
AutoDVS: An Automatic, General-Purpose, Dynamic Clock
Scheduling System for Hand-Held Devices

UCSB Technical Report 2005-04, March 1, 2005

Selim Gurun Chandra Krintz
Computer Science Department

University of California, Santa Barbara
{gurun,ckrintz}@cs.ucsb.edu

ABSTRACT
We present AutoDVS, a dynamic voltage scaling (DVS) system for
the HP iPAQ hand-held computer. AutoDVS unifies existing DVS
techniques into a single system that significantly reduces the power
consumption of popular, general-purpose, iPAQ software. More-
over, it does so without degrading the user’s experience perceiv-
ably. AutoDVS automatically infers periods of user interactivity
and non-interactivity and applies different DVS policies to each
period type. We have implemented AutoDVS as a freely-available,
kernel-patch for Familiar Linux and the iPAQ Opie Window Man-
ager. We evaluated AutoDVS using real user workloads of iPAQ
software running alone and concurrently. AutoDVS decreases en-
ergy consumption by 30-70% for interactive programs, by up to
19% for soft real-time applications, and by 12% when these differ-
ent program types run concurrently.

1. INTRODUCTION
Recent advances in embedded device technology have led to the

proliferation of battery-powered devices and, in particular, hand-
held personal digital assistants (PDAs) and web-enabled cellular
phones. Worldwide, approximately 30 million PDAs are in use,
and predictions indicate that PDA sales in the US will increase
from 6.9 million to 17.1 million by 2007. Moreover, the market
for smartphones is growing even faster, out-pacing sales ofPDAs
in Europe [16]. As a result of the popularity and improving ca-
pability of hand-held devices, users demand increasingly complex
software for these devices. Moreover, users expect lighterdevices
with long battery lives.

Dynamic voltage scaling (DVS) is a technique that attempts to
extend the battery life of hand-held devices without compromising
system performance. DVS enables the CPU to be scaled dynam-
ically according to varying program or workload demand [24,19,
7, 8]. Next-generation CPUs for mobile computers, such as those
produced by companies like Transmeta and Intel Corporation, will
support a range of voltage and frequency levels that can be adjusted
at runtime. Using such functionality, a DVS system must determine
the best frequency level for optimal performance and battery life-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

time.
To enable our empirical evaluation of and investigation into DVS

techniques for hand-held devices, we implemented a DVS system
calledAutoDVSfor the HP iPAQ hand-held [3] and its operating
system (OS), Familiar Linux [4] AutoDVS is a set of open-source,
OS and window manager extensions that performs DVS transpar-
ently, requiring no application support or programmer effort. Au-
toDVS is also general-purpose, i.e., it is effective for a range of
popular iPAQ software, e.g., games, personal assistance applica-
tions, and multimedia programs.

AutoDVS couples a number of important extant approaches to
DVS into a unifying system that reduces power consumption with-
out negatively impacting the user’s perception of system perfor-
mance. As originally proposed in [5], and employed and extended
in [14, 12], AutoDVS differentiates between different workload
types: periods of user interaction with the device, periodswhen
the device is idle, and computationally-intensive periods.

AutoDVS detects these different types of workload behaviors
using two light-weight software sensors. AutoDVS then employs
multiple DVS techniques to handle each workload type differently.
AutoDVS considers both application-specific behaviors (for inter-
active periods) and system-wide behaviors (for non-interactive pe-
riods) to guide its CPU scaling decisions.

AutoDVS captures interactive periods by intercepting GUI events
in the iPAQ window manager as is similar to the capture of X-
Window mouse and keyboard events in [5]. AutoDVS captures all
events including user input events and those that update windows,
separately, for each application running in the system. This enables
AutoDVS to predict more accurately the length of interactive peri-
ods given recent event histories. We employ a light-weight,highly
accurate prediction utility called NWSLite that we developed in
prior work [9], to predict interactive period length. AutoDVS max-
imizes the CPU voltage and frequency for the predicted duration of
interactive periods – since presumably, the user is most sensitive to
device performance during this time.

For non-interactive periods, AutoDVS employs two intervalsched-
uling techniques. AutoDVS implements variations of PAST work-
load prediction [24] and Pering’s hysteresis [19] to capture CPU in-
tensive periods in the workload and to scale the CPU appropriately.
AutoDVS also monitors Linux idle process statistics to identify op-
portunities to scale-down the CPU.

Our empirical evaluation indicates that AutoDVS can reducepower
consumption of iPAQ hand-held workloads significantly without
degrading system performance. We empirically evaluate AutoDVS
for real iPAQ workloads that we collected from actual users.For
repeatability, we play-back the workloadsin real time on the iPAQ,
and measure the impact of using AutoDVS and comparative ap-

proaches. We evaluate AutoDVS for single as well as concurrent
workloads. As benchmarks, we use applications that are bundled
with standard distributions of hand-held operating systems. Our re-
sults show that AutoDVS reduces energy consumption by 30-70%
for interactive programs, by up to 19% for soft real-time applica-
tions, and by 12% when these different program types run concur-
rently. Moreover, it does so while maintaining very high program
execution quality.

In summary, the contributions of this paper include:

• The design and implementation of AutoDVS, a lightweight
Linux extension that automatically and transparently reduces
power consumption without negatively impacting the user’s
perception of performance by coupling and extending known
CPU scaling techniques effectively.

• A system that accurately predicts periods of interactivityand
considers non-interactive periods separately to make CPU
scaling decisions.

• An empirical evaluation that shows that AutoDVS success-
fully balances low power consumption and system perfor-
mance. We evaluate AutoDVS using real workloads of pop-
ular iPAQ software that we collected from users of our de-
vices.

• An open-source framework for the implementation, inves-
tigation, and empirical evaluation and comparison of DVS
algorithms.

In the following section, we preset background on dynamic volt-
age scaling and on existing approaches to DVS that we incorporate
into AutoDVS. We then describe the design and implementation
of AutoDVS in Section 3. In Section 4, we present the empirical
evaluation of our system and in Section 5, we conclude.

2. BACKGROUND
In modern CPUs, most energy is dissipated in the form of dy-

namic power consumption [22, 15], which is a function of CPU
voltage and frequency and is approximated by:

P ∝ V
2
f (1)

We can reduce device power consumption by decreasing, i.e.,scal-
ing down, the voltage and frequency together. Decreasing fre-
quency alone is not attractive since doing so increases program
execution time proportionally, and thus, commonly offsetsthe en-
ergy savings. When scaling the voltage, we must also scale the
frequency in the same proportion to meet signal propagationdelay
requirements [20]. By decreasing the voltage, we have the potential
for quadratic power savings with only linear performance loss.

To minimize the effect of voltage scaling on system performance
(while saving energy), dynamic voltage scaling (DVS) policies must
estimate future workload and choose the most appropriate CPU
level. Accurately predicting future workload is very challenging
yet vital for maintaining acceptable performance. Misprediction
can result in setting the CPU level too high, curtailing power sav-
ings, or in setting the CPU level too low, producing an unresponsive
system and a very irritated user.

