
MARS: A Matching and Ranking System for XML Content and
Structure Retrieval

S. Alireza Aghili Hua-Gang Li Divyakant Agrawal Amr El Abbadi

Compute Science Department
University of California, Santa Barbara

Santa Barbara, CA 93106, USA.
{aghili,huagang,agrawal,amr}@cs.ucsb.edu

Abstract

Structural queries specify complex predicates on
the content and the structure of the elements of
tree-structured XML documents. Recent works
have typically applied top-down decomposition of
the twig patterns into (i) parent-child or ancestor-
descendant relationships, or (ii) path expression
queries, and then followed by a join operation to
reconstruct matched twig patterns. This demon-
stration system is the implementation prototype
of an efficient heuristic-based bottom-up approach
named MARS (Matching And Ranking System
for xml structure queries), for matching and rank-
ing of structural query patterns for XML query
processing. An efficient nearest common ancestor
labeling scheme is applied to utilize fast bottom-
up construction of the subtree matches from the
potential keywords. MARS considers both the
content and structure of queries and incorporates
a variation of IR-based relevance ranking to re-
port the top-k ranked results. The graphical user
interface of MARS provides an interactive visual-
ization of the twig query discovery.

1 Motivation of MARS
Structured twig queries specify complex patterns of se-
lection predicates on element labels (keyword search) and
their corresponding inherent structural relationships. XML
query languages [1, 2, 3, 4] and the underlying relational
[5, 7] or native [6, 8] databases must provide efficient and
effective support for querying both the content and the in-
herent structure of XML documents. However, the support
for structural queries is usually facilitated by augmenting a
layer of structural search on top of the traditional path ex-
pression query language performing the following general
steps: (i) Decompose the twig query structure into its cor-
responding path expression queries. For instance, (/dblp/
/journal[author=’Serge’ AND title=’XML’]) gets de-
composed into (/dblp//journal [author=’Serge’]) and (
/dblp//journal[title=’XML’]) path queries, (ii) Perform

Twig Matching &
Ranking

1

2 5

43
h g

f

Query tree Q

1

2

3

4

5

Leaves of Q

Relaxed Subtrees

18h

R4

14g12
f

11

13

R3

14g

12f

15h

T410

1611

13

14g

12
f 18h

T3

13

11

14g 15h

12
f

Actual Subtrees

1

2 7 10

11 164

1312

3

65

98

15

1817

a

b f

d e

f

h

i h

XML tree T

14g

Matching Instances

6 1514f g h

6 14 18
f g h

12 1514
f g h

12 14 18f g h

a1

a2

a4

a3

12 1814
f g h

a4

12 1514
f g h

a3 11

10

Actual Subtree Construction

Relaxed Subtree
Construction
& Filtration

Leaf Matching
& Filtration

Filtration

OFFLINE ONLINE

Binary Label Extraction

Figure 1: MARS procedure: a general overview.

a top-down search in the XML document tree for each de-
composed path expression of the query, (iii) Join the results
of each of the query’s path expressions to form the result to
the original twig query.

However, the top-down traversal of the document tree
results in scanning a large number of path combinations. In
the worst case, the number of intermediate results (number
of decomposed path expressions) is proportional to the size
of the document tree which imposes serious scalability and
efficiency drawbacks. For instance, the root node of the
dblp1 database has almost 3,288,858 immediate children
which makes it impractical to inspect all the path combina-
tions if the given query includes the root node. While some
optimizations may be applied, it is inevitable that quite

1http://www.informatik.uni-trier.de/∼ley/db/

a large number of path expressions have to be generated
and scanned. MARS employs a low-cost bottom-up tree
matching technique to the given problem which avoids the
decomposition of the twig query and inspecting the large
number of intermediate results (path combinations).

The main contributions of the MARS system proposal
are summarized as follows:

• An efficient binary labeling scheme based on the notion of
Nearest Common Ancestor (NCA) is introduced for fast con-
struction of a subtree from its leaves. Given a set S of leaves
(or leaf keywords) of an XML document tree T , MARS con-
structs of the ”subtree of T induced by S” in constant time.

• MARS supports approximate keyword search using string
matching techniques, and approximate structure and path
matching using a dynamic programming algorithm.

• A novel combination of an IR-based keyword and structure
relevance ranking technique along with the path-level min-
imum tree edit distance is employed to compare and rank
the subtree matching instances, based on their content and
structure.

• Using the binary labeling scheme, various filtration tech-
niques (schema-based, horizontal and vertical filtrations) are
integrated to prune irrelevant matching instances and effi-
cient reduction of false positives.

2 MARS: a general overview
In this section, we decompose the MARS into its primary
component units and provide a general overview of the sys-
tem, as depicted in Figure 1. The algorithm starts with an
offline stage which associates unique binary labels to each
node of the tree to facilitate fast detection of the nearest
common ancestor (NCA) of the nodes. The main proper-
ties of the binary labeling procedure are: (i) The process of
assigning labels to each node of the tree takes O(n) com-
putation time which is performed as an offline procedure,
(ii) The unique binary label assigned to each node of the
tree is of length O(log n) bits, (iii) Given the labels of any
two nodes, the label of their NCA can be determined in
constant time, (iv) Given a tree T and any subset S of its
leaves in order of their pre-order traversal rank, the sub-
tree of T restricted to the nodes of S can be constructed in
O(|S|) time.

