple-
ments requests. The sensors interact with the arbitrados well-
defined API that supports requests for a particular CPU &aqy
a one-level increase or decrease, and a value from 1-8 timdjca
the CPU level (1 being slowest). The arbitrator consideesctir-
rent CPU level and if necessary, converts the request to aik av
able clock frequency (as our CPU supports 8 levels, each eumb
is mapped to a real level). The arbitrator mediates conntuC@U
scaling requests issued by the sensors; it assigns a higbetyto
the interactive sensor and when two requests have the saonigypr
it schedules the one that will result in the higher speed.only

This division of labor across the system is key to the efficacy
of AutoDVS. The interactivity sensor considers GUI everas f
each application separately and makes predictions of thatido
of each interactive session. By considering each appbieatidi-
vidually, our predictions are very accurate due to reguépeating
patterns within applications. The CPU load sensor take®lat)l
view of the system to identify additional DVS opportunitiest
made apparent to the fine-grain interactive scheduler. thiegéhe
sensors are able to consider a wide range of applicationvleha
to make accurate and effective CPU scaling decisions tloiacee
power consumption without negatively impacting perforg&n

In the subsections that follow, we first describe the iPAQliapp
cations that we use to demonstrate various workload befsaial
performance requirements common in popular iPAQ softwafe.
then detail the implementation of the AutoDVS sensors foecte
ing and predicting user-interactivity and changes in CPadllo

3.1 Example Applications

We use AutoDVS to reduce iPAQ power consumption for com-
mon workloads of popular, general-purpose hand-held egijdins
with significant growth potential, e.g., personal assistgsrograms,
games, and multimedia programs [16]. Such software poseg ma
challenges to DVS systems because they require significampa-
tation, heavy user interaction, and soft real-time conssa Per-
formance loss due to DVS for such applications can severely d
grade the user’s perception of program and device perfarean

We describe all of the iPAQ software that we used in the empiri
cal evaluation of AutoDVS in Section 4.2. However, we usela su
set of these benchmarks as examples throughout the papee Th
of these programs are games with different performanceachar
teristics: Solitaire, Checkersand Tetrix. Among these, Checkers
has the highest computational requirements; Tetrix has keg as
the level of play increases, users tend to play very fasteigeimg
many graphical user interface (GUI) events. Solitaire camiy
consumes the fewest resources.

We useOpieplayerto demonstrate the user-interactivity, CPU re-
source consumption, and the soft real-time requirementsrem
in multimedia applications. Opieplayer is a front-end towtime-
dia library which includes decoders for many popular musid a
video formats. All of our applications are available fron8]1

3.2 Interactivity Sensor

The first AutoDVS sensor targets per-application userrautgvity.
It incorporates and extends the DVS strategies describddang-
ner et al. [5] for interactive tasks. AutoDVS monitors GUeats to
identify interactive sessions arbitrary programs. Our system em-
ploys no notion of tasks, but instead automatically infersktlike
behavior, i.e., periods of time, in which the user is intéragwith
the device. We refer to non-interactive sessionthatk times In
addition, we do not distinguish event types (as is done i) [i14,
we consider only interactive sessions regardless of whiehts oc-
cur within them. The interactive sensor manages CPU scaling
ing interactive sessions. In particular, this sensor noogievents,
detects and predicts interactive sessions, and scalesRbef@
each interactive session.

3.2.1 Monitoring GUI Events

The interactive sensor collects event statistics about eppli-
cation. The GUI events are triggered either by user inputyahb
applications themselves. In our hand-held platform, trex urgout
events are generated by touch-buttons, the joypad, andtice-t
screen. The GUI events provide a communication path bettieen
applications and the window manager. The window updateisfoc
selection events are typical examples to GUI events.

In our platform,all GUI events are routed to the Window Man-
ager (which implemented as a library) that then re-routeseh
events to the appropriate target applications. Each GUIcgtipn
instance has its own event handler with which the sensortaias
separate event sessions for each application. We impleché¢me
interactive sensor in the Window Manager library by extagdin
extant, call-back function without an implementation (& func-
tion) calledeventfilter.

The evenffilter in AutoDVS is an interface to the prediction li-
brary used to forecast interactive session lengths (wel dieitain
the next subsection) and as a policy maker for frequencynsgal
The function timestamps event arrivals, determines the efea
think period, extracts session length predictions frompheic-
tion library, and requests CPU scaling from the arbitrattve im-
plemented a new system call in the Linux kernel to serve as the
interface to evenfilter.

3.2.2 Detecting and Predicting
Interactive Session Lengths

An interactive session starts with the arrival of an evetemds
if no event is received for a period of. Identifying the interac-
tive sessions correctly is important, since presumably,uber is
most sensitive to any performance loss during these peridls
value oft, impacts the system in two ways. df is too low, the
algorithm might end an interactive session prematurelylentfie

Interactivity Sessions - Solitaire

Interactivity Sessions - Tetrix

Interactivity Sessions - Opieplayer

500 |- 500

100 [~ | 100
50 50

oﬂMMMMﬂVM»W“ MM 1l o | |

event interarrival time (msecs)

=1 100
50
I o 1

20 40 60 80 100 120 140 160 180 200 20 40 60
Events

80 100 120 140 160 180 200
Events

20 40 60 80 100 120 140 160 180 200
Events

Figure 1. GUI event inter-arrival times for three typical ap plications -Solitaire, Tetrix and Opieplayer (a multimedia player). Soli-
taire has bursts of events separated with long idle times. Teax has much shorter bursts with smaller idle times due to higher
interactivity. Opieplayer has largest event inter-arrival times with interactive sessions of almost a few events at ate.

application is still processing a GUI event. ¢lf is too high, the
sensor will maintain a high CPU speed and miss opporturfities
reducing energy consumption. We determingémpirically to be
500 milliseconds (ms) using a large set of GUI programs. \Wado

that out of 177561 GUI events, 99.3% of them were processed in

less than 500ms.

