Online Submission ID:

Image-space correction of AR registration errors using graphics hardware
Stephen DiVerdi* Tobias Hollerert

Department of Computer Science
University of California, Santa Barbara, CA 93106

-

Figure 1: Left pair: An input set of polygons, and the corrected result. Note the modeling corrections around the perimeter of the model. Right
pair: Another input set of polygons, and the corrected result. Because of the weaker intensity edges, smoothing is enabled.

ABSTRACT applications, seriously hurting the sense of integratietween vir-

tual and physical worlds. These errors continue to exisabse
Many Mixed Reality applications rely on drawing virtual igery accurate tracking of motion and accurate modeling of reahge
directly on top of physical objects in a video scene. Regii&in try are two difficult problems that require laborious cadition and

accuracy is a serious problem in these cases since any iisipres are prone to errors. Registration errors are especialliceable
are immediately apparent as virtual and physical edgeseatdries and problematic when virtual and physical features shooid-c

coincide. cide, such as when virtual geometry is drawn directly on tbp o
We present a hardware-accelerated image-based posspioge physical objects to affect its appearance. Applicatiors thake
technique that adjusts rendering of virtual geometry todvehatch use of such overlaid virtual geometry include, but are nwitid
edges present in images of a physical scene, reducing thalvis to, highlighting of an object using wireframe outlines oflared
effect of registration errors from both inaccurate tragkand over- polygons [16], halo glow around objects [11], re-texturofghys-
simplified modeling. We detect intensity edges in an imagthef ical objects, and re-lighting [25, 8], which requires algilanding

scene captured by a camera, and search for these edges #ieund of additive or subtractive light contributions directlytorthe phys-
boundary of projected polygons. These detected edges adetos ical geometry.

clip the boundaries of the rendered polygons, making vigeam- In order to correct registration errors to pixel accuracyg-a
etry edges match strong image features. mented reality tracking often makes use of image analysis-te
Our algorithm is easily integrable with existing AR appticas, niques. One serious difficulty with such an approach is the in

having no dependency on the underlying tracking technicdve. tegration of the corrections with the specific tracking temlbgy
use the advanced programmable capabilities of modern ipsaph Used. Ideally, in AR applications, tracking should be kegpasate
hardware to achieve high performance without burdeningé. from the application content, and should be modularizedthatb

) .) one tracking technology (e.g. marker-based tracking) meagds-
CR Categories: 1.3.3 [Computer Graphics]: Picture/lmage |y supstituted with another one (e.g. ultrasound trackinmage-

Generation—Display ~ Algorithms 1.3.7 [Computer Graphics] pased corrections do not depend heavily on the used tratiatg
Three-DlmenS|o_naI Graphics an_d Realism—Virtuality Riydl4.6 nology, and therefore should be applied separately, sottieatve
[Image Processing]: Segmentation—Edge and Feature D®tect can avoid the necessity for developing a new hybrid trackerye
Keywords: image-based technique, hardware accelerated, edgeliMe @ new tracking technology is introduced. ,
detection, registration In this paper, we present a technique that can be applied to AR
applications, regardless of tracking technology, to cstesitly re-
duce visual registration errors of overlaid virtual geometThe
1 INTRODUCTION basic assumption of our technique is that geometric edgesin
AR scene model correspond with edges in the physical world. W
The progress of computer technology in recent years has\sgn then detect the edges in an acquired video of the scene. Ebr ea
helpful to the AR community, making numerous improvements edge in our virtual model, we search a region determined by a

in geometric registration possible. However, even withséhan- per-vertex tracking-error estimate (provided by the agilbn) for
proved techniques, registration is still a major problermiost AR strong nearby edges, and then smooth the detected edgedly,Fin
the original model polygons are rendered, clipped agahmstie-
*e-mail: sdiverdi@cs.ucsb.edu tected edges so they approximate the video features. Thk ies
Te-mail: holl@cs.ucsh.edu virtual objects that more closely match strong featureséghysi-

cal scene, and experience less jitter in their positiongh Backing
errors and modeling errors will be reduced (see Figure 1).