The goal of our work is to develop a system for DVS that effec-
tively balances the tradeoff between performance and powercon-
sumption iPAQ hand-helds and their applications. The result, Au-
toDVS, is general-purpose (unlike other DVS-enabled operating
systems such as GraceOS [27] for multimedia devices), and isfully
automatic, i.e., it requires no application support or programmer
effort (as is required in DVS systems such as Chameleon [12]). To

implement AutoDVS, we incorporated and extended existing DVS
techniques for interval scheduling and interactive task scheduling.

Interval Scheduling
Interval scheduling techniques [24, 8, 7, 23], divide the workload
into fixed time intervals. These techniques use measurementhis-
tory to estimate the workload in a future interval. For example, the
PAST interval scheduler [24] assumes that the workload in the next
interval will be same as the workload in last interval; theAV GN

interval scheduler [24, 8] assumes that the next interval isan ex-
ponential moving average (using a decay factor) of the N previous
intervals. Other interval schedulers use observation heuristics [7]
and more sophisticated statistical estimation methods [23] to make
the predictions.

Interval schedulers have been shown to be quite limited for DVS
for workloads that are commonly run on modern hand-held de-
vices [8]. The primary reasons for this are that extant workload
prediction approaches are inaccurate and that it is very difficult to
identify a general mapping between different CPU loads and scal-
ing levels that works for all applications. Prediction error causes
minimal power savings or poor performance, e.g., missed (soft)
deadlines, significant interruption, etc.

Another limitation of interval scheduling in a practical setting
is the identification of an ideal, application-independent, interval
length. To enable DVS techniques to detect and respond to changes
in workload effectively, the interval length should be veryshort,
e.g., 10-50ms. Unfortunately, the minimum interval lengthin a
practical (non-simulated) setting is impacted by externalfactors,
e.g., operating system timer resolution and scheduling quanta, which
force a much longer interval length to be used (100-200ms).

Interactive Task Scheduling
Recent DVS studies have focused on classifying tasks into different
groups, each with a customized policy. [5] suggests three groups:
Interactive, periodic, and background tasks. In this system, each
interactive task has an implicit 50 milliseconds deadline which is
known as the user perception threshold. The system predictstask
execution speed using the cumulative distribution function (CDF)
of task CPU demand. The system computes task execution speed
for future events using exponential smoothing of previous values.
If the event exceeds its pre-determined worst case deadline(i.e. the
panic threshold), the system scales the CPU to full speed.

A periodic task in this prior work consists of producer-consumer
task pairs. Scheduling a periodic task requires that the system es-
timate the time period between the completion of a producer and
start of a consumer. The system computes CPU speed such that
producer ends immediately prior to when the consumer starts. The
same speed is used for executing the consumer task. The authors
of this work evaluate their approach using trace-driven simulation
for workstation applications such as Acrobat Reader, Netscape, and
Xemacs.

Lorch et al. suggests an approach that specifically targets user
interactivity [14]. The system labels a user event with the type of
GUI event that initiates it, such as a key-press, mouse-click, or drag
event. Each event type has a separate DVS policy. The authors
of this approach, compute the CPU schedule using PACE [13], a
heuristic that is proven to compute optimal speed when the CPU
can change frequency on a continuous scale and when task deadline
and CDF of task CPU demand is known.

These approaches and similar approaches must overcome a sig-
nificant challenge: determining the completion time of a task with-
out any assistance from the application. The approach in [?] re-
quires task completion time to update task execution time; the ap-

proach in [?] uses task completion time to compute task CDF and
deadline. The solution described in the former work is precise,
however, inherently complex; it requires monitoring system calls
and communication between threads. The latter study suggests a
simpler approach: an event is complete if a new event is posted or
the idle thread is running and no I/O is ongoing.

3. AUTODVS
Our goal with this work was to produce a practical, implementable,

and efficient DVS scheduling system for iPAQ hand-helds and their
applications based on the findings of the previous work [5, 7,8,
14, 23, 24]. With AutoDVS, we hope to exploit the benefits en-
abled by these algorithms while limiting any negative impact they
might impose, by using them in combination. We implemented
AutoDVS as a freely-available, lightweight, flexible extension to
Familiar Linux. AutoDVS efficiently monitors executing programs
and uses the resulting performance samples to estimate future be-
havior and to guide CPU scaling decisions.

The primary functionality of AutoDVS lies within twosensors
and anarbitrator. The sensors detect and predict task-level (sub-
application) and workload behavior; one sensor is responsible for
application-specific user-interactivity and the other is responsible
for the overall workload of the system. In addition, each sensor
determines when CPU scaling is required. We describe the sensors
in greater detail in the subsections that follow.

Each sensor makes scaling requests asynchronously to the arbi-
trator. The arbitrator is a high-priority kernel thread that imple-
ments requests. The sensors interact with the arbitrator via a well-
defined API that supports requests for a particular CPU frequency,
a one-level increase or decrease, and a value from 1-8 indicating
the CPU level (1 being slowest). The arbitrator considers the cur-
rent CPU level and if necessary, converts the request to an avail-
able clock frequency (as our CPU supports 8 levels, each number
is mapped to a real level). The arbitrator mediates concurrent CPU
scaling requests issued by the sensors; it assigns a higher priority to
the interactive sensor and when two requests have the same priority,
it schedules the one that will result in the higher speed only.

This division of labor across the system is key to the efficacy
of AutoDVS. The interactivity sensor considers GUI events for
each application separately and makes predictions of the duration
of each interactive session. By considering each application indi-
vidually, our predictions are very accurate due to regular,repeating
patterns within applications. The CPU load sensor takes a global
view of the system to identify additional DVS opportunitiesnot
made apparent to the fine-grain interactive scheduler. Together the
sensors are able to consider a wide range of application behaviors
to make accurate and effective CPU scaling decisions that reduce
power consumption without negatively impacting performance.

In the subsections that follow, we first describe the iPAQ appli-
cations that we use to demonstrate various workload behaviors and
performance requirements common in popular iPAQ software.We
then detail the implementation of the AutoDVS sensors for detect-
ing and predicting user-interactivity and changes in CPU load.

3.1 Example Applications
We use AutoDVS to reduce iPAQ power consumption for com-

mon workloads of popular, general-purpose hand-held applications
with significant growth potential, e.g., personal assistance programs,
games, and multimedia programs [16]. Such software poses many
challenges to DVS systems because they require significant compu-
tation, heavy user interaction, and soft real-time constraints. Per-
formance loss due to DVS for such applications can severely de-
grade the user’s perception of program and device performance.

We describe all of the iPAQ software that we used in the empiri-
cal evaluation of AutoDVS in Section 4.2. However, we use a sub-
set of these benchmarks as examples throughout the paper. Three
of these programs are games with different performance charac-
teristics: Solitaire, CheckersandTetrix. Among these, Checkers
has the highest computational requirements; Tetrix has less, but as
the level of play increases, users tend to play very fast, generating
many graphical user interface (GUI) events. Solitaire commonly
consumes the fewest resources.

We useOpieplayerto demonstrate the user-interactivity, CPU re-
source consumption, and the soft real-time requirements common
in multimedia applications. Opieplayer is a front-end to a multime-
dia library which includes decoders for many popular music and
video formats. All of our applications are available from [18].

