
Online Submission ID:

Image-space correction of AR registration errors using graphics hardware

Stephen DiVerdi∗ Tobias Höllerer†

Department of Computer Science
University of California, Santa Barbara, CA 93106

Figure 1: Left pair: An input set of polygons, and the corrected result. Note the modeling corrections around the perimeter of the model. Right
pair: Another input set of polygons, and the corrected result. Because of the weaker intensity edges, smoothing is enabled.

ABSTRACT

Many Mixed Reality applications rely on drawing virtual imagery
directly on top of physical objects in a video scene. Registration
accuracy is a serious problem in these cases since any imprecisions
are immediately apparent as virtual and physical edges and features
coincide.

We present a hardware-accelerated image-based post-processing
technique that adjusts rendering of virtual geometry to better match
edges present in images of a physical scene, reducing the visual
effect of registration errors from both inaccurate tracking and over-
simplified modeling. We detect intensity edges in an image ofthe
scene captured by a camera, and search for these edges aroundthe
boundary of projected polygons. These detected edges are used to
clip the boundaries of the rendered polygons, making virtual geom-
etry edges match strong image features.

Our algorithm is easily integrable with existing AR applications,
having no dependency on the underlying tracking technique.We
use the advanced programmable capabilities of modern graphics
hardware to achieve high performance without burdening theCPU.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtuality Reality I.4.6
[Image Processing]: Segmentation—Edge and Feature Detection

Keywords: image-based technique, hardware accelerated, edge
detection, registration

1 INTRODUCTION

The progress of computer technology in recent years has beenvery
helpful to the AR community, making numerous improvements
in geometric registration possible. However, even with these im-
proved techniques, registration is still a major problem inmost AR

∗e-mail: sdiverdi@cs.ucsb.edu
†e-mail: holl@cs.ucsb.edu

applications, seriously hurting the sense of integration between vir-
tual and physical worlds. These errors continue to exist because
accurate tracking of motion and accurate modeling of real geome-
try are two difficult problems that require laborious calibration and
are prone to errors. Registration errors are especially noticeable
and problematic when virtual and physical features should coin-
cide, such as when virtual geometry is drawn directly on top of
physical objects to affect its appearance. Applications that make
use of such overlaid virtual geometry include, but are not limited
to, highlighting of an object using wireframe outlines or colored
polygons [16], halo glow around objects [11], re-texturingof phys-
ical objects, and re-lighting [25, 8], which requires alphablending
of additive or subtractive light contributions directly onto the phys-
ical geometry.

In order to correct registration errors to pixel accuracy, aug-
mented reality tracking often makes use of image analysis tech-
niques. One serious difficulty with such an approach is the in-
tegration of the corrections with the specific tracking technology
used. Ideally, in AR applications, tracking should be kept separate
from the application content, and should be modularized, sothat
one tracking technology (e.g. marker-based tracking) may be eas-
ily substituted with another one (e.g. ultrasound tracking). Image-
based corrections do not depend heavily on the used trackingtech-
nology, and therefore should be applied separately, so thatthe we
can avoid the necessity for developing a new hybrid tracker every
time a new tracking technology is introduced.

In this paper, we present a technique that can be applied to AR
applications, regardless of tracking technology, to consistently re-
duce visual registration errors of overlaid virtual geometry. The
basic assumption of our technique is that geometric edges inan
AR scene model correspond with edges in the physical world. We
then detect the edges in an acquired video of the scene. For each
edge in our virtual model, we search a region determined by a
per-vertex tracking-error estimate (provided by the application) for
strong nearby edges, and then smooth the detected edges. Finally,
the original model polygons are rendered, clipped against the de-
tected edges so they approximate the video features. The result is
virtual objects that more closely match strong features in the physi-
cal scene, and experience less jitter in their positions. Both tracking
errors and modeling errors will be reduced (see Figure 1).

