
Real-time Rendering with Wavelet-Compressed
Multi-Dimensional Datasets on the GPU

Stephen DiVerdi Nicola Candussi Tobias Höllerer

University of California, Santa Barbara, CA

Figure 1: Large datasets, wavelet-compressed and renderedon graphics hardware.Left to right: (a)A 163842 sample
aerial photograph texture mapped on exaggerated elevationmesh.(b) A 5123 sample volume dataset, rendered with
view-facing orthographic slices.(c) A teapot rendered with a644 sample metallic BRDF material.

Abstract
We present a method for using large, high dimension and
high dynamic range datasets on modern graphics hard-
ware. Datasets are preprocessed with a discrete wavelet
transform, insignificant coefficients are removed, and the
resulting compressed data is stored in standard 2D texture
memory. A set of drop-in shader functions allows any
shader program to sample the wavelet-encoded textures
without additional programming. We demonstrate our
technique in three applications – a terrain renderer with a
163842 sample RGB texture map, a volume renderer with
a 5123 sample 3D dataset, and a complex material shader
using an unapproximated BRDF dataset, sampled at 644

in RGB.

Key words: texture compression, wavelets, pro-
grammable shaders, large textures, BRDF, volume ren-
dering, multi-dimensional functions

1 Introduction

Dedicated 3D graphics hardware has experienced a rev-
olution in capabilities in recent years, reaching a level of
complexity and programmability comparable to general
purpose computing hardware. One considerable obsta-
cle to unleashing the full power of these advancements is
the limited support and capacity for general purpose data
storage on the graphics card. The main form of storage
is texture memory, of which modern consumer graphics
cards have up to 512MB, though much more commonly

256MB or even 128MB. All modern graphics cards in-
clude support for 1D, 2D, and 3D textures, with 8-bit
fixed precision or more recently as 32-bit floats, but are
limited to preset maximum sizes. Higher dimensional
textures are not commonly supported.

We present a technique to encode multi-dimensional
datasets in texture memory, with drop-in pixel shader
functions for ease of sampling, greatly surpassing the
storage limitations of current graphics hardware. The
encoding is based on wavelet techniques, providing
lossy compression and transparent support for multi-
dimensional and high dynamic range data. We demon-
strate the real-time rendering of wavelet-compressed data
in three applications: a 2D texture in a landscape ren-
derer, a 3D texture used in a simple volume renderer, and
a full 4D BRDF material renderer. Each application uses
very large datasets compressed with our technique.

Wavelet encoding is popular for processing multi-
dimensional datasets, often applied to image compres-
sion, as in JPEG2000 [26]. The discrete wavelet trans-
form is easily implemented in software, and has even
been adapted to graphics hardware for improved perfor-
mance [15]. However, existing GPU implementations
have been limited to 2D data sets, and are not capable
of randomly accessing pixels from the transformed data
set, making them inappropriate for general texture data
compression. Additionally, these algorithms traditionally
have been too complex to be applied in real-time applica-



tions. Our technique addresses these issues by adapting
an existing technique for storing and randomly accessing
wavelet-encoded data in texture memory using the latest
capabilities in programmable shaders to achieve interac-
tive framerates.

The advantages of storing texture data with a wavelet
encoding are numerous. First, wavelet encoding lends it-
self to a straightforward lossy compression scheme, by
disregarding coefficients below a certain threshold. This
means that textures will require less memory for storage,
and also that the texture-size limitations of the hardware
can be exceeded, allowing huge textures without tiling.
Wavelet encoding is also easily extended inton dimen-
sions with the same decoding algorithm. This includes
BRDF and BTF data, which previously required approxi-
mations [21] to be used in hardware. Finally, using float-
ing point values, the wavelet encoding can transparently
support high-dynamic range data.

All programs and performance measurements are
from our test system, an Intel Xeon 3GHz with an
NVIDIA GeForce FX 6800 GT 256MB, running Win-
dows XP with DirectX 9, and Linux 2.4.20 with OpenGL
1.5, NVIDIA driver 1.0-6629 for XFree86 4.3.0, with
NVIDIA Cg 1.3.

