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Abstract

We present an accuracy and performance analysis of SimGate –a full-system simulation of
the Stargate intermediate-level sensor network device. Wealso examine ensemble simulations
using SimGate and either one or two simulated Mica2 motes using the same criteria. We find
that accurate functional behavior and cycle counts (at the full device level) are achievable using
SimGate alone, and in conjunction with simulated Motes. Also, the slowdown compared to real-
time for these simulations is modest with respect to previously published work.

1 Introduction
Sensor networks have emerged as a technology for transparently interconnecting our physical

world with more powerful computational environments, and ultimately, global information sys-
tems. In a typical sensor network, computationally simple,low-power sensor elements take phys-
ical readings and may perform some processing of these readings before ultimately relaying them
to more powerful computational elements. The need for non-intrusiveness motivates sensor de-
sign toward small, inexpensive, low-power sensor implementations that can be deployed in large
numbers throughout the environment to be sensed. Because the sensor elements themselves are so
resource constrained, however, a sensor network must include a smaller number of more complex
and general purpose computational elements that are capable of substantial in-network process-
ing, contain greater storage capacity, and can act as a “gateway” between the network of sensor
elements and more power-intensive network technologies.
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Designing and investigating these ensemble systems, to date, has relied primarily on physical
deployments and experimentation [8, 15, 16, 23, 38]. While the quality of the results from such
efforts is excellent, the need to work with the physical systems directly imposes a substantial
research impediment. The labor cost, equipment cost, spacerequirements, debugging complexity,
etc., that characterize such an engineering-based approach, all limit the scope of the research that
can be performed, and the number of researchers who can perform it.

One obvious possibility for widening the scope of what can beinvestigated is to employ simula-
tion as a complement to experimentation with deployed systems. While several simulation efforts
have focused on the sensing elements themselves [19, 25, 27,32, 35, 36], an approach that com-
bines sensor simulation with simulations of the other “heavier” devices as an ensemble – and does
so with an acceptable level of accuracy – is necessary to makesimulation a viable option.

In this paper, we investigate SimGate – a full-system simulation of the Intel Stargate device [34]
(distributed by Crossbow Inc.) – that we have developed for use with sensor element simulations
as part of a simulated ensemble. The Stargate device is intended to function as a general purpose
processing, storage, and network gateway element in a sensor network deployment. These devices
are battery powered, and are both fewer in number and larger in size than the sensing devices. The
Stargate’s more intrusive nature facilitates the use of large batteries that enable longer battery life
and improved compute and storage capability.

Our goal is to provide both functional correctness and cycle-count accuracy at the device level,
in a simulation of the Stargate that can be coupled with simulated sensors. The currently available
tools for simulating more complicated, heavy-weight, intermediate sensor nodes (such as the Star-
gate) are limited. For example, there are tools for simulation of the Intel XScale processor [40]
and its power consumption [4, 7] alone. However, to our knowledge, there are no simulation tools
that simulate the complete Stargate device.

SimGate captures the behavior of the Stargate internal components including the processor,
memory hierarchy, communications (serial and radio), and peripherals. In essence, SimGate is
a virtual device, in that it boots and runs the Familiar Linux operating system and any program
binary that executes over it,without modification. SimGate is also able to accurately estimate
processor cycle counts. Moreover, this functionality can be toggled to trade off cycle-accuracy for
simulation performance.

We are also able to couple SimGate with our own simulations ofthe Crossbow Mica2 sensor
nodes (called SimMote ) to produce a simulated sensor network ensemble. These simulations are
also virtualized representations of the physical hardware(i.e. full-system emulations providing
accurate cycle counts). SimMote provides similar functionality to that of existing Mote simulation
and emulation systems [19, 25, 27, 32, 35, 36]. We make no claims as to its superiority over these
systems – instead, we have used SimMote to expedite our investigation and empirical evaluation
of heterogeneous device, ensemble simulation.

To empirically evaluate the efficacy of our system, we measure the accuracy (in terms of Stargate
machine cycles) and real-time performance of SimGate usinga range of stressmarks and com-
munity benchmarks. We also present results for similar experiments in which the SimGate and
SimMote interoperate via a serial interface (simulated in both). Finally, we examine three-device
ensemble consisting of a SimGate node, a serially-connected SimMote, and a third SimMote that
communicates only via simulated radio. For these latter twocases, we run our own multi-device
benchmark suite. Each experiment compares simulated results to measurements gathered empir-
ically from physical Stargate and/or Mica2 devices. In all cases throughout this study, the actual



hardware devices and simulations run the same operating system and benchmark binary, without
modification. Thus, the results test the degree to which our simulations may be used in place of
physical hardware in each experimental setting.

Our results indicate that we are able to accurately simulatethe full system of an intermediate
Stargate node with amaximum errorof 12.4% across all benchmarks we test. We also find that,
on average, simulation at this level of accuracy imposes a slowdown of58X over real-time device
execution and that a slowdown of20X can be achieved if only a functional simulation (i.e. without
accurate cycle counts) is required. As a result, we believe this work demonstrates the potential of
multi-device, sensor network simulation as a research-enabling technology.

In the next section, we overview the design and implementation of our simulator. In Section 3,
we describe our experimental setup and measurement methodology. We then detail the accuracy
and performance of our system in Section 4. In Sections 5 and 6, we present related work and
conclude with some observations and our plans for future work respectively.

2 SimGate Simulator
Simulation is a potentially an important tool for sensor network system and application develop-

ment. The focus of most prior work in system simulation has been on high-end, general-purpose,
wall-powered devices [29, 20, 21], processor/power simulation [1, 4, 7], or on the sensing devices
themselves [19, 25, 27, 32, 35, 36]. However, to our knowledge, no extant approach to sensor
network simulation enables full-system simulation of a keysensor network component: the in-
termediate “gateway” node. Moreover, no simulation systemfacilitates co-simulation of different
sensor network devices as part of an ensemble. The goal of ourwork is to investigate, implement,
and evaluate such mechanisms.

