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Abstract

XML queries specify predicates on the content and the
structure of the elements of tree-structured XML docu-
ments. Hence, discovering the occurrences of twig (tree
structure) query patterns is a core operation for XML
query processing. Prior works have typically applied
top-down decomposition of the twig patterns into (i)

binary (parent-child or ancestor-descendant) relation-
ships, or (ii) path expression queries, followed by a join
operation to reconstruct matched twig patterns. How-
ever, most of these methods (i) rely on the user’s knowl-
edge of the underlying database to pose well-formed
queries, and (ii) suffer from inspecting too many irrel-
evant results. In this paper, we propose a novel heuris-
tic for matching of XML twig query patterns, named
TWIX, which imposed minimal restrictions on the user
and causes substantial reduction of the search space
through a distributed binary labeling technique. The al-
gorithm incorporates a holistic ranking scheme of struc-
ture and content, named TRANK, to rank and report the
top-k results. Furthermore, TWIX benefits from an in-
teractive graphical user interface twig query matching.
Experimental results on real datasets depict the ranking
semantics and efficient filtration of the search space.

1 Introduction

XML (Extensible Markup Language) has become a key
technology gaining wide acceptance as the standard mech-
anism to facilitate the portability and integration of data
across the Internet. The rich content and the semi-
structuredness of XML documents demands support for
complex yet declarative queries. XML documents can be
viewed as ordered tree structures where each tree node
corresponds to document ELEMENTS (or ATTRIBUTES) and
edges represent direct (element→sub-element) relation-
ships. Structured queries on such an ordered tree spec-
ify complex patterns of selection predicates on element
labels (keyword search) and their corresponding inherent
structural relationships (structure pattern search). The

most simple form of structural relationship is a path ex-
pression. A single slash in the path expression query
(journal/author) requires the presence of a Parent-
Child (PC) edge between the corresponding nodes, while
a double slash (dblp//journal) simply requires the pres-
ence of a path from the first to the second element of the
query (Ancestor-Descendant relationship, AD).

dblp

journal

author

Serge Abiteboul

(Q1)

dblp

inproceedings

(Q2)

author title

XML

proceedings

editor

Alon Y. Halevy Serge Abiteboul

Figure 1: Query Samples.

In general, structural relationship queries may be
categorized in two different classes: i) path expression
query (e.g., Q1 in Figure 1), and ii) twig query (e.g., Q2 in
Figure 1). In particular,

Q1 =/dblp//journal[/author = ’Serge Abiteboul’]

matches all the path expressions of journal arti-
cles i) written by author (element) named ’Serge
Abiteboul’, for which ii) (journal, author)
elements have a PC relationship, and (dblp, journal)
elements have an AD relationship.

Q2=/dblp/inproceedings[/author ≈ ’Abiteboul’

AND /title ≈ ’XML’]

/proceedings[/editor = ’Alon Y. Halevy’]

matches all the twig tree patterns of conference proceeding
papers i) whose author and title fields include the key-
words ’Abiteboul’and ’XML’; in a conference where
ii) ’Alon Y. Halevy’ served as an editor and iv) all
the edges correspond to the constrained PC relation-
ships. (inproceedings, author), (inproceedings, title),

(proceedings, editor), (dblp, inproceedings),and (dblp,

proceedings).



XML query languages [7, 8, 11, 13] and the underlying
relational [15, 31] or native [26, 34] databases must
provide efficient and effective support for querying both
the content and the inherent structure of XML documents.
Meanwhile, the support for twig queries is usually facili-
tated by augmenting a layer of structural search on top of
the traditional path expression query language [1, 2, 6, 10].
These structural search techniques perform the following
steps: (i) decompose the twig query structure into its
corresponding path expression components, For instance,
the query (/dblp//journal[/author =’Serge’
AND /title≈’XML’]) is decomposed into the path
queries (/dblp//journal[/author=’Serge’])
and (/dblp//journal [/title≈’XML’]), (ii)
perform a semi top-down inspection of the XML document
tree for each decomposed path component, (iii) join the
results of each of the query’s path expressions to form the
result to the original twig query. However, the top-down
traversal of the document tree results in scanning a large
number of path combinations. The number of intermediate
results is a direct function of the fan-out and size of the
document tree which imposes serious scalability and
efficiency issues. For instance, the root node of the dblp
[22] database has 3,288,858 immediate children (as of Sept.
2004) which makes it impossible to inspect all the path
combinations if the given query include the root node.
While some optimizations may be applied, it is inevitable
that quite a large number of path expressions have to be
generated and scanned.

Suppose one wishes to execute a simple query Q =/dblp

/inproceedings[/author ≈ ’Abiteboul’]on the dblp
bibliography database. The dblp contains 212,273 oc-
currences of (dblp/inproceedings) edges, 491,783 of
(inproceedings/ author) edges, and 1,818 of author in-
stances containing the term ’Abiteboul’. In the worst
case, the top-down algorithms need to inspect a space of
212,273 × 491,783=1.04×1011 potential path combina-
tions for path join before even reaching the leaf level con-
straint. However only 1,818 of those combinations result
in the term ’Abiteboul’. This artifact depends on the
query and the statistical characteristics of the underlying
data however, in the above example the worst case scenario
without having any information about the user query pat-
terns, results in an additional inspection of 1.04×1011−1,818

1.04×1011

tuples or the 99.9% of the database.

Various techniques [6, 28, 29] have been proposed to re-
duce the size of the intermediate result set, however they
still suffer from a large number of potential inspections.
TWIX deploys an efficient bottom-up technique for match-
ing, filtration, and ranking of twig query patterns, avoid-
ing the decomposition of the twig query and inspecting the
large number of intermediate results (path combinations).
For short, TWIX only inspects a compact inverted index
for the occurrences of the query’s keywords and builds the
twig subtree on top of the potential matched keywords. As
a result only a small portion of those potential keyword oc-
currences are inspected. Given a query tree Q, the incor-

porated binary labeling of TWIX reconstructs the subtree,
restricted to the given leaf keywords of Q, in O(|Q|) time.
One other important property of TWIX is that, it imposes
minimal restrictions on the user’s knowledge of the under-
lying database schema by incorporating both approximate
keyword and structure search/ranking.

Due to the heterogeneous nature of XML documents
(i.e. schema and representation), it is crucial to incorporate
approximate structure matching in conjunction with appro-
priate ranking of both the structure and content of the ele-
ments. The need for approximate structure matching arises
in a variety of applications motivated by the following is-
sues: (i) Privacy, Scalability: Due to access policy issues,
the users might not have access to the schema of one or
more of the XML documents of the target database, (ii)
Inconsistency: The nature of the information on the web is
responsible for the semi-structuredness of the underlying
XML documents. This implies that (1) the data might be
incomplete or irregular, (2) its structure may change, or (3)
the data may not fully conform with the imposed structure.

The main contributions of the TWIX structure and con-
tent matching are summarized as follows:

1. TWIX deploys proximity-based primitives for struc-
ture matching of query tree using a polynomial-time
dynamic programming alignment algorithm. It further
devises an IR-style content search scheme at the fine
level of attribute/element contents.

2. An efficient binary labeling scheme based on the no-
tion of Nearest Common Ancestor (NCA) is intro-
duced for fast construction of a subtree from its leaf
content keywords. Given a set S of leaves/keywords
of an XML document tree T , TWIX employs a
bottom-up algorithm for the construction of the ”sub-
tree of T induced by S” in constant time, without the
need to decompose the query.

