Real-time Rendering with Wavelet-Compressed
Multi-Dimensional Datasets on the GPU

Stephen DiVerdi Nicola Candussi Tobiaslkerer

University of California, Santa Barbara, CA

Figure 1: Large datasets, wavelet-compressed and renderga@phics hardwaré.eft to right: (a) A 16384 sample
aerial photograph texture mapped on exaggerated elevas. (b) A 512° sample volume dataset, rendered with
view-facing orthographic slicegc) A teapot rendered with @4* sample metallic BRDF material.

Abstract 256MB or even 128MB. All modern graphics cards in-

We present a method for using large, high dimension andlude support for 1D, 2D, and 3D textures, with 8-bit
high dynamic range datasets on modern graphics harfixed precision or more recently as 32-bit floats, but are
ware. Datasets are preprocessed with a discrete wavelietited to preset maximum sizes. Higher dimensional
transform, insignificant coefficients are removed, and theextures are not commonly supported.

resulting compressed data is stored in standard 2D texture\ye present a technique to encode multi-dimensional
memory. A set of drop-in shader functions allows anyjatasets in texture memory, with drop-in pixel shader
shader program to sample the wavelet-encoded texturgfctions for ease of sampling, greatly surpassing the
without additional programming. We demonstrate ouktorage limitations of current graphics hardware. The
technique in three applications — a terrain renderer with éncoding is based on wavelet techniques, providing
16384 sample RGB texture map, a volume rendererwithbssy compression and transparent support for multi-
a 512 sample 3D dataset, and a complex material shadgfmensional and high dynamic range data. We demon-
using an unapproximated BRDF dataset, sampled at 64irate the real-time rendering of wavelet-compressed data
in RGB. in three applications: a 2D texture in a landscape ren-
Key words: texture compression, wavelets, proderer, a 3D texture used in a simple volume renderer, and

grammable shaders, large textures, BRDF, volume rert full 4D BRDF material renderer. Each application uses

dering, multi-dimensional functions very large datasets compressed with our technique.
) Wavelet encoding is popular for processing multi-
1 Introduction dimensional datasets, often applied to image compres-

Dedicated 3D graphics hardware has experienced a resion, as in JPEG2000 [26]. The discrete wavelet trans-
olution in capabilities in recent years, reaching a level oform is easily implemented in software, and has even
complexity and programmability comparable to generabeen adapted to graphics hardware for improved perfor-
purpose computing hardware. One considerable obstaance [15]. However, existing GPU implementations
cle to unleashing the full power of these advancements fgve been limited to 2D data sets, and are not capable
the limited support and capacity for general purpose dataf randomly accessing pixels from the transformed data
storage on the graphics card. The main form of storageet, making them inappropriate for general texture data
is texture memory, of which modern consumer graphicesompression. Additionally, these algorithms traditidyal
cards have up to 512MB, though much more commonliiave been too complex to be applied in real-time applica-

tions. Our technique addresses these issues by adaptommpressed texture so that decompression only requires
an existing technique for storing and randomly accessing single lookup per sample. These techniques work well
wavelet-encoded data in texture memory using the latest their domain, but require design and implementation
capabilities in programmable shaders to achieve interaeffort to effectively handle multi-dimensional and high-
tive framerates. dynamic range datasets, as they lack the general applica-
The advantages of storing texture data with a waveldtility of our technique.
encoding are numerous. First, wavelet encoding lends it- There is a considerable body of work on methods for
self to a straightforward lossy compression scheme, Bgxture management and caching, including hardware-
disregarding coefficients below a certain threshold. Thi§upported techniques [8]. Clipmapping [25] is a high-
means that textures will require less memory for storagend hardware/software approach to render with textures
and also that the texture-size limitations of the hardwarg,at are much bigger than will fit into texture memory us-
can be exceeded, allowing huge textures without tilingng SG| Performer and special hardware features on the
Wavelet encoding is also easily extended intdimen- |nfinjte Reality platform. MIP-levels were paged in effi-
sions with the same decoding algorithm. This includegienﬂy over a high-speed bus. Tiling, progressive load-
BRDF and BTF data, which previously required approxijng, texture roaming and multi-resolution rendering are
mations [21] to be used in hardware. Finally, using floaty|| important techniques for terrain visualization appli-
ing point values, the wavelet encoding can transparentiystions [6][7] and volume rendering of arbitrarily large
support high-dynamic range data. datasets [4]. These techniques are useful alternatives and
All programs and performance measurements argmplements to texture compression in certain domains,
from our test system, an Intel Xeon 3GHz with anyyt in 3D volume rendering, BRDF shading, or general
NVIDIA GeForce FX 6800 GT 256MB, running Win- random access of high-dimensional datasets when all tex-