3.2 Interactivity Sensor
The first AutoDVS sensor targets per-application user-interactivity.

It incorporates and extends the DVS strategies described byFlaut-
ner et al. [5] for interactive tasks. AutoDVS monitors GUI events to
identify interactive sessionsin arbitrary programs. Our system em-
ploys no notion of tasks, but instead automatically infers task-like
behavior, i.e., periods of time, in which the user is interacting with
the device. We refer to non-interactive sessions asthink times. In
addition, we do not distinguish event types (as is done in [14]) i.e,
we consider only interactive sessions regardless of which events oc-
cur within them. The interactive sensor manages CPU scalingdur-
ing interactive sessions. In particular, this sensor monitors events,
detects and predicts interactive sessions, and scales the CPU for
each interactive session.

3.2.1 Monitoring GUI Events
The interactive sensor collects event statistics about each appli-

cation. The GUI events are triggered either by user input or by the
applications themselves. In our hand-held platform, the user input
events are generated by touch-buttons, the joypad, and the touch-
screen. The GUI events provide a communication path betweenthe
applications and the window manager. The window update, focus,
selection events are typical examples to GUI events.

In our platform,all GUI events are routed to the Window Man-
ager (which implemented as a library) that then re-routes these
events to the appropriate target applications. Each GUI application
instance has its own event handler with which the sensor maintains
separate event sessions for each application. We implemented the
interactive sensor in the Window Manager library by extending an
extant, call-back function without an implementation (a null func-
tion) calledeventfilter.

The eventfilter in AutoDVS is an interface to the prediction li-
brary used to forecast interactive session lengths (we detail this in
the next subsection) and as a policy maker for frequency scaling.
The function timestamps event arrivals, determines the start of a
think period, extracts session length predictions from thepredic-
tion library, and requests CPU scaling from the arbitrator.We im-
plemented a new system call in the Linux kernel to serve as the
interface to eventfilter.

3.2.2 Detecting and Predicting
Interactive Session Lengths

An interactive session starts with the arrival of an event and ends
if no event is received for a period oftp. Identifying the interac-
tive sessions correctly is important, since presumably, the user is
most sensitive to any performance loss during these periods. The
value oftp impacts the system in two ways. Iftp is too low, the
algorithm might end an interactive session prematurely while the

500

100
50

0
 20 40 60 80 100 120 140 160 180 200

ev
en

t i
nt

er
ar

riv
al

 ti
m

e
(m

se
cs

)

Events

Interactivity Sessions - Solitaire

500

100
50
0

 20 40 60 80 100 120 140 160 180 200

Events

Interactivity Sessions - Tetrix

500

100
50

0
 20 40 60 80 100 120 140 160 180 200

Events

Interactivity Sessions - Opieplayer

Figure 1: GUI event inter-arrival times for three typical ap plications -Solitaire, Tetrix and Opieplayer (a multimedia player). Soli-
taire has bursts of events separated with long idle times. Tetrix has much shorter bursts with smaller idle times due to higher
interactivity. Opieplayer has largest event inter-arrival times with interactive sessions of almost a few events at a time.

application is still processing a GUI event. Iftp is too high, the
sensor will maintain a high CPU speed and miss opportunitiesfor
reducing energy consumption. We determinedtp empirically to be
500 milliseconds (ms) using a large set of GUI programs. We found
that out of 177561 GUI events, 99.3% of them were processed in
less than 500ms.

Given the start of an interactive session, the sensor predicts its
duration. The length of each session is very application-specific.
To confirm this, Figure 1 shows the event arrival times for three
typical cases using a cross section of an event trace from Solitaire,
Tetrix, and Opieplayer. Solitaire receives long bursts of user in-
put events bounded by large think times. The event burst is gener-
ated by the touch screen, during the frequent drag-and-dropoper-
ations involved in this game. In contrast, Tetrix receives the most
user events through the keypad; this results in very short bursts of
events. However, due to the nature of game, the event bursts are
separated by smaller think times. For these examples, the median
think time for Solitaire and Tetrix is 2.2 and 1.0 seconds, respec-
tively. Opieplayer is much less interactive than both of those games
with almost no burst of user interface events.

To predict the duration of an interactive session, we integrated
NWSLite [9] into AutoDVS. NWSLite is an open-source predic-
tion utility that we developed in prior work; it is an extension of the
Network Weather Service [25] for Computational Grid Comput-
ing [6]. NWSLite is a non-parametric forecasting tool that targets
embedded devices. NWSLite uses a mixture-of-experts approach
for prediction rather than relying on a single model, i.e. itimple-
ments a set of time-series models, each having its own parameteri-
zation. Given a history of observed performance values, NWSLite
generates a forecast for each measurement using each prediction
model. NWSLite ranks each predictor by computing the cumula-
tive prediction errors. Each time a forecast is requested, NWSLite
chooses the predictor with the highest rank (lowest cumulative er-
ror). We have shown that NWSLite produces very accurate pre-
dictions for a wide range of resource types, including TCP latency,
wired and wireless network bandwidth, CPU load, and CPU de-
mand. Moreover, it does so with very low overhead: NWSLite
uses 55 floating operations and 592 integer and miscellaneous op-
erations per forecast. As such, we employ NWSLite to predictin-
teractive session length for the interactive sensor in AutoDVS.

NWSLite implements five predictors currently; last value, expo-
nential smoothing with %5 and %20 gain factors, running mean,
and median with a window size of 5. The first two of these are par-
ticularly popular in research community and used extensively [17,
21, 24, 8]. Table 1 shows the first nine predictions of sessionlength
for Opieplayer. The first column is observed session length,the

Real Value Predicted Value Winner Forecaster
1 94.44 243.88 Last Value
2 80.46 236.41 5% Exp Smooth
3 280.95 187.28 20% Exp Smooth
4 685.83 206.02 20% Exp Smooth
5 687.64 685.83 Last Value
6 121.66 687.64 Last Value
7 325.75 267.94 5% Exp Smooth
8 98.05 270.83 5% Exp Smooth
9 773.57 262.19 5% Exp Smooth

Table 1: The first nine session length predictions for Opieplayer
using NWSLite. NWSLite always starts with the Last Value
predictor. Due to the high variance in this particular dataset,
NWSLite switches between multiple predictors before reaching
a steady state.

second column is the session length predicted by NWSLite, and the
final column is the predictor chosen by NWSLite to make the pre-
diction. The session lengths are highly variable, causing NWSLite
to switch back and forth between various predictors in the begin-
ning. Eventually, NWSLite stabilizes on exponential smoothing,
with a gain factor of 5%, and uses it through the rest of dataset.
NWSLite has a clear advantage over commonly used parametric
predictors, especially when the dataset is non-stationary. More-
over, when the dataset is highly predictible, NWSLite will perform
similarly to any predictor it incorporates. NWSLite can be easily
extended to incorporate any time-series prediction technique.

3.2.3 CPU Scaling for Interactive Sessions
The interactive sensor is also responsible for CPU scaling for in-

teractive sessions. We empirically evaluated a number of different
policies within AutoDVS using a real iPAQ and popular iPAQ GUI
software. We found that by far, the best policy is the most sim-
ple one: switching to the maximum clock speed during interactive
sessions. The reason for this was the LCD driver in our evaluation
platform: Each frequency switch results in a short but noticeable
disruption in the display. Thus, even a small number of switches de-
grades the user’s experience. As such, techniques that change CPU
speeds on this platform during interactive sessions, e.g.,PACE [13,
26] are not feasible.