Our results depend on the quality of the edge detection that i
possible. High contrast environments will yield the bespiave-

Online Submission ID:

ments, but even when contrast is low and video features aa&,we
we still achieve comparable or better visual quality. It lsoaim-
portant to note that we do not modify the tracking result, @nfg@rm
a rigid transformation of any sort. Our technique is an imsjgece
warp that is performed as a post-processing step, whichnidafu
mentally different from techniques which use image edgesaas
of the tracking computation. This way, it is generally apable to
a wide variety of AR tracking technologies, with much easer
tegration than would otherwise be possible. The use of xenel
pixel shaders of modern computer graphics cards ensureshtha
AR applications still run at similar speeds as the uncoe@ater-
sions.

The rest of the paper is organized as follows. We discussetla
work in Section 2. Our basic algorithm is presented in Sec8p
and the details of our implementation are described in Secti
The results and limitations are presented in Section 5, amdom-
clude in Section 6.

2 RELATED WORK

Computer vision based tracking is an actively researched ar
the augmented reality community. A wide variety of differésch-
nigues have been used to determine position and orientatior
mation from available image data. Common algorithms aredbas
around tracking simple image features, such as edges, repare
textures [13, 15, 5, 4]. These features can be combined for im
proved tracking [27], or more complex information can bedise
such as scale invariant features [23], fiducial markersrfJgrence
images [24], or even terrain data [1]. Some of these teclasiqu
require a model of the tracked scene as input, while othersesa
cover a scene model during the tracking, or are posed entiel
2D correspondence problems with no knowledge of the sc@fe’s
geometry. All of these algorithms use image analysis as t¢he s
source of tracking information, while we use image inforimatto
improve an already computed tracking result. In fact, ogoathm
could be applied on top of another vision based tracker (alsawve
done, using the ARToolKit [20]), making integration easiarce a
video of the scene is already acquired.

Relying on any one tracking technology is often undesiradxe
computer vision is also frequently used in hybrid trackiggtems
to support or be supported by other trackers. Itis commorséain:
ertial tracking, combined with some form of vision trackjisgich as
tracked texture features or markers [30], or reference amagtch-
ing [14]. There is even work on modular hybrid systems which
dynamically adapt to new tracking inputs at runtime, sucpsen-
Tracker [22] or Ubitrack [19]. Our technique is also a modula
approach, but rather than integrate the image edge dateottitin
tracking technologies, we apply the correction as a pasegsing
step. This is more general, as it does not need to be spelifical
integrated into other static or dynamic hybrid systems.

Most similar to our paper is the static hybrid approach ohgsi
image edge information to correct an inertial tracking efLP],
and even to refine local occlusion boundaries, with very gaad
sults. Ours differs in a number of ways. By correcting polygo
boundaries per pixel rather than adjusting the pose esifoathe
entire polygon, we can adapt to modeling errors that ariz frep-
resenting a complex physical edge with a straight polygaeddee
Figure 6). Additionally, Klein's technique is designed fostatic
physical scene, whereas we can handle many independentipgno
physical objects at no additional cost. Finally, we takesand&ge of
hardware acceleration to avoid relying on a software rezgieras-
ing the burden on the CPU for other application tasks.

Currently, graphics hardware is being used more and more for
non-3D graphics computations, including a large varietyntdge
processing and computer vision techniques. Discrete watrahs-
formations [28], FFTs [18], image segmentation [29], featiedge

and corner) detection [6], and stereo matching [26] canalbér-
formed with hardware acceleration. These results have been
applied to the field of augmented reality, using the GPU tedlly
perform all the necessary feature tracking and pose estimsteps
to draw virtual objects situated in the physical environimgf.
Again, we differ in that our result is not a tracking improvent,
but a post-processing filter that adjusts rendering to ivg@rasual
quality. GPU processing is not particularly well suitedasks that
involve significant communication between GPU and CPU, a&tmo
computer vision algorithms do. Our approach, on the othedha
is tailored to the particular capabilities of the GPU, ddfimgl pro-
cessing in hardware without readback.