dows XP with DirectX 9, and Linux 2.4.20 with OpenGL tre data must be accessible immediately, they are insuf-
1.5, NVIDIA driver 1.0-6629 for XFree86 4.3.0, with ficient.

NVIDIACg 1.3. The immense storage requirements for 3D textures

2 Reated Work has motivated more advanced texture compression tech-

Wavelets have long been used for data compression, fidue research. Bajaj et al [2] have proposed a tech-

particular of 2D images [11]. The JPEG2000 standarg 3¢ based on wavelet compression and vector quanti-
ation that achieves compression ratios of over 50 to 1,

[26] uses a Daubechies 9/7 wavelet basis which arguab&]t their implementation for interactive rendering is lim-

allows for better compression than is possible using th.? d to low-fill licati h as 3D
discrete cosine transform [22]. Work has been done ugsa 10 Iow- rate applications such as 3D texture map-
)) . ping of polygonal surfaces, making it inappropriate for,
ing graphics hardware to accelerate wavelet deCOdlr%rexample volume rendering
[15,14], but this work has focused on decoding an im- ' '
age in its entirety, not on a per-pixel basis for random No commodity hardware currently supports textures
Hardware-accelerated 2D texture compression is emith dimensions greater than three. Several research
ployed by most off-the-shelf graphics hardware. S3 inProjects are concerned with hardware-accelerated de-
troduced five simple lossy bIock-decomposition—base@lompressmn of encoded higher-dimensional functions, in
compression schemes with compression rates of 4:1 aR@rticular for Light-Field Rendering [13]. Kraus and Ert|
8:1 [1] that were widely adopted as part of DirectX 6.0[17] present a vector-quantization-based "adaptive tex-
Wavelet-based compression techniques allow more flexre map” approach for 3D volume data and 4D light
bility and higher compression rates while yielding bettefi€lds. However, the primary usefulness of adaptive tex-
quality, at the cost of higher decompression complexityure maps is limited to sparse datasets with large uniform
However, as we demonstrate in this paper, decompressifgas. Our results using the more expensive wavelet en-
Speed can be improved by efficient use of modern har&pding for dense 3D or 4D datasets y|8|d about an order
ware pixel shaders to yield interactive frame rates eveff magnitude higher compression rates, while experienc-
for challenging applications with considerable amount¥d less pronounced compression artifacts. We achieve
of texture sampling. this at the cost of rendering speed, which, however, is
Many other techniques have been developed for opnly a noticeable factor in texture-evaluation intensive
texture compression that are amenable to graphics har@eplications such as volume rendering with contributions
ware. Beers et al [3] introduced a vector-quantization{fom every voxel (see Section 4.2).
based technique that uses a precomputed codebook andlalonde and Fournier proposed an algorithm based on
stores a smaller texture of indices into this codebook. Theonstandard wavelet transform and zero-tree encoding
size of the codebook determines the level of compressiota efficiently store and sample BRDF datasets and light
More recently, Fenney [12] developed a way to store felds [18, 19]. Their solution can be easily extended to

multi-dimensional datasets, but it is not amenable to hardame time allows efficient random access. Lalonde in-
ware implementation. troduced a solution to this problem, the¢avelet Coeffi-
Different approximation techniques have been usedient Tree(WCT) [18], as a general way to store and se-
to reduce the dimensions and size of BRDF data, sudéctively reconstruct wavelet-compressed 4D BRDF data
as separable approximation and homomorphic factorizéer software rendering. Due to the limited functionali-
tion [16, 21]. The 4D BRDF is represented as a prodties of the GPU with respect to a general purpose CPU,
uct of two 2D functions and rendered in hardware usthis solution cannot be directly implemented with current
ing two cubemaps. While this method is very efficienthardware however, so we present an adapted version of
in terms of compression and rendering time, the quathe WCT that is amenable to current graphics hardware.
ity of the approximation is largely dependent on the typé\fterwards, we discuss optimizations to improve the per-
of material the BRDF data represents and the choséarmance of our adapted WCT.
paramgtrization. Add@tional Wprk has been dong to exg Har dware | mplementation
tend this method to include importance sampling an
suggest its use for higher-dimensional functions such r simplicity of discussion, we describe here the solu-
BTFs (bidirectional texturing functions) [20]. Our com- tion for the case of a 2D dataset. i
pression scheme is much more general and flexible in W& Use two textures to store the WCT — the coeffi-
weighing quality against space than these approximaticfrﬁent texture and the index texture. The coefficient tex-