3. Effective filtration techniques based on DTD (Doc-
ument Type Definition) similarity and the horizon-
tal/vertical structural extent of the nodes are integrated
to avoid the exponential blow-up of the content-
matched intermediate results. TWIX only searches
within a compact inverted index for the occurrences
of the query’s keywords and builds the twig subtree
on top of the matched keywords. As a result filtra-
tion, only a small portion of those matched keyword
instances are inspected.

4. A fully functional java-based implementation of
TWIX interactive system and a graphical user inter-
face is developed to facilitate visual and intuitive twig
pattern matching,

5. A novel content and structure ranking scheme
(TRANK) for answering top-k queries.

6. The experimental evaluation on the efficiency and
functionality of TWIX filtration and ranking.



The rest of the paper is organized as follows: Section 2
discusses the background and related work. Section 3 pro-
vides an overview of the TWIX procedure and each com-
ponent of the proposed technique. Section 4 introduces
the incorporated filtration techniques followed by Section
5 which discusses the concept of TRANK. Section 6 pro-
vides the empirical performance analysis followed by Sec-
tion 7 which concludes the work.

2 Background and Related Work

The support for structural queries introduces a challenge
for both relational [15, 31] and native [26, 34] implemen-
tations of XML databases. Recently, much research has
been conducted to support structural similarity. These ef-
forts may be classified into four main categories:

The structural join methods [1, 23, 24] typically decom-
pose the query twig query pattern into a set of parent-
child (PC) or ancestor-descendant (AD) binary compo-
nents. Consequently, each binary component of the query
pattern is matched against the XML database and the
matched intermediate results are joined to obtain the final
query twig pattern match. One major drawback of these
methods is the size of the intermediate result set which can
potentially be very large, for which the identification of an
efficient cost-based join ordering (based on the selectivity
and join size estimation) is inevitably required. Polyzotis
et al. [28] propose methods to estimate the selectivity of
the XML twig based on the notion of synopses which can
be useful as a filtration step for reducing the number of the
intermediate results. They further propose the TREESKETCH
and TWIG-XSKETCH synopses model to facilitate query ap-
proximate answers. However, this approach focuses on the
structural part of the query and ignores the content and the
keyword distributions in the XML document. Bruno et
al. [6] propose TwigStack, a holistic twig join algorithm
which uses a chain of linked stacks to compactly represent
the intermediate path expression results, and subsequently
joins them to obtain the query twig pattern match. Lu et
al. [24] extend TwigStack for optimality when PC edges
are used as well. TWIX is different from this class of tech-
niques since it does not decompose the path expressions
into binary relations and hence does not suffer from the ex-
plosion of the size of the intermediate result set.

The numbering scheme methods [1, 14, 16, 23] asso-
ciate interval encoding with every node to help identify PC
or AD relationships among the nodes. There are two main
categories incorporating the numbering scheme: (i) In one
approach [1, 14, 16, 23], given a node u, the algorithms as-
sign an interval signature as [preorder(u), postorder(u),
level(u)]. Given any two nodes u and v: node u is an
ancestor of node v, iff preorder(u) < preorder(v) and
postorder(u) > postorder(v). (ii) There are also a num-
ber of approaches [6, 23] which deploy an interval scheme
of the form [begin(u), end(u), level(u)]. Similarly, node u
is called an ancestor of node v, if start(u) < start(v) and
end(u) > end(v). One interesting property of these meth-
ods is the fact that testing for the ancestor-descendant rela-

tionship is no more costly than testing for the parent-child
relationship which is determined by a simple check for in-
terval inclusion. However, these methods can not handle
updates efficiently. As a result, more dynamic value as-
signment techniques (by either leaving some empty space
between the interval values, or using real precision num-
bers) have been proposed to alleviate this problem [23].
TWIX uses only pre-order traversal numbering and addi-
tionally supports dynamic pre-order assignment which in-
troduces gaps between pre-order values for support on fu-
ture updates. The reduction in the amount of augmented
information (interval vs. single pre-order value) makes it
more difficult to detect AD relationships however, TWIX
does not decompose the path expressions and hence does
not need the AD information directly. TWIX maintains a
parent pointer attached to each node of the inverted index
to facilitate the discovery of PC relationships.

Several Indexing methods [10, 12, 16, 19, 21, 23, 33, 35,
36] have been proposed to index the document elements
and attributes of XML documents. Most of these methods
represent intervals as points in a multidimensional space
and utilize available indexing techniques (e.g. B+-trees, R-
trees, etc) on element sets to store and query these points.
Similarly, TWIX incorporates inverted index and hashing-
based mappings for the fast retrieval of leaf keywords, el-
ement sets and path labels however, the way it handles the
query is substantially different.

The String matching methods [30, 35, 36] propose en-
coding techniques to flatten tree structures to a string. The
problem of tree structure similarity transforms into a sub-
string matching problem. These techniques include: (i)
Transforming the XML document and the query twig pat-
tern into labeled sequences using the Prüfer method [30].
The occurrences of the query twig pattern in the database
is inspected by performing subsequence matching on the
corresponding Prüfer sequences of the query and the docu-
ment, (ii) Zezula et al. [35, 36] propose a novel technique,
called the tree signature, to represent tree structures as or-
dered sequences of pre-order and post-order ranks of the
nodes. Similarly, the algorithm applies string matching and
indexing techniques to answer ordered and unordered tree
inclusion queries, as well as the structure search. TWIX
does not flatten the tree structures, however, employs ap-
proximate substring matching for leaf keywords matched
instances and uses dynamic programming string alignment
for matching and ranking of the path expressions.

Most recently, Amer-Yahia et al. [4] and Marian et
al. [25] propose FlexPath and Whirlpool systems. These
methods incorporate the notion of query relaxation on the
structure of the query and include the answers to all relax-
ations of the query. An IR-based tf × idf paradigm is em-
ployed for scoring and full-text search at the element level.
FleXPath [4] studies the properties of the proposed rank-
ing schemes for answering top-k queries. Whirlpool [25]
devises an adaptive algorithm for scoring and top-k match-
ing while studying the query plan evaluations. In contrast,
the support for approximate match in TWIX is inherent in



NOTATION DESCRIPTION
TL Set of leaf nodes of tree T .
|T | Number of nodes in tree T .
Tu Subtree of T rooted at node u.
|Tu| Size of the subtree rooted at u.
h(u) heavy node: heavy child of the node u.
||u|| ||u|| = |Tu| − |Th(u)|.
ru Pre-order traversal rank of node u.

CHILDREN(u) Set of immediate children of node u.
Lu The binary label assigned to a node u.

NCA(u, v) Label of the NCA of nodes u and v.
R(N, T ) The relaxed subtree of T restricted to the

set of nodes/leaves in N .

Table 1: Basic Notations of TWIX and labeling procedures.

the bottom-up subtree construction from the successfully
matched keyword instances. This reduces the search space,
while the prunning of the irrelevant matches is performed
at the earliest stage of structure matching, which is an in-
spection only within those intermediate results succeeding
the keyword matching phase.

3 The TWIX Procedure
In this section, we decompose the TWIX into its primary
components and provide a general overview of the pro-
posed techniques. The section is later followed by in-depth
descriptions and analysis of each individual unit.