Finally, MacIntyre and colleagues have worked to addressth
fects of registration errors from inaccurate tracking bggagating
these errors on to geometry, and then modifying the prederite
sual and interface appropriately [3, 17]. These resultsrapertant
for our technique to provide the per-vertex tracking errstiraate
we require to determine edge search regions.

3 TECHNIQUE

Our technique acts as a per-frame post-processing steg, thé
tracking and animation components of an AR application timve
ished computing each frame. We take the final geometry fdn eac
frame and render it with our algorithm to create the bettetcimed
image. The algorithm itself is a series of discrete stepsh exd
which processes the video and geometry towards the final goal
This modular design allows easy adaptation and modificatioine
algorithm by changing isolated components individually.

The inputs to our algorithm are: a list of quad polygons, & lis
of per-vertex position error estimates, and an image of tyeipal
scene. The following steps are each computed, and the oistput
a visual of the virtual scene with improved geometric ragison
(see Figure 2).

1. Perform edge detection on scene image.

2. Search edge image within polygon error regions for strong

similar edges.

3. (optional) Smooth individual detected edges.

4. Render original polygons, clipped to detected edges.

A few requirements must be met for our algorithm to be applied
to an AR application. First, per-vertex estimates of tragkerror
must be provided. Every tracker has some error associatdd wi
its measurements, in both position and orientation. Thesegse
can be propagated through a series of transformations tadera
position and orientation error of a local coordinate systerich
can then be applied to individual vertices to determine #regf
the screen where a pixel may exist [3, 17]. These errors ae s
determine the search regions for step 2. However, the widgrl
tracking technique is unimportant — all that is needed isstimate
of its error.

Second, an image of the scene must be made available for,step 1
in the form of a texture map. This means the AR applicationtmus
acquire a video and load each frame to the graphics cardisrieex
memory before our algorithm can execute. Finally, the geonie
be rendered currently must be provided as a list of quad jpolyg
with associated modelview and projection matrices. An resitmn
of the algorithm to handle triangle lists is straightfordar

Since the output consists of only the rendered virtual gegme
our technique will work for both video and optical see-tlghtAR
applications. However, optical see-through will requiaeeful cal-
ibration of the acquired video with the user’s field of view, the
edges from step 1 actually correspond to the edges the w=er se

Online Submission ID:

matched
edges

edges
Camera

Edge
Detection

geometry

AR
Application

Edge
Search

unsmoothed edges

smoothed
edges

Polygon
Render

Display

rendered
results

Figure 2: Flow diagram of algorithm. The inputs are an image of the scene and the virtual geometry. Edges are extracted from the image, and
matched with the geometry’s edges. The matched results are optionally smoothed, and the original geometry is then rendered, clipped to the

detected edges.

4 IMPLEMENTATION

Each step of our technique raises particular implememajiges-
tions that are important to examine. In general, we take ratdge

of new programmable graphics hardware by writing each stegp a
rendering pass with appropriate geometry, textures andeshaBy
using shaders for all passes and keeping image data ingéexem-

ory, we remove the need to ever pass back image data fromigsaph
memory to main memory, which is a common speed bottleneck of
GPU programming. It is also important to note that each ssep i
applied to all the polygons before continuing to the nexp ste the

number of passes needed is the same regardless of the anfiount o

geometry.

4.1 Edge Detection

We rely on established edge detection algorithms for the gtep
of our technique. Our default algorithm is a GPU implemeaotat
of a 3x3 Sobel filter — a fragment shader samples the textuteein
kernel and outputs a color encoding the gradient directimhraag-
nitude. This is our standard choice for reasons of speedSbhbel
filtering suffers from the lack of any edge continuity enfemzent,
so edges can become fragmented easily.