2 Related Work

Wavelets have long been used for data compression, in
particular of 2D images [11]. The JPEG2000 standard
[26] uses a Daubechies 9/7 wavelet basis which arguably
allows for better compression than is possible using the
discrete cosine transform [22]. Work has been done us-
ing graphics hardware to accelerate wavelet decoding
[15, 14], but this work has focused on decoding an im-
age in its entirety, not on a per-pixel basis for random

Hardware-accelerated 2D texture compression is em-
ployed by most off-the-shelf graphics hardware. S3 in-
troduced five simple lossy block-decomposition–based
compression schemes with compression rates of 4:1 and
8:1 [1] that were widely adopted as part of DirectX 6.0.
Wavelet-based compression techniques allow more flexi-
bility and higher compression rates while yielding better
quality, at the cost of higher decompression complexity.
However, as we demonstrate in this paper, decompression
speed can be improved by efficient use of modern hard-
ware pixel shaders to yield interactive frame rates even
for challenging applications with considerable amounts
of texture sampling.

Many other techniques have been developed for 2D
texture compression that are amenable to graphics hard-
ware. Beers et al [3] introduced a vector-quantization–
based technique that uses a precomputed codebook and
stores a smaller texture of indices into this codebook. The
size of the codebook determines the level of compression.
More recently, Fenney [12] developed a way to store a

compressed texture so that decompression only requires
a single lookup per sample. These techniques work well
in their domain, but require design and implementation
effort to effectively handle multi-dimensional and high-
dynamic range datasets, as they lack the general applica-
bility of our technique.

There is a considerable body of work on methods for
texture management and caching, including hardware-
supported techniques [8]. Clipmapping [25] is a high-
end hardware/software approach to render with textures
that are much bigger than will fit into texture memory us-
ing SGI Performer and special hardware features on the
Infinite Reality platform. MIP-levels were paged in effi-
ciently over a high-speed bus. Tiling, progressive load-
ing, texture roaming and multi-resolution rendering are
all important techniques for terrain visualization appli-
cations [6][7] and volume rendering of arbitrarily large
datasets [4]. These techniques are useful alternatives and
complements to texture compression in certain domains,
but in 3D volume rendering, BRDF shading, or general
random access of high-dimensional datasets when all tex-
ture data must be accessible immediately, they are insuf-
ficient.

The immense storage requirements for 3D textures
has motivated more advanced texture compression tech-
nique research. Bajaj et al [2] have proposed a tech-
nique based on wavelet compression and vector quanti-
zation that achieves compression ratios of over 50 to 1,
but their implementation for interactive rendering is lim-
ited to low-fillrate applications such as 3D texture map-
ping of polygonal surfaces, making it inappropriate for,
for example, volume rendering.

No commodity hardware currently supports textures
with dimensions greater than three. Several research
projects are concerned with hardware-accelerated de-
compression of encoded higher-dimensional functions, in
particular for Light-Field Rendering [13]. Kraus and Ertl
[17] present a vector-quantization–based ”adaptive tex-
ture map” approach for 3D volume data and 4D light
fields. However, the primary usefulness of adaptive tex-
ture maps is limited to sparse datasets with large uniform
areas. Our results using the more expensive wavelet en-
coding for dense 3D or 4D datasets yield about an order
of magnitude higher compression rates, while experienc-
ing less pronounced compression artifacts. We achieve
this at the cost of rendering speed, which, however, is
only a noticeable factor in texture-evaluation intensive
applications such as volume rendering with contributions
from every voxel (see Section 4.2).

Lalonde and Fournier proposed an algorithm based on
nonstandard wavelet transform and zero-tree encoding
to efficiently store and sample BRDF datasets and light
fields [18, 19]. Their solution can be easily extended to



multi-dimensional datasets, but it is not amenable to hard-
ware implementation.