3.1 Binary Labeling Procedure

This seciton introduces the distributed NCA binary label-
ing scheme. Alstrup et al. [3] propose a technique which
assigns unique binary labels1 to each node of an arbitrary
tree. We generalized and extended the algorithm to handle
the construction of subtrees from their respective leaves for
trees with arbitrary fan-out (which is linear in the number
of leaves of the query twig), and further implemented the
entire algorithm2.
Theorem 1 (ALSTRUP AND KAPLAN [3]) Given a rooted
tree T of n nodes, there exists a linear time preprocessing
algorithm that assign labels of size O (log n) bits to each
node, such that from the labels of any two nodes x i, xj ∈ T
alone, the label of their nearest common ancestor, NCA(xi,
xj), can be determined in constant time.

The algorithm performs an offline top-down preprocess-
ing of the document tree. Given any node u, the child of
u whose subtree size is maximum, is called heavy node
and all the other children of u are referred as light nodes.
Root node is a light node by default. Following this pro-
cedure the tree is segmented into disjoint individual paths
consisting of heavy nodes (heavy paths) as depicted in Fig-
ure 2.a. The preliminary binary labels (heavy and light la-
bels) are assigned in two individual stages: (i) assigning

1In this paper, the term binary label is truncated to simply label which
should not be confused with the element labels or tag names of the nodes
(e.g. author, title, ...).

2Alstrup et al. [3] did not provide any experimental analysis.
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Figure 2: (a) Tree T with some of the corresponding binary la-
bels and the pre-order traversal ranks of the nodes. The heavy
paths are highlighted with bold edges. (b) Extracting heavy la-
bels for a particular heavy path of T . (c) The subtree of T induced
by the set of keywords S = {p, s, u} (Tree Relaxation). (d) The
actual minimal subtree of T restricted to the leaf nodes in set S.

binary labels to the nodes on the heavy path (heavy label,
HLabel), (ii) assigning binary labels to the light children of
the nodes (light label, Llabel). Given a sequence of nodes
u1 → u2 → ... → um, depending on being a heavy path or
the sequence of light children of a node, the binary heavy
and light labels are extracted from ||u1|| → ||u2|| → ... →
||um|| or |Tu1 | → |Tu1 | → ... → |Tum |, respectively3. For
instance, the binary labels of the nodes on the heavy path
that starts from the root (root → J → L → M → p)
are assigned by first separating this path from the rest of
the tree (Fig. 2.b) and then assigning the labels on the se-
quence ||root|| → ||J || → ||L|| → ||M || → ||p|| which
is the sequence 13 → 3 → 4 → 3 → 1. The heavy
and light labels of each node are concatenated to construct
the final binary label (L) as follows: for the root node,
Lparent(root) = Llabelroot=null, and for all other nodes
u ∈ T : Lu = Lparent(anc(u)).Llabelanc(u).Hlabelu. For
all the nodes u of the tree, Lu consists of the concatenation
of alternating heavy and light labels: Lu=h1.l1.h2.l2 . . ..

Lemma 1 (Nearest Common Ancestor (NCA) Query.)
Given any two nodes or vertices u, v ∈ T :

• if Lu = h1.l1 . . . hi.li.s and Lv = h1.l1 . . . hi.l
′
i.s
′,

where li �= l′i, or li.s = null or l′i.s
′ = null:

NCA(u,v) = h1.l1 . . . hi−1.li−1.hi.

• if Lu = h1.l1 . . . hi and Lv = h1.l1 . . . h′i, where hi �=
h′i: NCA(u,v)=h1.l1 . . . hi−1.li−1.minlex{hi, h

′
i}.

Example. Given the nodes k, p, s with labels
Lk = 0111.0, Lp = 10110, and Ls = 0111.1. First
case of Lemma 1 applies when calculating NCA(k,s) =
NCA(0111.0,0111.1) = 0111 which is the binary label of
the node J . Such a case occurs when the prefix match-
ing of two labels end in a heavy region. The sec-
ond case occurs for NCA(p,s) = NCA(10110,0111.1) =

3For details on extracting heavy and light binary labels, refer to [3].
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minlex{10110, 0111} = 0111 which is similarly the bi-
nary label of the node J which occurs when the prefix
matching of the labels end in a light region. The min lex

denotes the preceding binary string in lexicographic order 4.
Figures 5.c-d depict the actual and relaxed subtrees of T
induced by N = {p, s, u}.

Given a tree of size n, the following are some of the
properties of the binary labels assigned to each node: (i)
The process of assigning labels to each node of the tree
takes O(n) computation time which is performed offline,
(ii) Given a tree T and any subset S of its leaves in order
of their pre-order traversal rank, the subtree of T restricted
to the nodes of S can be constructed in O(|S|) time.

3.2 TWIX Overview

Given an XML document tree T , Figure 3 depicts a general
overview of the TWIX procedure. Offline, T is analyzed
and each node is associated with a unique binary label
(not shown in the Figure 3) and its corresponding pre-order
traversal rank (the integer value in each node). However,
only leaf nodes have actual alphabetic keywords associated
with them. Figure 4 depicts a more detailed algorithmic
formulation of the TWIX procedure. The algorithm starts
with an offline stage which associates unique O(log n)-bit
binary labels to each node of the tree which facilitates the
detection of the nearest common ancestor (NCA) of any two
given nodes in constant time. Given the twig query pattern
Q and document tree T in Figure 3, the online phase of
TWIX is performed in five stages, summarized as follows:

1) Leaf Matching, and Filtration: Let QL = {h(3),

4Due to space limitations, we have not included the implementaiton
details of the binary labeling algorithm.

Offline pre-processing phase,
Given an XML document tree T :

1. Perform a pre-order traversal on tree T and associate a pre-order
traversal rank to each node of T ,

2. Perform the binary labeling procedure and attach a binary label
to each node of T ,•———————————————————————————•

Online phase,
Given twig query pattern Q with the set of leaves QL:
Notations:

� S = {s1, . . . , sm}: set of all the keywords of the
query’s leaves (m ≥ |QL|).

� e(si, T ) = ei: Leaf matching of si in T .
� aj = (t1, . . . , tm): a matching instance tuple from

E(K,T ), where 1 ≤ j ≤ β = Πm
i=1|ei|.

� ru: pre-order traversal rank of the node u.
� τ : horizontal distance threshold.
� R(S): The relaxed subtree induced by S.

• While progressively producing the aj tuples:
while j ≤ β: do
for i = 1 to m− 1: do
if ( NCA(ti, ti+1) == root || //vert. distance

|rti
-rti+1)|≥ τ ) //horizontal distance

− Prune aj from the processing queue.

� Let {aπ1 , . . . , aπs} denote the set of all those matching
instance tuples which are not yet pruned.

• While progressively constructing the induced relaxed twig sub-
trees of T for the leaf pairs of each aπp = (t1, . . . , tm) tuple:
for each i = 1 to m− 1: do
if ( NCA(ti, ti+1) != NCA(si, si+1) )
− Prune aπp from further processing.

• For each of the remaining relaxed subtrees of the non-pruned
matching instances (aπ1 . . . aπs ), construct their actual induced
subtrees as Taπ1

. . . Taπs
.

for each j = π1 to πs: do
- Rank the relevance (ref. figure 7) of

Taπj
to query twig pattern Q.