An alternate choice is OpenCV'’s Canny function [10], whish i
a standard CPU implementation of the algorithm [2] (GPU ienpl
mentations are now available as well [6], but we were unable t
integrate them with our system). While Canny edge deteciass
do a better job in general of finding exact edges by enforcimg a
edge continuity constraint, the output is only a binary ealiack-
ing any information about edge strength or orientation. feseilts
are also very sensitive to the appropriate threshold vaiueih re-
quire tuning from scene to scene, and possibly even withteaes
if there is a significant change in lighting. Theoreticaltyshould
be possible to obtain better results with Canny than Sobngi
proper tuning, but we have been unable to achieve such sesult

4.2 Edge Searching

The second step is to search the edge image for strong edges ne
each polygon edge. First, back-facing polygons are cudiedhey
should not be visible in the scene image. Per polygon, weeptoj
the vertices to screen coordinates and use the vertex estiarage
to determine a region of the screen where the vertex mayHe (t
dotted circles in Figure 3). \ertices connected by an edga th
define a search region (roughly the convex hull of the twoevert
regions, shown in red in Figure 3) in which the edge can bedoun
The interior of these border search regions is guaranteée frart
of the polygon regardless of the vertices’ actual positiwitkin the
error estimates (the blue region in Figure 3).

Once the search regions have been determined, each edge is re
dered as a line, with owearch shader activated and the edge im-
age as a texture input. Each line has its search region deifined

texture coordinates. For each pixel on the line, the sednader
walks along a perpendicular line from the inside to the algsf

the search region (see Figure 4). Near corners, these lkieade
radially from the internal region’s corner. At each stepsamples
the edge image, retrieving that pixel's edge magnitude araho
tation. A weighting function is applied to these samples] tre
maximum weighted sample encountered is tracked. Once the ou
side boundary of the search region is reached, the posifitimeo
maximum weight sample is encoded as an offset vector in tthe re
and green channels of the pixel color.

d
W= S * Vg - Vg
Omax

1)

The weighting function, equation (1), takes into accouhtted
information that is known about a pixel in the edge image. @am
weights are the product of the edge strength distance term, and
an orientation term. The distance term linearly weightssiuaple
based on distance from the input polygon edge. The oriemtati
term is the absolute value of the dot productvgf the gradient
vector, andvs, the search direction vector — if the two vectors are
parallel or antiparallel, then the detected edge and thggpol edge
are similarly oriented. The final result is a weight valueviestn 0
and 1, representing the likelihood of the particular sample

4.3 Edge Smoothing

The detected edges output from step 2 of our algorithm aenoft
quite noisy — that is, there are frequent discontinuous Rirlng-
tween adjacent offsets, which create a "frayed” appearaftiee
detected edge (see Figure 5). This noise flickers rapidlyrgmo
frames, creating a displeasing visual artifact. One péssilay to
address this problem would be to improve the edge searcldiog a
rithm. Instead, we chose to implement an edge smoothing éitte
a separate step. This is faster than more robust edge sagreinid

Internal
Region

Figure 3: An input polygon is drawn in thick black. The dotted circles
around each vertex shows the tracking error estimates. The blue
region is guaranteed to be part of the polygon, while the red region
is uncertain.

Online Submission ID:

Search
Region

Internal
Region

Figure 4: For each pixel along the input polygon edge (shown in
blue), a perpendicular line of pixels (shown in red) is searched for
edges in the image. At the corner, these search lines extend radially
from the internal corner.

allows the smoothing filter to be replaced with differentalthms,
or removed entirely depending on the application’s needs.