Our results depend on the quality of the edge detection that is
possible. High contrast environments will yield the best improve-

1

Online Submission ID:

ments, but even when contrast is low and video features are weak,
we still achieve comparable or better visual quality. It is also im-
portant to note that we do not modify the tracking result, or perform
a rigid transformation of any sort. Our technique is an imagespace
warp that is performed as a post-processing step, which is funda-
mentally different from techniques which use image edges aspart
of the tracking computation. This way, it is generally applicable to
a wide variety of AR tracking technologies, with much easierin-
tegration than would otherwise be possible. The use of vertex and
pixel shaders of modern computer graphics cards ensures that the
AR applications still run at similar speeds as the uncorrected ver-
sions.

The rest of the paper is organized as follows. We discuss related
work in Section 2. Our basic algorithm is presented in Section 3,
and the details of our implementation are described in Section 4.
The results and limitations are presented in Section 5, and we con-
clude in Section 6.

2 RELATED WORK

Computer vision based tracking is an actively researched area in
the augmented reality community. A wide variety of different tech-
niques have been used to determine position and orientationinfor-
mation from available image data. Common algorithms are based
around tracking simple image features, such as edges, corners, or
textures [13, 15, 5, 4]. These features can be combined for im-
proved tracking [27], or more complex information can be used
such as scale invariant features [23], fiducial markers [9],reference
images [24], or even terrain data [1]. Some of these techniques
require a model of the tracked scene as input, while others can re-
cover a scene model during the tracking, or are posed entirely as
2D correspondence problems with no knowledge of the scene’s3D
geometry. All of these algorithms use image analysis as the sole
source of tracking information, while we use image information to
improve an already computed tracking result. In fact, our algorithm
could be applied on top of another vision based tracker (as wehave
done, using the ARToolKit [20]), making integration easiersince a
video of the scene is already acquired.

Relying on any one tracking technology is often undesirable, so
computer vision is also frequently used in hybrid tracking systems
to support or be supported by other trackers. It is common to use in-
ertial tracking, combined with some form of vision tracking, such as
tracked texture features or markers [30], or reference image match-
ing [14]. There is even work on modular hybrid systems which
dynamically adapt to new tracking inputs at runtime, such asOpen-
Tracker [22] or Ubitrack [19]. Our technique is also a modular
approach, but rather than integrate the image edge data withother
tracking technologies, we apply the correction as a post-proessing
step. This is more general, as it does not need to be specifically
integrated into other static or dynamic hybrid systems.

Most similar to our paper is the static hybrid approach of using
image edge information to correct an inertial tracking result [12],
and even to refine local occlusion boundaries, with very goodre-
sults. Ours differs in a number of ways. By correcting polygon
boundaries per pixel rather than adjusting the pose estimate for the
entire polygon, we can adapt to modeling errors that arise from rep-
resenting a complex physical edge with a straight polygon edge (see
Figure 6). Additionally, Klein’s technique is designed fora static
physical scene, whereas we can handle many independently moving
physical objects at no additional cost. Finally, we take advantage of
hardware acceleration to avoid relying on a software renderer, eas-
ing the burden on the CPU for other application tasks.

Currently, graphics hardware is being used more and more for
non-3D graphics computations, including a large variety ofimage
processing and computer vision techniques. Discrete wavelet trans-
formations [28], FFTs [18], image segmentation [29], feature (edge

and corner) detection [6], and stereo matching [26] can all be per-
formed with hardware acceleration. These results have evenbeen
applied to the field of augmented reality, using the GPU to directly
perform all the necessary feature tracking and pose estimation steps
to draw virtual objects situated in the physical environment [7].
Again, we differ in that our result is not a tracking improvement,
but a post-processing filter that adjusts rendering to improve visual
quality. GPU processing is not particularly well suited to tasks that
involve significant communication between GPU and CPU, as most
computer vision algorithms do. Our approach, on the other hand,
is tailored to the particular capabilities of the GPU, doingfinal pro-
cessing in hardware without readback.