Figure 4: TWIX procedure formulation.

g(4), f (5)} denote the set of leaves of the twig query Q
where each leaf is associated with its label and pre-order
traversal rank. Leaf matching, finds all occurrences of the
nodes of QL in the leaf nodes of T . For instance, the node
h ∈ QL occurs twice in the leaves of T : h(15) and h(18).
Given that QL consists of three nodes, leaf matching results
in ordered triplets ai (matching instance), where the j th en-
try of ai denotes an occurrence of the j th node of QL in the
leaves of T . TWIX incorporates a very efficient early struc-
ture filtration procedure when dealing with multiple XML
document databases each having a unique DTD (Document
Type Definitions). It is much more likely that the answers
to query Q originate from those XML documents whose
DTD resembles the structure imposed by Q. TWIX em-
ploys a DTD-based Filtration step (DFT) for early prun-
ing of irrelevant documents which drastically reduces the
search space.

2) Filtration: This is the second filtration step in TWIX
which removes most of the irrelevant matching instances
(a1 and a2 in this example) using the extracted NCA binary
labels. For instance, in a1 = [f (6), g(14), h(15)], the nodes
g(14) and h(15), belong to the same subtree of T (rooted at
node n10), however the node f (6) belongs to a relatively



distant subtree (rooted at node n2). This implies that the
matching instance a1 covers more than one main mean-
ingful entity (assuming that different subtrees of the root
node entail different entities) and hence should be pruned
from further considerations. This filtration step also uses
the horizontal and vertical distances of the tree nodes to
determine the relevance of the nodes and further pruning of
the matching instances, i.e. reducing false positives.

3) Relaxed Subtree Construction, and Filtration: For
any remaining matching instance ai, this stage performs a
bottom-up approach to construct a virtual subtree of T (re-
laxed subtree) restricted to the nodes of ai, using the NCA
binary labels of the nodes. For instance, the relaxed sub-
tree of a4, R4, is progressively constructed through finding
nca(f (12), g(14)) and nca(g(14), h(18)) which result in the
nodes n11 and n10, respectively. In this construction pro-
cedure, all the ancestor-descendant(AD) and most of the
direct parent-child(PC) relationships are preserved, how-
ever some of the PC edges are replaced by valid AD edges
(virtual edges)5. This explains why these subtrees (Ri) are
called virtual or relaxed subtrees. The resulting relaxed
subtrees are more compact than the actual subtrees of T re-
stricted to the nodes of ai. This is because some PC edges
are replaced by AD edges (virtual edge) which ignores all
the corresponding intermediate nodes. For instance, the
edge n11 =⇒ g(14) in the relaxed subtree R4 ignores the
intermediate node n13. The compactness of the constructed
relaxed subtrees depends on the nodes involved in each vir-
tual edge, which is a function of the vertical distance be-
tween the corresponding nodes. For instance, the extent of
the vertical distance between n11 and g(14) indicates their
contribution to the compactness of R4. Moreover, the ex-
tent of the horizontal distance of the nodes (e.g. f (12) and
g(14) in R4) indicates the likelihood of the NCA of these
nodes introducing a virtual edge. As a result, the horizontal
distance between two nodes implies how high their corre-
sponding NCA node is in the document tree T . This con-
struction and filtration stage, benefits from the compactness
of the relaxed subtrees and further uses the path matching
on the potential results.

4) Actual Subtree Construction: Given each remaining
relaxed subtree from the previous stage, the corresponding
virtual edges on each path are further extended to cover
the required intermediate nodes. The outcome is the actual
subtrees of T , Ti, restricted to the nodes in the matching in-
stance ai. While constructing the actual subtrees, the path
information along each extended virtual edge is compared
against its counterpart in Q and mismatching subtrees are
either pruned or pushed to the bottom of the result set.

5) Twig Matching and Ranking: The resultant actual
subtrees are compared against the query twig for similarity
comparison and ranking. A novel combination of an IR-
based keyword and structure relevance ranking technique,
and the path-level minimum tree edit distance [9, 38],
called TRANK, is employed to compare each T i against

5These virtual AD edges are showed using double lines.

twig query Q and ranking of the T i subtrees among each
other. This measure captures the similarity and significance
of the structural results, by incorporating both the content
and structure of the nodes into account.

3.3 Matching Terminology and Formulation

This section introduces the definitions and notations used in
the matching phase. The corresponding notations are sum-
marized in Table 2. Matching finds the potential subtrees
of the document XML tree by inspecting and comparing its
leaves against those of the twig query.

Notation 1 Suppose T = (V, E) is an ordered tree, where
V and E denote the set of nodes and edges. Each of
the nodes are assigned a numerical value which is its
unique pre-order traversal rank. The ranks of the nodes
in a document tree impose a logical document order. Let
I = {n1, . . . , n|I|} and L = {l1, . . . , l|L|} denote the set
of internal nodes and the leaves of tree T , where I∪L = V .
Each of the nodes in V is assigned a label (tag name). The
label of a leaf is also referred to as its value, which may
not necessarily be unique.

For instance, in the tree T of Figure 5, the labels of the
nodes with rank 2 and 4 (n2 and n4) are inproceedings,
and Serge Abiteboul, respectively.

Definition 2 Given a keyword s and a tree T , the leaf
matching of s in T , e(s, T ), is the set of all the leaf nodes
of T , wherein s appears as a keyword or substring.

Example. Let TL denote the set of leaves of T , TL =
{n4, n6, n8, n11, n13, n15, n17, n68, n70, n72} as depicted
in Figure 5. Given s =’Abiteboul’: e(s, T ) = {n4, n68}
= {Serge Abiteboul(4), Serge Abiteboul(68)}.

Definition 3 Given a set of keywords S = {s1, . . . , sm},
the leaf matching set of S on T , E(S, T ), is the set of all
the leaf matching sets e(si, T ). More formally, E(S, T ) =
{e1, . . . , em}, where ei = e(si, T ) denotes the leaf match-
ing of si in T . The nodes of each set ei are ordered in in-
creasing order of their corresponding pre-order traversal
rank in T .

Example. Given the set of a query’s leaf key-
words S = {s1, s2} = {’Abiteboul’, ’XML’} re-
sults in E(S, T ) = {e1, e2} where e1 = {n4, n68}
= {Serge Abiteboul(4), Serge Abiteboul(68)}, and e2 =
{n6, n13} = { Dynamic XML(6), Colorful XML(13)}.

Definition 4 Given a set of keywords S = {s1, . . . , sm}, a
matching instance of S in E(S, T ) is defined as a unique
m-ary tuple a = [t1, . . . , tm] such that ti ∈ ei for 1 ≤ i ≤
m. The tuple set M(S, T ) = {a1, . . . , ak} denotes the set
of all the possible unique m-ary matching instance tuples
of S on TL, where |M(S, T )| = Πm

i=1|ei|.
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Figure 5: An XML document tree from DBLP database.

For instance, given S = {’Abiteboul’, ’XML’}:
M(S,T) = { [n4, n6], [n4, n13], [n68, n6], [n68, n13] } = { [Serge

Abiteboul(4), Dynamic XML(6)], [Serge Abiteboul(4),

Colorful XML(13)], [Serge Abiteboul(68),Dynamic XML(6)],

[Serge Abiteboul(68), Colorful XML(13)] }.
The number of potential matching instances, |M(S, T )|,

is a function of (i) the total number of leaf matching sets
|E(S, T )|, and (ii) the size of each leaf matching |ei|. Sec-
tion 4 introduces various effective filtration techniques to
avoid and alleviate the exponential blow-up of the interme-
diate results set.