The smoothing step is applied by rendering the polygon edges
lines again, with thesmoothing shader activated and the detected
edge offsets from step 2 as a texture input. For each polydga,e
the shader walks the entire edge, taking regular sampldseaie-
tected edge offset information. A running sum of offsets eéptk
to determine the mean offset at the end of the pass. Addilyjplaa
measure of the 'noisiness’ of the edge is calculated for saoh-

Figure 5: An example of the detected edge results, before smoothing.
The red-blue edge shows severe fraying due to the low contrast im-
age edge — global smoothing is necessary. The red-green edge has
much more isolated noise and would benefit from localized smooth-
ing. The blue-green edge is an ideal result of the detection.

edge — if it is outside the detected edge (determined by @iden
and outside boundaries of the search region), its alphavalset

ple and accumulated over the edge. Once the walk is complete,to zero, but if it is inside, its alpha is kept at its originailwe.

the aggregate noisiness measure is examined — if it excagskra
specified threshold, the edge is determined to be too naisyeach
offset value in the detected edge is replaced by the meaet dffs
the entire edge. Otherwise, if the edge is not too noisy, thgnal

Near the detected edge, alpha values are dropped off lynfearh
smooth polygon border. Since each rendered pixel does ordy o
texture sample, this pass is very fast.

Alternately, if a wireframe rendering is desired ratherrtHall

offsets are maintained. The mean value is used instead off@ mo polygons, this final pass can be altered very slightly to auno-

appropriate measure such as the median, due to the diffiotilty
implementing an efficient n-element median algorithm orreash
architecture (the graphics hardware) with limited temppsiorage
capabilities.

date. The internal regions of each polygon are left out, betun-
known border regions are still drawn the same as before. Mexve
in this case the shader will set the alpha value of pixeltéarthan
a set width from the detected edge to zero. Pixels near tleetet

The noisiness measure is based on the second derivative ofedge are kept, and alpha values are smoothly dropped offeat th
the detected edge offsets. At each sample, a 1x3 Laplace filte boundary for an antialiased line.

([-1,2,-1)) is applied to the sample and its neighbors, to compute

the second derivative of the detected edge at that point.nTéen
of the absolute values of the second derivatives is theimess’ of
the detected edge.

Some filtering of the detected edge image can also be donisin th
step. Rather than sampling one pixel for the edge offsengigh-
bors can be sampled as well, and the multiple values are caubi
to compute the final offset. We implemented support for 1% 1

If the smoothing operator were implemented in a fragment and 1x7 block filters, as well as a 1x3 median filter. As graphic

shader, for each fragment, it would need to sample the esdige

hardware is designed for this type of filtering, it does ngingi-

and recalculate the mean and noisiness. For an edge of 100 pix cantly affect performance.

els, this means 10,000 textures samples, which is clearlystenof
processor cycles. We avoid this level of redundancy by implet-
ing the smoothing filter in a vertex shader, which is then alexdt
per-vertex, or twice per edge (since vertex shader outpetmger-
polated across the line, the same result must be computeattat b
vertices). The results are passed to the fragment shadéveviger-
tices’ output colors, which are shared among the fragmenkss

is made possible by using the latest programmable shadabitap
ities made available in NVIDIA's 6000 series GPUs - specifica
we need support for vertex texture sampling. In absenceesfeth
graphics hardware capabilities, the smoothing step camtitenl,
or it can be done more slowly in a fragment shader as discussed

4.4 Rendering

After the previous three steps, we have a smoothed detedge e
image, which encodes the per-pixel offset of the detectgd &dm
each polygon’s original edges. To render the newly deforpag-
gon, first, the internal region is rendered normally. Thém tn-
known border regions are rendered with ttigoping shader and
the detected edge texture as input. In this final pass, eagmént
samples the detected edge image to determine where theop&yg
real edge is. Then the pixel compares its position to thectiede

5 RESULTS

We present the achieved results of our algorithm, includergier-
ing performance and visual quality of registration conatt We
also discuss the limitations of our current implementation

5.1 Performance

For testing, we have integrated our technique with a simfReaf-
plication that uses the ARToolKit [20] for marker-basedckiag,
to overlay a virtual model of a box on top of a physical, tratke
box. The ARToolKit is prone to small errors in orientation es
timates, which propagate to large translational errorsviatices
that are far from the marker’s center. With an NVIDIA GeForce
FX 6800GT graphics card, we experience a modest 8.2% drop in
framerate, from 61 to 56 frames per second, when procesging-a
recorded 640x480 video stream, using all four steps of ochi-te
nique, with a 1x3 block filter in the fourth step.