Different approximation techniques have been used
to reduce the dimensions and size of BRDF data, such
as separable approximation and homomorphic factoriza-
tion [16, 21]. The 4D BRDF is represented as a prod-
uct of two 2D functions and rendered in hardware us-
ing two cubemaps. While this method is very efficient
in terms of compression and rendering time, the qual-
ity of the approximation is largely dependent on the type
of material the BRDF data represents and the chosen
parametrization. Additional work has been done to ex-
tend this method to include importance sampling and
suggest its use for higher-dimensional functions such as
BTFs (bidirectional texturing functions) [20]. Our com-
pression scheme is much more general and flexible in
weighing quality against space than these approximation
approaches, again at the cost of rendering performance -
but we still achieve real-time frame rates in our BRDF
renderings.

3 Compression Technique

Our compression technique is based on the discrete
wavelet transform with a Haar basis. The wavelet data
is stored in texture memory for fast random access by our
shader. We explain our shader, review performance data,
and discuss methods of improving performance.

3.1 Wavelet Transform
The mathematics of the discrete wavelet transform are
well discussed in the literature [9, 11, 10, 24] – we defer
to their expositions. What is important for data compres-
sion is that wavelet transform produces the same num-
ber of coefficients as the original data, but many of them
are close to zero. By using a sparse representation of the
coefficients, the original data can be stored more com-
pactly. Lossy compression can be applied as well, de-
creasing data size at the cost of accuracy by removing
coefficients below a certain threshold and quantizing the
remaining coefficients. This has the effect of removing
localized frequencies with little impact on the final im-
age, resulting in a small change in visual quality and low
error when compared to the original data.

The choice of the wavelet basis is critical for wavelet
compression, especially for the hardware implementa-
tion. The two important characteristics of a basis are
the width of support and the compression it can pro-
vide. Wider bases provide greater compression but are
also more expensive computationally. We chose the Haar
basis because it is the one with the most compact support,
maximizing decoding performance.

Using wavelet compression for textures in hardware re-
quires a data structure that allows a sparse representation
of the wavelet coefficients in texture memory, and at the

same time allows efficient random access. Lalonde in-
troduced a solution to this problem, theWavelet Coeffi-
cient Tree(WCT) [18], as a general way to store and se-
lectively reconstruct wavelet-compressed 4D BRDF data
for software rendering. Due to the limited functionali-
ties of the GPU with respect to a general purpose CPU,
this solution cannot be directly implemented with current
hardware however, so we present an adapted version of
the WCT that is amenable to current graphics hardware.
Afterwards, we discuss optimizations to improve the per-
formance of our adapted WCT.

3.2 Hardware Implementation
For simplicity of discussion, we describe here the solu-
tion for the case of a 2D dataset.

We use two textures to store the WCT – the coeffi-
cient texture and the index texture. The coefficient tex-
ture stores the wavelet coefficients for each node of the
tree, while the index texture stores children pointers for
each node. The tree is laid out so that the children of a
node are consecutive, allowing each node to store a single
pointer to the first child, and use an offset to access the
siblings. A simple one-to-one mapping is used between
the two textures, for easy access – each node’s data is
stored in the pixels at the same location in the separate
textures, thereby requiring a single texture coordinate to
access all a node’s data.

We chose this division of coefficient and index textures
to allow the use of different precision for the representa-
tion of the wavelet coefficients from the child pointers.
This way, we can take advantage of the fact that wavelet
coefficients usually need fewer bits of precision than the
values stored in the index texture, especially if quantiza-
tion is applied. Since for a 2D wavelet transform there
are three coefficients per node, we use an RGB 2D tex-
ture for the coefficient texture. The index texture is only
an RG texture, because it stores the 2D texture coordinate
of the child pointer.

Figure 2 shows an example of a WCT that could result
from an 8x8 image, assuming that the children of nodes
N2, N3, andN4 have all coefficients equal to zero and so
are not stored. The coefficients for nodeNn are the set
Cn = {cn,0,cn,1,cn,2}. To store the example coefficient
tree using our scheme, we use two textures of size 4x4,
which can also be seen in Figure 2. NodeN0 is stored at
position(0,0) in the textures. Its four children are stored
starting at(0,1), so that is the value ofN0’s child pointer.
The children ofN1 start at(0,2). All the child pointers
of the leaves of the tree point to the specialzero nodes,
which start at position(0,3). The zero nodes have co-
efficientsCz = {0,0,0} and all their child pointers point
back to the first zero node at(0,3).