The interactive sensor does not consider interactive sessions less
than 500µs to account for voltage settling time. The authors in [8]
measured the voltage settling time to be less than 250µs on the
Itsy [1] platform which uses the same microprocessor as our iPAQs.
We use 500µs as a conservative estimate.

3.3 CPU Load Sensors

AutoDVS must also account for periods of time during workload
execution that are not interactive. Most programs, even those that
are primarily interactive, execute think (non-interactive or compu-
tationally intensive) periods. The CPU load sensor is responsible
for these sessions. This sensor takes a global view of the system
and workload, i.e., it does not consider task-level and application-
specific details. The sensor employs two interval-schedulers to per-
form clock scheduling of non-interactive periods.

The authors in [8] concluded that interval schedulers do notper-
form well for real implementations on a hardware/software plat-
form that is similar to our iPAQ platform. The reasons for this
include the difficulty with which an appropriate, general-purpose,
yet short, interval length can be identified, and the inaccuracy of
extant approaches for prediction of future CPU load given past his-
tory. Past approaches to interval scheduling use very short, fixed-
size intervals to ensure that the systems respond quickly tochanges
in the workload. Given short time intervals and the highly vari-
able CPU load that is typical of hand-held applications, statistical
and last-value prediction results in large forecasting errors and thus,
mis-scaling of the CPU.

We have been able to employ interval schedulers effectivelyin
AutoDVS. The key reasons for this are that (1) we couple theiruse
for non-interactive sessions with completely different CPU scaling
techniques for interactive sessions (described previously), (2) we
use very long time intervals, and (3) we employ two differentinter-
val schedulers at once.

The two schedulers are called theCPU Load Monitorand the
Idle Process Monitor. We implemented both monitors as small ex-
tensions to the Linux kernel timer interrupt handler. We execute
each monitor when their particular interval periods expire.

The CPU load monitor considers very large intervals (10 second)
and averages the measured CPU load across intervals. By averag-
ing, we are able to eliminate noise in the data and distributeslack
timemore efficiently. Slack time consists of the idle cycles during
an interval when CPU utilization is less than 1. The monitor pre-
dicts that the CPU load for the next interval will be the same as it
is for the current interval (this is the PAST policy used in [24, 8]).
The limitation of the CPU load monitor is that with a very long
interval, our system response time is long – we only considerscal-
ing the CPU every 10 seconds. The interactive sensor addresses
this problem for interactive sessions since it responds immediately
to such behavior. However, we need to respond quickly when the
system becomes idle also, in order to conserve as much power as
possible. For this we use the idle process monitor.

The idle process is process that the OS scheduler runs whenever
no other process in the system is runnable. When the OS schedules
the idle process, it puts the CPU into a low-power, hardware mode
if one is available. The StrongArm CPU shuts down most clocks
when entering the idle process, effectively stalling itself. The inter-
rupt handler remains live during this time and wakes the CPU when
an IRQ request occurs. The idle process monitor evaluates (then
resets) idle process statistics every 500 milliseconds. The monitor
considers the number of times the idle process was scheduledby
the OS and its execution duration during the previous interval. We
modified the Linux scheduler (sched.c) to collect and exportthis
information as a kernel symbol.

Both monitors make CPU scaling requests to the arbitrator. The
CPU load monitor uses an extension to Pering’s hysteresis pair [19]
to decide when to request a speed change. These values, (50,70) in
prior work, indicate the available CPU load levels that are used to
scale the CPU. When the load is below 50%, Pering stepped-down
the CPU level; when the load was above 70%, he stepped-up the
CPU level. We found empirically that the pair (60,80) works best

in our real implementation for iPAQ software. The idle process
monitor requests a step increase from the arbitrator when itdetects
a period (500ms) in which the idle process is never scheduled. If
the monitor detects that the idle process executes for over half the
interval time, it requests a step decrease.

Both monitors request only single step (CPU level) changes.The
authors in [5] computed excess cycles during a period of timewhich
they then used to compute new speeds to which to scale the CPU.
We investigated such an approach in AutoDVS but found that do-
ing so caused a large number of arbitrator requests and thrashing
between CPU levels. Moreover, when we set the CPU to the mini-
mum level when the idle process monitor detects an interval during
which only the idle process executed, the system also thrashed. The
thrashing is caused by the changing workload and the interaction
between the sensors. Single-step changes avoid this problem. The
disadvantage to single-stepping is a delayed response timeif one
of the level extremes (minimum or maximum) is most appropri-
ate. We discuss this effect in our results analysis for soft real-time
programs in Section4.4.2.

4. EVALUATION
We empirically evaluated the efficacy of our approach by running

a large number of very different workloads on an iPAQ device with
AutoDVS and comparative techniques. We collected a number of
different performance metrics while doing so. In the subsections
that follow, we describe our experimental setup and the benchmark
workloads. We then define the metrics that we use in our empirical
evaluation and present our results.

4.1 Experimental Platform
Our device infrastructure included five Compaq H3800 hand-

held computers running Familiar Linux version 0.7.2 [4]. The H3800
is a very typical hand-held computer, with a 206MHz StrongArm
CPU, 64 Mbytes of main memory and 32 Mbytes of Flash RAM.
It is capable of dynamic frequency scaling, however, itdoes not yet
support dynamic voltage scaling.

To estimate power savings, we use the technique defined in prior
work [5] for a similar study. We assume that the StrongArm and
XScale [11] processor exhibit similar power characteristics and use
published data for the XScale XSA (the system most similar tothe
StrongArm in terms of maximum voltage and supported frequency
range), in the estimation. We approximate the voltage levels of
the XScale CPU using the available frequency levels and a second
degree polynomial parameterized by the XSA data:

v = −4 × 10−7
f

2 + 0.0015f + 0.5324 (2)

To compute the corresponding StrongArm voltage levels, we use
Equation 3 as a mapping function. That is, we linearly scale Stron-
gArm frequency range to the XScale frequency range:

f
′ =

773 − 150.0

206.4 − 59.0
× (f − 59.0) + 150.0 (3)

We present the estimated voltage levels in Table 2.
The StrongArm architecture requires that all of the primarype-

ripherals be synchronous to the CPU clock [10]. This impliesthat
all CPU scaling will impact the performance of memory, the I/O
controller, DMA, the LCD controller, etc. The dependency be-
tween the CPU clock and external devices can cause significant dif-
ferences between theoretical expectations (and simulatedresults)
and practical results. For example, Grunwald et.al. found that
the CPU utilization changes non-linearly with respect to clock fre-
quency, possibly due to variations in memory access cycles [8].

Estimated
Level Freq. (MHz) Voltage (mV)
1 59.0 748
2 73.7 832
3 88.5 914
4 103.2 992
5 118.0 1067
6 132.7 1139
7 147.5 1209
8 162.2 1274
9 176.9 1337
10 191.7 1397
11 206.4 1453

Table 2: SA1100 Clock frequency levels. Since our iPAQs im-
plement only frequency scaling functionality, we estimatethe
energy savings from voltage scaling using the available iPAQ
frequency levels. We estimate the voltage levels using the pub-
lished XScale XSA parameters and the formula defined by oth-
ers in prior work for the same computation.