Figure 6 shows a comparison of the original polygon edge, the
unsmoothed detected edge, and the smoothed detected edge. T
original edge clearly shows registration errors — becafisecking

Online Submission ID:

Figure 6: Comparison of results. Top to bottom: The original polygon
edge, our detected edge, and the smoothed detected edge.

error, the polygon edge is moved away from the physical eslge,
because of modeling error, the complex shape of the physdzgs

is represented by the straight edge of a polygon. Sincegkisigh

contrast image region, the detected edge matches the phgdige
nearly perfectly, correcting both the tracking and modglerror.

The smoothed edge loses the ability to correct the modelirag, e
but is still a marked improvement over the original edge, tuthe

tracking correction.

The quality of the unsmoothed edge depends heavily on the edg
detection result. If the edge detection step finds a cleangtedge
within the search region of the polygon, then the detecteg edll
be match the image’s edge very closely, with very little roisin-
fortunately, in real environments with complex lightingddiow dy-
namic range video acquisition, low contrast images are comm
place, making good edge detection difficult. In these cates,
unsmoothed edge result will be noisy and will jitter fromrfra to
frame, so the smoothed edge result will be more appropiatele
the smoothed edge may not match the physical edge as clasely,
will be jitter less between frames and be a closer match than t
original polygon edge, improving the visual quality.

5.2 Discussion

The nature of the design choices we made to implement this tec
nigue leads to some limitations which are important to exemi
Foremost is the fact that we do not modify the tracking reguét
the rendering of the polygons. This means that we are nogusin
a hybrid vision-based tracking system, and we cannot codét
from other tracking technologies. It also means that pahggare
clipped, rather than moved, so decal textures will not biteshivith
the polygon’s position. If text is texture mapped onto a goly, the
edge of the text will be clipped off, rather than all of thettbring
warped slightly. On the other hand, effects such as pei-pgte-
ing will not suffer from this effect, as they are calculatadquely
for each pixel.

Currently, our per-vertex tracking error estimation is agse
float value, which represents a screen pixel radius. Thissisna

plistic assumption, as errors are more likely to be ellipaexreen
space. The downside of our simplification is that our seaesh r
gions may be too wide, decreasing performance unnecegsaadl
possibly getting distracted by edges that are farther awayugh
that error is minimized by penalizing distant detected sdgehe
search shader’s weighting function). Of course, we alsorasghe
reliability of the tracking error estimate. In the eventttiiae er-
ror is over-estimated, time will be wasted searching larggions,
and edges may become distracted more easily (though wejghti
detected edges by distance reduces this effect). Conygifste
error is under-estimated, as the edge search step may naarfind
edge in the search region, in which case the original inplytgom
edge is used. This way we make sure our result is always dtdeas
good as the input.

The global nature of our detected edge smoothing can be-limit
ing as well. In the case that a detected edge is determinesl timob
noisy and is replaced by the mean offset edge, the resultiaiglst
line. This means any per-pixel corrections of modeling ewdl
be lost to avoid the noise. Clearly, it would be preferableotally
smooth the edge in a feature-preserving way, to keep thertamto
detected edge features, but lose the distracting noise wapave
have addressed this issue in our current implementatiory il-b
lowing the noisiness threshold to be specified per-edge doysler.
This way the user can judge the modeling error for an edge and d
termine about how much noise should be tolerated beforetiego
to a straight-line approximation. We find that in our testesaghe
edge noise is a distracting enough artifact that we alwayshse
noisiness threshold to zero, forcing smoothing on everyeedg

Finally, in cases where polygons are viewed from a shallow an
gle, or when the tracking error is very large, our algorithrill w
fail because there will be no known internal region of theygoh,
and the search regions for opposite edges will overlap. This
cause confusion with detected edges and can result in nmorexo
polygons. To avoid this problem, when the internal polygas h
negative area (by calculating area assuming counter-afisekver-
tex ordering), our technique bails out and the original, adified
polygon is drawn instead. This avoids visual artifacts assliges
that our result is as least as good as the unmodified input.