Intermediate nodes are resource-constrained, battery-powered, devices that provide a bridge
between sensor nodes (which we refer to as Motes after the popular Berkeley Mote implementa-
tion [18]) and more powerful, wall-powered, computationalenvironments. Intermediate nodes are
commonly responsible for sensor device control and in-network processing [17] of sensor data:
receiving, processing, assimilating, forwarding, etc. These nodes reduce the power consumption
of the system by reducing the communication distance from the Motes to a powered device, and by
coalescing and compressing the data that is forwarded to higher levels of the hierarchy. Interme-
diate nodes commonly have longer battery life and significantly more powerful computation and
communication capabilities than the Motes. A popular example of an intermediate node imple-
mentation is the Intel Stargate [34].

To simulate intermediate nodes, we developed a software system, called SimGate, that virtu-
alizes the Stargate device. SimGate emulates the complete functionality of the Stargate and pro-
vides cycle-accurate simulation of the Stargate’s Intel XScale processor pipeline [41]. SimGate
is completely transparent to the above software layers – i.e., the system boots and executes the
popular embedded OS, Familiar Linux [9] and any program thatexecutes over it, without modifi-
cation. Moreover, SimGate eases sensor network program development by implementing a unified
debugging interface. In this section, we present the designand implementation of the SimGate
architecture.

2.1 SimGate Design and Implementation

SimGate provides full-system simulation of the Stargate intermediate sensor node. The Stargate
is a single-board, embedded system (designed by Intel Research) that comprises a 400MHz Intel



XScale processor, an Intel SA1111 companion chip for I/O, Intel StrataFlash, SDRAM, PCM-
CIA/CF slots, and connector for a Mote [34]. Insitu, it communicates with Motes in a sensor
network via a Mote that is physically connected to it via thisconnector.

The goal of our design and implementation of SimGate is to effectively trade-off simulator
overhead for accuracy while enabling transparent, full-system simulation. To this end, we combine
a number of different approaches to performance estimationof device components within a single
system, including cycle-level simulation (which can be disabled when only functional simulation
is needed) of some components and benchmark-based timing. Using cycle-level simulation, as
we will show, we are able to achieve accurate system-level cycle counts as compared to a real
device. By turning cycle-level simulation off, we can reduce simulation time and yet enable correct
functional device behavior. In both cases, the same OS installation and application code runs
without change.

We simulate the following features of the Stargate device:

• ARM v5TE instruction set without Thumb support and with XScale DSP instructions

• XScale pipeline simulation, including the 32-entry TLBs, 128-entry BTB, 32KB caches and
8-entry fill/write buffers

• PXA255 processor, including MMU (co-processor), GPIO, interrupt controller, real time
clock, OS timer, and memory controller

• Serial device (UART) that communicates with the attached Mote

• SA1111 StrongARM companion chip

• 64MB SDRAM chip

• 32MB Intel StrataFlash chip

• Orinoco wireless LAN PC card including the PCMCIA interface

We found that simulation of this set of devices was sufficientto enable us to successfully boot the
Linux kernel 2.4.19 and to execute a wide range of benchmarks.

To implement the instruction set, we use a simple interpreter to execute the instruction flow
using a large switch statement as is done in SimpleScalar [1]. The most complex part of the CPU
core simulation is the memory management unit (MMU). The MMUis used constantly during
program execution since each memory access requires an address translation. When cycle-level
simulation is not required, we turn off simulation of the individual MMU components including the
TLB, BTB, I/D caches, and fill/write buffers, to improve functional simulation performance. The
cycle-level simulation of these components do not affect the correctness of functional program
execution but they do, however, impose a large simulation cost. To further improve the address
translation speed, we implemented an address lookup cache (soft TLB) for both instruction and
data addresses. This soft TLB increases functional simulation time by10% on average.

To achieve the cycle accuracy of processor core simulation,we implemented a simulation com-
ponent for the XScale CPU pipeline. The Intel XScale core employs a seven or eight stage (de-
pending on the instruction flow), single-issue, super pipeline. There are actually three pipelines



that execute in parallel after the execution stage. As a result multiplication and memory access can
happen concurrently and results may be written back to memory out of order.

Since we were unable to obtain publically available documentation from Intel on the pipeline
logic, we based our implementation on that from the XScale pipeline simulation implemented
in XTREM power simulator [7]. We used this implementation asa reference and extended and
evolved it using benchmark measurements from a real Stargate device (since the Stargate imple-
ments a slightly different version of XScale processor thatthat implemented within XTREM). We
implemented the MMU components (TLB, BTB, caches and buffers) within our pipeline simulator.
Since these components are transparent to data correctness, we only perform fast symbolic simula-
tion without the actual data movement. To account for cache and TLB miss penalties, the simulator
uses estimates that we obtained via measurements from hand-coded benchmark execution on a real
device.

As we alluded to above, we are able to toggle the type of simulation between cycle-accurate
and functional. By doing so we trade off the ability to collect cycle-level behavior with simulation
speed; both simulations however, are functionally correct. We implemented a mechanism with
which we can turn on/off pipeline simulation dynamically. As a result, we can also combine
functional simulation with pipeline simulation to improvesimulator startup time. For example, we
turn off pipeline simulation during boot of the operating system and to fast-forward the simulator
to a point of interest (at which we wish to investigate more accurate, cycle-level behavior).

We toggle cycle-level (pipeline) simulation through the use of a special virtual hardware inter-
face that we integrated into the XScale hardware performance monitor (HPM) interface [41]. When
any software activates and terminates HPMs, the simulator turns pipeline simulation on and off,
respectively. We selected this implementation since it enables us to use the same interface to drive
experimentation and measurement of programs executed witheither unsimulated (real device) or
simulated configurations easily.

To support pipeline simulation toggling, our pipeline simulation is trace-based. That is, after an
instruction is executed using functional simulation, we feed it to the pipeline simulator to drive the
clock. This may result in a delay between the execution and the clock advance. This delay is in
the order of several cycles on average; as a result it has verylittle impact on the device level cycle
accuracy (which we report in Section 4).