Another obstacle that we encountered was the dependency on the
CPU by other peripherals. In particular, the LCD driver limited our
evaluation in two ways. First, the display started vibrating mak-
ing it unreadable for any speed lower than 103MHz. Thus we had
to eliminate three lowest frequencies. Second, frequency changes
were accompanied by short but noticeable disruptions of display.
As a workaround, we were forced to use a flat (unchanging) clock
speed during interactive sessions.

The window manager we run on the devices is Opie [18] version
1.0.2. Opie is an open-source graphical user interface designed for
Sharp Zaurus and Compaq hand-held computers. It is a full-fledged
GUI comparable to commercial versions in both appearance and
features. The available Opie applications include Calendar, Con-
tacts, Drawpad, a multimedia player, a wide range of games, etc.

4.2 Benchmarks and
Experimental Methodology

We evaluated AutoDVS using three different scenarios. (1) In-
teractive: Running GUI applications; (2) Soft Real-Time: Running
a single multimedia application, such as a video or audio playback;
and (3) Concurrent: Interactive and soft-real time applications run-
ning together.

To evaluate and compare the performance of interactive appli-
cations, we collected a set of usage traces and extracted event and
timestamp information. However, wedid not simulate our algo-
rithms on those traces. Instead, we implemented AutoDVS, and
we replayed the events in real-time. Moreover, our results include
the time for frequency settling and for AutoDVS itself.

To collect the usage traces, we installed Opie on several Com-
paq H3800 hand-held computers and distributed them to graduate
students in our department. We let the students know that we were
capturing all the events happening and asked them to use the hand-
helds as their own as normally as possible and to reboot periodi-
cally (to end the session).

Before distribution, we made three modifications to the iPAQ
systems: We (1) disabled network connectivity; (2) modifiedran-
dom number generators to use a fixed seed; and (3) mrogrammed
each to clear all user state information after every reboot.These
changes were necessary to eliminate as much non-determinism as
possible so that we could re-generate the user events in the cor-
rect order during experimentation. We clear state information by
removing saved files and resetting user preferences to default set-
tings; this enables us to start from a known state during replay.

Event Count
Trace (ETime@206MHz) Description
DrawPad-1 23100 (915.4s) Drawing random pictures

General use including calendar,
General-1 3688 (448.1s) contacts and games
Solitaire-1 8700 (756.4s) Multiple Solitaire games
Tetrix-1 6936 (583.8s) Tetrix
Tetrix-2 1342 (210.1s) Tetrix - very short and slow
Checkers-1 1238 (205.1s) Checkers - medium difficulty
Checkers-2 1214 (265.7s) Checkers - maximum difficulty
Checkers-3 2490 (1076.4s) Checkers - maximum difficulty

Table 3: Event traces that we used for our experimentation. We
gathered the traces using instrumented versions of the system
while different users exercised the iPAQs. We named each trace
to reflect the application that was dominant during the usage
period.

Encoding File Play
Datasets Rate(Kb/s) Size (KB) Length (s)
Low.mp3 56 2893 424
Medium.mp3 128 4809 307
High.mp3 214 3304 218
Super.mp3 488 5824 240

Table 4: The Madplay input files (MP3 files) that we used to
investigate the efficacy of AutoDVS under soft real-time con-
straints. The names of the files reflect the sampling rate of the
encoders.

To capture the events, we instrumented the Linux kernel at the
I/O driver level. We captured all events generated by the touch-
screen, the keypad, and the joy-pad using a microsecond times-
tamp. We saved the identification information for captured events
in RAM and copied them to permanent storage immediately prior
to shut-down, to prevent any excessive overhead. The time and
space overhead for event trace collection is small. Each event re-
quires a total of 20 bytes: 8 bytes for the timestamp and 12 bytes
for event type and attributes. Since we capture event in a device
driver, we can read the current time directly from Linux kernel data
structures and no system calls are required.

To replay the captured events, we developed a Linux kernel mod-
ule. The module keeps the list of events in memory and sends them
using a microsecond resolution timer.

The event traces describe user behavior from boot-up to shut-
down. Some of the traces that we captured were not useful; they
were either too short, or broken, i.e., dependent on user created
files. Also some traces were too similar. Overall, we selected the
traces described in Table 3. The second column shows the number
of events in the trace and the total time (seconds) for the realtime
play-back at maximum performance (206MHz) in parentheses.We
named each event trace using the application that was activemost
of the time. The first four traces describe more general use applica-
tions and includes multiple program types. The last four traces are
exclusively games.

To evaluate soft real-time applications we chose Madplay, which
is an open-source, high quality MP3 decoder [2]. Madplay can
decode the applications off-line or interface to the GNOME En-
lightened Sound Daemon (ESD), for on-line playback. We use the
latter. The input files we use in our experiments are described in
Table 4.

4.3 Evaluation Metrics
We evaluated the impact of AutoDVS on both performance and

energy using three different evaluation metrics:percent degreda-
tion in performance, deadline miss countandenergy savings ratio.
We compute percent degredation in performance in terms of us-

ing the highest (maximum speed) CPU level (MAX). Specifically,
we divide the absolute difference between the execution time using
MAX and AutoDVS by the execution time for MAX.

We evaluate the performance of Madplay by counting the num-
ber of deadline misses. Conceptually, audio playback happens in
three stages: Madplay reads MP3 encoded data from a file, de-
codes and converts to the data to the PCM format, and forwardsthe
translated data to the ESD sound server. The sound server manages
both the control and data path to audio hardware. At the control
path, ESD sets the audio parameters such as sampling rate (22050,
44100, etc), stereo/mono, and sample resolution (8/16 bits). At the
data path, ESD multiplexes raw PCM data from input sources and
transfers it to the audio hardware. For example, playing a stereo
audio file at 44.1 kHz and 16 bits resolution requires:

44100 × 2 × 2 = 176400 bytes/second

The sound server provides some level of buffering to preventany
interruption to data flow. However, if the application cannot pro-
duce data as fast as the consumption rate of the audio hardware, a
buffer underrun condition occurs eventually. When this happens,
the audio hardware fills the gap by repeating the most recent data
or doing nothing (emitting silence). Every buffer underrunis per-
ceivable by the user and degrades the user’s experience withthe
device. To evaluate the performance of multimedia applications,
we counted the buffer underrun events at the sound server level.

Finally, we compute the energy savings ratio using the method
defined by Flautner et al. in [5] calledEnergy Factor. This value
is the ratio of energy used by the scaled workload to energy used
when workload is processed at full speed. That is:

EnergySavingsRatio =

Pn

i=1
v2

i fiti

v2

MAXfMAXT
(4)

vi andfi are the voltage and frequency of each period of time (ti)
between two frequency scaling operations. T refers to the execution
time when CPU is run at full speed, i.e., usingfMAX andvMAX .
We use the frequency and voltage levels that are given in Table 2.
To describe the savings, we use energy savings ratio which isequal
to 1 − EnergyFactor.

4.4 Results
We compare AutoDVS to two other policies: MAX, in which

the CPU is set to the highest level (for maximum performance)and
FIXED, in which we employ a fixed CPU speed that trades off per-
formance and battery life – we use 132MHz (level 6) as is used in
a similar study [8]. We experimented with three different scenar-
ios. (1) Interactive: Running GUI applications; (2) Soft Real-Time:
Running a single multimedia application, such as a video or audio
playback; and (3) Concurrent: Interactive and soft-real time appli-
cations running together. We describe the results from eachof these
scenarios in the following subsections.