3.4 Bottom-up Subtree Construction

This section introduces the main bottom-up algorithm to
reconstruct the relaxed subtree, restricted to a subset of
leaves, which is used for filtration of the exact queries. The
extracted subtree is further passed into the filtration step
for further refinement and elimination of false positives.
Algorithm 1 depicts the detailed procedure of the subtree
construction. Note that, |N| denotes the number of actual
leaf keywords used in the twig query which is generally
very small (<10). As a result, the tree construction which
is an O(|N|) algorithm appears to depict an expected con-
stant time due to the very small value of |N|. The following
definition captures the principle of the relaxed subtrees.

Definition 5 (Induced Subtree) Given a tree T with set of
leaves TL and N ⊂ TL, the subtree of T induced by N is
the non-empty topological subtree or relaxed subtree of T
restricted to the nodes of N. Let R(N, T ) denote the relaxed
subtree of T induced by N, then for any two nodes u, v ∈ N ,

NCAT (u, v) = NCAR(N,T )(u, v).

For instance, Figures 2.c-d depict the relaxed and actual
subtrees of T induced by N = {p, s, u}, respectively. The
relaxed subtree of T induced by N , R(N, T ), may have
some edges not originally present in T (virtual edges), as
depicted by double lines in Figure 2.c. The virtual edges
capture the notion of AD relationships in the relaxed sub-
trees. The relaxed tree construction results in a topological
subtree of T restricted to the nodes of N . R(N, T ) is a
much more compact version of the actual subtree of T in-
duced by N (preserving all the AD relationships by using
virtual edges, and maintaining the PC relationships through
direct edges). The compactness of the relaxed subtree is a
function of the vertical and horizontal distance of the nodes

present in the query twig. The distance information is de-
termined by NCA lookup and inspecting the depth of the
nodes, which drastically improves the efficient filtration of
irrelevant candidates.

Algorithm 1 Subtree Construction Procedure:
Notations:
N Set of leaves in increasing order of their pre-order traversal rank.
I The inverted index built on the potential parents of the nodes in N .

Each node entry I[j] points to the list of its children.

� Allocate an array NODE [2×|N | − 1].
NODE [1]←− N1

j←− 1
for i = 1 to |N | − 1: do

NODE [j + 1]←− NCA [Ni, Ni+1]
NODE [j + 2]←− Ni+1

j←− j + 2
end for
� Allocate the inverted index I [|N | − 1].
j←− 1
for all i ∈ [2 . . . 2×|N | − 2], i← i + 2: do

I [j]←− NODE [i]
Insert CHILDREN(I [j]) to the linked list of the I [j] node entry.
j←− j + 1

end for
� Sort the node entries of the inverted index, I[i], on the decreasing

order of their level value as it appears in the document tree.
for i = |N | − 1 to 1: do

for all nodes Nj in the list I[i] do
if Nj is not marked then

Mark the node Nj

Set parent(Nj )←− I[i]
end if

end for
end for
NOTE: Any node Ni (2 ≤ i ≤ t − 1) contributes to two NCA cal-
culations: NCA(Ni−1, Ni) and NCA(Ni, Ni+1), which results in two
potential candidates for the appropriate choice of parent for each node.

4 Filtration Techniques
This section provides a detailed description of the pro-
posed filtration techniques and how the constructed re-
laxed trees are used for filtration. Consider the following
running example: the execution of a keyword search for
S = {’Abiteboul’, ’XML’} on the dblp database results
in e(’Abiteboul’,dblp) = 1818, and e(’XML’,dblp) = 957.
The total number of matching instances in the worst case is
|M(S, dblp)| = 1818 × 957 = 1, 739, 826, which shows
the inevitable need for efficient filtration techniques. TWIX
employs several efficient filtration techniques to reduce the
size of the intermediate result set. It employs two classes of
structural filtration by i) deploying DTD-conscious prun-
ing for document filtration, and ii) vertical and horizontal



proximity of the nodes for filtration based on the similarity
of matching instances to the query.

Example. Let S denote the set of query’s leaf keywords
as defined above. The set M(S, T ) = {[n4, n6], [n4, n13],
[n68, n6], [n68, n13]} represents the corresponding match-
ing instances of the occurrence of S keywords in T of Fig-
ure 5. It is clear by looking at Figure 5 that the matching
instance [n4, n13] should not be in the final answer set be-
cause nodes n4 and n13 belong to different entities6. Sim-
ilarly, [n68, n6] and [n68, n13] should also be eliminated.
The only valid matching instance is [n4, n6] where both
nodes n4 and n6 entail the same entity. As a result, given
any two nodes of a document tree, the horizontal and verti-
cal distances between them are used as a measure to assess
the relevance of the nodes.

4.1 DTD Filtration Technique (DFT)

Suppose one wishes to find all the top-k answers to a
given twig query Q from a collection of XML documents.
DTD provides a general overview of the building struc-
ture of an XML document. It is much more likely that
answers to the twig query Q originate from those XML
documents whose DTD resembles the structure required
by Q. For instance, given Q =/dblp/article[/author =

’Serge Abiteboul’], the search can be simply limited to
only those XML documents whose DTD schema shares
Ω edge ratio with the twig query’s edges (e.g. [dblp/
/article] and [article/author] ) to prune the irrelevant
documents. TWIX uses Ω = 1 and Ω = 3/4 for exact and
approximate structure match, respectively. For instance, in
the case of approximate match, all those documents with Ω
value less than 75 % are pruned from further inspection.

4.2 Horizontal Filtration Technique (HFT)

Proposition 1 Let ”root” denote the root node of tree T
where |T | = n, and let CHILDREN(root) = {c1, . . . , cm} rep-
resent the immediate children (in the left-to-right sibling
order) of the root node. Given any node c i, its pre-order
traversal rank ri can be computed as,

ri = |Tci−1 | + ri−1, for 1 ≤ i ≤ m,

where ri−1 and |Tci−1 | denote the pre-order traversal rank
of the node ci−1, and the size of the subtree rooted at ci−1,
respectively.

For instance, given the tree T of Figure 5 and
CHILDREN(root) = {c1, c2, . . . , cm} = {inproceedings(2),

article(9), ..., inproceedings(66)}. The correspond-
ing pre-order ranks and subtree sizes of the immediate chil-
dren of the root are {r1 = 2, r2 = 9, . . . , rm = 66} and
{|Tc1| = 7, |Tc2| = 9, . . . , |Tcm | = 7}, respectively. The
rank of a node ci is equal to {the rank of node ci−1} + {the
size of the subtree rooted at node ci−1}.

6They are attributes of two distinct articles published by different
authors in 2003 and 2004.

Definition 6 (Horizontal distance threshold). Given a
tree T , the horizontal distance threshold, τ , is defined as:

τ = max {|Tci| |∀ci ∈ CHILDREN(R)}.
Inspecting Figure 5, the subtree rooted at node c 2 =

article(9)has the maximum size and hence: τ = |Tc2 | = 9.

Proposition 2 (Horizontal distance bound). Let u and v
denote two nodes in tree T , where u ∈ Tci and v ∈ Tcj :

|ru − rv| > τ =⇒ i �= j, for 1 ≤ i, j ≤ m.