approaches, again at the cost of rendering performancéu-re stor.es the .wavelet coefficients for. each nqde of the
but we still achieve real-time frame rates in our BRDFAT€E, While the index texture stores children pointers for
renderings. each node. The tree is laid out so that the children of a
node are consecutive, allowing each node to store a single
3 Compression Technique pointer to the first child, and use an offset to access the

Our compression technique is based on the discre‘%blmgs' A simple one-to-one mapping is used between

wavelet transform with a Haar basis. The wavelet dat ored in the pixels at the same location in the separat
is stored in texture memory for fast random access by o éxtures ther:b requiring a sinale texture rdinpt te
shader. We explain our shader, review performance data ' y req 9 9 oordinate to

and discuss methods of improving performance. access alla no_de_s _d"_ita' . i
We chose this division of coefficient and index textures

31 Wavelet Transform to allow the use of different precision for the representa-
The mathematics of the discrete wavelet transform ar#on of the wavelet coefficients from the child pointers.
well discussed in the literature [9, 11, 10, 24] — we defelThis way, we can take advantage of the fact that wavelet
to their expositions. What is important for data compreseoefficients usually need fewer bits of precision than the
sion is that wavelet transform produces the same numalues stored in the index texture, especially if quantiza-
ber of coefficients as the original data, but many of thertion is applied. Since for a 2D wavelet transform there
are close to zero. By using a sparse representation of thee three coefficients per node, we use an RGB 2D tex-
coefficients, the original data can be stored more conture for the coefficient texture. The index texture is only
pactly. Lossy compression can be applied as well, deh RG texture, because it stores the 2D texture coordinate
creasing data size at the cost of accuracy by removingf the child pointer.
coefficients below a certain threshold and quantizing the Figure 2 shows an example of a WCT that could result
remaining coefficients. This has the effect of removindgrom an 8x8 image, assuming that the children of nodes
localized frequencies with little impact on the final im-N,, N3, andN4 have all coefficients equal to zero and so
age, resulting in a small change in visual quality and lovare not stored. The coefficients for noblg are the set
error when compared to the original data. Cn = {Cno,Cn1,Cn2}. To store the example coefficient
The choice of the wavelet basis is critical for waveletree using our scheme, we use two textures of size 4x4,
compression, especially for the hardware implementawhich can also be seen in Figlire 2. Nddgis stored at
tion. The two important characteristics of a basis argosition(0,0) in the textures. Its four children are stored
the width of support and the compression it can prostarting at0, 1), so that is the value dfly’s child pointer.
vide. Wider bases provide greater compression but afEhe children ofN; start at(0,2). All the child pointers
also more expensive computationally. We chose the Haaf the leaves of the tree point to the spedalo nodes
basis because itis the one with the most compact supponthich start at positior(0,3). The zero nodes have co-
maximizing decoding performance. efficientsC, = {0,0,0} and all their child pointers point
Using wavelet compression for textures in hardware reback to the first zero node &0, 3).
quires a data structure that allows a sparse representatioriThe pseudocode for accessing a point at coordinate
of the wavelet coefficients in texture memory, and at théu, v) is the following:

e two textures, for easy access — each node’s data is

Pixel Coefficient / Index Textures

Region 8x8: | No > U
Sizes /\ Co/ (0,1)
4x4: | N1 || Nz || N3 || Ny C1/(0,2)|C,/(0,3)|Cs/(0,3)|Ca/ (0,3)
AN Cs/(0,3)|Cs/(0,3)|C7/(0,3)|Cs / (0,3)
2x2: | Ns || No | N7 | Mo z C»/(0,3)|C2/(0,3)|C2/(0,3)[C2 /(0,3
) S NS | VZ(!)Z(!)Z(!)Z(!)