4.4.1 Interactive Workloads
We first compare the energy savings ratio enabled by the dif-

ferent policies for interactive applications. The FIXED policy has
an advantage in this dataset; our empirical evaluations show that
most interactive tasks require only a fraction of the maximum CPU
power. A flat policy of 132MHz will provide adequate perfor-
mance. The question we want to answer is this: Can AutoDVS
achieve similar energy savings and still maintain a high level of
responsiveness?

Figure 2 shows the energy savings ratio enabled by AutoDVS
and FIXED (Equation 4, i.e., the energy consumed by AutoDVS
and FIXED over that consumed by MAX). The height of each bar

Dra Gen Sol Tet-1 Tet-2 Che-1 Che-2 Che-3 Average
0.0

0.5

1.0 FIXED
AutoDVS

Figure 2: Energy savings ratio (relative to MAX (206MHz),
the maximum performance scenario) forinteractive programs.
AutoDVS outperforms FIXED (132MHz) for most benchmarks
and achieves an energy savings of 53% on average.

Dra Gen Sol Tet-1 Tet-2 Che-1 Che-2 Che-3 Average
0.0

0.5

1.0 FIXED
AutoDVS

Figure 3: Percent degredation in performance with respect to
MAX (maximum performance) for interactive programs. Au-
toDVS and FIXED degraded performance by 23% and 19%,
respectively.

shows the percent of energy saved during each event trace, for ex-
ample for the Drawing trace, AutoDVS saved almost 54% of dy-
namic CPU energy. We labeled the bars with the first three letter
of the event trace, these areDrawing, General, Solitaire, Tetrix-
1, Tetrix-2, Checkers-1, Checkers-2 andCheckers-3, from left to
right.

The energy savings enabled by AutoDVS varied from 30% to
70% even beating the FIXED policy in some cases. In general,
the lesser the performance requirements of benchmarks, thehigher
the savings. For example, for Tet-1 and Che-1, which both include
game sessions at novice levels, the savings were highest. Incon-
trast, the Che-2 and Che-3 were Checkers game sessions at expert
levels. Both traces periodically triggered computationally expen-
sive tasks that overlapped with user-think times. In these cases,
there were few opportunities to save power. Even though these two
tasks were the worst-case scenarios, the energy savings were ap-
proximately 30% for both.

Overall, the average energy savings due to AutoDVS and FIXED
are very similar, 53%, and 51%, respectively. These savingscome
at a cost in performance, however. Figure 3 shows the percentde-
gredation in performance (i.e. the extra time required for process-
ing the workload over time), for the individual traces. Eachbar
shows the percent degredation with respect to MAX. Higher bars
reflect a slower response time. On average, AutoDVS and FIXED
degrade performance by 23% and 19%, respectively. Our empiri-
cal observations (actually playing the game while using AutoDVS
and FIXED) indicated no noticible difference in game performance
however since this degredation is distributed over the lifetime of
the trace.

We analyzed the two worst cases further: Che-2 and Che-3 in
which AutoDVS saves less energy than FIXEDand does notenable

higher performance by doing so. For Che-2, the reason for this is
directly tied to the dynamics of the clock scaling policy: The user,
even though the game is set to expert level, played very fast with
very short think times. Each interactive session switched the CPU
to maximum speed, and right after the interactivity a computation-
ally expensive session followed, leaving almost no opportunity for
idle task monitor to kick-in and decrease clock speed.

Che-3 suffered for similar reasons, but to a lesser extent. Che-3
was a very long game session that lasted more than 20 minutes with
a large number of interactive events. AutoDVS was particularly ef-
fective in determining and scaling clock frequency when interactiv-
ity started; our empirical observations showed that both Che-2 and
Che-3 appeared as fast as maximum speed under AutoDVS.

4.4.2 Multimedia Programs with
Soft Real-Time Performance Requirements

We next investigate the efficacy of AutoDVS on multimedia ap-
plications, in particular, programs that consist of tasks with soft
deadlines (i.e. deadlines that can be missed but doing so results in
a degraded user experience). The question we set out to answer is
this: Can AutoDVS achieve the performance quality of the MAX
policy and yet save a significant amount of energy?

Table 5 compares the soft real-time performance of the three
DVS policies, MAX (maximum performance), FIXED (132MHz,
unchanging), and AutoDVS. Column 1 is the input file name and
columns 2 and 3 are the number of buffer underruns during play-
back. Column 4 shows the percent reduction in energy consump-
tion that results from AutoDVS. On average, AutoDVS reducesen-
ergy consumption by 13% over MAX.

Buffer underruns (which we defined in Subsection 4.3) indicate
the number of times that the music being emitted by the deviceis
interrupted. Even a small number of interruptions are perceivable
by the user and degrade the user’s experience. We omit the buffer
underrun data for MAX since it causes no buffer underruns forall
datasets (however, it also conserves no energy).

Both policies perform well in terms of underruns for playback
of the low quality sample, low.mp3. However, FIXED significantly
degraded the sound quality (to the point where we could not deter-
mine what song was playing), when we used higher encoding rates
- as reflected in the large number of buffer underruns. AutoDVS
performed significantly better than FIXED since it was able to ad-
just the CPU speed to the higher load requirements dynamically.

We analyzed further the underruns produced by AutoDVS. Our
investigation indicated thatmostof the underruns occurred at the
start of the trace – when AutoDVS had no history with which to
make its predictions. Figure 4 shows the distribution over time

Energy
Buffer Underrun Energy Savings

Count Ratio for
Datasets FIXED AutoDVS AutoDVS
Low.mp3 1 19 19.3%
Medium.mp3 11627 29 11.5%
High.mp3 8094 25 11.5%
Super.mp3 9192 36 10.4%

Average 7229 25 13.2%

Table 5: Buffer underrun counts for the multimedia pro-
gram (with soft-realtime constraints) for FIXED and AutoDV S.
There were no buffer underruns for MAX. The last column is
the energy savings ratio for AutoDVS (with respect to MAX).
All policies are satisfactory during the playback of the lowqual-
ity sample. However, the FIXED policy fails for all others. Au-
toDVS can adapt itself easily for higher resource consumption.

 0 50000 100000 150000 200000

Time (msecs)

Buffer Underrun Events

Figure 4: Buffer underrun events during the playback of
high.mp3 using AutoDVS. All underruns, except two, happened
during the initial three seconds. AutoDVS is unable to capture
this interactive session because it has no past history to work
from. AutoDVS recovers quickly and avoids all underruns in
the steady state.

of buffer underruns during the playback of high.mp3. The same
pattern occurs for all other input files. This indicates thatthere is
some overhead imposed by AutoDVSlearning the behavior of the
workload. Learning time is required since our CPU load moni-
tors single-step CPU levels to avoid thrashing (as described in Sec-
tion 3). The data also indicates that AutoDVS is highly accurate
once some workload history has been collected.

This investigation exposed another important interactionbetween
idle task monitor and CPU load monitor. We compared the clock
scheduling decisions over time and mapped them to the bufferun-
derrun occurrences (we have omitted the figure due to space con-
straints). We found that two of the underruns occurred at themo-
ment that load monitor decreased the clock speed, around the40th

and90th seconds. The idle task monitor immediately increased the
speed back to its previous level in the seconds that followed. With-
out the idle task monitor, there would have been no such recovery
and many more buffer underruns would have occurred.