Finally, MacIntyre and colleagues have worked to address the ef-
fects of registration errors from inaccurate tracking by propagating
these errors on to geometry, and then modifying the presented vi-
sual and interface appropriately [3, 17]. These results areimportant
for our technique to provide the per-vertex tracking error estimate
we require to determine edge search regions.

3 TECHNIQUE

Our technique acts as a per-frame post-processing step, after the
tracking and animation components of an AR application havefin-
ished computing each frame. We take the final geometry for each
frame and render it with our algorithm to create the better matched
image. The algorithm itself is a series of discrete steps, each of
which processes the video and geometry towards the final goal.
This modular design allows easy adaptation and modificationof the
algorithm by changing isolated components individually.

The inputs to our algorithm are: a list of quad polygons, a list
of per-vertex position error estimates, and an image of the physical
scene. The following steps are each computed, and the outputis
a visual of the virtual scene with improved geometric registration
(see Figure 2).

1. Perform edge detection on scene image.

2. Search edge image within polygon error regions for strong,
similar edges.

3. (optional) Smooth individual detected edges.

4. Render original polygons, clipped to detected edges.

A few requirements must be met for our algorithm to be applied
to an AR application. First, per-vertex estimates of tracking error
must be provided. Every tracker has some error associated with
its measurements, in both position and orientation. These errors
can be propagated through a series of transformations to provide a
position and orientation error of a local coordinate system, which
can then be applied to individual vertices to determine a region of
the screen where a pixel may exist [3, 17]. These errors are used to
determine the search regions for step 2. However, the underlying
tracking technique is unimportant – all that is needed is an estimate
of its error.

Second, an image of the scene must be made available for step 1,
in the form of a texture map. This means the AR application must
acquire a video and load each frame to the graphics card’s texture
memory before our algorithm can execute. Finally, the geometry to
be rendered currently must be provided as a list of quad polygons
with associated modelview and projection matrices. An extension
of the algorithm to handle triangle lists is straightforward.

Since the output consists of only the rendered virtual geometry,
our technique will work for both video and optical see-through AR
applications. However, optical see-through will require careful cal-
ibration of the acquired video with the user’s field of view, so the
edges from step 1 actually correspond to the edges the user sees.

2

Online Submission ID:

Edge

Detection

Edge

Search

Edge

Smooth

Polygon

Render

Display

AR

Application

Camera
video

geometry

edges

unsmoothed edges rendered

results

smoothed

edges

matched

edges

Figure 2: Flow diagram of algorithm. The inputs are an image of the scene and the virtual geometry. Edges are extracted from the image, and
matched with the geometry’s edges. The matched results are optionally smoothed, and the original geometry is then rendered, clipped to the
detected edges.

4 IMPLEMENTATION

Each step of our technique raises particular implementation ques-
tions that are important to examine. In general, we take advantage
of new programmable graphics hardware by writing each step as a
rendering pass with appropriate geometry, textures and shaders. By
using shaders for all passes and keeping image data in texture mem-
ory, we remove the need to ever pass back image data from graphics
memory to main memory, which is a common speed bottleneck of
GPU programming. It is also important to note that each step is
applied to all the polygons before continuing to the next step, so the
number of passes needed is the same regardless of the amount of
geometry.

4.1 Edge Detection

We rely on established edge detection algorithms for the first step
of our technique. Our default algorithm is a GPU implementation
of a 3x3 Sobel filter – a fragment shader samples the texture inthe
kernel and outputs a color encoding the gradient direction and mag-
nitude. This is our standard choice for reasons of speed, butSobel
filtering suffers from the lack of any edge continuity enforcement,
so edges can become fragmented easily.