Figure 2:Left: Example wavelet coefficient tree for an 8x8 imadraght: Resulting coefficient and index textures,
overlaid to show one-to-one correspondence. Each nodeSiadents and child pointer (in the form of a texture
coordinate) are stored in a single pixel in each texture.

1024 2048 1028 2048 33 n>2Dimensions
nearest nearest linear linear Extending wavelet encoding to multiple-dimensional
All Levels 148 124 _ _ df';\taset_s is stralghtfo_rv_vard as a produ<_:t of one-
dimensional decompositions, as discussed in [18]. The
Last 4 61.1 61.0 6.91 6.92 . .) .
Last 3 799 799 7 86 784 modification to our WCT involves increasing the number

of coefficients per node — for amdimensional dataset,

Table 1: Decompression performance and different reghere are 2 1 coefficients per node of the WCT. For 3D

olutions, different sampling, and different partial eau and 4D textures, the 7 and 15 coefficients respectively
tions in’millions of texels pér second can be spread across multiple 32-bit coefficient textures,

or packed into the channels of a single 64-bit or 128-bit
coefficient texture, depending on the capabilities of the
graphics card. The sampling algorithm must also be mod-
ified slightly, so thequadr ant variable takes contribu-
boStbe o 0 tions from each axis of thaD grid to select among™
or each level of the tree

{ basis functions.
coeffs = sanple coefficient texture at child

fl oat wavel et Sanple (float2 uv)

{

child = tree root node

child = sanple index texture at child
quadrant = 0

quadrant += (uv.x < half level size) 2 0: 1
quadrant += (uv.y < half level size) 2 0 : 2

average = dot (coeffs, basis[quadrant])

3.4 Discussion

The compression ratio obtained with our technique is
mainly dependent on two factors: the number of coef-
ficients that are kept from the full WCT and the number
of bits of precision present in the index and coefficient

child += quadrant .. . G
} textures. More coefficients give a better quality image

return average; but also increase the texture size. The number of coef-
ficients also determines the precision necessary for the
index texture because the index texture can potentially
The zero nodes are necessary because the shader nagkiress each coefficient in the tree. The precision of
iterate over every level of the tree’s height, even thougkhe coefficient texture determines the amount of quanti-
some of the data may have been removed because it wzgion of the coefficients themselves. The wavelet com-
insignificant. Current shader programming languagegression uses 32-bit float values, which can then be stored
do not support early termination of loops, even thougln texture memory as 32-bit or 16-bit floats, or 8-bit (or
this feature is in some specifications. Therefore, whe@ven fewer!) fixed. Generally, 8-bits or fewer are suffi-
a pruned node is reached, the shader must continue a@gnt. Figure 8 shows the quality of 2D textures obtained
evaluate it as if the tree had not been pruned. The zewdth different compression ratios and with their respec-
nodes act as a replacement for all the pruned nodes — ptive RMS errors. Compression takes place as an offline
ents of pruned nodes point at the zero nodes and the zgrocess, ranging in time from seconds to tens of minutes,
nodes point back to themselves and all their coefficientdepending on the size of the dataset.
are zero, so the final decompressed value will not change Decompression speed is dependent on both the num-
once it has been reached. ber of texture samples and the number of operations in

supports pixel shader 2.0 and above. Due to the num-
ber of instructions required for large images, especially
in the 2D and 3D cases, the instruction limit can easily be
reached. However, for newer NVIDIA cards and drivers,
loops are supported without unrolling, so arbitrary height
trees can be accommodated.

3.5 Improvements

Partial Evaluation. The height of the WCT is equal to

h =logy(s) wheres s the size of the data along one di-
mension. For example, a 2D texture of size 1638884
would produce a WCT with height 14. Only evaluat-
ing the firstn < h levels of the WCT results in a lower
resolution image. One way we improve performance of
our algorithm is to pre-evaluate the finstlevels of the
WCT and store the resulting low-resolution image into
a texture, storing the wavelet representation for only the
h — n remaining levels. The decompression algorithm
Figure 3: Comparison of 2D image compression, zoome@en samples the lower resolution image and adds de-
in to show detail.Clockwise from Top_Left: (ag)ng,na[tails by evaluating Only the last levels of the WCT. In the
16384’Z image, uncompressed at 768MB) Downsam- case of a 163846384 image with the first 10 levels pre-
pled to409€, largest size supported by our graphics carcevaluated, the 1034024 image only requires 0.39% ad-
at 50MB, RMS error 0.65. Detail is uniformly lost every- ditional storage space, while saving 71% of the computa-
where. (c) Wavelet compressed to 138MB (ratio of 5.6) tional cost of decompression. The storage and sampling
RMS error 0.027. High_frequency information remains_Of this lower resolution data is trivial in the 2D and 3D