4.4.3 Concurrent Workloads
We next investigate how AutoDVS performs when multiple ap-

plications are running concurrently on the iPAQ. In particular, we
replayed the event trace while running Madplay at the background.
For each event trace, we started collecting the measurementstatis-
tics when the two tasks began executing events concurrently; we
continued measuring until Madplay terminated. There are three
short-traces and ended earlier than Madplay, Tet-2, Che-1 and Che-
2. For those three cases above, Madplay was the single task for
45%, 42% and 33% of total evaluation time, respectively. As in-
put to Madplay we used low.mp3 as it was the only input file that
the FIXED policy was able to play without any noticeable quality
degradation.

Running programs concurrently reduces the opportunities of CPU
scaling since there are more processing requirements. The question
that we are interested in is whether it is possible to extractany en-
ergy savings without hurting performance. Figure 5 compares the
energy savings ration for FIXED and AutoDVS (using the same
methodology as in the previous subsections). AutoDVS is able to
saves a moderate amount of energy, 12% on average. The savings
are minimal for tasks that have higher computation requirements,
e.g., Che-3, Dra, and Sol.

The high energy savings for FIXED are deceiving in this figure.
FIXED trades-off power for unacceptably low performance levels.
Table 6 shows the number of buffer underruns. We omit the counts
for MAX since in all but two cases (discussed below), there were
no buffer underruns. Due to the lack of flexibility in clock speed
setting, FIXED performed very poorly. For only in three of the
benchmarks, Gen-1, Tet-2 and Che-1, FIXED was able to produce

Dra Gen Sol Tet-1 Tet-2 Che-1 Che-2 Che-3 Average
0.0

0.5

1.0 FIXED
AutoDVS

Figure 5: Energy savings ratio (with respect to MAX) when
we execute multiple workloads (Madplay and interactive work-
loads) concurrently. Despite higher resource requirements,
AutoDVS enables moderate energy savings (12% on average).
FIXED appears to enable significantly more energy savings –
however, FIXED severely degrades program performance.

Datasets FIXED AutoDVS Description
DrawPad-1 2543 27
General-1 8 20 Console input
Solitaire-1 1507 63
Tetrix-1 1694 97 long game
Tetrix-2 202 24 short, slow game
Checkers-1 11 9 short, slow game

very heavy computation,
Checkers-2 630 481 short game

very heavy computation,
Checkers-3 4936 3541 long game

Table 6: Buffer underrun counts when we execute Madplay
and interactive workloads concurrently . We used the low.mp3
input for playback as it is the only dataset for which FIXED
performed well. MAX produced no buffer underruns for all
programs except Che-2 and Che-3, for which it imposed 461
and 2073, respectively.

moderately acceptable result. This occurred because each of these
workloads required very few computationally intensive sessions.

The buffer underrun numbers for AutoDVS is interesting. Au-
toDVS performed well in all but two cases, Che-2 and Che-3. In
the tests for which AutoDVS performed well, most buffer under-
runs occurred during the initial a few seconds, due to the same phe-
nomenon we explained in previous section. However, for Che-2
and Che-3, the overall quality was disappointing, with a high num-
ber of buffer underruns. This is due to high resource consumption
of these two concurrent tasks.Even MAX did not perform wellfor
these benchmarks. MAX encountered 461 and 2073 buffer under-
runs for Che-2 and Che-3, respectively, which resulted in signifi-
cant degredation in system performance and user experience.

4.4.4 Integrating PACE
As a final experiment, we were interested in whether we could

extend AutoDVS to conserve additional energy if it had access to
event deadline information. To investigate this, we incorporated
the PACE algorithm [13, 14], and in particular, a practical imple-
mentation of the algorithm called Practical Pace (PPACE) [26], into
AutoDVS.

PACE is a technique that can compute optimal energy savings
when continuousCPU scaling levels are available. PACE com-
putes CPU speed as a function of work completed and gradually
increases the CPU frequency as the task nears its deadline. PPACE
handles descrete CPU scaling levels and uses a polynomial time
approximation of PACE that is computationally efficient butdoes
not always find the optimal solution.

Parameter Value Description
D 50 Msecs Task deadline
WC 6.192 Mcycles Worst-case execution cycles
r 6 Number of transition points
f (103.2 - 206.4) MHz StrongArm Clock frequency steps
s [WC-1] / r Transition period -evenly spaced
ε 0.05 Trim error parameter

Table 7: Simulation parameters that we used to investigate the
efficacy of integrating PPACE into AutoDVS.

Dra Gen Sol Tet-1 Tet-2 Che-1 Che-2 Che-3 Average
0.0

0.5

1.0

Figure 6: Simulated energy savings ratio with respect to Au-
toDVS when we integrate PPACE. These results are different
from all those prior in that we obtained them through simu-
lation. In addition, we consider only GUI events. On average,
incorporating PPACE results in a potential 41% decrease in en-
ergy consumption of GUI events when the event deadlines and
WCETs are known a priori.

We investigated the integration of AutoDVS and PPACE using
trace-driven simulation using GUI events in our traces. That is, we
only measure the impact of using PACE on GUI events (since they
are the only actual tasks in our system that we can provide a priori
deadlines for). We do not measure the energy savings on the entire
system. Please note that for all prior experiments, we did not use
simulation but instead, replayed the complete user activity traces in
real time with AutoDVS and the comparative techniques.

We employed simulation to evaluate thepotential of coupling
PACE with AutoDVS for interactive events. An online implemen-
tation of PACE is currently not feasible for the following reasons.
First, PACE requires frequency switches at a very fine granularity
for optimal energy savings (i.e. every few milliseconds given 50ms
deadlines). As we described previously, our system thrashes be-
tween energy levels and performs poorly when we scale the CPU
too often. Second, the computational requirements of PPACEare
still too great for an online system on an iPAQ. Third, the compu-
tation of cumulative distribution function requires offline informa-
tion. Finally, AutoDVS requires an additional API through which it
can collect the offline information, task deadlines, and task WCETs
from the program.

Table 7 shows the parameters we use to evaluate PPACE in Au-
toDVS. To determine the worst-case execution time (WCET) incy-
cles, we use the CPU demand of 99 percentile of GUI tasks which
is equal to 6.192 Mcycles. We limited the number of clock speed
transitions to 6, placing them evenly in the range [1,WCET].Even
though we use a smaller number of transitions than were used in the
Practical Pace study, our implementation provides a higherresolu-
tion than the original implementation since we use a much smaller
WCET. Xu et al. usesWC = 500 Mcycles with100 transition
points – this corresponds to a transition point approximately every
5 Mcycles. In contrast, we place a transition point at approximately
every1 Mcycles.

Figure 6 shows the energy savings ratio when CPU speed is

rescheduled using PPACE – relative to AutoDVS (not MAX as in
prior graphs). The data indicates that using PPACE with AutoDVS
can potentially enable significant energy savings. Our results in-
dicate that for most of our event traces, the energy consumption of
GUI events can be decreased by over 50%. Che-2 and Che-3 are ex-
ceptions to general trend. For these two cases, the savings are less
than 10%. On average, PPACE reduces the energy consumption of
GUI events by 41%. As part of future work, we plan to attempt to
address the limitations (articulated above) of incorporating PPACE
into the real, online, implementation of AutoDVS, in an attempt to
further reduce the energy consumption of iPAQ programs.

