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Abstract

We present an accuracy and performance analysis of SimGatéul-system simulation of
the Stargate intermediate-level sensor network device.aM@ examine ensemble simulations
using SimGate and either one or two simulated Mica2 motasgusie same criteria. We find
that accurate functional behavior and cycle counts (at thledevice level) are achievable using
SimGate alone, and in conjunction with simulated Moteso Alse slowdown compared to real-
time for these simulations is modest with respect to preslygoublished work.

1 Introduction

Sensor networks have emerged as a technology for translyaregerconnecting our physical
world with more powerful computational environments, atiiimately, global information sys-
tems. In a typical sensor network, computationally simioie;power sensor elements take phys-
ical readings and may perform some processing of thesengsmbefore ultimately relaying them
to more powerful computational elements. The need for mbrugiveness motivates sensor de-
sign toward small, inexpensive, low-power sensor implegatgns that can be deployed in large
numbers throughout the environment to be sensed. Becagisernior elements themselves are so
resource constrained, however, a sensor network mustd@esmaller number of more complex
and general purpose computational elements that are eapfblbstantial in-network process-
ing, contain greater storage capacity, and can act as awggtdetween the network of sensor
elements and more power-intensive network technologies.

*This work was supported by grants from Intel/UCMicro, Misoft, and the National Science Foundation
(No. EHS-0209195 and No. CNF-0423336).



Designing and investigating these ensemble systems, &) kas relied primarily on physical
deployments and experimentation [8, 15, 16, 23, 38]. Wim&duality of the results from such
efforts is excellent, the need to work with the physical egst directly imposes a substantial
research impediment. The labor cost, equipment cost, spga@ements, debugging complexity,
etc., that characterize such an engineering-based appraatmit the scope of the research that
can be performed, and the number of researchers who canrpétfo

One obvious possibility for widening the scope of what camiestigated is to employ simula-
tion as a complement to experimentation with deployed systéVhile several simulation efforts
have focused on the sensing elements themselves [19, 282235, 36], an approach that com-
bines sensor simulation with simulations of the other “ledwevices as an ensemble —and does
so with an acceptable level of accuracy — is necessary to siakdation a viable option.

In this paper, we investigate SimGate — a full-system sitiariaof the Intel Stargate device [34]
(distributed by Crossbow Inc.) — that we have developed $erwith sensor element simulations
as part of a simulated ensemble. The Stargate device idedieio function as a general purpose
processing, storage, and network gateway element in arseaweork deployment. These devices
are battery powered, and are both fewer in number and langzeé than the sensing devices. The
Stargate’s more intrusive nature facilitates the use gieldratteries that enable longer battery life
and improved compute and storage capability.

Our goal is to provide both functional correctness and egolent accuracy at the device level,
in a simulation of the Stargate that can be coupled with satedl sensors. The currently available
tools for simulating more complicated, heavy-weight, intediate sensor nodes (such as the Star-
gate) are limited. For example, there are tools for simoiatf the Intel XScale processor [40]
and its power consumption [4, 7] alone. However, to our kealgke, there are no simulation tools
that simulate the complete Stargate device.

SimGate captures the behavior of the Stargate internal coers including the processor,
memory hierarchy, communications (serial and radio), agipperals. In essence, SimGate is
avirtual device in that it boots and runs the Familiar Linux operating sys&nd any program
binary that executes over iyithout modification SimGate is also able to accurately estimate
processor cycle counts. Moreover, this functionality cardggled to trade off cycle-accuracy for
simulation performance.

We are also able to couple SimGate with our own simulatiornth@fCrossbow Mica2 sensor
nodes (called SimMote ) to produce a simulated sensor nkt&rgemble These simulations are
also virtualized representations of the physical hardweee full-system emulations providing
accurate cycle counts). SimMote provides similar funcldn to that of existing Mote simulation
and emulation systems [19, 25, 27, 32, 35, 36]. We make nmslas to its superiority over these
systems — instead, we have used SimMote to expedite ourtigaisn and empirical evaluation
of heterogeneous device, ensemble simulation.

To empirically evaluate the efficacy of our system, we meatug accuracy (in terms of Stargate
machine cycles) and real-time performance of SimGate usirgnge of stressmarks and com-
munity benchmarks. We also present results for similar exyts in which the SimGate and
SimMote interoperate via a serial interface (simulatedathp Finally, we examine three-device
ensemble consisting of a SimGate node, a serially-cond&itaMote, and a third SimMote that
communicates only via simulated radio. For these latterdases, we run our own multi-device
benchmark suite. Each experiment compares simulatedsdsuheasurements gathered empir-
ically from physical Stargate and/or Mica2 devices. In aes throughout this study, the actual



hardware devices and simulations run the same operatitgnsyand benchmark binary, without
modification. Thus, the results test the degree to which moulations may be used in place of
physical hardware in each experimental setting.