To clarify this property, consider a document tree T with
nodes {n1, . . . , n|T |} where the subscripts denote the rank
of the nodes, and CHILDREN(root) = {c1, . . . , cm}. For any
subtree Tci , the node with the minimum pre-order rank is
node ci and the node with the maximum pre-order rank,
nk, is the lowest-right node of Tci which has the rank
rk = |Tci | + ri − 1. The difference between the pre-
order ranks of nodes ci and nk can not be larger than |Tci |.
As a result, τ denotes the maximum difference between
the pre-order ranks of any two nodes that belong to the
same subtree. Hence, if the pre-order traversal rank of
any two given nodes is more than the horizontal thresh-
old τ , then it is guaranteed that they do not belong to the
same subtree, and do not entail the same entity. This ob-
servation may also be deployed in applications where the
subtrees store information on various types of items (e.g.
DVD’s, books, magazines, ...). In such cases, clustering
the nodes on their relative concepts or types is essential in
locating relevant nodes. In the dblp example of Figure 5,
τ = max {7, 9, . . . , 7} = 9 and applying the horizontal
distance bound, the matching instance pairs [n68, n6] and
[n68, n13] will be pruned from further considerations, i.e.,
|rn68 − rn13 | = |68 − 13| = 55 > τ = 9. Note that,
HFT depends on the existence of main entity sub-trees at
the root’s children level however, this requirement is adap-
tively pushed further down the tree depending on the gen-
eral structure of the underlying data.

4.3 Vertical Filtration Technique (VFT)

Vertical filtration is inspired by the fact that the nearest
common ancestor of any two given nodes u, v belonging
to the same entity (subtree) should be a node other than
the root. In Figure 5, nodes n4 and n6 belong to the same
entity (subtree rooted at n2 = inproceedings) and hence
their nearest common ancestor is a node other than the
root. In contrast, the nodes n4 and n13 belong to differ-
ent subtrees (entities) and as a result their nearest com-
mon ancestor is the root node, that is, NCA(n4, n6) = n2

= inproceedings(2) and NCA(n4, n13) = root = dblp(1).
Performing VFT subsequent to HFT will further eliminate
the matching instance pair [n4, n13] from further consider-
ations. The vertical filtration eliminates all those matching
instances ai = (t1, . . . , tm), where the NCA of at least one
of its node pairs, (tj , tj+1), is the root node. TWIX fur-
ther develops a more adaptive method in using the notion



of root node reference. For instance, if the fanout of the
root element is very small, then the second level elements
may also be considered to prune non-related entities.

5 Ranking of the Twigs (TRANK)
XML document databases are heterogeneous in schema
(DTD) and their representation. The structural relationship
among the same set of keywords in different documents
may be different. The XML documents in a collection
may either (i) have different DTDs, or (ii) have a common
DTD but not conforming to it. Executing a query against
such different documents may result in possibly “correct”
answers, though bearing different structures. Moreover,
the notion of ranking granularity should be extended from
term-document to further capture structure, terms, and doc-
uments. This extension introduces a great challenge since
the notion of relevance (scoring) is much more complex in
the hierarchical data model. The structural proximity (con-
text) of the keywords (the path coming into/out of them)
introduces an additional dimension of complexity to the
scoring scheme. As a result, the notion of ranking should
encompass a two-dimensional distance measure. For in-
stance given two occurrences of a keyword, a rational dis-
tance measure should incorporate both the vertical distance
(level difference) and the horizontal distance (tree width
difference) with respect to the other keywords of the query,
in addition to the traditional IR notion of relevance. Mean-
while, due to the XML heterogeneity, the proposition of a
single general ranking scheme is not plausible. This section
studies the general principles and semantics of a meaning-
ful ranking scheme.

Weigel et al. [32] provided a concise comparative sur-
vey of recent proposals for ranking the results of structured
queries. There have been several proposals in the literature
to incorporate the information retrieval notion of relevance
into the ranking schemes [2, 4, 5, 17, 18, 20, 25]. How-
ever most of these methods either consider the relevance
ranking on the content [18], or simply consider ranking of
path expressions [2, 5, 20]. Moreover, Chawathe et al. [9]
and Shasha et al. [38] propose methods to calculate the
distance between two ordered trees, and even add some ad-
ditional edit operations [9] such as move and copy of the
entire subtrees to better utilize the tree edit distance. How-
ever, the significance of each edit operation and the propo-
sition of a general cost/weight assignment scheme is not a
clear-cut problem and introduces challenges in designing a
meaningful ranking scheme.

Given the simple path expression query7 of Figure 6,
Figures 6.a-g depict some of the possible results, which
range from exact to approximate matches. TWIX requires
the mandatory presence of the query’s leaf keywords in
the matching instances8. More precisely, for any of the
matched subtrees, the presence of the query’s leaves is

7Note that, we rank the twig queries in a similar fashion. The provided
path expression examples are only used for the ease of explanation.

8This mandatory requirement may be further relaxed.
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Figure 6: Ranking Samples.

mandatory while the exact conformation of the path char-
acteristics leading to those leaves is optional.

5.1 TRANK Scheme, Properties and Components

Let Edit Distance (ED) denote the minimum number of
edit operations, node deletion (DEL), insertion (INS) and
replacement (REP), to transform one tree structure to an-
other. Given the query Q and matching instances of Fig-
ure 6, we study a set of questions to clarify the individual
components and desirable fearures of content and structure
scoring schemes in TRANK:

� Keyword Relevance Ranking. The relevance score
value r for a given keyword (term) k with respect to an
XML document d, is computed as rkd = tfkd × idfk. The
score rkd depends on two parameters: (i) tfkd denotes the
number (frequency) of elements where keyword k occurs in
the XML document d normalized with the frequency of the
most frequent item in d, and (ii) the inverted document fre-
quency idfk which is calculated by dividing the total num-
ber of documents (D) in the database by the total number
of documents including the keyword k (dfk). That is:

tfkd =
freq(k) in d

max{freq(k)| ∀k ∈ d} , idfk =
D

dfk
.

� Structure Relevance Ranking.

• Tree Distance Score (TDS). Compared to Q of Figure
6, which of the (b) and (c) structures should be ranked
higher? The structure (c) entails a higher score com-
pared to (b) even though (b) contains all the desired
internal nodes of the query. Case (c) shares one PC
relationship (A/B) as required by Q while (b) shares
none!

Theorem 2 Tree Edit Distance Property. Let Q′ and
Q′′ denote two matching instances of the path Q,
where ED (Q, Q′) = k and ED (Q, Q′′) = k+1, for
some k≥0. The matching instance Q′ shares at most
two more PC edges of Q, compared with Q′′.

Proof. The proof can be easily driven from the fact
that, employment of any single DEL, INS and REP
operations adds [0-1], [1-2] and [1-2] new edges, re-
spectively. �

Hence, TRANK reports as follows:



Notations:

� Given any node u of a path, let du denote the distance (number of edges) of u
to its closest reaching leaf.

� Let |P | denote the total number of nodes Pi in a path P .
� Let edge(P, i) denote the ith edge of the path P .
� Let ||P || denote the total number of edges in a path P .
� Given any path P and query Q, let P ′ denote the new version of P after

applying the minimum number of edit operations.