Given the structural query pattern Q and XML docu-
ment tree T , the online phase of MARS is performed in
four stages as follows:

1) Leaf Matching, and Filtration: Leaf matching, finds
all occurrences of Q’s leaf keywords in the leaf nodes of
T resulting in the potential leaf-level matching instances.
MARS also incorporates an efficient structure filtration
when dealing with multiple XML document collections
each having a different DTD (Document Type Definitions).
It is much more likely that the answers to a query Q orig-
inate from those XML documents whose DTD resembles
the structure imposed by Q. MARS employs the DTD-
based filtration step for early pruning of irrelevant docu-
ments, which drastically reduces the size of search space.

Figure 3: MARS System Architecture.

2) Filtration: This is the second filtration step in MARS
which attempts to remove most of the irrelevant matching
instances using the extracted binary labels. This filtration
step also uses the horizontal and vertical distances (extent)
of the tree nodes to determine the relevance of the nodes
and further pruning of the matching instances and reducing
false positives.

3) Relaxed/Actual Subtree Construction, and Filtra-
tion: For any remaining matching instance, this stage per-
forms a bottom-up approach to construct a relaxed subtree
of T restricted to the nodes of the matching instance us-
ing the binary labels of the nodes. The resulting relaxed
subtrees are more compact than the actual subtrees of T
restricted to the nodes of the matching instance. The com-
pactness of the constructed relaxed subtrees depends on the
internal nodes involved in the matching instance and is also
a function of vertical distance among the corresponding
nodes of the matching instance. This construction and fil-
tration stage, benefits from the compactness of the relaxed
subtrees and further uses the corresponding NCA label of
the nodes for additional filtration of the intermediate results
using schema comparison, vertical/horizontal distances of
the nodes, and path matching on the potential results. Each
remaining relaxed subtree is finally extended to construct
the actual subtrees of T .

5) Twig Matching and Ranking: The resulting actual
subtrees are compared against the query twig for similarity
comparison and ranking. A novel combination of an IR-
based keyword and structure relevance ranking technique,
and the path-level minimum tree edit distance is employed
to compare each actual subtree against Q and ranking the
subtrees among each other. This measure captures the sim-
ilarity and significance of the structural results, by incorpo-
rating both the content and structure of the nodes.

Figure 2: MARS Graphical User Interface.

Figure 4: Query Data Entry Console.

3 System Architecture
Figure 3 depicts a general overview of the system architec-
ture and components of MARS. MARS consists of three
main components which are summarized as follows:

1. XMLDOCUMENTPROCESSING: This is an offline component
responsible for parsing, and creating the necessary in-
dex structures on each node of the XML document
tree. It proceeds by associating each node of the tree
with a unique binary label which will be used in the
subsequent components for subtree construction and
filtration. It also provides an inverted list index struc-
ture along with a keyword dictionary to efficiently
maintain the location of keywords in the system.

2. MARSUI: The graphical user interface (GUI) of the sys-
tem is handled through MARSUI component which is
used for the offline loading of the data, online entry of
the twig query and browsing through the results.

3. TWIGQUERYPROCESSING: This component is the core of
the twig query structure matching which incorpo-
rates various modules and data structures to facil-
itate filtration, subtree generation, string/path simi-
larity, and ranking of the results. The auxiliary in-
dex files and data structures that were generated in
the XMLDOCUMENTPROCESSING component are used in

this stage for manipulation and traversal of the doc-
ument tree. TWIGQUERYPROCESSING interactively com-
municates with the MARSUI component for browsing
through and further refinement of the produced ranked
results. The arrows are used to browse through the
discovered patterns and the bottom-center box dis-
plays the content information and the statistics of each
search.

4 Demonstration Overview
We will demonstrate a functional implementation of the
MARS system. MARS and its components are imple-
mented in Java 1.4.2 with a graphical user interface. The
following features of the MARS system will be demon-
strated:

• XML Document Entry and DTD Visualization:
Users may browse, visualize and select various XML
documents for querying. A parallel program provides
a visualization of the chosen document’s DTD to the
user, as well. We will have some known real XML
documents (e.g. dblp, SIGMOD Record, NASA,
...) pre-loaded for more efficient demonstration pur-
poses. Figure 2 is the main GUI window of the
MARS, which is used for loading, search and brows-
ing through the ranking of the structural queries.