Our results indicate that we are able to accurately simabadull system of an intermediate
Stargate node with maximum erromof 12.4% across all benchmarks we test. We also find that,
on average, simulation at this level of accuracy imposeswadsliwn of58 X over real-time device
execution and that a slowdown2d.X can be achieved if only a functional simulation (i.e. withou
accurate cycle counts) is required. As a result, we belieigatork demonstrates the potential of
multi-device, sensor network simulation as a researciiemptechnology.

In the next section, we overview the design and implemeantaif our simulator. In Section 3,
we describe our experimental setup and measurement métiggd®Ve then detail the accuracy
and performance of our system in Section 4. In Sections 5 ameeresent related work and
conclude with some observations and our plans for futur&wespectively.

2 SimGate Simulator

Simulation is a potentially an important tool for sensomak system and application develop-
ment. The focus of most prior work in system simulation haanben high-end, general-purpose,
wall-powered devices [29, 20, 21], processor/power sitiarid1, 4, 7], or on the sensing devices
themselves [19, 25, 27, 32, 35, 36]. However, to our knowdedp extant approach to sensor
network simulation enables full-system simulation of a keysor network component: the in-
termediate “gateway” node. Moreover, no simulation systaeilitates co-simulation of different
sensor network devices as part of an ensemble. The goal @fauris to investigate, implement,
and evaluate such mechanisms.

Intermediate nodes are resource-constrained, battevened, devices that provide a bridge
between sensor nodes (which we refer to as Motes after thagrdperkeley Mote implementa-
tion [18]) and more powerful, wall-powered, computatioeavironments. Intermediate nodes are
commonly responsible for sensor device control and in-agkvprocessing [17] of sensor data:
receiving, processing, assimilating, forwarding, etce3dnodes reduce the power consumption
of the system by reducing the communication distance fraMabtes to a powered device, and by
coalescing and compressing the data that is forwarded teehigvels of the hierarchy. Interme-
diate nodes commonly have longer battery life and signifiganore powerful computation and
communication capabilities than the Motes. A popular eXanop an intermediate node imple-
mentation is the Intel Stargate [34].

To simulate intermediate nodes, we developed a softwatersysalled SimGate, that virtu-
alizes the Stargate device. SimGate emulates the compiettidnality of the Stargate and pro-
vides cycle-accurate simulation of the Stargate’s Inteta& processor pipeline [41]. SimGate
is completely transparent to the above software layers.-the system boots and executes the
popular embedded OS, Familiar Linux [9] and any program ¢latutes over it, without modifi-
cation. Moreover, SimGate eases sensor network prograeiagexdent by implementing a unified
debugging interface. In this section, we present the demighimplementation of the SimGate
architecture.

2.1 SimGate Design and Implementation

SimGate provides full-system simulation of the Stargatermediate sensor node. The Stargate
is a single-board, embedded system (designed by Intel Régehat comprises a 400MHz Intel



XScale processor, an Intel SA1111 companion chip for I/@lI&trataFlash, SDRAM, PCM-
CIA/CF slots, and connector for a Mote [34]. &itu, it communicates with Motes in a sensor
network via a Mote that is physically connected to it via ttasnector.

The goal of our design and implementation of SimGate is tectiffely trade-off simulator
overhead for accuracy while enabling transparent, fudkeay simulation. To this end, we combine
a number of different approaches to performance estimafidevice components within a single
system, including cycle-level simulation (which can beatligd when only functional simulation
is needed) of some components and benchmark-based timisigg Oycle-level simulation, as
we will show, we are able to achieve accurate system-levdeoyounts as compared to a real
device. By turning cycle-level simulation off, we can red@imulation time and yet enable correct
functional device behavior. In both cases, the same OSllgstaa and application code runs
without change.