Given the start of an interactive session, the sensor peeitéc
duration. The length of each session is very applicati@tifio.
To confirm this, Figure 1 shows the event arrival times foe¢hr
typical cases using a cross section of an event trace froitafse)
Tetrix, and Opieplayer. Solitaire receives long bursts sérun-
put events bounded by large think times. The event burstrisrge
ated by the touch screen, during the frequent drag-and-ojpep-
ations involved in this game. In contrast, Tetrix receives most
user events through the keypad; this results in very shostdof
events. However, due to the nature of game, the event buests a
separated by smaller think times. For these examples, tidkame
think time for Solitaire and Tetrix is 2.2 and 1.0 secondspee-
tively. Opieplayer is much less interactive than both okthgames
with almost no burst of user interface events.

To predict the duration of an interactive session, we irztegt
NWSLite [9] into AutoDVS. NWSLite is an open-source predic-
tion utility that we developed in prior work; it is an exteosiof the
Network Weather Service [25] for Computational Grid Comput
ing [6]. NWSLite is a non-parametric forecasting tool thaigets
embedded devices. NWSLite uses a mixture-of-experts appro
for prediction rather than relying on a single model, i.einiple-
ments a set of time-series models, each having its own paeame
zation. Given a history of observed performance values, NS
generates a forecast for each measurement using eachtipredic
model. NWSLite ranks each predictor by computing the cumula
tive prediction errors. Each time a forecast is request&tiSNite
chooses the predictor with the highest rank (lowest curivelatr-

ror). We have shown that NWSLite produces very accurate pre-

dictions for a wide range of resource types, including TGenlay,
wired and wireless network bandwidth, CPU load, and CPU de-
mand. Moreover, it does so with very low overhead: NWSLite
uses 55 floating operations and 592 integer and miscellangou
erations per forecast. As such, we employ NWSLite to pradict
teractive session length for the interactive sensor in B\iS.
NWSLite implements five predictors currently; last valuepe
nential smoothing with %5 and %20 gain factors, running mean
and median with a window size of 5. The first two of these are par
ticularly popular in research community and used extehside,
21, 24, 8]. Table 1 shows the first nine predictions of sedsiogth
for Opieplayer. The first column is observed session lentté,

Real Value| Predicted Value] Winner Forecaste
1| 94.44 243.88 Last Value
2 || 80.46 236.41 5% Exp Smooth
3 || 280.95 187.28 20% Exp Smooth
4 || 685.83 206.02 20% Exp Smooth
5 || 687.64 685.83 Last Value
6 || 121.66 687.64 Last Value
7 || 325.75 267.94 5% Exp Smooth
8 || 98.05 270.83 5% Exp Smooth
9 || 773.57 262.19 5% Exp Smooth

Table 1: The first nine session length predictions for Opiegyer
using NWSLite. NWSLite always starts with the Last Value
predictor. Due to the high variance in this particular dataset,
NWSLite switches between multiple predictors before reacimg
a steady state.

second column is the session length predicted by NWSL.itktlem
final column is the predictor chosen by NWSLite to make the pre
diction. The session lengths are highly variable, causi#¢Silite

to switch back and forth between various predictors in thgirbe
ning. Eventually, NWSLite stabilizes on exponential sninirog,
with a gain factor of 5%, and uses it through the rest of datase
NWSLite has a clear advantage over commonly used parametric
predictors, especially when the dataset is non-stationigre-
over, when the dataset is highly predictible, NWSLite wérform
similarly to any predictor it incorporates. NWSLite can lasiéy
extended to incorporate any time-series prediction teghi

3.2.3 CPU Scaling for Interactive Sessions

The interactive sensor is also responsible for CPU scatinif
teractive sessions. We empirically evaluated a numberfferdit
policies within AutoDVS using a real iPAQ and popular iPAQ GU
software. We found that by far, the best policy is the most-sim
ple one: switching to the maximum clock speed during inté&rac
sessions. The reason for this was the LCD driver in our etialua
platform: Each frequency switch results in a short but reatite
disruption in the display. Thus, even a small number of dveisade-
grades the user’'s experience. As such, techniques thayel@iPU
speeds on this platform during interactive sessions, RALCE [13,
26] are not feasible.

The interactive sensor does not consider interactivemes#ss
than 500us to account for voltage settling time. The authors in [8]
measured the voltage settling time to be less than250n the
Itsy [1] platform which uses the same microprocessor asRADE.
We use 50Qus as a conservative estimate.

3.3 CPU Load Sensors

AutoDVS must also account for periods of time during workloa
execution that are not interactive. Most programs, evesetibat
are primarily interactive, execute think (non-interaetir compu-
tationally intensive) periods. The CPU load sensor is raside
for these sessions. This sensor takes a global view of themys
and workload, i.e., it does not consider task-level andiagfbn-
specific details. The sensor employs two interval-schesltiteper-
form clock scheduling of non-interactive periods.

The authors in [8] concluded that interval schedulers dgeot
form well for real implementations on a hardware/softwala-p
form that is similar to our iPAQ platform. The reasons forsthi
include the difficulty with which an appropriate, generalqpose,
yet short, interval length can be identified, and the inaacyof
extant approaches for prediction of future CPU load givest pis-
tory. Past approaches to interval scheduling use very shixet-
size intervals to ensure that the systems respond quicklyanges
in the workload. Given short time intervals and the highlyiva
able CPU load that is typical of hand-held applicationstistiaal
and last-value prediction results in large forecastingrsrand thus,
mis-scaling of the CPU.

We have been able to employ interval schedulers effectively
AutoDVS. The key reasons for this are that (1) we couple tinggr
for non-interactive sessions with completely differentCstaling
techniques for interactive sessions (described prewhu€?) we
use very long time intervals, and (3) we employ two differieter-
val schedulers at once.