(d) Wavelet compressed to 42MB (ratio of 18.3), RMScases because of the native 2D and 3D texture capabili-
error 0.046. ties of graphics hardware. For higher dimensions, a sepa-

rable approximation technigue [21] could be used, which

the shader. Each level of the tree requires one sample isfadequate to store the necessary low-frequency informa-
the index texture and one sample per coefficient texturetion. Table 1 shows a performance comparison between
in 3D and 4D each node has 7 and 15 coefficients respdedl and partial evaluation. Since the height of the tree
tively, which may be stored across multiple textures. Telepends on the size of the dataset, the performance of the
reduce the necessary texture sampling, we packed all tfigl evaluation decreases as the dataset grows, while the
coefficients into a single texture. The number of operaperformance of the partial evaluation remains constant.
tions depends on the height of the tree as well as the num-Early Bailout. Removal of near-zero coefficients from
ber of dimensions. For each dimension, there are mothe WCT not only reduces size, but should also increase
instructions to determine which basis function to multi-performance of decompression by reducing the average
ply the coefficients by, and for larger images there arbeight of the WCT. However, our current implementa-
more levels of the tree to process before the final result fon must always evaluate the full height of the tree even
computed. Table 1 shows different fillrate performancei data has been discarded, because current shader pro-
with different 2D texture sizes. gramming languages lack support for the ability to break

The main limitation of our technique is that it only of- out of a loop early. Once such support exists, it will be
fers point sampling. Linear filtering comes at a serioug simple modification to our code to take advantage of
cost, requiring 9™ samples, plus instructions for inter- the speed-up. In the meantime, we performed a com-
polation. Figuré 4 shows a comparison of rendering witparison of our software decompressor with and without
and without filtering, and Table 1 compares their perforearly bailout, and found a performance increase of be-
mance. It is worth noting that our technique transparentlfween 20% and 40%. We can expect a similar speed-up
supports mipmapping at no additional cost. Each succegver the performances reported in Table 1 when this sup-
sive evaluation of the WCT computes a finer-resolutioport is available in hardware.
sample of the original dataset. Therefore, by halting the o
tree traversal early, a sample equivalent to a higher levél Applications
of the mipmap hierarchy will be generated. To demonstrate the capabilities of our technique, we

While we tested our implementation on an NVIDIA have implemented three example applications that use
GeForce FX 6800, it is compatible with any card thatvavelet-encoded multi-dimensional datasets in various

Figure 4: The terrain renderer zoomed in, showing the
difference between nearest and linear sampling. Relative
performances are shown in Table 1. Our terrain renderer
runs at 70fps at 640x480.

capacities.

4.1 Terrain Rendering Figure 5: Closeup view of piggy bank volume dataset
Terrain rendering requires high resolution 2D textures tgendered in 3DTop: 512° compressed to 5.5MB (ratio
adequately represent all the surface details. The maxsf 23.4). Bottom: 128® uncompressed. Note the grainy
mum texture size allowed by most modern graphic cardgppearance of the lower resolution dataset. Our volume
is 40964096 and the amount of available memory is aenderer runs at 2fps with 128 slice64x480.

rigid constraint on the total size of the terrain that can

be h_eId in local memory. We implementeq a Simpl‘_‘Nith approximately 2fps at a 64880 viewport, our ren-
terrain renderer that surpasses these limitations by difgrer s sill just about interactive when using wavelet-

playing a landscape textured with a single image of Siz(?ompressed 3D textures, showing that our technique can
1638416384 (768MB uncompressed).