01 PROCEDURE TRANK (path P , path T , path Q){
02 IF ( TDS(P ′, Q) = TDS(T ′, Q) ), THEN
03 LS← LS(P ′, Q) - LS(T ′, Q)
04 EMS← EMS(P ′, Q) - EMS(T ′, Q)
05 score← fagg(LS, EMS).
06 IF ( score > 0 ), RETURN ( P )
07 ELSE, RETURN ( T )
08 ELSE
09 EMS← EMS(P ′, Q) - EMS(T ′, Q)
10 IF ( EMS > 0 ), RETURN ( P )
11 ELSE, RETURN ( T )
12 }
13
14 PROCEDURE LS (path U , path V ){
15 LS← 0.
16 FOR i = 1 TO |U|: DO
17 d← |dUi

− dVi
|

18 IF ( D �= 0 AND Ui �= Vi ), THEN LS← LS + (d−1)
19 RETURN ( LS / |U| )
20 }
21
22 PROCEDURE EMS (path U , path V ){
23 Count← 0.
24 FOR i = 1 TO ||U||: DO
25 IF ( edge(U, i) = edge(V, i) ), THEN Count← Count + 1
26 RETURN ( Count / ||U|| )
27 }
28
29 PROCEDURE TDS (path U , path V , float α, float k) {
30 L = new float[U .length][V .length];
31
32 � Initialization of the edit distance array L
33 L[0][0]← 0.
34 FOR i = 1 TO U .length: DO L[i][0]← L[i - 1][0] + α;
35 FOR i = 1 TO V .length: DO L[0][i]← L[0][i - 1] + α;
36
37 � Fill in the edit distance array L
38 FOR j = 1 TO V .length: DO
39 FOR i = 1 TO U .length: DO
40 L[i][j]← min ( L[i - 1][j] + α,
41 L[i - 1][j - 1] + ( (Ui �= Vj ) ? (α / k) : 0),
42 L[i][j - 1] + α );
43 RETURN (L[U .length - 1][V .length - 1])−1;
44 }

Figure 7: TRANK Scoring Algorithm.

—————————————————————-
ED(Q, b) = DEL + INS = 2 × REP

ED(Q, c) = INS

=⇒ TDS(Q, c) > TDS(Q, b).
—————————————————————-

• Level Specificity Score (LS). How about (c) versus
(d)? It is clear that the minimum cost (MTD) of trans-
forming the given query structure Q to either (c) or (d)
structures is equal to:
—————————————————————-

ED(Q, c) = ED(Q, d) = INS
—————————————————————-
which is the cost of a single insertion operation9. The
traditional IR-based keyword relevance ranking fails
to effectively distinguish the internal ELEMENTS such
as B and C, which is due to the potential large fre-
quency such internal nodes (e.g. author, year, ...).

9[B/k] −→ [B/C/k] in Fig.6(c), or [C/k] −→ [C/B/k] in Fig.6(d)

The observation is that, given any particular path in
a tree, as traversal gets closer to the leaves the speci-
ficity of the nodes increase. For instance, in Figure 5,
the month node is clearly much more specific com-
pared to the node dblp. TRANK incorporates the
vertical distance to the leaf node as the measure of
level specificity. In any given path, those nodes which
are closer to the leaf are assigned a higher level speci-
ficity score LS which is used collectively to reflect the
contribution of each internal node to the overall LS
score of the matching path expression. In the case of
twig structures, where a node might be part of multi-
ple paths to different leaves (e.g. node n14 in Figure
2.a), the nearest approaching leaf is used to measure
the level specificity Hence, TRANK assigns a higher
rank to (c) as compared to (d):
—————————————————————-

LS(Q, c) > LS(Q, d).
—————————————————————-

• Edge Matching Score (EMS). How about (b) versus
(e)? The only difference between (b) and (e) is the ex-
istence of an AD edge in place of a PC edge. TRANK
associates a higher score to those structures whose
edge relationships follows the exact constraints as re-
quired by Q. That is:
—————————————————————-

EMS(Q, b) > EMS(Q, b).
—————————————————————-

• How about (f ) versus (g), where C = <author>, C′

= <authors> and C′′= <author name>? The case
(g)’s PC edge C′′/k has higher LS compared with AD
edge C′//k of case (f ). Moreover, Q requires a PC
edge between C′ or C′′ and k which again results in
higher EMS of (g) compared to (f ). However, the la-
bel content of node C′ appears to be more similar to
C compared with C′′. TRANK employs the IR no-
tion of concept by clustering related ELEMENT nodes
together (e.g. author, authors, and author name).
As a result, such cases are conveniently scored using
LS and EMS schemes.

5.2 TRANK Procedure

Figure 7 depicts the details of the TRANK scoring proce-
dure. Given path expressions P , T and query Q, TRANK
removes all the PC or AD edge details from the original
path expressions before passing them to the TDS phase.
When TDS is called, it starts (lines 30-44) by finding the
minimum number of edit operations needed to transform
P → Q and T → Q. At the same time it aligns them
into equal-length P ′ and Q′ paths by introducing neces-
sary gaps in both paths to represent the implied edit oper-
ations10. TRANK checks if the TDS score of transforming
P or T to Q is equal (line 2), if so, that means TDS has
failed to provide and effective score to distinguish P and
T from each other. As a result, it calculates and combines
the normalized LS and EMS scores to further distinguish

10Due to space constraints, the details of path modifications is not in-
cluded in this work. More details may be found in Needleman et al. [27].



the given paths. An aggregate function, fagg, is incorpo-
rated to combine the scores of LS and EMS, which may be
chosen as sum, average, median, or a more sophisticated
weighting function. For simplicity, TWIX uses linear com-
bination of the normalized scores of LS and EMS. Finally,
the path with the higher overall score (lines 6-7) is returned
by TRANK. If the TDS scores of P and T against Q are
not equal (lines 8-12), then TRANK combines the normal-
ized TDS and EMS scores using the same aggregate func-
tion, fagg , as before. Once all the matching instances of
the document tree T to the twig query Q, M(Q, T ), are
found, TRANK procedure applied to sort the set M(Q, T )
and output the results.

6 System Design and Functionality Analysis
We implemented the TWIX system using Java 1.4.2 and
ran our experimentations on an Intel Xeon 2.4GHz proces-
sor with 2GB of main memory. The experimental evalua-
tions were performed on synthetic and real XML datasets 11

to assess and evaluate the performance of TWIX. The syn-
thetic datasets are generated by using XMark [37] using
a scaling factor of 1. The XMark synthetic dataset is
113MB in size having 2,849,444 nodes with an average
depth of 5, named XMark-1. We also used the dblp
dataset which is 127 MB in size, including 5,682,094 nodes
with an average depth of 2.9. For our experiments, we
applied various randomly distributed modifications (subset
and schema modification) on the DTD and document tree
of the acquired datasets to create a collection of versioned
XML documents. We first divided dblp into its corre-
sponding entity categories: <inproceedings>, <article>,
. . ., <www>. Furthermore, three different random element
modifications (e.g. renaming some of the title elements
by paper title) were performed on the corresponding
<inproceedings> and <article> subsets of dblp. Table 2
provides the details of the incorporated modifications and
the corresponding characteristics of each individual doc-
ument. The following subsections describe each particu-
lar component of the system and analyze its functionality,
studying the filtration effectiveness and ranking accuracy.