The two schedulers are called tG#U Load Monitorand the
Idle Process MonitarWe implemented both monitors as small ex-
tensions to the Linux kernel timer interrupt handler. Weoexe
each monitor when their particular interval periods expire

The CPU load monitor considers very large intervals (10 sdfo
and averages the measured CPU load across intervals. Bygaver
ing, we are able to eliminate noise in the data and distriblatek
timemore efficiently. Slack time consists of the idle cycles dgri
an interval when CPU utilization is less than 1. The monita-p
dicts that the CPU load for the next interval will be the sammét a
is for the current interval (this is the PAST policy used id [8]).
The limitation of the CPU load monitor is that with a very long
interval, our system response time is long — we only consdal-
ing the CPU every 10 seconds. The interactive sensor address
this problem for interactive sessions since it respondseiately
to such behavior. However, we need to respond quickly when th

in our real implementation for iPAQ software. The idle prege
monitor requests a step increase from the arbitrator whaetétcts
a period (500ms) in which the idle process is never schedufed
the monitor detects that the idle process executes for aléthe
interval time, it requests a step decrease.

Both monitors request only single step (CPU level) changis.
authors in [5] computed excess cycles during a period of wilmeh
they then used to compute new speeds to which to scale the CPU.
We investigated such an approach in AutoDVS but found that do
ing so caused a large number of arbitrator requests anchthgas
between CPU levels. Moreover, when we set the CPU to the mini-
mum level when the idle process monitor detects an intenwvahgd
which only the idle process executed, the system also tadagrhe
thrashing is caused by the changing workload and the irtterac
between the sensors. Single-step changes avoid this profilee
disadvantage to single-stepping is a delayed responseiftiome
of the level extremes (minimum or maximum) is most appropri-
ate. We discuss this effect in our results analysis for saft-time
programs in Sectiod.4.2

4. EVALUATION

We empirically evaluated the efficacy of our approach by nugn
a large number of very different workloads on an iPAQ devidth w
AutoDVS and comparative techniques. We collected a number o
different performance metrics while doing so. In the subeas
that follow, we describe our experimental setup and the lreack
workloads. We then define the metrics that we use in our eagbiri
evaluation and present our results.

4.1 Experimental Platform

Our device infrastructure included five Compaq H3800 hand-
held computers running Familiar Linux version 0.7.2 [4] €THi3800
is a very typical hand-held computer, with a 206MHz StrormgAr
CPU, 64 Mbytes of main memory and 32 Mbytes of Flash RAM.
Itis capable of dynamic frequency scaling, howevedpiés not yet
support dynamic voltage scaling

To estimate power savings, we use the technique definedan pri
work [5] for a similar study. We assume that the StrongArm and
XScale [11] processor exhibit similar power charactesgstind use
published data for the XScale XSA (the system most similain¢o
StrongArm in terms of maximum voltage and supported frequen

system becomes idle also, in order to conserve as much p@ver arange), in the estimation. We approximate the voltage seoél

possible. For this we use the idle process monitor.

The idle process is process that the OS scheduler runs wérenev
no other process in the system is runnable. When the OS delsedu
the idle process, it puts the CPU into a low-power, hardwasden
if one is available. The StrongArm CPU shuts down most clocks
when entering the idle process, effectively stalling fts€he inter-
rupt handler remains live during this time and wakes the CIREw
an IRQ request occurs. The idle process monitor evaluates (t
resets) idle process statistics every 500 millisecond® rnitor
considers the number of times the idle process was schebyled
the OS and its execution duration during the previous iafe/e
modified the Linux scheduler (sched.c) to collect and expuost
information as a kernel symbol.

Both monitors make CPU scaling requests to the arbitratoe T
CPU load monitor uses an extension to Pering’s hysteresifL|9
to decide when to request a speed change. These value€)(50,7
prior work, indicate the available CPU load levels that ssedito
scale the CPU. When the load is below 50%, Pering stepped-dow

the CPU level; when the load was above 70%, he stepped-up the

CPU level. We found empirically that the pair (60,80) worksb

the XScale CPU using the available frequency levels and @ansec
degree polynomial parameterized by the XSA data:

v=—4x10""f%40.0015f + 0.5324 @)

To compute the corresponding StrongArm voltage levels, se& u
Equation 3 as a mapping function. That is, we linearly scalers
gArm frequency range to the XScale frequency range:

773 —150.0
T 206.4 — 59.0

We present the estimated voltage levels in Table 2.

The StrongArm architecture requires that all of the primaey
ripherals be synchronous to the CPU clock [10]. This imptiext
all CPU scaling will impact the performance of memory, th@ I/
controller, DMA, the LCD controller, etc. The dependency be
tween the CPU clock and external devices can cause sigtififan
ferences between theoretical expectations (and simutatdts)
and practical results. For example, Grunwald et.al. fourat t
the CPU utilization changes non-linearly with respect ticklfre-
guency, possibly due to variations in memory access cy8les [

f x (f — 59.0) + 150.0 A3)

Estimated
Level || Freq. (MHz) || Voltage (mV)
1 59.0 748
2 73.7 832
3 88.5 914
4 103.2 992
5 118.0 1067
6 132.7 1139
7 147.5 1209
8 162.2 1274
9 176.9 1337
10 191.7 1397
11 206.4 1453

Table 2: SA1100 Clock frequency levels. Since our iPAQs im-
plement only frequency scaling functionality, we estimatehe
energy savings from voltage scaling using the available iR
frequency levels. We estimate the voltage levels using theilp-
lished XScale XSA parameters and the formula defined by oth-
ers in prior work for the same computation.

Another obstacle that we encountered was the dependenbgon t
CPU by other peripherals. In particular, the LCD driver lieci our
evaluation in two ways. First, the display started vibrgtmak-
ing it unreadable for any speed lower than 103MHz. Thus we had
to eliminate three lowest frequencies. Second, frequehenges
were accompanied by short but noticeable disruptions gqflas
As a workaround, we were forced to use a flat (unchangingkcloc
speed during interactive sessions.