(: In this case, thgangie high-fillrate applications. Applications using 3D
amount of memory used in the video card for storing theay res for low-fillrate techniques such as 3D texture

cpmprgssed texture is_ 1.44MB' With point sampling, ,th?napping of polygonal surfaces, would achieve perfor-
fillrate is around 72 million texels per second, resulting, o< between one and two orders of magpnitude faster

in a framerate of 70fps at 64080. With bilinear filter- We use OpenGL to render 2D slices of a volume back-
ing, the fillrate drops by approximately a factor of five, _front with alpha blending [S], to create an image of a

which is because of the fact that filtering is implemente taset stored | lot ded 3D text |
by interpolating the nearest four point samples. Figure dataset stored in a wavelet-encode exture. In gen-
ral, modern graphics cards natively support 3D textures

compares the quality obtained with and without biIinea‘P]c ' to 512 but th t of dat tained
filtering at a very close-up view of the textured terrain. of sizés up 1o ut the amount of data containe

. . . in such a texture, 128Mb times the number of channels,
Another technique related to terrain rendering that : .
would eclipse the storage found on these graphics cards.

could take advantage of our 2D decoder is displacemexﬁ1is makes 3D textures good candidates for compres-

mapping together with adaptive tessellation. The decon%-ion, which the builtin hardware compression on many

pression algorithm can be easily implemented in the Ver'raphics cards is not available for. Additionally, many

tex shader, allowing high resolution displacement ma .

D datasets come from medical measurements such as
to be stored and decompressed on the fly. Hardware adgp- ;

RI scans, at depths greater than 8-bits. Current graph-

.t'V.e tessellatlorj WOUI.d add Qetalls to the mesh only wher%s cards support 16- and 32-bit float textures, but 3D float
it is needed, without impeding vertex throughput.

textures are restricted to a small subset of available for-
4.2 Volume Rendering mats, so our technique is useful in that it will always al-

The second example application is a volume renderer W an application to use the full resolution of arbitrary
large 3D datasets. We chose volume rendering as a wor§gurce data.

case test-scenario for our technique, because of the larga-or our example dataset, we used a scan of a piggy
fillrate requirements for volume rendering applicationsbank containing some coins supported by a piece of wood

from [23], at a resolution of 53with one 8-bit channel. sulting in color banding. Linear filtering, either through
In Figure'5, we show the dataset rendered at a resolinterpolation or a higher-order wavelet basis would re-
tion of 512 compressed to 5.5Mb for a compression ratenove this artifact.

of 23:1, compared to the same dataset at®li28com-

pressed, both without filtering. A simple transfer function® Conclusion

is applied to highlight the three objects in the image. Then this paper, we presented a new technique for storing
lower resolution dataset clearly suffers from graininesand sampling multi-dimensional datasets on commodity
artifacts from aliasing, while the high resolution imagegraphics hardware. The main advantage of our technique
is much smoother with an RMS error of 0.013 compareg its general purpose nature, coupled with good compres-
to the uncompressed dataset. The same compression gjgn rates and high visual quality — it enables graphics
plied to a 1024 image would results in a dataset arounctards to store extremely large datasets, through variable
125MB, and a slightly lossier encoding would easily bgate lossy wavelet compression. Graphics cards with sup-
achievable in hardware. port for only 1-, 2-, or 3D textures can use our technique
43 BRDF Shading to store higher dimensional datasets, such as BRDFs and

The third | lication i ol d h BTFs. We achieve these results by encoding data as a
e third example application Is a simple renderer thaf, oot ree stored in texture memory, and sampling it

shades objects with complex materials represented by f ith a simple to use drop-in shader function. The generic

BRDFs. Support for 4D textures does not exist on Curreny e of our technique is demonstrated in three different

commodity graphics cards, which is why real-time ren i ations _ a terrain renderer, a volume renderer and a
dering with BRDF materials has been limited to lower-