6.1 Effectiveness of Filtration Techniques

TWIX deploys various filtration techniques to reduce the
size of the intermediate result set. Each of the inspected
queries investigate a category of general queries as men-
tioned in the introduction section, including both PC and
AD relationships as well as targeting various parts of the
document tree. Table 3 depicts the effectiveness of the pro-
posed filtrations for exact search of the sample twig queries
of Figure 8 on the full dblp XML document. The sec-
ond column of Table 3 shows the total number of potential
matching instance combinations which is the size of the
search space. Each filtration technique column entails the
number filtered tuples and ration of the overall database left
for further inspection. For instance, the second column of

11Available from University of Washington’s XML Data Repository at

http://www.cs.washington.edu/research/xmldatasets/

Dataset Subsets # Replacement Size

0 × 19.1 MB

1 $a−→ $a $n 20.3 MB

inproceedings 2 $t−→ $p $t 20.3 MB

3 $t−→ $p $t 20 MB

$a−→ $a $n

0 × 9.63 MB

1 $a−→ $a $n 10.1 MB

dblp article 2 $t−→ $p $t 9.87 MB

3 $t−→ $p $t 10 MB

$a−→ $a $n

proceedings × 1.36 MB

incollection × 326 KB

phdthesis × 16.9 KB

mastersthesis × 1.37 KB

book × 390 KB

www × 4.77 KB

Table 2: Subset selection and modification performed on
dblp dataset. The × sign denotes no modifications, while
$a = author, $p = paper, $t = title, and $n = name.

dblp

article

(Q1)

author title

XML

dblp

inproceedings

(Q2)

author title

XML

proceedings

editor

HalevyAbiteboul Abiteboul

(Q3)

Abiteboul 1998

inproceedings

Figure 8: Twig queries used for filtration study.

HFT on Q3 denotes that 52.29 % of the search space is
pruned by simply using HFT for query Q3. In any of the
cases, at least 47 % of the database is effectively pruned.
Table 3 asserts the superior effectiveness of NCA relax-
ation filtration which prunes the database for a minimum
filtration ratio of 2 × 10−3% and up to 1.15 × 10−5%.

6.2 Top-k Ranking Quality Assessment

Figure 9 depicts a visual perspective and analysis into the
highly ranked matching instances returned by TWIX on the
collection of 14 versioned dblp documents. The match-
ing instances are listed in the decreasing order of their
corresponding relevance ranks (rank 1 denoting the best
match). A visual legend on the upper-right corner of each
twig match depicts the parts of the result, edges (structure:
line) and nodes (content: circle), which match with the
query and hence contributing to the ranking computation.
Moreover, TRANK clusters the keywords into conceptual
groups (e.g. author, author name, . . ., authors) cov-
ering the semantics of the keywords into account. This
feature facilitates a flexible ranking scheme, not impos-
ing much constraints on the user’s knowledge of underly-
ing database. The Queries are shown in the left portion of
the figure followed by their corresponding top-5 ranked re-
sults. The internal nodes of the queries were particularly
chosen to capture the element label differences among the
XML documents of the collection. The first answer to Q1



Query Horizontal Filtration (HFT) Vertical Filtration (VFT) NCA Relaxation
Total Combinations Filtered Tuples Ratio Filtered Tuples Ratio Filtered Tuples Ratio

Q1 1,605,990 779,603 48.54 % 826,347 51.45 % 32 2.00×e-3 %
Q2 35,331,780 26,545,044 75.13 % 8,786,220 24.86 % 9 2.54×e-5 %
Q3 52,027,684 27,204,742 52.29 % 24,822,926 47.70 % 6 1.15×e-5 %

Table 3: Filtration Comparison.

dblp

inproceedings

author

A Unified Approach for
Querying Structured

Data and XML

Serge Abiteboul

title

dblp

inproceedings

author_name

Detecting Changes in
XML Documents

title

Serge Abiteboul

dblp

inproceedings

author

XML Repository and Active
Vies Demonstration

paper_title

Serge Abiteboul

dblp

inproceedings

author

Representing and Querying
XML with Incomplete

Information

paper_title

Serge Abiteboul

dblp

inproceedings

author

Active XML: Peer-to-Peer
Data and Web Services

paper_title

Serge Abiteboul

QUERY TWIG 1 2 3 4 5

dblp

article

author_name

On Views and XMLSerge Abiteboul

paper_title

dblp

article

ee

On Views and XML

db/journals/sigmod/Abiteboul99.html

paper_title

dblp
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author_name

Serge Abiteboul

www/org/w3/TR/NOTE-xml-
ql

cite

dblp

inproceedings

author_name

Detecting Changes in
XML Documents

Serge Abiteboul
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TOP-5 Ranked Twig Structures
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article
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XMLAbiteboul
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inproceedings

author

XMLAbiteboul

title

dblp

inproceedings

A Unified Approach for
Querying Structured

Data and XML

Serge Abiteboul

titleauthor

Q1

Q2

Figure 9: TOP-5 ranked twig answers to the given queries.
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(618)
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XMLauthor

inproceedings

Abiteboul

(212273)

(150)

(1000)

(716596)

inproceedings

author title

Abiteboul XML

(212273)

(150) (1000)

(716596)

(329242)
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item

location description

China rice

(262)

(21790)

(21750)
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(780)(110)
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regions

item

description shipping

rice internationally

(262)

(21790)

(21750)

(51233)

(780)
(10659)

Figure 10: Twig queries used in timing analysis.

is an exact match and the similarity of the matches decrease
traversing through the ranked matching list. However, for
Q2, the first answer is an approximate match. Going down
the ranking results, validates the quality of TRANK in dis-
tinguishing matching instances from each other.

6.3 Response Time Analysis

We compared the performance of TWIX against
TwigStack[6]12. The queries and experimental re-
sults are shown in Figure 10 and Figure 11, respectively.
The numbers associated with the nodes in Figure 10 denote
the selectivity of corresponding ELELEMTN entries. As

12The source codes for this algorithm was kindly provided by Jiaheng
Lu from National University of Singapore.
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Figure 11: Query Response Time of TwigStack vs. TWIX.

depicted in 11, TWIX outperforms TwigStack specially
when the query is highly selective for up 5 times faster
running time (on Q3). The efficiency of TWIX for highly
selective queries is because of the effectiveness of the
bottom-up space reduction employed by its filtration
phases. As a result, a smaller number of intermediate
results would be left for further examination. In contrast,
the frequency of the internal ELEMENT nodes plays an
important role in TwigStack . High-frequency internal
structure element node are frequently encountered in real
datasets (e.g. author in dblp).

7 Conclusion
This paper proposed an efficient system design and im-
plementation, named TWIX, for labeling, matching and
ranking of twig queries in a database of XML documents.
TWIX incorporates a unique bottom-up traversal of docu-
ment trees by locating the matching keyword instances and



progressively constructing the induced subtree on top of
each matched instance. Various filtration techniques based
on DTD relevance and horizontal/vertical differences of the
node extents were deployed. TWIX also proposes a holis-
tic ranking technique for twig queries, named TRANK.
TRANK inspects each individual path of the potential twig
patterns and combines keyword relevance ranking along
with minimum twig tree distance for effective ranking of
the twig matches. TWIX also provides maximum flexi-
bility on the user side by pushing the complexity of the
process to the core of the TWIX system. TWIX system
is an ongoing effort and is augmented with improvements
progressively. Experimental results demonstrate promising
filtration ratio incorporating the proposed filtration tech-
niques to eliminate false positives and semantically mean-
ingful ranking of the results.
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