The most important peripheral and I/O devices we simulated are the Flash chip and the Orinoco
PCMCIA wireless card. The Flash chip is controlled by memorymapped I/O registers. The
simulator sends and receives the commands and data through these registers. In the Flash chip, a
state machine controls the sequence of operations. We simulate both the interface and the internal
state machine according to a Verilog model of the Flash chip from Intel [14].

The simulation of the wireless card consists of two parts: the PCMCIA interface and the wireless
card interface. We have implemented the publically available PCMCIA interface in our simulator.
However, we have been unable to obtain similar documentation on the interface and internals of
the wireless card. To overcome this limitation, we simulatethe card by mimicking card interface
exposed in its Linux driver source code and using the parameters dumped from the real card. As
a result, we can connect the card simulator to a Linux TunTap interface so that our simulator
successfully builds a TCP/IP connection between a program executing on a real device and one
that we are simulating. However, we have not yet simulated the 802.11b radio model used by the
Stargate.

We do not maintain cycle accuracy of the I/O devices (whethercycle-accurate simulation is



turned on or off) due to the device-specific complexities andwidely ranging functionality. Instead
we employ a similar benchmarking approach to the one discussed previously to estimate the per-
formance of I/O devices. That is, we collect the timing behavior using a range of hand-coded
benchmark experiments, and use this data to advance the clock within the simulator.

2.2 Coupling SimGate with Other Sensor Network Simulators

To explore simulation of SimGate with that of other sensor network components, we has devel-
oped SimMote – a simulation of the Mica2 Mote [22]. We emphasize that SimMote is intended to
provide similar functionality to other Mote simulators [36, 37, 27, 19, 25, 35] in this context and
as such, we make no claim about its relative scientific value.Implementing SimMote simply has
ensured, in the most expedient way, that the Mote simulationis interoperable with, and comparable
to SimGate .

Mica2 features the 8MHz Atmel ATmega128 microcontroller (simple 16-bit RISC ISA), on-
board Flash memory and a 900MHz radio. Compared to SimGate, the SimMote is much easier
given the significantly simpler hardware and software design (it also has the added benefit of testing
the flexibility of our simulation development framework).

SimMote currently supports the following features:

• AVR instruction set

• Most on-chip functions: program memory, IO registers, timer, UART, interrupt, SPI (Serial
Peripheral Interface), and ADC (Analog/Digital Converter)

• 512KB on-board flash

• Serial ID chip

• CC1000 radio chip

• A very simple radio transmission model.

We are able to achieve cycle accuracy of AVR ISA for most instructions since the instruction set
specifies fixed cycle numbers. We use these timings within SimMote to forward the CPU clock. In
a way analogous to SimGate, SimMote is able to boot the TinyOSMote operating system and to
execute existing Mote programs.

To couple device simulators, we have also developed a multi-simulation manager. The manager
is a multi-threaded software system that controls the life cycle of constituent simulators, e.g., it
provides simulator services that include create, start, stop, join and leave. The manager forks a
thread for each simulator invokes the start routine in each.The start routine initiates the OS boot
process and uses a configuration file to invoke the benchmark or set of benchmarks of interest. The
manager also implements a unified debugging interface (which we describe below) that dispatches
debug commands to different simulators.

To achieve cycle-accurate, coordinated simulation of multiple simulators, the proportion of the
rates of execution of simulated devices must be held to be roughly the same as that for real devices.
This coordination is important for execution as well as for communication (e.g., for a radio or serial
connection). To enable this coordination, we employ a simple, lock-step method that forces the
clock within each simulator to synchronize periodically. This is similar to the synchronization



mechanism in the Avrora mote simulator [36], however, we maintain separate, individual clocks
per simulator as opposed to a single global clock.

To implement this synchronization, The multi-simulation manager inserts a synchronization
event into the event queue of each simulator when it is first instantiated. The event repeatedly
fires at a fixed interval. When the event fires, all of the threads of simulation meet at the same
clock point before continuing execution. We set the synchronization interval based on the clock
frequency of the communication technologies. Since the fastest technology is serial transmission
between the Mote and the Stargate (at 57.6KB/second), we usethe one byte serial transmission
time as the synchronization period. This equals 128 Mote cycles.

We implemented a simple Mote radio model within SimMote based on that implemented in
Avrora [36]. Our model is different in that we do not use a global clock across simulators or a
centralized packet dispatching/assembly object. Instead, we distribute each transmitted packet to
the receiving device simulator which assembles the packet locally, using its own clock. Since the
simulators execute in lock step, our choice of a 128 Mote cycles synchronization period is sufficient
to cover radio transmission (correct packet assembly) since radio transmission is 19.2KB/s.

Since the clock rate of a Stargate is 54 times that of a Mote, wemust synchronize SimGate sim-
ulators with SimMote simulators. To enable this, we can use aSimGate synchronization interval
that is 54 times that of the SimMote. An interesting side effect of this however, is that doing so
forces us to simulate the Motesas slow asthe Stargate. Since the machine on which we run our
simulations is much faster than the real speed of the Mote, wecan simulate up to 6 times faster
than real Mote execution. However, in an ensemble system of heterogeneous device simulators,
the fastest machine simulated is the performance bottleneck. As such, we must slow the SimMotes
to match SimGate speed.

As stated previously, we have not yet simulated the 802.11b radio model used by the Stargate.
As a result, we are only able to simulate communication between SimGates and other SimGates
via theMote-NIC, i.e., the attached Mote via the serial connection between Mote and Stargate. We
are able to simulate communication between SimGates and SimMotes as is done for real sensor
networks using this same interface (Mote-NIC) and between SimMotes and other SimMotes via
our simple radio model.

2.2.1 Other Simulation Framework Features

Debugging is a key component in an ensemble system of sensor network devices simulators. To
facilitate debugging, we implemented a unified debugging interface and dispatch within the multi-
simulation manager that supports debugging of concurrently executing simulation systems.

The manager dynamically dispatches debug commands to the individual simulators. Since each
simulator runs on a separate thread, the debugger can attachto any of the simulator threads to
control its execution flow and to watch the change in the execution state. The functions we support
in the simulators include step execution, the dump of memoryand flash, and watching of internal
state and break points.