) s) . BRDF material shader.
dimensional representations created using a separable aPThe main improvement we would like to see in our
_prox_i mation algorithm .[21]' Howev_e r, separable approxiechnique is in decoding performance. We achieved real-
'Zrzgggr:; g]ipgg%r;e\?vﬁ:zﬁ ga%hgg?jli?f?ci|?tooo((jjopv3(r:|l|m§rt1§ﬁ_me framerates for most applications, but fillrates re-
. ’ ' _main lower than existing hardware texture compression
even thgn, high-frequency features are often muted if nos'E:hemes. However, we presented a method of increasing
lost entwely. .) ... the performance of our technique with partial evaluation,
The main advantage of our technique is the ability, 4 improved support for general purpose programming
to render with a full, unapproximated BRDF texture o, eyt generation GPUs will provide other significant
the graphics card. These datasets are very large hoWs tormance improvements. The performance of linear-
ever, weighing in at 48Mb for a 64RGB BRDF. Thank- fjiareq sampling could also be addressed by investigat-
fully, BRDFs are very amenable to wavelet compressiop,q gifferent wavelet bases, such as linear or debauchies.
as they generally contain mostly low frequency informapege \yider bases should provide filtering support with-

tion, with very localized high frequency highlights. By ot the need for multiple samples of the compressed tex-
decomposing the data into spatial and frequency compg;,e.

nents, the highlights can be maintained while more heav- Overall, we are very enthusiastic about the compres-
ily compressing the diffuse regions. Finally, both Me35ion results that our method achieves at interactive ren-

sured and analytic BRDF datasets can contain high d}ﬁ'ering speeds. We believe that this method opens the
namic range information that is clamped a because

door to hardware-accelerated rendering of datasets that,
of the lack of support for float cube map textures. Ou

oot . i because of their dimensionality or sheer size, were previ-
wavelet encoding is able to retain the full dynamic rang%usly excluded from interactive examination
of the original BRDFs. '

Figure 6 shows a comparison of our wavelet compresReferences

sion with results using separable approximation, on anij s3TC DirecteX 6.0 Standard Texture Compression. S3
approximated analytic Schlick BRDF simulating a com- |nc, 1998.

p_Iex metal from [27]. While separable approxi_m_ation [2] Chandrajit Bajaj, Insung Ihm, and Sanghun Park. 3d
yields a very compact representation of a BRDF, itis fun- -~ gh image compression for interactive applicatioA&M
damentally limited in how accurately it can reproduce the Trans. Graph, 20(1):10-38, 2001.

fine detail of a complex matenal.. As can be seen in Fig-(3] andrew C. Beers, Maneesh Agrawala, and Navin Chad-
ure 6, even with heavy compression, our wavelet encoded ~ gha, Rendering from compressed texturesSIBGRAPH
BRDF has a lower error than the separable approximation '96: Proceedings of the 23rd annual conference on Com-
and clearly reproduces the high frequency specular high- puter graphics and interactive techniquesges 373-378.
lights much more accurately. Unfortunately, because we ACM Press, 1996.

do not support filtering yet, the more lossy wavelet com-[4] Praveen Bhaniramka and Yves Demange. OpenGL volu-
pression suffers from quantization of low frequencies, re- mizer: a toolkit for high quality volume rendering of large

N

RN

Figure 6: A comparison of BRDF compression restltsft to right: (a) The original BRDF all6®. (b) A separable
approximation, RMS error 0.31(c) Difference betweelfa) and(b), clearly showing the missing high-frequency
highlights. (d) Wavelet compressed to 37KB (ratio of 5.2), RMS error 0.056.dNference image, because the error
is so low.(e) Wavelet compressed to 31KB (ratio of 6.2), RMS error O(f4Difference betwee(rn) and(e). The high
frequencies are better represented, but low frequencféey $tom quantization. Our shader runs at 23fp§4x480.

data sets. In Stephen N. Spencer, editsgceedings of In Proceedings of ACM Workshop on General Purpose

the 2002 IEEE symposium on Volume visualization and ~ Computing on Graphics Processpmages C—41, August

graphics (VOLVIS-02)pages 45-54, Piscataway, NJ, Oc- 2004.

tober 28-29 2002. IEEE. [16] Jan Kautz and Michael D. McCool. Interactive rendering
[5] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated with arbitrary brdfs using separable approximations. In

volume renering and tomographic reconstruction using Proceedings of ACM SIGGRAPH 193fge 253, August

texture mapping hardware. RProceedings of 1994 Sym- 1999.
posium on Volume Visualizatippages 91-97, 1994. [17] Martin Kraus and Thomas Ertl. Adaptive texture

[6] David Cline and Parris K. Egbert. Interactive display of maps. InHWWS '02: Proceedings of the ACM SIG-
very large textures. IRroceedings IEEE Visualization’98 GRAPH/EUROGRAPHICS conference on Graphics hard-
pages 343-350. IEEE, 1998. ware, pages 7-15. Eurographics Association, 2002.