An alternate choice is OpenCV’s Canny function [10], which is
a standard CPU implementation of the algorithm [2] (GPU imple-
mentations are now available as well [6], but we were unable to
integrate them with our system). While Canny edge detectiondoes
do a better job in general of finding exact edges by enforcing an
edge continuity constraint, the output is only a binary value, lack-
ing any information about edge strength or orientation. Theresults
are also very sensitive to the appropriate threshold values, which re-
quire tuning from scene to scene, and possibly even within a scene,
if there is a significant change in lighting. Theoretically,it should
be possible to obtain better results with Canny than Sobel given
proper tuning, but we have been unable to achieve such results.

4.2 Edge Searching

The second step is to search the edge image for strong edges near
each polygon edge. First, back-facing polygons are culled,as they
should not be visible in the scene image. Per polygon, we project
the vertices to screen coordinates and use the vertex error estimate
to determine a region of the screen where the vertex may lie (the
dotted circles in Figure 3). Vertices connected by an edge then
define a search region (roughly the convex hull of the two vertex
regions, shown in red in Figure 3) in which the edge can be found.
The interior of these border search regions is guaranteed tobe part
of the polygon regardless of the vertices’ actual positionswithin the
error estimates (the blue region in Figure 3).

Once the search regions have been determined, each edge is ren-
dered as a line, with oursearch shader activated and the edge im-
age as a texture input. Each line has its search region definedin

texture coordinates. For each pixel on the line, the search shader
walks along a perpendicular line from the inside to the outside of
the search region (see Figure 4). Near corners, these lines extend
radially from the internal region’s corner. At each step, itsamples
the edge image, retrieving that pixel’s edge magnitude and orien-
tation. A weighting function is applied to these samples, and the
maximum weighted sample encountered is tracked. Once the out-
side boundary of the search region is reached, the position of the
maximum weight sample is encoded as an offset vector in the red
and green channels of the pixel color.

w = s∗
d

dmax
∗ |vg · vs| (1)

The weighting function, equation (1), takes into account all the
information that is known about a pixel in the edge image. Sample
weights are the product of the edge strengths, a distance term, and
an orientation term. The distance term linearly weights thesample
based on distance from the input polygon edge. The orientation
term is the absolute value of the dot product ofvg, the gradient
vector, andvs, the search direction vector – if the two vectors are
parallel or antiparallel, then the detected edge and the polygon edge
are similarly oriented. The final result is a weight value between 0
and 1, representing the likelihood of the particular sample.

4.3 Edge Smoothing

The detected edges output from step 2 of our algorithm are often
quite noisy – that is, there are frequent discontinuous jumps be-
tween adjacent offsets, which create a ”frayed” appearanceof the
detected edge (see Figure 5). This noise flickers rapidly among
frames, creating a displeasing visual artifact. One possible way to
address this problem would be to improve the edge searching algo-
rithm. Instead, we chose to implement an edge smoothing filter as
a separate step. This is faster than more robust edge searching, and

Figure 3: An input polygon is drawn in thick black. The dotted circles
around each vertex shows the tracking error estimates. The blue
region is guaranteed to be part of the polygon, while the red region
is uncertain.

3

Online Submission ID:

Figure 4: For each pixel along the input polygon edge (shown in
blue), a perpendicular line of pixels (shown in red) is searched for
edges in the image. At the corner, these search lines extend radially
from the internal corner.

allows the smoothing filter to be replaced with different algorithms,
or removed entirely depending on the application’s needs.

The smoothing step is applied by rendering the polygon edgesas
lines again, with thesmoothing shader activated and the detected
edge offsets from step 2 as a texture input. For each polygon edge,
the shader walks the entire edge, taking regular samples of the de-
tected edge offset information. A running sum of offsets is kept,
to determine the mean offset at the end of the pass. Additionally, a
measure of the ’noisiness’ of the edge is calculated for eachsam-
ple and accumulated over the edge. Once the walk is complete,
the aggregate noisiness measure is examined – if it exceeds auser-
specified threshold, the edge is determined to be too noisy, and each
offset value in the detected edge is replaced by the mean offset for
the entire edge. Otherwise, if the edge is not too noisy, the original
offsets are maintained. The mean value is used instead of a more
appropriate measure such as the median, due to the difficultyof
implementing an efficient n-element median algorithm on a stream
architecture (the graphics hardware) with limited temporary storage
capabilities.