Another useful function that we implemented is checkpointing. Our checkpointing mechanism
within each simulator saves the current, full-system, simulation state including the snapshot of
memory and flash file system. We provide mechanisms that facilitate the storage and loading of
such images to enable fast forwarding and continuation of anexecuting system.



Benchmark Executables Description
DCacheReadHitDep dcachehitr Data cache read100% hit with data dependency
DCacheReadHit dcachehitnd r Data cache read100% hit without data dependency
DCacheReadMiss dcachemissr Data cache read100% miss
DCacheWrite dcachew Data cache write
BTB btb BTB test program
LUDecomp ludcmp heap LU Decomposition algorithm

Table 1. Stressmarks that we used in the evaluation of SimGat e.

Benchmark Executables Description
BitCount bitcnts Bit manipulation of the processor
Dijkstra dijkstra An O(n2) algorithm to find shortest path in a graph
FFT fft Fast Fourier Transformation
SHA sha Secure hash program
StringSearch search A text search program
Mesa mipmap 3D rendering program

Table 2. MiBench benchmarks that we used in the evaluation of SimGate.

3 Experimental Method
To evaluate and analyze the performance and accuracy of SimGate, we performed a number of

experiments using the SimGate and SimMote alone as well as with SimGate-SimMote ensembles.
To evaluate the latter, we implemented two scenarios: (1) A Mote attached to a Stargate through
the serial expansion bus (2) A secondary Mote communicatingwith the first via simulated radio.
In scenario (2), we located the motes such that their antennas are in physical contact to minimize
errors caused by interference over the radio channel. At present, we do not model interference as
part of the simple radio model that we implement, however arecurrently working on robust and
accurate radio models as part of future work.

Scenario (1) represents the use of the Stargate as a gateway.Currently, the Stargate design does
not include a radio interface that is compatible with Motes.Instead, the Stargate implements an
expansion bus that allows a Mote to be physically attached toit. The communication between the
attached Mote and Stargate uses one of the four UART channels; in other words, even though a
Stargate gateway functions as a single machine, it is in facttwo completely independent processors
that are connected through a serial link. Thus scenario (2) represents a sensor network that has one
Mote and one gateway (a Stargate with a Mote attached).

In the following subsections, we first detail the benchmarksthat we use for the SimGate alone,
for the SimMote alone, and for our ensemble scenarios. We also describe the experimental appa-
ratus that we use to collect our simulated and actual measurements.

3.1 Benchmarks

For stand-alone SimGate evaluation, we employed our hand-coded stressmarks and benchmarks
from both the MiBench [13] and the Mediabench [5]. In Table 1 we present our stressmarks to
measure the simulation performance.



Benchmark Executables Description
adpcm adpcmdecode/adpcmencodeAdaptive differential pulse code

modulation for audio coding
g721 g721decode/g721encode CCITT voice compression
gsm gsmencode/gsmdecode European standard for speed coding
jpeg jpegencode/jpegdecode Lossy compression for still images

Table 3. MediaBench benchmarks that we used in the evaluatio n of SimGate.

Benchmark Description Functional Unit
ALU unit Computation and Logic operationsArithmetic/Logic Unit
Radio Network Packet Transfer time Radio Model
Floating PTS Floating point operations Arithmetic/Logic unit
Flash Read Reads log from Flash Secondary Flash
Flash Write Write data to Flash Secondary Flash

Table 4. Benchmarks that we used to evaluate the components o f SimMote . The third column
shows the functional units that were evaluated during the te st.

The stressmarks is hand-coded to test the specific feature ofthe processor. TheDCacheRead-
HitDephas a data working set that fits in the cache and the LD instructions have data dependency.
TheDCacheReadHitis similar but without data dependency. TheDCacheReadMisshas a larger
data set than cache size and produces100% cache misses. For cache write, since the Linux running
on the Stargate set the MMU to apply ”write-through” policy,there is no difference between cache
write hit and cache write miss. So we use a singleDCacheWriteto test data cache write. We also
have aBTBstressmark to exercise the BTB simulation. TheLUDecompis a stressmark to test the
overall processor simulation.

In Table 2, we give the description of the benchmarks we choose from MiBench. These bench-
marks cover the operations from simple bit manipulation to complex 3D rendering and to heavy
floating point computation. For even more complex and realistic benchmarks, we use the Media-
bench.

Mediabench includes a rich set of programs that are heavily used in multimedia and office type of
applications. In Table 3, we describe the benchmarks that weuse. We eliminate three benchmarks
due to the constraints of the underlying platform:Epic does not run on the real Stargate platform
(due to memory constraints),MPEG2 requires too many hours to execute due to the execution
of floating point operations, andGhostscriptdoes not fit in the available Stargate Flash memory
(25MBytes). We execute all remaining benchmarks from the RAM drive.

To evaluate the accuracy of SimMote simulator components, we choose a set of five bench-
marks. Each benchmark contains data that is measured only during the execution of one particular
unit. We describe the benchmarks and the components in Table4. These benchmarks are stand-
alone applications (i.e. the measurements were independent of SimGate simulator). Note that the
floating points test evaluates the software implementationof floating point arithmetic.

To evaluate ensemble simulation, we employ open-source applications as well as hand-coded
programs. We describe the applications in Table 5. Column 3 shows the functional units of the



Benchmark Description Functional Unit
Ping Echoes network packet back to sender Network interface
Sense Processes a sensor read query Analog/Digital converter
APS [24] Ad-hoc positioning system Arithmetic/Logic unit
Log Reads log from Flash Secondary Flash & UART interface
Multi Parallel APS computations on Mote and StargateArithmetic/Logic unit

Table 5. Benchmarks that we used to evaluate the ensemble sim ulation of SimGate and Sim-
Mote. The third column shows the functional units that are ex ercised most heavily during
benchmark execution.