We simulate the following features of the Stargate device:

e ARM V5TE instruction set without Thumb support and with XEcBSP instructions

e XScale pipeline simulation, including the 32-entry TLB&81entry BTB, 32KB caches and
8-entry fill/write buffers

e PXA255 processor, including MMU (co-processor), GPIOginipt controller, real time
clock, OS timer, and memory controller

e Serial device (UART) that communicates with the attachedeVo
e SA1111 StrongARM companion chip

e 64MB SDRAM chip

e 32MB Intel StrataFlash chip

e Orinoco wireless LAN PC card including the PCMCIA interface

We found that simulation of this set of devices was sufficterénable us to successfully boot the
Linux kernel 2.4.19 and to execute a wide range of benchmarks

To implement the instruction set, we use a simple interprieteexecute the instruction flow
using a large switch statement as is done in SimpleScalailfi§ most complex part of the CPU
core simulation is the memory management unit (MMU). The MMUWised constantly during
program execution since each memory access requires aesaddanslation. When cycle-level
simulation is not required, we turn off simulation of theimdual MMU components including the
TLB, BTB, I/D caches, and fill/write buffers, to improve fummnal simulation performance. The
cycle-level simulation of these components do not affeetdbrrectness of functional program
execution but they do, however, impose a large simulatia@t. cbo further improve the address
translation speed, we implemented an address lookup caofteT(LB) for both instruction and
data addresses. This soft TLB increases functional simualéiime by10% on average.

To achieve the cycle accuracy of processor core simulattenmplemented a simulation com-
ponent for the XScale CPU pipeline. The Intel XScale corelegga seven or eight stage (de-
pending on the instruction flow), single-issue, super jiygel There are actually three pipelines



that execute in parallel after the execution stage. As dtnemutiplication and memory access can
happen concurrently and results may be written back to mgourof order.

Since we were unable to obtain publically available docusién from Intel on the pipeline
logic, we based our implementation on that from the XScapelpie simulation implemented
in XTREM power simulator [7]. We used this implementationaaseference and extended and
evolved it using benchmark measurements from a real Seadgaftice (since the Stargate imple-
ments a slightly different version of XScale processor that implemented within XTREM). We
implemented the MMU components (TLB, BTB, caches and bsfferthin our pipeline simulator.
Since these components are transparent to data correctreessly perform fast symbolic simula-
tion without the actual data movement. To account for caclelé.B miss penalties, the simulator
uses estimates that we obtained via measurements fromdoaiedt benchmark execution on a real
device.

As we alluded to above, we are able to toggle the type of sitimumdetween cycle-accurate
and functional. By doing so we trade off the ability to cotlegcle-level behavior with simulation
speed; both simulations however, are functionally corréte implemented a mechanism with
which we can turn on/off pipeline simulation dynamically.s & result, we can also combine
functional simulation with pipeline simulation to improganulator startup time. For example, we
turn off pipeline simulation during boot of the operating®m and to fast-forward the simulator
to a point of interest (at which we wish to investigate moreuaate, cycle-level behavior).

We toggle cycle-level (pipeline) simulation through the w$ a special virtual hardware inter-
face that we integrated into the XScale hardware perforemaranitor (HPM) interface [41]. When
any software activates and terminates HPMs, the simulatastpipeline simulation on and off,
respectively. We selected this implementation since iblrsaus to use the same interface to drive
experimentation and measurement of programs executeckeitlittr unsimulated (real device) or
simulated configurations easily.

To support pipeline simulation toggling, our pipeline slation is trace-based. That is, after an
instruction is executed using functional simulation, wedié to the pipeline simulator to drive the
clock. This may result in a delay between the execution aactlbck advance. This delay is in
the order of several cycles on average; as a result it hadittlrympact on the device level cycle
accuracy (which we report in Section 4).

The most important peripheral and I/O devices we simulatedhee Flash chip and the Orinoco
PCMCIA wireless card. The Flash chip is controlled by memrgpped I/O registers. The
simulator sends and receives the commands and data throeggh riegisters. In the Flash chip, a
state machine controls the sequence of operations. Weatierubth the interface and the internal
state machine according to a Verilog model of the Flash doimfintel [14].

The simulation of the wireless card consists of two parts:REMCIA interface and the wireless
card interface. We have implemented the publically avil&CMCIA interface in our simulator.
However, we have been unable to obtain similar documemtatothe interface and internals of
the wireless card. To overcome this limitation, we simuthtecard by mimicking card interface
exposed in its Linux driver source code and using the parmmeiumped from the real card. As
a result, we can connect the card simulator to a Linux Tunfhégrface so that our simulator
successfully builds a TCP/IP connection between a progreuuting on a real device and one
that we are simulating. However, we have not yet simulated®2.11b radio model used by the
Stargate.

We do not maintain cycle accuracy of the I/O devices (whetyete-accurate simulation is



turned on or off) due to the device-specific complexities arakly ranging functionality. Instead

we employ a similar benchmarking approach to the one discugseviously to estimate the per-
formance of I/O devices. That is, we collect the timing bebtrausing a range of hand-coded
benchmark experiments, and use this data to advance tHewithin the simulator.