The window manager we run on the devices is Opie [18] version
1.0.2. Opie is an open-source graphical user interfaceguedifor
Sharp Zaurus and Compag hand-held computers. Itis a fdiéie
GUI comparable to commercial versions in both appearande an
features. The available Opie applications include CalerGan-
tacts, Drawpad, a multimedia player, a wide range of games, e

4.2 Benchmarks and
Experimental Methodology

We evaluated AutoDVS using three different scenarios. 1fl) |
teractive: Running GUI applications; (2) Soft Real-TimeurRing
a single multimedia application, such as a video or audighalek;
and (3) Concurrent: Interactive and soft-real time appilice run-
ning together.

To evaluate and compare the performance of interactive-appl
cations, we collected a set of usage traces and extractet @ve
timestamp information. However, waid not simulate our algo-
rithms on those traces Instead, we implemented AutoDVS, and
we replayed the events in real-timeMoreover, our results include
the time for frequency settling and for AutoDVS itself.

To collect the usage traces, we installed Opie on several-Com
pag H3800 hand-held computers and distributed them to gtadu
students in our department. We let the students know thateve w
capturing all the events happening and asked them to useitie h
helds as their own as normally as possible and to rebootgierio
cally (to end the session).

Before distribution, we made three modifications to the iPAQ
systems: We (1) disabled network connectivity; (2) modified-

Event Count
Trace (ETime@206MHz) | Description
DrawPad-1|| 23100 (915.4s) Drawing random pictures

General use including calendalr,

General-1 || 3688 (448.1s) contacts and games
Solitaire-1 || 8700 (756.4s) Multiple Solitaire games
Tetrix-1 6936 (583.8s) Tetrix
Tetrix-2 1342 (210.1s) Tetrix - very short and slow
Checkers-1]| 1238 (205.1s) Checkers - medium difficulty
Checkers-2[| 1214 (265.7s) Checkers - maximum difficulty
Checkers-3|| 2490 (1076.4s) Checkers - maximum difficulty

Table 3: Event traces that we used for our experimentation. &

gathered the traces using instrumented versions of the syan

while different users exercised the iPAQs. We named each tca

to reflect the application that was dominant during the usage
period.

Encoding File Play
Datasets Rate(Kb/s) | Size (KB) | Length (s)
Low.mp3 56 2893 424
Medium.mp3 128 4809 307
High.mp3 214 3304 218
Super.mp3 488 5824 240

Table 4. The Madplay input files (MP3 files) that we used to
investigate the efficacy of AutoDVS under soft real-time con
straints. The names of the files reflect the sampling rate of ta
encoders.

To capture the events, we instrumented the Linux kernelet th
1/0 driver level. We captured all events generated by theheou
screen, the keypad, and the joy-pad using a microsecond-time
tamp. We saved the identification information for captureenes
in RAM and copied them to permanent storage immediatelyr prio
to shut-down, to prevent any excessive overhead. The tirde an
space overhead for event trace collection is small. Eachteee
quires a total of 20 bytes: 8 bytes for the timestamp and 18sbyt
for event type and attributes. Since we capture event in &elev
driver, we can read the current time directly from Linux lelrdata
structures and no system calls are required.

To replay the captured events, we developed a Linux kerndt mo
ule. The module keeps the list of events in memory and seeas th
using a microsecond resolution timer.

The event traces describe user behavior from boot-up te shut
down. Some of the traces that we captured were not usefyl; the
were either too short, or broken, i.e., dependent on usetezte
files. Also some traces were too similar. Overall, we setbtte
traces described in Table 3. The second column shows theerumb
of events in the trace and the total time (seconds) for thiéimea
play-back at maximum performance (206MHz) in parenthedés.
named each event trace using the application that was antee
of the time. The first four traces describe more general ugkcap
tions and includes multiple program types. The last fowresaare
exclusively games.

To evaluate soft real-time applications we chose Madpléychv
is an open-source, high quality MP3 decoder [2]. Madplay can
decode the applications off-line or interface to the GNOME E
lightened Sound Daemon (ESD), for on-line playback. We hee t
latter. The input files we use in our experiments are degtribe

dom number generators to use a fixed seed; and (3) mrogrammedTable 4.

each to clear all user state information after every rebddtese
changes were necessary to eliminate as much non-detemmésis
possible so that we could re-generate the user events inothe ¢
rect order during experimentation. We clear state infoiomaby
removing saved files and resetting user preferences toltistu
tings; this enables us to start from a known state duringasepl

4.3 Evaluation Metrics

We evaluated the impact of AutoDVS on both performance and
energy using three different evaluation metriggrcent degreda-
tion in performancedeadline miss courgndenergy savings ratio
We compute percent degredation in performance in terms-of us

ing the highest (maximum speed) CPU level (MAX). Specificall
we divide the absolute difference between the executioa tising
MAX and AutoDVS by the execution time for MAX.