The pseudocode for accessing a point at coordinate
(u,v) is the following:



0

1 2 3 4

5 6 7 8

0

1 2 3 4

5 6 7 8

Z Z Z Z

Figure 2: Left: Example wavelet coefficient tree for an 8x8 image.Right: Resulting coefficient and index textures,
overlaid to show one-to-one correspondence. Each node’s coefficients and child pointer (in the form of a texture
coordinate) are stored in a single pixel in each texture.

10242 20482 10242 20482

nearest nearest linear linear

All Levels 14.8 12.4 - -
Last 4 61.1 61.0 6.91 6.92
Last 3 72.2 72.2 7.86 7.84

Table 1: Decompression performance and different res-
olutions, different sampling, and different partial evalua-
tions, in millions of texels per second.

float waveletSample (float2 uv)
{

child = tree root node
average = 0
for each level of the tree
{

coeffs = sample coefficient texture at child
child = sample index texture at child

quadrant = 0
quadrant += (uv.x < half level size) ? 0 : 1
quadrant += (uv.y < half level size) ? 0 : 2

average = dot(coeffs,basis[quadrant])
child += quadrant

}
return average;

}

The zero nodes are necessary because the shader must
iterate over every level of the tree’s height, even though
some of the data may have been removed because it was
insignificant. Current shader programming languages
do not support early termination of loops, even though
this feature is in some specifications. Therefore, when
a pruned node is reached, the shader must continue to
evaluate it as if the tree had not been pruned. The zero
nodes act as a replacement for all the pruned nodes – par-
ents of pruned nodes point at the zero nodes and the zero
nodes point back to themselves and all their coefficients
are zero, so the final decompressed value will not change
once it has been reached.

3.3 n > 2 Dimensions
Extending wavelet encoding to multiple-dimensional
datasets is straightforward as a product of one-
dimensional decompositions, as discussed in [18]. The
modification to our WCT involves increasing the number
of coefficients per node – for ann-dimensional dataset,
there are 2n−1 coefficients per node of the WCT. For 3D
and 4D textures, the 7 and 15 coefficients respectively
can be spread across multiple 32-bit coefficient textures,
or packed into the channels of a single 64-bit or 128-bit
coefficient texture, depending on the capabilities of the
graphics card. The sampling algorithm must also be mod-
ified slightly, so thequadrant variable takes contribu-
tions from each axis of thenD grid to select among 2n

basis functions.

3.4 Discussion
The compression ratio obtained with our technique is
mainly dependent on two factors: the number of coef-
ficients that are kept from the full WCT and the number
of bits of precision present in the index and coefficient
textures. More coefficients give a better quality image
but also increase the texture size. The number of coef-
ficients also determines the precision necessary for the
index texture because the index texture can potentially
address each coefficient in the tree. The precision of
the coefficient texture determines the amount of quanti-
zation of the coefficients themselves. The wavelet com-
pression uses 32-bit float values, which can then be stored
in texture memory as 32-bit or 16-bit floats, or 8-bit (or
even fewer!) fixed. Generally, 8-bits or fewer are suffi-
cient. Figure 3 shows the quality of 2D textures obtained
with different compression ratios and with their respec-
tive RMS errors. Compression takes place as an offline
process, ranging in time from seconds to tens of minutes,
depending on the size of the dataset.

Decompression speed is dependent on both the num-
ber of texture samples and the number of operations in



Figure 3: Comparison of 2D image compression, zoomed
in to show detail.Clockwise from Top-Left: (a)Original
163842 image, uncompressed at 768MB.(b) Downsam-
pled to40962, largest size supported by our graphics card,
at 50MB, RMS error 0.65. Detail is uniformly lost every-
where. (c) Wavelet compressed to 138MB (ratio of 5.6),
RMS error 0.027. High-frequency information remains.
(d) Wavelet compressed to 42MB (ratio of 18.3), RMS
error 0.046.

the shader. Each level of the tree requires one sample of
the index texture and one sample per coefficient texture -
in 3D and 4D each node has 7 and 15 coefficients respec-
tively, which may be stored across multiple textures. To
reduce the necessary texture sampling, we packed all the
coefficients into a single texture. The number of opera-
tions depends on the height of the tree as well as the num-
ber of dimensions. For each dimension, there are more
instructions to determine which basis function to multi-
ply the coefficients by, and for larger images there are
more levels of the tree to process before the final result is
computed. Table 1 shows different fillrate performances
with different 2D texture sizes.