Motes that are heavily utilized during the execution of various benchmarks. In choosing bench-
marks, we attempt to exercise the full device, and cover the major functions of a Mote: communi-
cation, sensing and logging. The difference between this and the previous set of benchmarks (the
ones given in Table 4) is that these benchmarks show the behavior of the application as perceived
by the SimGate (we will detail measurement methodology shortly) and the previous benchmarks
show the behavior of that particular unit only (compared using external test equipment).

Each ensemble benchmark has aLong andShort form. The Short benchmarks exercise only
the Stargate and serially-attached Mote communicating viathe UART interface. The Long bench-
marks exercise Stargate and the attached Mote, operating asa gateway or controller, and a remote
Mote communicating via radio. Moreover, each of these applications takes the form of a remote
procedure call (RPC). When the program on the Stargate sendsa query to the Mote, it blocks until
the receiver completes the appropriate execution and returns. The Multi benchmark also tests con-
current computation by running parallel computations of ad-hoc positioning system (APS) [24] on
both Mote and Stargate. This test is useful to evaluate the performance of simulating coordinated
computation on Mote and Stargate.

3.2 Experimental Apparatus

We execute TinyOS v1.1 on the Motes (and SimMote ) and a variation of Familiar Linux v0.5.1
on the Stargate (and SimGate). For the stand-alone Stargateapplications (i.e. Mediabench), we
measured the CPU clock cycles and instruction count using the XScale hardware performance
monitors (HPM). The HPM system can monitor 3 events (CPU clock cycles and two events) con-
currently. We read the performance monitors using a kernel module that we developed.

We ran our simulators on a dedicated Linux (kernel ver 2.6.8)machine. The machine has a 64bit
AMD Opteron CPU running at 2.4GHz and 4GB of memory. To measure wall clock execution time
of each benchmark, we modified the simulator. Each time the performance monitoring registers of
the simulated machine (i.e. Stargate) are accessed, the simulator reads the real (wall-clock) time
from the host system (which is synchronized using NTP), and computes and logs the delta (time
since previous access).

We wrappedeach simulated application using a small program: The wrapper reads the HPMs
immediately before and after the execution of simulated program. This enables us to collect both
wall clock time and simulator statistics (number of instructions executed, number of clock cycles,
and many other system events supported by XScale architecture).

We found measuring real Mote hardware challenging since theAtmel CPU on the Mote does not



Benchmark µmeas µsimulated µmeas - µsimulated % error± 95% conf. bound
adpcmdecode 3.367E+07 3.069E+07 2.980E+06 8.9%± 0.28%
adpcmencode 3.068E+07 2.766E+07 3.014E+06 9.8%± 0.36%
g721decode 6.272E+08 5.735E+08 5.368E+07 8.6%± 0.17%
g721encode 6.527E+08 6.006E+08 5.213E+07 7.9%± 0.44%
gsmdecode 1.526E+08 1.420E+08 1.061E+07 7.0%± 0.57%
gsmencode 4.335E+08 3.995E+08 3.401E+07 7.8%± 0.09%
jpegdecode 2.554E+07 2.235E+07 3.191E+06 12.5%± 1.16%
jpegencode 5.412E+07 4.731E+07 6.813E+06 12.5%± 0.41%

Table 6. Average cycle counts for measurements and simulati ons of MediaBench benchmarks,
95% confidence interval on the difference of the means, fract ion of average measurement that
interval constitutes

provide any mechanisms for performance monitoring features. To enable our measurements (and
hence validation of the correctness, accuracy, and performance of SimMote ), we measured the
CPU clock cycles of the Mote and its executing software usinghigh-precision external instrument.
To collect data accurately, we used the CPU output registerPORTC on the Mote. PORTC is directly
connected pin 51 on the expansion bus. When we wanted to initiate a measurement, we raised the
voltage on the pin by writing a 1 to this register. When we wanted to stop measurement we disabled
pin by writing a 0. The overhead of accessing this register isone clock cycle.

To time Mote execution, we connected an Agilent 54621A Oscilloscope (accurate up to 10
nanoseconds) to the output pin. We configured the oscilloscope to monitor the pulse width (i.e. the
time between raising and lowering a signal), and recorded the measurements. We then converted
timing measurements to clock cycles by multiplying it by theMote clock speed (7.3728 MHz).
We were not able to collect the instruction count, as there isno way of accessing this information
through the expansion bus.

To evaluate and compare the SimMote simulator with our timing and instruction cycle measure-
ments (which we described in previous paragraph), we instrumented the implementation of Mote’s
PORTC register in the simulator. Writing a 1 to this registerenables an internal instruction cycle
counter at the simulator. By comparing the two sets of numbers that we collected from the simula-
tor and the oscilloscope, we were able to determine the accuracy of the simulator with a very high
confidence.

4 Results
We detail the accuracy of SimGate by comparing it to the Stargate in terms of the number of

cycles required to execute the benchmarks described in the previous section. In the first set of
comparisons, we make20 identical runs of each benchmark on both SimGate and Stargate and
compare the average number of cycles required per benchmark.

Table 6, Table 7 and Table 8 give the cycle accuracy result of the stressmarks, MiBench and
Mediabench respectively, for SimGate. All tables use the following format. The first column
shows the name of the benchmark, the second column (µmeas) shows the average number of cycles
measured on the Stargate hardware, the third column (µsimulated) presents the cycles reported by
SimGate, and the fourth column shows the difference. In the fifth column, we report the error



Benchmark µmeas µsimulated µmeas - µsimulated % error± 95% conf. bound
DCacheReadHitDep 1.606E+07 1.604E+07 2.263E+04 0.14%± 0.10%
DCacheReadHit 5.852E+06 5.863E+06 -1.118E+04 0.19%± 0.22%
DCacheReadMiss 1.680E+09 1.694E+09 -1.419E+07 0.84%± 0.01%
DCacheWrite 1.606E+07 1.605E+07 1.312E+04 0.08%± 0.10%
BTB 6.142E+07 6.547E+07 -4.044E+06 6.58%± 0.07%
LUDecomp 1.207E+08 1.196E+08 1.044E+06 0.87%± 0.09%

Table 7. Average cycle counts for measurements and simulati ons of stressmarks, 95% confi-
dence interval on the difference of the means, fraction of av erage measurement that interval
constitutes