2.2 Coupling SimGate with Other Sensor Network Simulators

To explore simulation of SimGate with that of other sensdwoek components, we has devel-
oped SimMote — a simulation of the Mica2 Mote [22]. We empbasihat SimMote is intended to
provide similar functionality to other Mote simulators [3&7, 27, 19, 25, 35] in this context and
as such, we make no claim about its relative scientific valogplementing SimMote simply has
ensured, in the most expedient way, that the Mote simuladiorieroperable with, and comparable
to SimGate .

Mica2 features the 8MHz Atmel ATmegal28 microcontrollemige 16-bit RISC ISA), on-
board Flash memory and a 900MHz radio. Compared to SimGaeSimMote is much easier
given the significantly simpler hardware and software deétglso has the added benefit of testing
the flexibility of our simulation development framework).

SimMote currently supports the following features:

e AVR instruction set

Most on-chip functions: program memory, 10 registers, iltART, interrupt, SPI (Serial
Peripheral Interface), and ADC (Analog/Digital Conve)ter

512KB on-board flash

Serial ID chip

CC1000 radio chip
e A very simple radio transmission model.

We are able to achieve cycle accuracy of AVR ISA for most irdtons since the instruction set
specifies fixed cycle numbers. We use these timings withirv&ita to forward the CPU clock. In
a way analogous to SimGate, SimMote is able to boot the Tinyot& operating system and to
execute existing Mote programs.

To couple device simulators, we have also developed a minttiHation manager. The manager
is a multi-threaded software system that controls the Meecof constituent simulators, e.g., it
provides simulator services that include create, stawvp,gbin and leave. The manager forks a
thread for each simulator invokes the start routine in ed¢te start routine initiates the OS boot
process and uses a configuration file to invoke the benchmaet of benchmarks of interest. The
manager also implements a unified debugging interface fwhiedescribe below) that dispatches
debug commands to different simulators.

To achieve cycle-accurate, coordinated simulation of iplelisimulators, the proportion of the
rates of execution of simulated devices must be held to bghlguhe same as that for real devices.
This coordination is important for execution as well as fmmenunication (e.g., for a radio or serial
connection). To enable this coordination, we employ a sémlaick-step method that forces the
clock within each simulator to synchronize periodicallyhig is similar to the synchronization



mechanism in the Avrora mote simulator [36], however, wentzan separate, individual clocks
per simulator as opposed to a single global clock.

To implement this synchronization, The multi-simulatiommager inserts a synchronization
event into the event queue of each simulator when it is firstaimtiated. The event repeatedly
fires at a fixed interval. When the event fires, all of the thseafdsimulation meet at the same
clock point before continuing execution. We set the synetzation interval based on the clock
frequency of the communication technologies. Since thie$asechnology is serial transmission
between the Mote and the Stargate (at 57.6KB/second), wéhasene byte serial transmission
time as the synchronization period. This equals 128 Mot&esyc

We implemented a simple Mote radio model within SimMote blase that implemented in
Avrora [36]. Our model is different in that we do not use a glbtlock across simulators or a
centralized packet dispatching/assembly object. Instwadistribute each transmitted packet to
the receiving device simulator which assembles the paokally, using its own clock. Since the
simulators execute in lock step, our choice of a 128 Moteasysynchronization period is sufficient
to cover radio transmission (correct packet assemblypsiadio transmission is 19.2KB/s.

Since the clock rate of a Stargate is 54 times that of a Motenws&t synchronize SimGate sim-
ulators with SimMote simulators. To enable this, we can uSa@Gate synchronization interval
that is 54 times that of the SimMote. An interesting side &ffd this however, is that doing so
forces us to simulate the Motes slow aghe Stargate. Since the machine on which we run our
simulations is much faster than the real speed of the Mote;amesimulate up to 6 times faster
than real Mote execution. However, in an ensemble systeneteirtigeneous device simulators,
the fastest machine simulated is the performance bottkeecsuch, we must slow the SimMotes
to match SimGate speed.

As stated previously, we have not yet simulated the 802.a&dllmrmodel used by the Stargate.
As a result, we are only able to simulate communication betw&mGates and other SimGates
via theMote-NIC i.e., the attached Mote via the serial connection betweeteMnd Stargate. We
are able to simulate communication between SimGates ani&ies as is done for real sensor
networks using this same interface (Mote-NIC) and betwderVi®tes and other SimMotes via
our simple radio model.

2.2.1 Other Simulation Framewor k Features

Debugging is a key component in an ensemble system of seessonk devices simulators. To
facilitate debugging, we implemented a unified debuggiterface and dispatch within the multi-
simulation manager that supports debugging of concugremttcuting simulation systems.