The main limitation of our technique is that it only of-
fers point sampling. Linear filtering comes at a serious
cost, requiring 2dim samples, plus instructions for inter-
polation. Figure 4 shows a comparison of rendering with
and without filtering, and Table 1 compares their perfor-
mance. It is worth noting that our technique transparently
supports mipmapping at no additional cost. Each succes-
sive evaluation of the WCT computes a finer-resolution
sample of the original dataset. Therefore, by halting the
tree traversal early, a sample equivalent to a higher level
of the mipmap hierarchy will be generated.

While we tested our implementation on an NVIDIA
GeForce FX 6800, it is compatible with any card that

supports pixel shader 2.0 and above. Due to the num-
ber of instructions required for large images, especially
in the 2D and 3D cases, the instruction limit can easily be
reached. However, for newer NVIDIA cards and drivers,
loops are supported without unrolling, so arbitrary height
trees can be accommodated.

3.5 Improvements

Partial Evaluation. The height of the WCT is equal to
h = log2(s) wheres is the size of the data along one di-
mension. For example, a 2D texture of size 16384x16384
would produce a WCT with height 14. Only evaluat-
ing the firstn < h levels of the WCT results in a lower
resolution image. One way we improve performance of
our algorithm is to pre-evaluate the firstn levels of the
WCT and store the resulting low-resolution image into
a texture, storing the wavelet representation for only the
h− n remaining levels. The decompression algorithm
then samples the lower resolution image and adds de-
tails by evaluating only the last levels of the WCT. In the
case of a 16384x16384 image with the first 10 levels pre-
evaluated, the 1024x1024 image only requires 0.39% ad-
ditional storage space, while saving 71% of the computa-
tional cost of decompression. The storage and sampling
of this lower resolution data is trivial in the 2D and 3D
cases because of the native 2D and 3D texture capabili-
ties of graphics hardware. For higher dimensions, a sepa-
rable approximation technique [21] could be used, which
is adequate to store the necessary low-frequency informa-
tion. Table 1 shows a performance comparison between
full and partial evaluation. Since the height of the tree
depends on the size of the dataset, the performance of the
full evaluation decreases as the dataset grows, while the
performance of the partial evaluation remains constant.

Early Bailout. Removal of near-zero coefficients from
the WCT not only reduces size, but should also increase
performance of decompression by reducing the average
height of the WCT. However, our current implementa-
tion must always evaluate the full height of the tree even
if data has been discarded, because current shader pro-
gramming languages lack support for the ability to break
out of a loop early. Once such support exists, it will be
a simple modification to our code to take advantage of
the speed-up. In the meantime, we performed a com-
parison of our software decompressor with and without
early bailout, and found a performance increase of be-
tween 20% and 40%. We can expect a similar speed-up
over the performances reported in Table 1 when this sup-
port is available in hardware.

4 Applications

To demonstrate the capabilities of our technique, we
have implemented three example applications that use
wavelet-encoded multi-dimensional datasets in various



Figure 4: The terrain renderer zoomed in, showing the
difference between nearest and linear sampling. Relative
performances are shown in Table 1. Our terrain renderer
runs at 70fps at 640x480.

capacities.

4.1 Terrain Rendering

Terrain rendering requires high resolution 2D textures to
adequately represent all the surface details. The maxi-
mum texture size allowed by most modern graphic cards
is 4096x4096 and the amount of available memory is a
rigid constraint on the total size of the terrain that can
be held in local memory. We implemented a simple
terrain renderer that surpasses these limitations by dis-
playing a landscape textured with a single image of size
16384x16384 (768MB uncompressed). In this case, the
amount of memory used in the video card for storing the
compressed texture is 144MB. With point sampling, the
fillrate is around 72 million texels per second, resulting
in a framerate of 70fps at 640x480. With bilinear filter-
ing, the fillrate drops by approximately a factor of five,
which is because of the fact that filtering is implemented
by interpolating the nearest four point samples. Figure 4
compares the quality obtained with and without bilinear
filtering at a very close-up view of the textured terrain.