5. CONCLUSIONS AND FUTURE WORK
In an effort to produce an automatic dynamic voltage scalingsys-

tem for a popular hand-held device, the HP iPAQ, we developeda
set of Linux and Window Manager extensions that implement, cou-
ple, and extend a number of extant approaches to dynamic voltage
scaling (DVS) to reduce power consumption. Our system is called
AutoDVS and is very flexible and extensible. Each of the DVS
algorithms used for different workload behaviors can be replaced
with others. We intend for it to be used by researchers interested
in investigating, empirically evaluating, and comparing DVS al-
gorithms on iPAQ hand-helds using popular and general-purpose
hand-held software.

Our results indicate that AutoDVS can reduce power consump-
tion significantly for a wide range of application types executed
alone or concurrently. On average, AutoDVS reduces power con-
sumption 53% for interactive tasks, 13% for soft real-time tasks,
and by 12% for concurrent workloads that both types of applica-
tions. AutoDVS enables these results automatically and transpar-
ently for a wide range of real applications. The key to enabling
these power reductions is the use of interval schedulers that capture
computationally intensive and idle periods in the workloadand ac-
curate time series prediction (by NWSLite [9]) to estimate the du-
ration of application-specific interactive sessions. The combination
of these techniques enables AutoDVS to infer accurately task-level
behavior from applications, workloads, and concurrent workloads,
and to adapt the clock speed appropriately.

As part of future work, we plan to study effective and practi-
cally efficient ways for implementing PPACE in AutoDVS by infer-
ring and dynamically updating the CDF function and estimates for
worst-case execution times for tasks. We plan to employ NWSLite
to perform such estimations. In addition, we plan to investigate
techniques that reduce the learning time of AutoDVS for softreal-
time tasks and that are more aggressive for interactive tasks – in
an effort to extract additional savings. Finally, we intendto imple-
ment AutoDVS into Familiar Linux for an iPAQ with actual multi-
level (> 2 levels), voltage scaling when available (as opposed to
only frequency scaling), to verify that our estimated energy savings
translate into actual savings.

6. REFERENCES
[1] Itsy – http://research.compaq.com/wrl/projects/itsy/.
[2] Madplay – http://www.underbit.com/products/mad/.
[3] Compaq Computer Corporation.iPAQ Pocket PC.

http://www.compaq.com/products/handhelds/pocketpc/.
[4] Familiar Web Page –http://www.handhelds.org.
[5] Krisztian Flautner, Steve Reinhardt, and Trevor Mudge.Automatic

performance setting for dynamic voltage scaling.Wirel. Netw.,
8(5):507–520, 2002.

[6] I. Foster and C. Kesselman.The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[7] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing
algorithms for dynamic speed-setting of a low-power CPU. InACM

international conference on Mobile Computing and Networking
(MoBiCom), pages 13–25, 1995.

[8] Dirk Grunwald, Philip Levis, Charles B. Morrey III, Michael
Neufeld, and Keith I. Farkas. Policies for dynamic clock scheduling.
In Fourth Symposium on Operating System Design and
Implementation(OSDI 2000), pages 73–86, October 2000.

[9] Selim Gurun, Chandra Krintz, and Rich Wolski. Nwslite: a
light-weight prediction utility for mobile devices. InProceedings of
the 2nd international conference on Mobile systems, applications,
and services, pages 2–11. ACM Press, 2004.

[10] Intel. StrongARM SA-1110 Microprocessor Developer’s Manual,
October 2001. Order Number:278240-004.

[11] Intel Corporation.Xscale. www.intel.com/design/intelxscale/.
[12] Xiaotao Liu, Prashant Shenoy, and Mark Corner. Chameloen:

Application controlled power management with performance
isolation. Technical Report 04-26, Department of ComputerScience
University of Massachusetts, 2004.

[13] Jacob R. Lorch and Alan Jay Smith. Improving dynamic voltage
scaling algorithms with PACE. InProceedings of the 2001 ACM
SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 50–61. ACM Press, 2001.

[14] Jacob R. Lorch and Alan Jay Smith. Using user interface event
information in dynamic voltage scaling algorithms. InProceedings of
the 11th IEEE/ACM International Symposium on Modeling, Analysis
and Simulation Computer and Telecommunications Systems, pages
46–55, October 2003.

[15] Steven M. Martin, Krisztian Flautner, Trevor Mudge, and David
Blaauw. Combined dynamic voltage scaling and adaptive body
biasing for lower power microprocessors under dynamic workloads.
In Proceedings of the 2002 IEEE/ACM international conferenceon
Computer-aided design, pages 721–725. ACM Press, 2002.

[16] Brad Myers and Michael Beigl. Handheld computing.IEEE
Computer, pages 27–29, september 2003.

[17] Dushyanth Narayanan and M. Satyanarayanan. Predictive resource
management for wearable computing. InInternational Conference
on Mobile Systems, Applications, and Services, 2003.

[18] OpenZaurus Web Page –http://www.openzaurus.org/web.
[19] Trevor Pering, Tom Burd, and Robert Brodersen. The simulation and

evaluation of dynamic voltage scaling algorithms. InProc.
International Symposium on Low Power Electronics and Design,
pages 76–81, August 1998.

[20] Johan Pouwelse, Koen Langendoen, and Henk Sips. Dynamic
voltage scaling on a low-power microprocessor. InProceedings of
the 7th annual international conference on Mobile computing and
networking, pages 251–259. ACM Press, 2001.

[21] A. Rudenko, P. Reiher, G.Popek, and G.Kuenning. The remote
processing framework for portable computer power saving. In ACM
Symp. Appl. Comp., San Antonio,TX, February 1999.

[22] Li Shang, Alireza S. Kaviani, and Kusuma Bathala. Dynamic power
consumption in virtex-ii FPGA family. InProceedings of the 2002
ACM/SIGDA tenth international symposium on Field-programmable
gate arrays, pages 157–164. ACM Press, 2002.

[23] Amit Sinha and Anantha P. Chandrakasan. Dynamic voltage
scheduling using adaptive filtering of workload traces. In
Proceedings of the The 14th International Conference on VLSI
Design (VLSID ’01), page 221. IEEE Computer Society, 2001.

[24] Mark Weiser, Brent Welch, Alan J. Demers, and Scott Shenker.
Scheduling for reduced CPU energy. InOperating Systems Design
and Implementation, pages 13–23, 1994.

[25] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A
Distributed Resource Performance Forecasting Service for
Metacomputing.Future Generation Computer Systems, 1999.

[26] Ruibin Xu, Chenhai Xi, Rami Melhem, and Daniel Moss. Practical
pace for embedded systems. InProceedings of the fourth ACM
international conference on Embedded software, pages 54–63. ACM
Press, 2004.

[27] Wanghong Yuan and Klara Nahrstedt. Energy-efficient soft real-time
CPU scheduling for mobile multimedia systems. InProceedings of
the 19th ACM Symposium on Operating Systems Principles
(SOSP’03), 2003.