We evaluate the performance of Madplay by counting the num-
ber of deadline misses. Conceptually, audio playback happe
three stages: Madplay reads MP3 encoded data from a file, de-
codes and converts to the data to the PCM format, and forvaeds
translated data to the ESD sound server. The sound servagesn
both the control and data path to audio hardware. At the abntr
path, ESD sets the audio parameters such as sampling r@&0(22
44100, etc), stereo/mono, and sample resolution (8/1% Bitghe
data path, ESD multiplexes raw PCM data from input sources an
transfers it to the audio hardware. For example, playingeeest
audio file at 44.1 kHz and 16 bits resolution requires:

44100 x 2 x 2 = 176400 bytes/second

The sound server provides some level of buffering to prezent
interruption to data flow. However, if the application cahpoo-
duce data as fast as the consumption rate of the audio hadavar
buffer underrun condition occurs eventually. When thispeas,
the audio hardware fills the gap by repeating the most receat d
or doing nothing (emitting silence). Every buffer underiarper-
ceivable by the user and degrades the user's experiencethveith
device. To evaluate the performance of multimedia apptioat
we counted the buffer underrun events at the sound senar lev

Finally, we compute the energy savings ratio using the ntetho
defined by Flautner et al. in [5] calldginergy Factor This value
is the ratio of energy used by the scaled workload to energy us
when workload is processed at full speed. That is:

i=1 v} fiti

V3 ax fruaxT

EnergySavingsRatio = 4)
v; and f; are the voltage and frequency of each period of titge (
between two frequency scaling operations. T refers to thewdion
time when CPU is run at full speed, i.e., usifiggax andvarax.
We use the frequency and voltage levels that are given ireTabl
To describe the savings, we use energy savings ratio whexduial
tol — EnergyFactor.

4.4 Results

We compare AutoDVS to two other policies: MAX, in which
the CPU is set to the highest level (for maximum performanoe))
FIXED, in which we employ a fixed CPU speed that trades off per-
formance and battery life — we use 132MHz (level 6) as is used i
a similar study [8]. We experimented with three differentrsar-
ios. (1) Interactive: Running GUI applications; (2) SoftR&ime:
Running a single multimedia application, such as a videaidica
playback; and (3) Concurrent: Interactive and soft-reaktappli-
cations running together. We describe the results from etitiese
scenarios in the following subsections.

4.4.1 Interactive Workloads

We first compare the energy savings ratio enabled by the dif-
ferent policies for interactive applications. The FIXEDIipy has
an advantage in this dataset; our empirical evaluationw ghat
most interactive tasks require only a fraction of the maxm@PU
power. A flat policy of 132MHz will provide adequate perfor-
mance. The question we want to answer is this: Can AutoDVS
achieve similar energy savings and still maintain a highellef
responsiveness?

Figure 2 shows the energy savings ratio enabled by AutoDVS
and FIXED (Equation 4, i.e., the energy consumed by AutoDVS
and FIXED over that consumed by MAX). The height of each bar

1.0+

m FIXED
= AutoDVS

0.5-

0.0
Dra Gen Sol Tet-1Tet-2 Che-1Che-2 Che-3 Average

Figure 2: Energy savings ratio (relative to MAX (206MHz),
the maximum performance scenario) forinteractive programs.
AutoDVS outperforms FIXED (132MHz) for most benchmarks
and achieves an energy savings of 53% on average.

1.04 == FIXED

= AutoDVS

0.5-

0.0
Dra Gen Sol Tet-1Tet-2 Che-1Che-2 Che-3 Average

Figure 3: Percent degredation in performance with respecta
MAX (maximum performance) for interactive programs. Au-
toDVS and FIXED degraded performance by 23% and 19%,
respectively.

shows the percent of energy saved during each event tracex-fo
ample for the Drawing trace, AutoDVS saved almost 54% of dy-
namic CPU energy. We labeled the bars with the first threerlett
of the event trace, these abrawing, General, Solitaire, Tetrix-

1, Tetrix-2, Checkers1, Checkers2 andCheckers3, from left to
right.

The energy savings enabled by AutoDVS varied from 30% to
70% even beating the FIXED policy in some cases. In general,
the lesser the performance requirements of benchmarkhigher
the savings. For example, for Tet-1 and Che-1, which botludec
game sessions at novice levels, the savings were highesbnin
trast, the Che-2 and Che-3 were Checkers game sessionseat exp
levels. Both traces periodically triggered computatignakpen-
sive tasks that overlapped with user-think times. In theses,
there were few opportunities to save power. Even thouglettves
tasks were the worst-case scenarios, the energy savingsaper
proximately 30% for both.

Overall, the average energy savings due to AutoDVS and FIXED
are very similar, 53%, and 51%, respectively. These savingse
at a cost in performance, however. Figure 3 shows the pedeent
gredation in performance (i.e. the extra time required focpss-
ing the workload over time), for the individual traces. Edudr
shows the percent degredation with respect to MAX. Highes ba
reflect a slower response time. On average, AutoDVS and FIXED
degrade performance by 23% and 19%, respectively. Our empir
cal observations (actually playing the game while usingog®%S
and FIXED) indicated no noticible difference in game perfance
however since this degredation is distributed over thdifife of
the trace.

We analyzed the two worst cases further: Che-2 and Che-3 in
which AutoDVS saves less energy than FIXEBd does nognable

higher performance by doing so. For Che-2, the reason ferishi
directly tied to the dynamics of the clock scaling policy:€eTiiser,
even though the game is set to expert level, played very fibt w
very short think times. Each interactive session switclhed@PU
to maximum speed, and right after the interactivity a corapon-
ally expensive session followed, leaving almost no oppotyufor
idle task monitor to kick-in and decrease clock speed.

Che-3 suffered for similar reasons, but to a lesser exteime-T
was a very long game session that lasted more than 20 minittes w
a large number of interactive events. AutoDVS was partitykf-
fective in determining and scaling clock frequency wheerattiv-
ity started; our empirical observations showed that bota-Zland
Che-3 appeared as fast as maximum speed under AutoDVS.

4.4.2 Multimedia Programs with
Soft Real-Time Performance Requirements

We next investigate the efficacy of AutoDVS on multimedia ap-
plications, in particular, programs that consist of taskthwsoft
deadlines (i.e. deadlines that can be missed but doing stigés
a degraded user experience). The question we set out to mizswe
this: Can AutoDVS achieve the performance quality of the MAX
policy and yet save a significant amount of energy?