Benchmark µmeas µsimulated µmeas - µsimulated % error± 95% conf. bound
BitCount 3.648E+07 3.589E+07 5.959E+05 1.63%± 0.09%
Dijkstra 1.867E+08 1.731E+08 1.360E+07 7.29%± 0.07%
FFT 9.955E+07 9.332E+07 6.225E+06 6.25%± 2.39%
Mesa 2.105E+08 1.932E+08 1.730E+07 8.22%± 4.79%
SHA 6.391E+07 6.208E+07 1.834E+06 2.87%± 4.90%
StringSearch 3.249E+08 3.315E+08 -6.574E+06 2.02%± 0.13%

Table 8. Average cycle counts for measurements and simulati ons of MiBench benchmarks,
95% confidence interval on the difference of the means, fract ion of average measurement that
interval constitutes



Benchmark µmeas µsimulated µmeas - µsimulated % error± 95% conf. bound
ALU unit 2.884E+06 2.954E+06 -7.031E+04 2.44%± 0.12%
Radio 4.672E+05 4.862E+05 -1.898E+04 4.06%± 26.50%
Floating Pts 3.498E+06 3.499E+06 -6.357E+02 0.02%± 0.10%
Flash Read 2.884E+06 2.954E+06 -7.031E+04 2.44%± 0.12%
Flash Write 2.521E+03 2.434E+03 8.688E+01 3.44%± 27.90%

Table 9. Average cycle counts for measurements and simulati ons of Mote benchmarks, 95%
confidence interval on the difference of the means, fraction of average measurement that
interval constitutes

percentage (|(µmeas − µsimulated)/µmeas|) which is difference between the average of the measured
cycle counts and the average of those generated by the simulator. We also compute the95%
confidence interval for the error percentage using a Studentt distribution [10] with19 degrees of
freedom to model the difference of the averages (marked as± confidence bound in the table).

Note that the error percentage and confidence interval also indicate whether the we should reject
the null hypothesis of equivalence in a two-sided hypothesis test at95% confidence. If the “margin
for error” (confidence interval) spans0% (i.e. the margin is greater than the error percentage
itself), we fail to reject the null hypothesis of equivalence and hence cannot determine whether the
observed difference in averages is due to random variation or not. In this experiment, however, the
confidence intervals are all quite narrow indicating the theerror percentage we observe for each
benchmark is statistically significant at the95% confidence level. There are three benchmarks
whose confidence interval spans0%. However, the difference is so close that with95% confidence
you can’t determine if it is a true difference or random noise.

We observe that the accuracy of SimGate for this set of benchmarks is acceptable as a full-
system simulation. While error percentages below5% have been achieved for individual system
components [7, 31], because we simulate the full device (including all parts of the memory hierar-
chy and the interrupt structure) and run both an operating system and application on it, we expect
to introduce additional error. That the maximum error is no more than13.5% (with 95% confi-
dence) and most of the errors are below10%, is surprising and is an indication that the simulation
is of high quality.

Table 9 gives the cycle accuracy result of timing benchmarksfor SimMote. The format of the
table is same as Table 6. The data indicates that the accuracyof our Mote simulator is similar
to that of SimGate. For floating point programs as well as the radio and flash write benchmarks,
the error rate is insignificant since the error margin is greater than error percentage itself. For the
ALU and flash read benchmarks, the confidence intervals are quite narrow and the error rate is very
small.

4.1 Coupled SimGate and SimMote Simulations

To gauge how well SimGate will work in a simulation of a heterogeneous sensor network, we
examine its cycle-count accuracy when it is used in conjunction with one or two SimMotes (as
described in Section 3). Table 10 shows the cycle count results for the benchmarks that exercise
the Stargate device and the Mote that is connected to it via a serial interface (scenario 1). As noted
previously, the Stargate device does not support a radio device capable of communicating directly



Benchmark µmeas µsimulated µmeas - µsimulated % error± 95% conf. bound
PingShort 9.414299E+07 9.592680E+07 -1.783813E+06 1.9%± 6.6%
SenseShort 2.040608E+08 2.051871E+08 -1.126267E+06 0.6%± 1.1%
APSShort 1.997744E+08 1.966910E+08 3.083427E+06 1.5%± 0.07%
MultiShort 2.128019E+08 2.080650E+08 4.736897E+06 2.2%± 1.5%
LogShort 1.637669E+08 1.695956E+08 -5.828771E+06 3.6%± 1.25%

Table 10. Average cycle counts for measurements and simulat ions of benchmarks coupling
SimGate with simulated Mote via serial link , error percenta ge, 95% confidence range for error

with Motes in a sensor network. Instead, it uses Mote directly connected to it via a serial interface
as a network interface peripheral. These benchmarks are intended to exercise this interaction in a
representative way.

The format of Table 10 is the same as that described for Table 6in the previous subsection.
Again, the sample size used to calculate each average is20 and we compute a95% confidence
interval on the error percentage using at distribution with19 degrees of freedom.

Again, the accuracy of the coupled simulation is reasonablefor two communicating independent
full-device simulations. Note that while the error percentages appear significantly lower than for
the SimGate simulation alone, the confidence intervals are also significantly wider. Thus, based
on error percentage alone it may appear that the coupled simulations are more accurate. However,
there is more relative variation (as we might expect) in the coupled case. As a result, it is the error
range, and not the specific error value, that is significant inthis case.

For example, consider the results for thePingShortbenchmark shown in row 1 of Table 10.
From the data, it is not possible to determine that the difference between the measured average
and simulated average is statistically significant at the95% confidence level (since the error range
spans0%). However, there is enough variation in both measurementsand simulation to make the
difference indistinguishable from random variation across an interval that is±6.6% centered on
the observed average.

ThePingShortbenchmark exhibits the widest variation, as indicated by the error range. For the
SenseShortbenchmark the difference in observed average is, once again, statistically undetectable
with 95% confidence, but the error range is smaller. In the remainingthree cases, there is a sta-
tistically significant difference, but both the error percentages and the confidence bounds on those
percentages are remarkably small. From this data, we conclude that cycle-counts taken from Sim-
Gate when coupled to SimMote via a serial interface, while introducing additional variation, are
still reasonably accurate.