Another technique related to terrain rendering that
could take advantage of our 2D decoder is displacement
mapping together with adaptive tessellation. The decom-
pression algorithm can be easily implemented in the ver-
tex shader, allowing high resolution displacement maps
to be stored and decompressed on the fly. Hardware adap-
tive tessellation would add details to the mesh only where
it is needed, without impeding vertex throughput.

4.2 Volume Rendering

The second example application is a volume renderer of
large 3D datasets. We chose volume rendering as a worst-
case test-scenario for our technique, because of the large
fillrate requirements for volume rendering applications.

Figure 5: Closeup view of piggy bank volume dataset
rendered in 3D.Top: 5123 compressed to 5.5MB (ratio
of 23.4). Bottom: 1283 uncompressed. Note the grainy
appearance of the lower resolution dataset. Our volume
renderer runs at 2fps with 128 slices at640x480.

With approximately 2fps at a 640x480 viewport, our ren-
derer is still just about interactive when using wavelet-
compressed 3D textures, showing that our technique can
handle high-fillrate applications. Applications using 3D
textures for low-fillrate techniques such as 3D texture
mapping of polygonal surfaces, would achieve perfor-
mance between one and two orders of magnitude faster.

We use OpenGL to render 2D slices of a volume back-
to-front with alpha blending [5], to create an image of a
dataset stored in a wavelet-encoded 3D texture. In gen-
eral, modern graphics cards natively support 3D textures
of sizes up to 5123, but the amount of data contained
in such a texture, 128Mb times the number of channels,
would eclipse the storage found on these graphics cards.
This makes 3D textures good candidates for compres-
sion, which the builtin hardware compression on many
graphics cards is not available for. Additionally, many
3D datasets come from medical measurements such as
MRI scans, at depths greater than 8-bits. Current graph-
ics cards support 16- and 32-bit float textures, but 3D float
textures are restricted to a small subset of available for-
mats, so our technique is useful in that it will always al-
low an application to use the full resolution of arbitrary
source data.

For our example dataset, we used a scan of a piggy
bank containing some coins supported by a piece of wood



from [23], at a resolution of 5123 with one 8-bit channel.
In Figure 5, we show the dataset rendered at a resolu-
tion of 5123 compressed to 5.5Mb for a compression rate
of 23:1, compared to the same dataset at 1283 uncom-
pressed, both without filtering. A simple transfer function
is applied to highlight the three objects in the image. The
lower resolution dataset clearly suffers from graininess
artifacts from aliasing, while the high resolution image
is much smoother with an RMS error of 0.013 compared
to the uncompressed dataset. The same compression ap-
plied to a 10243 image would results in a dataset around
125MB, and a slightly lossier encoding would easily be
achievable in hardware.

4.3 BRDF Shading

The third example application is a simple renderer that
shades objects with complex materials represented by full
BRDFs. Support for 4D textures does not exist on current
commodity graphics cards, which is why real-time ren-
dering with BRDF materials has been limited to lower-
dimensional representations created using a separable ap-
proximation algorithm [21]. However, separable approx-
imations depend heavily on choosing a good parameteri-
zation of the BRDF, which can be difficult to do well, and
even then, high-frequency features are often muted if not
lost entirely.

The main advantage of our technique is the ability
to render with a full, unapproximated BRDF texture on
the graphics card. These datasets are very large how-
ever, weighing in at 48Mb for a 644 RGB BRDF. Thank-
fully, BRDFs are very amenable to wavelet compression
as they generally contain mostly low frequency informa-
tion, with very localized high frequency highlights. By
decomposing the data into spatial and frequency compo-
nents, the highlights can be maintained while more heav-
ily compressing the diffuse regions. Finally, both mea-
sured and analytic BRDF datasets can contain high dy-
namic range information that is clamped at 1.0 because
of the lack of support for float cube map textures. Our
wavelet encoding is able to retain the full dynamic range
of the original BRDFs.