The noisiness measure is based on the second derivative of
the detected edge offsets. At each sample, a 1x3 Laplace filter
([−1,2,−1]) is applied to the sample and its neighbors, to compute
the second derivative of the detected edge at that point. Themean
of the absolute values of the second derivatives is the ’noisiness’ of
the detected edge.

If the smoothing operator were implemented in a fragment
shader, for each fragment, it would need to sample the entireedge
and recalculate the mean and noisiness. For an edge of 100 pix-
els, this means 10,000 textures samples, which is clearly a waste of
processor cycles. We avoid this level of redundancy by implement-
ing the smoothing filter in a vertex shader, which is then executed
per-vertex, or twice per edge (since vertex shader outputs are inter-
polated across the line, the same result must be computed at both
vertices). The results are passed to the fragment shader viathe ver-
tices’ output colors, which are shared among the fragments.This
is made possible by using the latest programmable shader capabil-
ities made available in NVIDIA’s 6000 series GPUs - specifically,
we need support for vertex texture sampling. In absence of these
graphics hardware capabilities, the smoothing step can be omitted,
or it can be done more slowly in a fragment shader as discussed.

4.4 Rendering

After the previous three steps, we have a smoothed detected edge
image, which encodes the per-pixel offset of the detected edge from
each polygon’s original edges. To render the newly deformedpoly-
gon, first, the internal region is rendered normally. Then, the un-
known border regions are rendered with theclipping shader and
the detected edge texture as input. In this final pass, each fragment
samples the detected edge image to determine where the polygon’s
real edge is. Then the pixel compares its position to the detected

Figure 5: An example of the detected edge results, before smoothing.
The red-blue edge shows severe fraying due to the low contrast im-
age edge – global smoothing is necessary. The red-green edge has
much more isolated noise and would benefit from localized smooth-
ing. The blue-green edge is an ideal result of the detection.

edge – if it is outside the detected edge (determined by the inside
and outside boundaries of the search region), its alpha value is set
to zero, but if it is inside, its alpha is kept at its original value.
Near the detected edge, alpha values are dropped off linearly for a
smooth polygon border. Since each rendered pixel does only one
texture sample, this pass is very fast.

Alternately, if a wireframe rendering is desired rather than full
polygons, this final pass can be altered very slightly to accommo-
date. The internal regions of each polygon are left out, but the un-
known border regions are still drawn the same as before. However,
in this case the shader will set the alpha value of pixels farther than
a set width from the detected edge to zero. Pixels near the detected
edge are kept, and alpha values are smoothly dropped off at the
boundary for an antialiased line.

Some filtering of the detected edge image can also be done in this
step. Rather than sampling one pixel for the edge offset, itsneigh-
bors can be sampled as well, and the multiple values are combined
to compute the final offset. We implemented support for 1x3, 1x5
and 1x7 block filters, as well as a 1x3 median filter. As graphics
hardware is designed for this type of filtering, it does not signifi-
cantly affect performance.

5 RESULTS

We present the achieved results of our algorithm, includingrender-
ing performance and visual quality of registration correction. We
also discuss the limitations of our current implementation.

5.1 Performance

For testing, we have integrated our technique with a simple AR ap-
plication that uses the ARToolKit [20] for marker-based tracking,
to overlay a virtual model of a box on top of a physical, tracked
box. The ARToolKit is prone to small errors in orientation es-
timates, which propagate to large translational errors forvertices
that are far from the marker’s center. With an NVIDIA GeForce
FX 6800GT graphics card, we experience a modest 8.2% drop in
framerate, from 61 to 56 frames per second, when processing apre-
recorded 640x480 video stream, using all four steps of our tech-
nique, with a 1x3 block filter in the fourth step.