The final set of accuracy results we present is for benchmarksthat couple SimGate with a Sim-
Mote via its serial interface that is then used to communicate with a second SimMote via the radio
interface (scenario 2). As described previously, we do not yet know of a Mote radio commu-
nication simulation that is accurate enough not to overshadow the accuracy (or lack thereof) of
SimGate. Thus, these experiments reflect a configuration in which the antenna of the two Motes
are in physical contact. It is our experience that this configuration eliminates much of the variation
resulting from radio communication.

Table 11 depicts these results using the same format as the inthe previous two tables. Similar
to the results forPingShortandSenseShortin Table 10, the additional variation introduced by the



Benchmark µmeas µsimulated µmeas - µsimulated % error± 95% conf. bound
PingLong 3.228130E+08 3.116003E+08 1.121275E+07 3.5%± 2.9%
SenseLong 2.267467E+08 2.254300E+08 1.316726E+06 0.58%± 2.1%
APSLong 2.273877E+08 2.212660E+08 6.121661E+06 2.7%± 6.3%
MultiLong 2.362925E+08 2.285356E+08 7.756869E+06 3.3%± 3.3%
LogLong 1.891255E+08 1.915953E+08 -2.469811E+06 1.3%± 2.4%

Table 11. Average cycle counts for measurements and simulat ions of benchmarks coupling
SimGate with simulated Mote via serial link communicating w ith a Mote via the radio , error
percentage, 95% confidence range for error

Benchmark tmeas tnocycle tcycle rnocycle rcycle

adpcmdecode 7.60E-2 1.05E+00 3.23E+00 13.84 42.50
adpcmencode 8.40E-2 1.21E-02 3.61E+00 14.34 42.97
g721decode 1.57E+00 3.70E+01 1.13E+02 23.51 71.73
g721encode 1.64E+00 4.19E+01 1.19E+02 25.45 72.39
gsmdecode 3.82E-01 1.06E+01 2.86E+01 27.65 74.79
gsmencode 1.09E+00 3.01E+01 8.54E+01 27.67 78.64
jpegdecode 6.31E-02 7.28E-01 2.37E+00 11.54 37.61
jpegencode 1.35E-01 2.02E+00 6.18E+00 14.95 45.85

Table 12. Average execution time (in seconds) of measuremen ts and simulations (cycle accu-
racy disabled and enabled versions) of MediaBench benchmar ks, slowdown rate for simulation
when cycle accuracy disabled and slowdown rate for simulati on when cycle accuracy enabled

second Mote and the radio communication makes the difference between observed and simulated
averages indistinguishable from random variation at a95% confidence level. However, the95%
confidence intervals on the error percentage are, once again, similar in magnitude to the error
percentages in Tables 6 and 10 for the cases where the averages are significantly different.

From all three tables, then, we conclude that SimGate achieves a similar level of accuracy both
when it is used as a single device simulation, and when it is part of a multi-device simulation in
which the devices are communicating. Because the software,including the operating system, run
by the physical hardware in each of these three experiments is precisely the same as that executed
by the simulated devices, we believe that SimGate can be usedas an effective tool for estimating
Stargate cycle counts in heterogeneous sensor network configurations.

4.2 SimGate Execution Performance

Since our ultimate goal is to provide a complete sensor network simulation capability that can
be used to complement current deployment-based research strategies, the real-time slowdown of
SimGate versus the physical hardware is an important consideration. Table 12 and Table 13 com-
pare wall-clock timings of the Stargate device to SimGate (tcycle) and to SimGate with the cycle-
accuracy features disabled (tnocycle). For cases where cycle accuracy is desired, we can enable
the parts of SimGate that are necessary to make cycle count estimates internally. Comparing the
performance of the resulting functional simulator to the full SimGate simulation gives the cost of



Benchmark tmeas tnocycle tcycle rnocycle rcycle

DCacheReadHitDep 6.20E-02 6.25E-01 2.07E+00 10.08 33.37
DCacheReadHit 3.60E-02 5.80E-01 1.63E+00 16.11 45.14
DCacheReadMiss 4.24E+00 1.61E+00 7.56E+01 0.38 17.83
DCacheWrite 6.20E-02 6.60E-01 2.14E+00 10.65 34.47
BTB 1.76E-01 4.38E+00 1.27E+01 24.91 71.93
LUDecomp 3.28E-01 6.73E+00 2.05E+01 20.53 62.48
BitCount 1.15E-01 2.18E+00 6.73E+00 18.95 58.53
Dijkstra 5.63E-01 1.00E+01 3.18E+01 17.80 56.55
Mesa 6.54E-01 1.18E+01 4.09E+01 17.98 62.55
StringSearch 8.42E-01 2.30E+01 6.77E+01 27.34 80.44
SHA 2.37E-01 4.89E+00 1.41E+01 20.65 59.49
FFT 2.87E-01 5.14E+00 1.57E+01 17.89 54.68

Table 13. Average execution time (in seconds) of measuremen ts and simulations (cycle ac-
curacy disabled and enabled versions) of stressmarks and Mi Bench benchmarks, slowdown
rate for simulation when cycle accuracy disabled and slowdo wn rate for simulation when cycle
accuracy enabled

achieving the accuracy levels described previously.
The simulator is 10 to 27 times slower than the real hardware when cycle accuracy is not re-

quired. This factor is smallest forDCacheReadMiss. There is no slowdown and instead the
simulation is faster than actual hardware. The reason is that on real hardware, the cost of cache
miss is so large that our simulation on a fast, high-end machine can catch up with its speed. Cycle
accurate simulation (rcycle) increases the cost by2.93X (37 to 80 times slower than real hardware).
There is a higher variance in these numbers, e.g.,gsm vs jpeg, than for functional simulation
(rnocycle). One reason for this is cycle-accurate cache simulation. The time required to simulate a
cache miss and a cache hit is the same– although the simulator adjusts the simulated clock and
cycle counts appropriately for each. On a real device a cachehit is much faster than a cache miss.
Thus, application memory access patterns can have a large effect on the relative slow down of sim-
ulation. We are encouraged by these results since other fullsystem, cycle-accurate, simulations of
advanced computer systems executing an OS and application,e.g., SimOS, report slowdowns of
4000X − 6000X [29] although the results are not completely comparable since we use different
host machines and simulate different targets.