Buffer Underrun Events
T T T T
+

| | | |
0 50000 100000 150000 200000
Time (msecs)

Figure 4: Buffer underrun events during the playback of
high.mp3 using AutoDVS. All underruns, except two, happene
during the initial three seconds. AutoDVS is unable to captoe
this interactive session because it has no past history to wo
from. AutoDVS recovers quickly and avoids all underruns in
the steady state.

of buffer underruns during the playback of high.mp3. The esam
pattern occurs for all other input files. This indicates tinatre is
some overhead imposed by AutoDW&rningthe behavior of the
workload. Learning time is required since our CPU load moni-
tors single-step CPU levels to avoid thrashing (as destii&ec-
tion 3). The data also indicates that AutoDVS is highly aater

Table 5 compares the soft real-time performance of the three once some workload history has been collected.

DVS policies, MAX (maximum performance), FIXED (132MHz,
unchanging), and AutoDVS. Column 1 is the input file name and
columns 2 and 3 are the number of buffer underruns during play
back. Column 4 shows the percent reduction in energy consump
tion that results from AutoDVS. On average, AutoDVS redwares
ergy consumption by 13% over MAX.

Buffer underruns (which we defined in Subsection 4.3) indica
the number of times that the music being emitted by the desice
interrupted. Even a small number of interruptions are peabée
by the user and degrade the user’s experience. We omit tfer buf
underrun data for MAX since it causes no buffer underrunsfor
datasets (however, it also conserves no energy).

Both policies perform well in terms of underruns for playkac
of the low quality sample, low.mp3. However, FIXED signifity
degraded the sound quality (to the point where we could netrde
mine what song was playing), when we used higher encodieg rat
- as reflected in the large number of buffer underruns. AutS8DV
performed significantly better than FIXED since it was ablad-
just the CPU speed to the higher load requirements dynamical

We analyzed further the underruns produced by AutoDVS. Our
investigation indicated thahostof the underruns occurred at the
start of the trace — when AutoDVS had no history with which to
make its predictions. Figure 4 shows the distribution ovueet

Energy
Buffer Underrun Energy Savings
Count Ratio for
Datasets FIXED | AutoDVS AutoDVS
Low.mp3 1 19 19.3%
Medium.mp3| 11627 29 11.5%
High.mp3 8094 25 11.5%
Super.mp3 9192 36 10.4%
[Average [7229] 25 | 13.2% |

Table 5: Buffer underrun counts for the multimedia pro-
gram (with soft-realtime constraints) for FIXED and AutoDV S.
There were no buffer underruns for MAX. The last column is
the energy savings ratio for AutoDVS (with respect to MAX).
All policies are satisfactory during the playback of the lowqual-
ity sample. However, the FIXED policy fails for all others. Au-
toDVS can adapt itself easily for higher resource consumpdin.

This investigation exposed another important interadiietaveen
idle task monitor and CPU load monitor. We compared the clock
scheduling decisions over time and mapped them to the bwrffer
derrun occurrences (we have omitted the figure due to space co
straints). We found that two of the underruns occurred atribe
ment that load monitor decreased the clock speed, arounththe
and90*" seconds. The idle task monitor immediately increased the
speed back to its previous level in the seconds that followith-
out the idle task monitor, there would have been no such ezgov
and many more buffer underruns would have occurred.

4.4.3 Concurrent Workloads

We next investigate how AutoDVS performs when multiple ap-
plications are running concurrently on the iPAQ. In patacuwe
replayed the event trace while running Madplay at the baukupt.

For each event trace, we started collecting the measurestaigt-

tics when the two tasks began executing events concurremdy
continued measuring until Madplay terminated. There areeth
short-traces and ended earlier than Madplay, Tet-2, Chet Che-

2. For those three cases above, Madplay was the single task fo
45%, 42% and 33% of total evaluation time, respectively. ms i
put to Madplay we used low.mp3 as it was the only input file that
the FIXED policy was able to play without any noticeable dfyal
degradation.

Running programs concurrently reduces the opportunifi€$eJ
scaling since there are more processing requirements. Uggign
that we are interested in is whether it is possible to extagten-
ergy savings without hurting performance. Figure 5 compéne
energy savings ration for FIXED and AutoDVS (using the same
methodology as in the previous subsections). AutoDVS ie &bl
saves a moderate amount of energy, 12% on average. The $aving
are minimal for tasks that have higher computation requergs)
e.g., Che-3, Dra, and Sol.

The high energy savings for FIXED are deceiving in this figure
FIXED trades-off power for unacceptably low performanceels.
Table 6 shows the number of buffer underruns. We omit thetsoun
for MAX since in all but two cases (discussed below), thereewe
no buffer underruns. Due to the lack of flexibility in clockesal
setting, FIXED performed very poorly. For only in three oEth
benchmarks, Gen-1, Tet-2 and Che-1, FIXED was able to peoduc

1.04 == FIXED

= AutoDVS

0.5-

0.0
Dra Gen Sol Tet-1Tet-2 Che-1Che-2 Che-3 Average

Figure 5: Energy savings ratio (with respect to MAX) when
we execute multiple workloads (Madplay and interactive wok-
loads) concurrently. Despite higher resource requiremers,
AutoDVS enables moderate energy savings (12% on average).
FIXED appears to enable significantly more energy savings —
however, FIXED severely degrades program performance.

Datasets FIXED | AutoDVS Description
DrawPad-1]| 2543 27
General-1 || 8 20 Console input
Solitaire-1 || 1507 63
Tetrix-1 1694 97 long game
Tetrix-2 202 24 short, slow game
Checkers-1{| 11 9 short, slow game

very heavy computation
Checkers-2|| 630 481 short game

very heavy computation
Checkers-3|| 4936 3541 long game

Table 6: Buffer underrun counts when we execute Madplay
and interactive workloads concurrently . We used the low.m§3
input for playback as it is the only dataset for which FIXED
performed well. MAX produced no buffer underruns for all
programs except Che-2 and Che-3, for which it imposed 461
and 2073, respectively.

moderately acceptable result. This occurred because édlcbse
workloads required very few computationally intensivessass.