6 CONCLUSIONS

We have presented a general post-processing techniquediacing
the visual effects of registration error, both from inactertrack-
ing and oversimplified modeling. The algorithm is applieabbr
a class of AR applications which modify the appearance ofphy
ical objects by overlaying corresponding virtual geometdry top
of them, such as physical object selection or re-lightingr @lgo-
rithm does not depend on the underlying tracking technologyis
easily integrated with most AR applications. In environmsenith
strong edges in the physical scene, our algorithm will adesibly
improve the matching of polygons to video edges, within afiew
els. Even in scenes with low contrast and poor edges, ounaiekl
options yield improved stability and closer matching toaaddges.
We take advantage of advanced graphics hardware to prdwde t
results with minimal impact to application performance.

Our approach also suggests many interesting avenues toefut
work. Depending on the particular domain of an AR appligatio
the edge detection step of our algorithm could be improveith wi
domain-specific edge detection techniques. For exampletsted
light, infrared spectrum, or stereo vision could all pravidseful
edge information. A real-time version of the non-photoista
camera [21] could provide the necessary edge informatidin re
ably as well. We wouldd also like to develop better detectdgee
smoothing techniques such as a sliding window for local glmoo
ing, to reduce noise while still preserving edges, allowimgetter,
more general correction of modeling errors. Finally, we iakes-

Online Submission ID:

tigating ways to read back the resulting polygon defornmat@the

CPU, so that the AR application can make use of our results as

feedback to the tracking (or even model) information.

REFERENCES

[1] R.Behringer. Registration for outdoor augmented tgalpplications
using computer vision techniques and hybrid sensorrdoeedings
of IEEE Mirtual Reality, pages 244—-251, March 1999.

[2] J. Canny. A computational approach to edge detectl&fE Trans-
actions on Pattern Analysis and Machine Intelligence, 8(6):679-698,
1986.

[3] E. Coelho, B. Maclntyre, and S. Julier. OSGAR: A scenggreith
uncertain transformations. Imternational Symposium on Mixed and
Augmented Reality, November 2004.

[4] A. Comport, E. Marchand, and F. Chaumette. A real-timecker
for markerless augmented reality. Bnoceedings of the International

Symposium on Mixed and Augmented Reality, pages 36—-45, October

2003.

[5] A. Davison. Real-time simultaneous localisation andopiag with
a single camera. |Rroceedings of the International Conference on
Computer Vision, October 2003.

[6] J. Fung and S. Mann. Using multiple graphics cards as argépur-
pose parallel computer : Applications to computer visionlume 1,
pages 805-808, 2004.

[7] J. Fung, F. Tang, and S. Mann.
graphics hardware for computer vision.

Mediated reality using asemp
Rroceedings of the In-

ternational Symposium on Wearable Computing 2002, pages 83-89,

October 2002.

[8] S. Gibson, J. Cook, T. Howard, and R. Hubbold. Rapid shegiener-
ation in real-world lighting environments. Froceedings of the 14th
Eurographics workshop on Rendering, pages 219-229, 2003.

[9] W. Hoff, T. Lyon, and K. Nguyen. Computer vision-basegjistra-
tion techniques for augmented reality. The Proceedings of Intelli-
gent Robots and Control Systems XV, Intelligent Control Systems and

Advanced Manufacturing, volume 2904, pages 538-548, November

1996.

[10] Intel Corporation. Open Source Computer Vision Library Reference
Manual. December 2000.

[11] G.James and J. O’'Rorke. Real-time glowGRU Gems, 2004.

[12] G. Klein and T. Drummond. Sensor fusion and occlusidimesnent
for tablet-based ar. IRroceedings of the International Symposium on
Mixed and Augmented Reality, pages 38—47, October 2004.