Figure 6 shows a comparison of the original polygon edge, the
unsmoothed detected edge, and the smoothed detected edge. The
original edge clearly shows registration errors – because of tracking

4

Online Submission ID:

Figure 6: Comparison of results. Top to bottom: The original polygon
edge, our detected edge, and the smoothed detected edge.

error, the polygon edge is moved away from the physical edge,and
because of modeling error, the complex shape of the physicaledge
is represented by the straight edge of a polygon. Since this is a high
contrast image region, the detected edge matches the physical edge
nearly perfectly, correcting both the tracking and modeling error.
The smoothed edge loses the ability to correct the modeling error,
but is still a marked improvement over the original edge, dueto the
tracking correction.

The quality of the unsmoothed edge depends heavily on the edge
detection result. If the edge detection step finds a clear, strong edge
within the search region of the polygon, then the detected edge will
be match the image’s edge very closely, with very little noise. Un-
fortunately, in real environments with complex lighting and low dy-
namic range video acquisition, low contrast images are common-
place, making good edge detection difficult. In these cases,the
unsmoothed edge result will be noisy and will jitter from frame to
frame, so the smoothed edge result will be more appropriate.While
the smoothed edge may not match the physical edge as closely,it
will be jitter less between frames and be a closer match than the
original polygon edge, improving the visual quality.

5.2 Discussion

The nature of the design choices we made to implement this tech-
nique leads to some limitations which are important to examine.
Foremost is the fact that we do not modify the tracking result, just
the rendering of the polygons. This means that we are not using
a hybrid vision-based tracking system, and we cannot correct drift
from other tracking technologies. It also means that polygons are
clipped, rather than moved, so decal textures will not be shifted with
the polygon’s position. If text is texture mapped onto a polygon, the
edge of the text will be clipped off, rather than all of the text being
warped slightly. On the other hand, effects such as per-pixel light-
ing will not suffer from this effect, as they are calculated uniquely
for each pixel.

Currently, our per-vertex tracking error estimation is a single
float value, which represents a screen pixel radius. This is asim-

plistic assumption, as errors are more likely to be ellipsesin screen
space. The downside of our simplification is that our search re-
gions may be too wide, decreasing performance unnecessarily and
possibly getting distracted by edges that are farther away (though
that error is minimized by penalizing distant detected edges in the
search shader’s weighting function). Of course, we also assume the
reliability of the tracking error estimate. In the event that the er-
ror is over-estimated, time will be wasted searching largerregions,
and edges may become distracted more easily (though weighting
detected edges by distance reduces this effect). Conversely, if the
error is under-estimated, as the edge search step may not findan
edge in the search region, in which case the original input polygon
edge is used. This way we make sure our result is always at least as
good as the input.

The global nature of our detected edge smoothing can be limit-
ing as well. In the case that a detected edge is determined to be too
noisy and is replaced by the mean offset edge, the result is a straight
line. This means any per-pixel corrections of modeling error will
be lost to avoid the noise. Clearly, it would be preferable tolocally
smooth the edge in a feature-preserving way, to keep the important
detected edge features, but lose the distracting noise. Oneway we
have addressed this issue in our current implementation is by al-
lowing the noisiness threshold to be specified per-edge by the user.
This way the user can judge the modeling error for an edge and de-
termine about how much noise should be tolerated before resorting
to a straight-line approximation. We find that in our test cases, the
edge noise is a distracting enough artifact that we always set the
noisiness threshold to zero, forcing smoothing on every edge.

Finally, in cases where polygons are viewed from a shallow an-
gle, or when the tracking error is very large, our algorithm will
fail because there will be no known internal region of the polygon,
and the search regions for opposite edges will overlap. Thiscan
cause confusion with detected edges and can result in non-convex
polygons. To avoid this problem, when the internal polygon has
negative area (by calculating area assuming counter-clockwise ver-
tex ordering), our technique bails out and the original, unmodified
polygon is drawn instead. This avoids visual artifacts and assures
that our result is as least as good as the unmodified input.