• Query Tree Data Entry Console: Users may use any
of the various pre-loaded queries or may specify their
own queries using the user-friendly JTree input inter-
face of MARS, as shown in Figure 4. The right side
of the window is a static figure showing an exam-
ple of the how the query should be entered, and the
left portion of the window is blank in the initializa-
tion. Users input the queries to the system, node by
node which will be displayed in the left portion of the
window, and the edges are inserted between each pair

dblp

inproceedings

author

A Unified Approach for
Querying Structured

Data and XML

Serge Abiteboul

title

dblp

inproceedings

author_name

Detecting Changes in
XML Documents

title

Serge Abiteboul

dblp

inproceedings

author

XML Repository and Active
Vies Demonstration

paper_title

Serge Abiteboul

dblp

inproceedings

author

Representing and Querying
XML with Incomplete

Information

paper_title

Serge Abiteboul

dblp

inproceedings

author

Active XML: Peer-to-Peer
Data and Web Services

paper_title

Serge Abiteboul

QUERY TWIG 1 2 3 4 5

dblp

article

author_name

On Views and XMLSerge Abiteboul

paper_title

dblp

article

ee

On Views and XML

db/journals/sigmod/Abiteboul99.html

paper_title

dblp

article

author_name

Serge Abiteboul

www/org/w3/TR/NOTE-xml-
ql

cite

dblp

inproceedings

author_name

Detecting Changes in
XML Documents

Serge Abiteboul

title

TOP-5 Ranked Twig Structures

title

dblp

article

author

XMLAbiteboul

dblp

inproceedings

author

XMLAbiteboul

title

dblp

inproceedings

A Unified Approach for
Querying Structured

Data and XML

Serge Abiteboul

titleauthor

Q1

Q2

Figure 5: TOP-5 ranked twig answers to the given queries.

of nodes depending on the location of the insertion.
The input query is displayed in browsable tree format
where the modification of the query may easily be per-
formed at any level of the tree. For instance, in Figure
4 the dblp node (on the left window) is being high-
lighted/selected. Insertion, deletion and modification
of the nodes are provided in the user interface. The
parameterized ranking values/thresholds of the algo-
rithm may also be entered to the system, if the user
decides to incorporate more sophisticated/weighted
ranking parameters. Once the query entry is done,
pressing on the button Finalize will take the user
to the main GUI of MARS (Figure 2) and the query
twig would be displayed in the upper-left portion of
the screen.

• Result Ranking: Figure 2 depicts a snapshot of the
main GUI component of MARS used for browsing
through the ranked subtree results. The total number
of combinations and the number of valid combinations
are displayed and users may use the provided arrows
to inspect the discovered patterns. The upper-left win-
dow shows one of the twig query matches and more
details on each node of the this matching instance may
be shown in the lower window, by simply highlight-
ing the corresponding node. For instance, in Figure 2,
the nodes inproceedings is highlighted and as a
result its components are displayed in the middle win-
dow. The Figure 2 also provides the choice of per-
forming exact or approximate matching of the query
tree. Approximate matching incorporates bottom-up
relaxation of the query tree and returns the ranked an-
swers, as well as, the exact answers. The ranking of
the results are only used in the approximate matching
option of the MARS and more information regarding
the rank values and their corresponding orders are dis-
played accordingly.

Moreover, Figure 5 depicts a visual perspective and
analysis into the highly ranked matching instances
returned by MARS on a collection of 14 versioned
dblp datasets. The matching instances are listed in
the decreasing order of their corresponding relevance
ranks (rank 1 denoting the best match). A visual leg-

end on the upper-right corner of each twig match de-
picts the parts of the result, edges (structure: line)
and nodes (content: circle), which match with the
query and hence contributing to the ranking compu-
tation. Moreover, MARS clusters the keywords into
conceptual groups (e.g. author, author name, . . .,
authors) covering the semantics of the keywords
into account. This feature facilitates a flexible ranking
scheme, not imposing much constraints on the user’s
knowledge of underlying database. The Queries are
shown in the left portion of the figure followed by
their corresponding top-5 ranked results. The inter-
nal nodes of the queries were particularly chosen to
capture the element label differences among the XML
documents of the collection. The first answer to Q1
is an exact match and the similarity of the matches
decrease traversing through the ranked matching list.
However, for Q2, the first answer is an approximate
match. Going down the ranking results, validates the
quality of MARS ranking in distinguishing matching
instances from each other.

References
[1] D. Chamberlin, J. Robie and D. Florescu, Quilt: An XML

query language for heterogeneous data sources. WebDB
(Informal Proceedings), 53–62 (2001).

[2] D. Chamberlin, Daniela Florescu, Jonathan Robie,
Jérôme Siméon and Mugur Stefanescu, XQuery: A
Query Language for XML. W3C Working Draft,
http://www.w3.org/TR/xquery (2001).

[3] J. Clark, XSL Transformations (XSLT), Version 1.1 W3C
Recommendations, http://www.w3.org/TR/xslt11 (2001).

[4] A. Deutsch, M. Fernandez, D. Florescu, A. Levy and
D. Suciu, XML-QL: A query language for XML. QL,
http://www.w3.org/TR/NOTE-xml-ql (1998).

[5] D. Florescu and D. Kossman, Storing and querying XML
data using an RDBMS. IEEE Data Engineering Bulletin
22(3), 27–34 (1999).

[6] J.F. Naughton et al., The Niagara Internet query system.
IEEE Data Eng. Bulletin 24(2), 27–33 (2001).

[7] J. Shanmugasundaram et al., Efficiently Publishing Rela-
tional Data as XML Documents. VLDB, 133–154 (2000).

[8] Xyleme, Available from http://www.xyleme.com.