The buffer underrun numbers for AutoDVS is interesting. Au-
toDVS performed well in all but two cases, Che-2 and Che-3. In
the tests for which AutoDVS performed well, most buffer unde
runs occurred during the initial a few seconds, due to theeqame-
nomenon we explained in previous section. However, for £he-
and Che-3, the overall quality was disappointing, with énhigm-
ber of buffer underruns. This is due to high resource consiemp
of these two concurrent taskEven MAX did not perform welor
these benchmarks. MAX encountered 461 and 2073 buffer under
runs for Che-2 and Che-3, respectively, which resulted gnifi
cant degredation in system performance and user experience

4.4.4 Integrating PACE

As a final experiment, we were interested in whether we could
extend AutoDVS to conserve additional energy if it had asdes
event deadline information. To investigate this, we incogped
the PACE algorithm [13, 14], and in particular, a practicaple-
mentation of the algorithm called Practical Pace (PPACE) dto
AutoDVS.

Parameter|| Value Description
D 50 Msecs Task deadline
wcC 6.192 Mcycles Worst-case execution cycles

6 Number of transition pointg
(103.2 - 206.4) MHz|| StrongArm Clock frequency step|
[WC-1]/r Transition period -evenly space]
0.05 Trim error paramete

0

ol =
o

Table 7: Simulation parameters that we used to investigatehe
efficacy of integrating PPACE into AutoDVS.
1.0

0.5

0.0
Dra Gen Sol Tet-1Tet-2 Che-1 Che-2 Che-3 Average

Figure 6: Simulated energy savings ratio with respect to Au-
toDVS when we integrate PPACE. These results are different
from all those prior in that we obtained them through simu-
lation. In addition, we consider only GUI events. On average
incorporating PPACE results in a potential 41% decrease in B-
ergy consumption of GUI events when the event deadlines and
WCETSs are known a priori.

We investigated the integration of AutoDVS and PPACE using
trace-driven simulation using GUI events in our traces.tThave
only measure the impact of using PACE on GUI events (sincg the
are the only actual tasks in our system that we can provided pr
deadlines for). We do not measure the energy savings on tie en
system. Please note that for all prior experiments, we dicuse
simulation but instead, replayed the complete user agtirdices in
real time with AutoDVS and the comparative techniques.

We employed simulation to evaluate thetential of coupling
PACE with AutoDVS for interactive events. An online impleme
tation of PACE is currently not feasible for the followingas®ons.
First, PACE requires frequency switches at a very fine geaityl
for optimal energy savings (i.e. every few millisecondsegib0ms
deadlines). As we described previously, our system theabke
tween energy levels and performs poorly when we scale the CPU
too often. Second, the computational requirements of PPAGE
still too great for an online system on an iPAQ. Third, the pom
tation of cumulative distribution function requires offliforma-
tion. Finally, AutoDV'S requires an additional API throughieh it
can collect the offline information, task deadlines, anb Y& €ETs
from the program.

Table 7 shows the parameters we use to evaluate PPACE in Au-
toDVS. To determine the worst-case execution time (WCETYin
cles, we use the CPU demand of 99 percentile of GUI tasks which
is equal to 6.192 Mcycles. We limited the number of clock spee
transitions to 6, placing them evenly in the range [1,WCENen
though we use a smaller number of transitions than were ngbé i

PACE is a technique that can compute optimal energy savings Practical Pace study, our implementation provides a highsslu-

when continuousCPU scaling levels are available. PACE com-

tion than the original implementation since we use a muchlsma

putes CPU speed as a function of work completed and gradually WCET. Xu et al. use$¥VC' = 500 Mcycles with 100 transition

increases the CPU frequency as the task nears its deadkAC P
handles descrete CPU scaling levels and uses a polynomial ti
approximation of PACE that is computationally efficient loaes
not always find the optimal solution.

points — this corresponds to a transition point approxiiyateery
5 Mcycles. In contrast, we place a transition point at apprately
everyl Mcycles.

Figure 6 shows the energy savings ratio when CPU speed is

rescheduled using PPACE - relative to AutoDVS (not MAX as in
prior graphs). The data indicates that using PPACE with B\®
can potentially enable significant energy savings. Ourlt®so-
dicate that for most of our event traces, the energy consampt

(8]

GUI events can be decreased by over 50%. Che-2 and Che-3-are ex

ceptions to general trend. For these two cases, the saviedsss

than 10%. On average, PPACE reduces the energy consumption o

GUI events by 41%. As part of future work, we plan to attempt to
address the limitations (articulated above) of incorpngpgPPACE
into the real, online, implementation of AutoDVS, in an aif# to
further reduce the energy consumption of iPAQ programs.

5. CONCLUSIONS AND FUTURE WORK

In an effort to produce an automatic dynamic voltage scalirsy
tem for a popular hand-held device, the HP iPAQ, we devel@ped
set of Linux and Window Manager extensions that implememnt; ¢
ple, and extend a number of extant approaches to dynamiageolt
scaling (DVS) to reduce power consumption. Our system isdal
AutoDVS and is very flexible and extensible. Each of the DVS
algorithms used for different workload behaviors can bdaegul
with others. We intend for it to be used by researchers iatede
in investigating, empirically evaluating, and compariny®al-
gorithms on iPAQ hand-helds using popular and generalgzap
hand-held software.

Our results indicate that AutoDVS can reduce power consump-

tion significantly for a wide range of application types exec
alone or concurrently. On average, AutoDVS reduces powet co
sumption 53% for interactive tasks, 13% for soft real-tirasks,
and by 12% for concurrent workloads that both types of applic
tions. AutoDVS enables these results automatically antspar-
ently for a wide range of real applications. The key to emapli
these power reductions is the use of interval scheduletsépaure
computationally intensive and idle periods in the worklead ac-
curate time series prediction (by NWSLite [9]) to estimdte tu-
ration of application-specific interactive sessions. Témlsination
of these techniques enables AutoDVS to infer accuratekylasl
behavior from applications, workloads, and concurrentkeads,
and to adapt the clock speed appropriately.