[13] D. Koller, G. Klinker,
M. Tuceryan. Real-time Vision-Based camera tracking fgraented
reality applications. IPACM Symposium on Virtual Reality Software
and Technology, September 1997.

[14] M. Kourogi and T. Kurata. Personal positioning basedwaiking
locomotion analysis with self-contained sensors and aatdarcam-
era. InProceedings of the International Symposium on Mixed and
Augmented Reality, pages 103-112, October 2003.

[15] J. Lee, S. You, and U. Neumann. Tracking with omni-di@tal vi-
sion for outdoor AR systems. IRroceedings of the International

Symposium on Mixed and Augmented Reality, pages 47-56, Septem-

ber 2002.

[16] M. Livingston, J. Swan Il, J. Gabbard, T. Hollerer, DixHS. Julier,
Y. Baillot, and D. Brown. Resolving multiple occluded lagén aug-
mented reality. InProceedings of the International Symposium on
Mixed and Augmented Reality, pages 56—65, October 2003.

[17] B. Maclintyre and E. Coelho. Adapting to dynamic registm errors
using level of error (LOE) filtering. Innternational Symposium on
Augmented Reality, October 2000.

[18] K. Moreland and E. Angel. The FFT on a GPU.Rroceedings of the
ACM conference on Graphics hardware, pages 112-119, 2003.

[19] J. Newman, M. Wagner, M. Bauer, A. MacWilliams, T. Piita
D. Beyer, D. Pustka, F. Strasser, D. Schmalstieg, and Gk&tlitubig-
uitous tracking for augmented reality. Rroceedings of the Interna-

tional Symposium on Mixed and Augmented Reality, pages 192—-201,

2004.

E. Rose, D. Breen, R. Whitaker, dan

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

I. Poupyrev, D. Tan, M. Billinghurst, H. Kato, H. Regeabht, and
N. Tetsutani. Developing a generic augmented-realityrfiate. Com-
puter, 35(3):44-50, March 2002.

R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk. A non-pinealistic
camera: depth edge detection and stylized rendering usirig-itash
imaging. InProceedings of ACM SGGRAPH, August 2004.

G. Reitmayr and D. Schmalstieg. Opentracker-an opéwace ar-
chitecture for reconfigurable tracking based on XML .Piroceedings
of IEEE Virtual Reality, pages 285-286, 2001.

I. Skrypnyk and D. Lowe. Scene modelling, recognitiarddrack-
ing with invariant image features. IRroceedings of the Interna-
tional Symposium on Mixed and Augmented Reality, pages 110-119,
November 2004.

D. Stricker and T. Kettenbach. Real-time and marksrigsion-based
tracking for outdoor augmented reality applicationsPhoceedings of
the International Symposium on Augmented Reality, pages 189-190,
October 2001.

N. Sugano, H. Kato, and K. Tachibana. The effects of eap-
resentation of virtual objects in augmented reality.Phoceedings of
the International Symposium on Mixed and Augmented Reality, pages
76-83, October 2003.

K. Sugita, T. Naemura, and H. Harashima. Performaneduation
of programmable graphics hardware for image filtering aretest
matching. InProceedings of the ACM symposium on Virtual reality
software and technology, pages 176-183, 2003.

L. Vacchetti, V. Lepetit, and P. Fua. Combining edge txdure infor-
mation for real-time accurate 3d camera tracking.Pioceedings of
the International Symposium on Mixed and Augmented Reality, pages
48-57, November 2004.

J. Wang, T. Wong, P. Heng, and C. Leung. Discrete wauedeis-
form on gpu. InProceedings of ACM Workshop on General Purpose
Computing on Graphics Processors, pages C—41, August 2004.

R. Yang and G. Welch. Fastimage segmentation and srimgotising
commodity graphics hardwarelournal of Graphics Tools, 7(4):91—
100, 2002.

S. You, U. Neumann, and R. Azuma. Hybrid inertial andonstrack-
ing for augmented reality registration. Rroceedings of IEEE Virtual
Reality, pages 260-267, 1999.