[7] Daniel Cohen-Or, Eran Rich, Uri Lerner, and Vic- [18] Paul Lalonde and Alain Fournier. A wavelet representa-
tor Shenkar. A Real-Time Photo-Realistic Visual Fly- tion of reflectance functiondEEE Transactions on Visu-
through. IEEE Transactions on Visualization and Com- alization and Computer Graphic8(4):329-336, 1997.
puter Graphics2(3):255-264, September 1996. [19] Paul Lalonde and Alain Fournier. Interactive rendering

[8] Michael Cox, Narendra Bhandari, and Michael Shantz. of wavelet projected light fields. IRroceedings of the
Multi-level texture caching for 3d graphics hardware. In 1999 conference on Graphics interface ;/9%ages 107—

ISCA '98: Proceedings of the 25th annual international 114. Morgan Kaufmann Publishers Inc., 1999.
symposium on Computer architectupages 86-97. IEEE [20] Jason Lawrence, Szymon Rusinkiewicz, and Ravi Ra-
Computer Society, 1998. mamoorthi. Efficient BRDF importance sampling using
a factored representatiotrACM Transactions on Graph-
ics, 23(3):496-505, 2004.
[10] Ingrid DaubechiesTen Lectures on WaveletSociety for [21] M|chaz_al D. MCQOO.I’ Jason Ang, anq Anis Ahmad. Homo-

Industrial and Applied Mathematics, 1992. mo'rphlc factonzaﬂ_on of brdfs for high-performance ren-

. dering. InProceedings of ACM SIGGRAPH 2QQ#ages

[11] R. A. Devore, B. Jawerth, and B. J. Lucier. Image com- 171-178. 2001.

pression through wavelet transform codingEE Trans- '

actions on Information TheorB8, March 1992.

[12] Simon Fenney. Texture compression using low-frequency
signal modulation. InHWWS '03: Proceedings of .
the ACM SIGGRAPH/EUROGRAPHICS conference ofco) Sreran Roetiger. Volume library.

Graphics hardware pages 84-91. Eurographics Associ- htt.p://www9.(.:s.fau.de/Persons/Roettgerlllb.rary/. _
ation. 2003 [24] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin.

. . Wavelets for computer graphics: A primer, part [EEE
[13] Wolfgang Heidrich, Hendrik Lensch, Cohen Cohen, and Computer Graphics and Applications(3):76-84, 1995.

Hans-Peter Seidel. Light field techniques for reflexion . . .
and refractions. In Dani Lischinski and Greg Ward Larj25] f/lri]cr;wsattzllor':'er\]oiés-raq'ﬂir’cli;?r:r;zt'oihs;rtjél m:griip alr;d

son, editors,Rendering Techniques '9%urographics, .
pages 187-196. Springer-Verlag Wien New York, 1999. Progeedlngs of SlGGRAPH_ ABages 151—158’_ 1998.
[26] David S. Taubman and Michael W. MarcellinJPEG

[14] m'rmHgt‘i)cf)r?:d Egrgtegzzgwsr:f aé:éilgséedswrgvgﬁfj:;agz_ 2000: Image Compression Fundamentals, Standards and
i 9 ymp Practice Kluwer Academic Publishers, 2001.

Visualization pages 93-103, May 2000.) o
Chris Wynn. BRDF-based lighting.

L) . 27]
[15] Ph?“Q'A”” Heng Jlgnqlng Wang, Tien-Tsin Wong anrj http://developer.nvidia.com/object/BRDFbadsadhting.html.
Chi-Sing Leung. Discrete wavelet transform on gpu.

[9] I. Daubechies. Orthonormal basis of compactly supported
wavelets, 1988.

[22] K. R. Rao and P. Yip.Discrete cosine transform: algo-
rithms, advantages, applicationdcademic Press Profes-
sional, Inc., 1990.

	Introduction
	Related Work
	Compression Technique
	Wavelet Transform
	Hardware Implementation
	n>2 Dimensions
	Discussion
	Improvements

	Applications
	Terrain Rendering
	Volume Rendering
	BRDF Shading

	Conclusion