6 CONCLUSIONS

We have presented a general post-processing technique for reducing
the visual effects of registration error, both from inaccurate track-
ing and oversimplified modeling. The algorithm is applicable for
a class of AR applications which modify the appearance of phys-
ical objects by overlaying corresponding virtual geometryon top
of them, such as physical object selection or re-lighting. Our algo-
rithm does not depend on the underlying tracking technologyand is
easily integrated with most AR applications. In environments with
strong edges in the physical scene, our algorithm will considerably
improve the matching of polygons to video edges, within a fewpix-
els. Even in scenes with low contrast and poor edges, our fallback
options yield improved stability and closer matching to video edges.
We take advantage of advanced graphics hardware to provide these
results with minimal impact to application performance.

Our approach also suggests many interesting avenues for future
work. Depending on the particular domain of an AR application,
the edge detection step of our algorithm could be improved with
domain-specific edge detection techniques. For example, structured
light, infrared spectrum, or stereo vision could all provide useful
edge information. A real-time version of the non-photorealistic
camera [21] could provide the necessary edge information reli-
ably as well. We wouldd also like to develop better detected edge
smoothing techniques such as a sliding window for local smooth-
ing, to reduce noise while still preserving edges, allowingfor better,
more general correction of modeling errors. Finally, we areinves-

5

Online Submission ID:

tigating ways to read back the resulting polygon deformation to the
CPU, so that the AR application can make use of our results as
feedback to the tracking (or even model) information.

REFERENCES

[1] R. Behringer. Registration for outdoor augmented reality applications
using computer vision techniques and hybrid sensors. InProceedings
of IEEE Virtual Reality, pages 244–251, March 1999.

[2] J. Canny. A computational approach to edge detection.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 8(6):679–698,
1986.

[3] E. Coelho, B. MacIntyre, and S. Julier. OSGAR: A scene graph with
uncertain transformations. InInternational Symposium on Mixed and
Augmented Reality, November 2004.

[4] A. Comport, E. Marchand, and F. Chaumette. A real-time tracker
for markerless augmented reality. InProceedings of the International
Symposium on Mixed and Augmented Reality, pages 36–45, October
2003.

[5] A. Davison. Real-time simultaneous localisation and mapping with
a single camera. InProceedings of the International Conference on
Computer Vision, October 2003.

[6] J. Fung and S. Mann. Using multiple graphics cards as a general pur-
pose parallel computer : Applications to computer vision. volume 1,
pages 805–808, 2004.

[7] J. Fung, F. Tang, and S. Mann. Mediated reality using computer
graphics hardware for computer vision. InProceedings of the In-
ternational Symposium on Wearable Computing 2002, pages 83–89,
October 2002.

[8] S. Gibson, J. Cook, T. Howard, and R. Hubbold. Rapid shadow gener-
ation in real-world lighting environments. InProceedings of the 14th
Eurographics workshop on Rendering, pages 219–229, 2003.

[9] W. Hoff, T. Lyon, and K. Nguyen. Computer vision-based registra-
tion techniques for augmented reality. InThe Proceedings of Intelli-
gent Robots and Control Systems XV, Intelligent Control Systems and
Advanced Manufacturing, volume 2904, pages 538–548, November
1996.

[10] Intel Corporation. Open Source Computer Vision Library Reference
Manual. December 2000.

[11] G. James and J. O’Rorke. Real-time glow. InGPU Gems, 2004.
[12] G. Klein and T. Drummond. Sensor fusion and occlusion refinement

for tablet-based ar. InProceedings of the International Symposium on
Mixed and Augmented Reality, pages 38–47, October 2004.

[13] D. Koller, G. Klinker, E. Rose, D. Breen, R. Whitaker, and
M. Tuceryan. Real-time Vision-Based camera tracking for augmented
reality applications. InACM Symposium on Virtual Reality Software
and Technology, September 1997.