As part of future work, we plan to study effective and practi-
cally efficient ways for implementing PPACE in AutoDVS byémnf
ring and dynamically updating the CDF function and estim#be
worst-case execution times for tasks. We plan to employ NitéSL
to perform such estimations. In addition, we plan to ing=te
techniques that reduce the learning time of AutoDVS for sex-
time tasks and that are more aggressive for interactives task
an effort to extract additional savings. Finally, we inteaadmple-
ment AutoDVS into Familiar Linux for an iPAQ with actual mult
level (> 2 levels), voltage scaling when available (as opposed to
only frequency scaling), to verify that our estimated egesavings
translate into actual savings.

6. REFERENCES

[1] Itsy — http://research.compag.com/wrl/projectgiits

[2] Madplay — http://www.underbit.com/products/mad/.

[3] Compaq Computer CorporatioiftAQ Pocket PC
http://www.compag.com/products/handhelds/pocketpc/.

[4] Familiar Web Page Ht t p: / / ww. handhel ds. or g.

[5] Krisztian Flautner, Steve Reinhardt, and Trevor Mudetomatic

performance setting for dynamic voltage scaliigrel. Netw,

8(5):507-520, 2002.

I. Foster and C. Kesselmafhe Grid: Blueprint for a New

Computing InfrastructureMorgan Kaufmann Publishers, Inc., 1998.

Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing

algorithms for dynamic speed-setting of a low-power CPUAGM

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

international conference on Mobile Computing and Netwugki
(MoBiCom) pages 13-25, 1995.

Dirk Grunwald, Philip Levis, Charles B. Morrey I, Mickel
Neufeld, and Keith I. Farkas. Policies for dynamic clockeshhling.
In Fourth Symposium on Operating System Design and
Implementation(OSDI 2000pages 73—-86, October 2000.

Selim Gurun, Chandra Krintz, and Rich Wolski. Nwslite: a
light-weight prediction utility for mobile devices. IRroceedings of
the 2nd international conference on Mobile systems, aajitios,
and servicespages 2-11. ACM Press, 2004.

Intel. StrongARM SA-1110 Microprocessor Developer’s Manual
October 2001. Order Number:278240-004.

Intel Corporation Xscale www.intel.com/design/intelxscale/.
Xiaotao Liu, Prashant Shenoy, and Mark Corner. Chaerelo
Application controlled power management with performance
isolation. Technical Report 04-26, Department of CompSt&ence
University of Massachusetts, 2004.

Jacob R. Lorch and Alan Jay Smith. Improving dynamidagé
scaling algorithms with PACE. IRroceedings of the 2001 ACM
SIGMETRICS international conference on Measurement and
modeling of computer systeppages 50-61. ACM Press, 2001.
Jacob R. Lorch and Alan Jay Smith. Using user interfasme
information in dynamic voltage scaling algorithms.Rroceedings of
the 11th IEEE/ACM International Symposium on Modeling, jsia
and Simulation Computer and Telecommunications Systesges
46-55, October 2003.

Steven M. Martin, Krisztian Flautner, Trevor Mudge gabavid
Blaauw. Combined dynamic voltage scaling and adaptive body
biasing for lower power microprocessors under dynamic Veaids.
In Proceedings of the 2002 IEEE/ACM international confereoice
Computer-aided desigpages 721-725. ACM Press, 2002.

Brad Myers and Michael Beigl. Handheld computitigEE
Computer pages 27-29, september 2003.

Dushyanth Narayanan and M. Satyanarayanan. Preglieisource
management for wearable computingltiternational Conference
on Mobile Systems, Applications, and Servi@893.

OpenZaurus Web Pagehtt p: / / ww. openzaur us. or g/ web.
Trevor Pering, Tom Burd, and Robert Brodersen. The kian and
evaluation of dynamic voltage scaling algorithmsPirc.
International Symposium on Low Power Electronics and Desig
pages 76-81, August 1998.

Johan Pouwelse, Koen Langendoen, and Henk Sips. Dgnami
voltage scaling on a low-power microprocessorPhoceedings of
the 7th annual international conference on Mobile compyand
networking pages 251-259. ACM Press, 2001.

A. Rudenko, P. Reiher, G.Popek, and G.Kuenning. Theotem
processing framework for portable computer power savingGM
Symp. Appl. CompSan Antonio, TX, February 1999.

Li Shang, Alireza S. Kaviani, and Kusuma Bathala. Dyiapower
consumption in virtex-ii FPGA family. IfProceedings of the 2002
ACM/SIGDA tenth international symposium on Field-prognaable
gate arrays pages 157-164. ACM Press, 2002.

Amit Sinha and Anantha P. Chandrakasan. Dynamic veltag
scheduling using adaptive filtering of workload traces. In
Proceedings of the The 14th International Conference on VLS
Design (VLSID '01)page 221. IEEE Computer Society, 2001.
Mark Weiser, Brent Welch, Alan J. Demers, and Scott &ken
Scheduling for reduced CPU energy.Operating Systems Design
and Implementationpages 13-23, 1994.

R. Wolski, N. Spring, and J. Hayes. The Network Weathenvige: A
Distributed Resource Performance Forecasting Service for
MetacomputingFuture Generation Computer Systerh§99.
Ruibin Xu, Chenhai Xi, Rami Melhem, and Daniel Moss. ¢tical
pace for embedded systemsRAroceedings of the fourth ACM
international conference on Embedded softwaages 54—-63. ACM
Press, 2004.

Wanghong Yuan and Klara Nahrstedt. Energy-efficiefftt igal-time
CPU scheduling for mobile multimedia systemsPiroceedings of
the 19th ACM Symposium on Operating Systems Principles
(SOSP’03)2003.