Figure 6 shows a comparison of our wavelet compres-
sion with results using separable approximation, on an
approximated analytic Schlick BRDF simulating a com-
plex metal from [27]. While separable approximation
yields a very compact representation of a BRDF, it is fun-
damentally limited in how accurately it can reproduce the
fine detail of a complex material. As can be seen in Fig-
ure 6, even with heavy compression, our wavelet encoded
BRDF has a lower error than the separable approximation
and clearly reproduces the high frequency specular high-
lights much more accurately. Unfortunately, because we
do not support filtering yet, the more lossy wavelet com-
pression suffers from quantization of low frequencies, re-

sulting in color banding. Linear filtering, either through
interpolation or a higher-order wavelet basis would re-
move this artifact.

5 Conclusion

In this paper, we presented a new technique for storing
and sampling multi-dimensional datasets on commodity
graphics hardware. The main advantage of our technique
is its general purpose nature, coupled with good compres-
sion rates and high visual quality – it enables graphics
cards to store extremely large datasets, through variable
rate lossy wavelet compression. Graphics cards with sup-
port for only 1-, 2-, or 3D textures can use our technique
to store higher dimensional datasets, such as BRDFs and
BTFs. We achieve these results by encoding data as a
wavelet tree stored in texture memory, and sampling it
with a simple to use drop-in shader function. The generic
nature of our technique is demonstrated in three different
applications – a terrain renderer, a volume renderer and a
BRDF material shader.

The main improvement we would like to see in our
technique is in decoding performance. We achieved real-
time framerates for most applications, but fillrates re-
main lower than existing hardware texture compression
schemes. However, we presented a method of increasing
the performance of our technique with partial evaluation,
and improved support for general purpose programming
in next generation GPUs will provide other significant
performance improvements. The performance of linear-
filtered sampling could also be addressed by investigat-
ing different wavelet bases, such as linear or debauchies.
These wider bases should provide filtering support with-
out the need for multiple samples of the compressed tex-
ture.

Overall, we are very enthusiastic about the compres-
sion results that our method achieves at interactive ren-
dering speeds. We believe that this method opens the
door to hardware-accelerated rendering of datasets that,
because of their dimensionality or sheer size, were previ-
ously excluded from interactive examination.

References
[1] S3TC DirecteX 6.0 Standard Texture Compression. S3

Inc, 1998.

[2] Chandrajit Bajaj, Insung Ihm, and Sanghun Park. 3d
rgb image compression for interactive applications.ACM
Trans. Graph., 20(1):10–38, 2001.

[3] Andrew C. Beers, Maneesh Agrawala, and Navin Chad-
dha. Rendering from compressed textures. InSIGGRAPH
’96: Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 373–378.
ACM Press, 1996.

[4] Praveen Bhaniramka and Yves Demange. OpenGL volu-
mizer: a toolkit for high quality volume rendering of large



Figure 6: A comparison of BRDF compression results.Left to right: (a)The original BRDF at164. (b) A separable
approximation, RMS error 0.31.(c) Difference between(a) and (b), clearly showing the missing high-frequency
highlights. (d) Wavelet compressed to 37KB (ratio of 5.2), RMS error 0.055. No difference image, because the error
is so low.(e)Wavelet compressed to 31KB (ratio of 6.2), RMS error 0.14.(f) Difference between(a) and(e). The high
frequencies are better represented, but low frequencies suffer from quantization. Our shader runs at 23fps at640x480.

data sets. In Stephen N. Spencer, editor,Proceedings of
the 2002 IEEE symposium on Volume visualization and
graphics (VOLVIS-02), pages 45–54, Piscataway, NJ, Oc-
tober 28–29 2002. IEEE.

[5] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated
volume renering and tomographic reconstruction using
texture mapping hardware. InProceedings of 1994 Sym-
posium on Volume Visualization, pages 91–97, 1994.

[6] David Cline and Parris K. Egbert. Interactive display of
very large textures. InProceedings IEEE Visualization’98,
pages 343–350. IEEE, 1998.

[7] Daniel Cohen-Or, Eran Rich, Uri Lerner, and Vic-
tor Shenkar. A Real-Time Photo-Realistic Visual Fly-
through. IEEE Transactions on Visualization and Com-
puter Graphics, 2(3):255–264, September 1996.