[14] M. Kourogi and T. Kurata. Personal positioning based onwalking
locomotion analysis with self-contained sensors and a wearable cam-
era. InProceedings of the International Symposium on Mixed and
Augmented Reality, pages 103–112, October 2003.

[15] J. Lee, S. You, and U. Neumann. Tracking with omni-directional vi-
sion for outdoor AR systems. InProceedings of the International
Symposium on Mixed and Augmented Reality, pages 47–56, Septem-
ber 2002.

[16] M. Livingston, J. Swan II, J. Gabbard, T. Höllerer, D. Hix, S. Julier,
Y. Baillot, and D. Brown. Resolving multiple occluded layers in aug-
mented reality. InProceedings of the International Symposium on
Mixed and Augmented Reality, pages 56–65, October 2003.

[17] B. MacIntyre and E. Coelho. Adapting to dynamic registration errors
using level of error (LOE) filtering. InInternational Symposium on
Augmented Reality, October 2000.

[18] K. Moreland and E. Angel. The FFT on a GPU. InProceedings of the
ACM conference on Graphics hardware, pages 112–119, 2003.

[19] J. Newman, M. Wagner, M. Bauer, A. MacWilliams, T. Pintaric,
D. Beyer, D. Pustka, F. Strasser, D. Schmalstieg, and G. Klinker. Ubiq-
uitous tracking for augmented reality. InProceedings of the Interna-
tional Symposium on Mixed and Augmented Reality, pages 192–201,
2004.

[20] I. Poupyrev, D. Tan, M. Billinghurst, H. Kato, H. Regenbrecht, and
N. Tetsutani. Developing a generic augmented-reality interface.Com-
puter, 35(3):44–50, March 2002.

[21] R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk. A non-photorealistic
camera: depth edge detection and stylized rendering using multi-flash
imaging. InProceedings of ACM SIGGRAPH, August 2004.

[22] G. Reitmayr and D. Schmalstieg. Opentracker-an open software ar-
chitecture for reconfigurable tracking based on XML. InProceedings
of IEEE Virtual Reality, pages 285–286, 2001.

[23] I. Skrypnyk and D. Lowe. Scene modelling, recognition and track-
ing with invariant image features. InProceedings of the Interna-
tional Symposium on Mixed and Augmented Reality, pages 110–119,
November 2004.

[24] D. Stricker and T. Kettenbach. Real-time and markerless vision-based
tracking for outdoor augmented reality applications. InProceedings of
the International Symposium on Augmented Reality, pages 189–190,
October 2001.

[25] N. Sugano, H. Kato, and K. Tachibana. The effects of shadow rep-
resentation of virtual objects in augmented reality. InProceedings of
the International Symposium on Mixed and Augmented Reality, pages
76–83, October 2003.

[26] K. Sugita, T. Naemura, and H. Harashima. Performance evaluation
of programmable graphics hardware for image filtering and stereo
matching. InProceedings of the ACM symposium on Virtual reality
software and technology, pages 176–183, 2003.

[27] L. Vacchetti, V. Lepetit, and P. Fua. Combining edge andtexture infor-
mation for real-time accurate 3d camera tracking. InProceedings of
the International Symposium on Mixed and Augmented Reality, pages
48–57, November 2004.

[28] J. Wang, T. Wong, P. Heng, and C. Leung. Discrete wavelettrans-
form on gpu. InProceedings of ACM Workshop on General Purpose
Computing on Graphics Processors, pages C–41, August 2004.

[29] R. Yang and G. Welch. Fast image segmentation and smoothing using
commodity graphics hardware.Journal of Graphics Tools, 7(4):91–
100, 2002.

[30] S. You, U. Neumann, and R. Azuma. Hybrid inertial and vision track-
ing for augmented reality registration. InProceedings of IEEE Virtual
Reality, pages 260–267, 1999.

6