5 Related Work
There is a large body of research on simulation systems. In this section, we identify techniques

that are most similar to our work. In particular, we describeand contrast frameworks for ensemble
simulation for devices relevant to a sensor network and for tools for full system emulation.

5.1 Frameworks for Ensemble Sensor Network Simulation

There have been a number of significant efforts to simulate and emulate sensor network de-
vices. Most of this prior work has focused on the sensing devices and in particular Mote devices.
These projects include Simulavr [32], ATEMU [27], Mule [37]Avrora [36], TOSSIM [19], Sen-



sorSim [25] and SENS [35]. Although, we implemented Mote simulation as part of this project,
we did so only to investigate ensemble simulation system forSimGate. We could have alterna-
tively coupled current approaches with SimGate but decidedinstead to implement our own Mote
simulator to expedite the coupling process.

The ATEMU and Avrora Mote simulation platforms are most similar to our system. Both pro-
vide full-system multi-simulation of Mote devices. However, the multi-simulation enabled by
these systems ishomogeneous– only simulation of Mote devices are coupled and no other sensor
network devices, e.g., intermediate nodes, are supported.Both systems use a lock-step method
similar to ours to synchronize simulation threads and enable accurate timing and correct commu-
nication. ATEMU synchronizes at each cycle and Avrora loosens the synchronization period to
thousands Mote cycles. Both ATEMU and Avrora can simulate Motes in real time. Since Avrora
is written in Java, its performance is highly dependent on JVM implementation. In our work, we
use the similar synchronization technique as in Avrora. However, we must deal with more com-
plex situation in which coordination between devices happens between very different devices. To
simulate only Motes (as is done in these prior works), we achieve slightly better performance than
Avrora because of the use of C++ instead of Java.

There are also systems that employheterogeneous, ensemble simulation. In particular, our de-
sign vision is similar to the work of [12]. The work in [12] is acomprehensive framework that
supports the simulation, emulation, and deployment of heterogeneous sensor network systems and
applications. This framework uses TOSSIM [19] to emulate Motes and EmStar [11] to emulate
“microservers” (a general term for platforms like Stargate). The authors employ a wrapper library
to glue the two simulation systems together. All applications must be re-compiled and linked to
the EmStar library if they are to be emulated by the system.

In SimGate, our goal is to enable the study, verification, debugging, and analysis of sensor net-
work applications using a simulation platform that does notrequire any modification to the binaries
of the applications or operating system on which they run. This enables increased flexibility for
researchers and ensures that the simulation execution environment is the same as that on the real
devices. This SimGate model also enables us to easily obtainimportant application characteristics
(e.g. accurate cycle estimation and interrupt properties)that is more difficult to collect in a purely
emulative environment. Pure emulation systems do have a speed advantage however. For exam-
ple, TOSSIM [19] can emulate a Mote 50 times faster that actual Mote execution using a 1.8GHz
Pentium IV machine. EmStar can execute re-compiled, microserver code at native speed. In Sim-
Gate, we enable users to toggle functional and cycle-accurate simulation to reduce the overhead
of the latter. Moreover, we are currently investigating other optimization techniques to improve
simulation speed while maintaining cycle accuracy, like dynamic binary translation [6, 39].

5.2 Full System Simulation

From the perspective of full system simulation and emulation, there are number of software
systems that support a wide range of devices [29, 40, 39, 30, 20, 21, 2, 33, 28, 3, 26]. Once
such, very popular, system is SimOS [29]. SimOS is a full system simulator containing simulation
models for most common hardware components, e.g., processor, memory, disk, network interfaces,
etc. SimOS features a range of advanced processor models that trade-off accuracy for simulation
speed. The fastest model applies dynamic binary translation [6, 39] for maximal simulation speed.
The finest-grain model simulates the advanced pipeline structure to provide accurate cycle-level
behavior. SimOS is able to simulate the MIPS R4000 processoron a machine with the same



architecture, with a slowdown of about10X for binary translation and5000X for detailed pipeline
simulation on a SGI 4-processor (150MHz) machine.

Skyeye [33] is a similar project that simulates a number of ARM-based processors and devel-
opment boards. Skyeye also emulates a number of peripherals, including LCD and the Ethernet
interface. Skyeye is based on the GDB ARM emulator which naturally enables the use of gdb
as a debugging interface – in much the same way that we do. Although some of the techniques
employed in these projects are complementary and useful to our endeavor, these systems are not
intended or used for sensor network research. The focus of our work is on a toolset for full-system
emulation combined with cycle-accurate simulation of heterogeneous sensor network devices.

6 Conclusion
In an effort to make sensor network research more widely accessible to ease sensor software

development and evolution, we have developed a system for full-system, functional and cycle-
accurate simulation of intermediate sensor nodes. Our system, called SimGate, implements the
complete Intel Stargate device and executes the Linux operating system XScale applications trans-
parently, without modification.

We investigate the accuracy and efficiency of SimGate in isolation as well as in concert with sen-
sor device (Mote) simulation. Our results indicate that SimGate is functionally correct and enables
cycle accuracy (if desired) within 9% on average for the benchmarks that we evaluated. When we
co-simulate SimGates with SimMotes(our Mote simulator) our system introduces accuracy error
of less than 4% in all cases. On average, our system is20X slower than a real device when using
functional emulation and58X slower when using cycle-accurate pipeline simulation. We believe
that these results indicate that SimGate can be used as an effective tool for accurately simulating
Stargate intermediate nodes in heterogeneous sensor network configurations. As part of future
work, we plan to investigate techniques for accurate radio and battery modeling, optimization of
simulation speed, the scalability of our multi-simulationsystem for large-scale sensor networks,
and simulation of other devices and components.
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