[8] Michael Cox, Narendra Bhandari, and Michael Shantz.
Multi-level texture caching for 3d graphics hardware. In
ISCA ’98: Proceedings of the 25th annual international
symposium on Computer architecture, pages 86–97. IEEE
Computer Society, 1998.

[9] I. Daubechies. Orthonormal basis of compactly supported
wavelets, 1988.

[10] Ingrid Daubechies.Ten Lectures on Wavelets. Society for
Industrial and Applied Mathematics, 1992.

[11] R. A. Devore, B. Jawerth, and B. J. Lucier. Image com-
pression through wavelet transform coding.IEEE Trans-
actions on Information Theory, 38, March 1992.

[12] Simon Fenney. Texture compression using low-frequency
signal modulation. InHWWS ’03: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 84–91. Eurographics Associ-
ation, 2003.

[13] Wolfgang Heidrich, Hendrik Lensch, Cohen Cohen, and
Hans-Peter Seidel. Light field techniques for reflexions
and refractions. In Dani Lischinski and Greg Ward Lar-
son, editors,Rendering Techniques ’99, Eurographics,
pages 187–196. Springer-Verlag Wien New York, 1999.

[14] M. Hopf and T. Ertl. Hardware accelerated wavelet trans-
formations. InProceedings of EG/IEEE Symposium on
Visualization, pages 93–103, May 2000.

[15] Pheng-Ann Heng Jianqing Wang, Tien-Tsin Wong and
Chi-Sing Leung. Discrete wavelet transform on gpu.

In Proceedings of ACM Workshop on General Purpose
Computing on Graphics Processors, pages C–41, August
2004.

[16] Jan Kautz and Michael D. McCool. Interactive rendering
with arbitrary brdfs using separable approximations. In
Proceedings of ACM SIGGRAPH 1999, page 253, August
1999.

[17] Martin Kraus and Thomas Ertl. Adaptive texture
maps. InHWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pages 7–15. Eurographics Association, 2002.

[18] Paul Lalonde and Alain Fournier. A wavelet representa-
tion of reflectance functions.IEEE Transactions on Visu-
alization and Computer Graphics, 3(4):329–336, 1997.

[19] Paul Lalonde and Alain Fournier. Interactive rendering
of wavelet projected light fields. InProceedings of the
1999 conference on Graphics interface ’99, pages 107–
114. Morgan Kaufmann Publishers Inc., 1999.

[20] Jason Lawrence, Szymon Rusinkiewicz, and Ravi Ra-
mamoorthi. Efficient BRDF importance sampling using
a factored representation.ACM Transactions on Graph-
ics, 23(3):496–505, 2004.

[21] Michael D. McCool, Jason Ang, and Anis Ahmad. Homo-
morphic factorization of brdfs for high-performance ren-
dering. InProceedings of ACM SIGGRAPH 2001, pages
171–178, 2001.

[22] K. R. Rao and P. Yip.Discrete cosine transform: algo-
rithms, advantages, applications. Academic Press Profes-
sional, Inc., 1990.

[23] Stefan Roettger. Volume library.
http://www9.cs.fau.de/Persons/Roettger/library/.

[24] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin.
Wavelets for computer graphics: A primer, part 1.IEEE
Computer Graphics and Applications, 15(3):76–84, 1995.

[25] Christopher C. Tanner, Christopher J. Migdal, and
Michael T. Jones. The clipmap: A virtual mipmap. In
Proceedings of SIGGRAPH 98, pages 151–158, 1998.

[26] David S. Taubman and Michael W. Marcellin.JPEG
2000: Image Compression Fundamentals, Standards and
Practice. Kluwer Academic Publishers, 2001.

[27] Chris Wynn. BRDF-based lighting.
http://developer.nvidia.com/object/BRDFbasedLighting.html.


	Introduction
	Related Work
	Compression Technique
	Wavelet Transform
	Hardware Implementation
	n>2 Dimensions
	Discussion
	Improvements

	Applications
	Terrain Rendering
	Volume Rendering
	BRDF Shading

	Conclusion