The manager dynamically dispatches debug commands todivedunal simulators. Since each
simulator runs on a separate thread, the debugger can attacty of the simulator threads to
control its execution flow and to watch the change in the etx@cstate. The functions we support
in the simulators include step execution, the dump of meraag,/flash, and watching of internal
state and break points.

Another useful function that we implemented is checkpamtiOur checkpointing mechanism
within each simulator saves the current, full-system, &ion state including the snapshot of
memory and flash file system. We provide mechanisms thattédeithe storage and loading of
such images to enable fast forwarding and continuation exacuting system.



Benchmark Executables | Description

DCacheReadHitDep dcachehitr Data cache reath0% hit with data dependency
DCacheReadHit dcachehitnd.r | Data cache reath0% hit without data dependency
DCacheReadMiss | dcachemiss | Data cache reath0% miss

DCacheWrite dcachew Data cache write
BTB btb BTB test program
LUDecomp ludcmpheap | LU Decomposition algorithm

Table 1. Stressmarks that we used in the evaluation of SimGat e.

Benchmark | Executables Description

BitCount bitcnts Bit manipulation of the processor

Dijkstra dijkstra An O(n?) algorithm to find shortest path in a graph
FFT fft Fast Fourier Transformation

SHA sha Secure hash program

StringSearch search A text search program

Mesa mipmap 3D rendering program

Table 2. MiBench benchmarks that we used in the evaluation of SimGate.

3 Experimental Method

To evaluate and analyze the performance and accuracy of @em®e performed a number of
experiments using the SimGate and SimMote alone as wellthsSinGate-SimMote ensembles.
To evaluate the latter, we implemented two scenarios: (1)@eMattached to a Stargate through
the serial expansion bus (2) A secondary Mote communicatitigthe first via simulated radio.
In scenario (2), we located the motes such that their angeargain physical contact to minimize
errors caused by interference over the radio channel. Aeptewe do not model interference as
part of the simple radio model that we implement, howevercareently working on robust and
accurate radio models as part of future work.

Scenario (1) represents the use of the Stargate as a gatewragntly, the Stargate design does
not include a radio interface that is compatible with Motesstead, the Stargate implements an
expansion bus that allows a Mote to be physically attachéd Tdhe communication between the
attached Mote and Stargate uses one of the four UART channeatsher words, even though a
Stargate gateway functions as a single machine, itis iniactompletely independent processors
that are connected through a serial link. Thus scenarie@(@esents a sensor network that has one
Mote and one gateway (a Stargate with a Mote attached).

In the following subsections, we first detail the benchmainled we use for the SimGate alone,
for the SimMote alone, and for our ensemble scenarios. VWedascribe the experimental appa-
ratus that we use to collect our simulated and actual measuns.

3.1 Benchmarks

For stand-alone SimGate evaluation, we employed our haddetstressmarks and benchmarks
from both the MiBench [13] and the Mediabench [5]. In Table & present our stressmarks to
measure the simulation performance.



Benchmark| Executables Description

adpcm adpcmdecode/adpcmencodé@daptive differential pulse code
modulation for audio coding

g721 g721decode/g721encode | CCITT voice compression

gsm gsmencode/gsmdecode European standard for speed coding

jpeg jpegencode/jpegdecode Lossy compression for still images

Table 3. MediaBench benchmarks that we used in the evaluatio n of SimGate.

Benchmark | Description Functional Unit

ALU unit Computation and Logic operationsArithmetic/Logic Unit
Radio Network Packet Transfer time Radio Model
Floating PTS| Floating point operations Arithmetic/Logic unit
Flash Read | Reads log from Flash Secondary Flash
Flash Write | Write data to Flash Secondary Flash

Table 4. Benchmarks that we used to evaluate the components o f SimMote . The third column
shows the functional units that were evaluated during the te st.

The stressmarks is hand-coded to test the specific featuhe girocessor. ThBCacheRead-
HitDep has a data working set that fits in the cache and the LD ingtnghave data dependency.
The DCacheReadHits similar but without data dependency. TBh€acheReadMiskas a larger
data set than cache size and produc®$: cache misses. For cache write, since the Linux running
on the Stargate set the MMU to apply "write-through” polittyere is no difference between cache
write hit and cache write miss. So we use a sirig{gacheWriteo test data cache write. We also
have aBTBstressmark to exercise the BTB simulation. ThéDecompis a stressmark to test the
overall processor simulation.

In Table 2, we give the description of the benchmarks we ahdmen MiBench. These bench-
marks cover the operations from simple bit manipulationdmplex 3D rendering and to heavy
floating point computation. For even more complex and realieenchmarks, we use the Media-
bench.

Mediabench includes arich set of programs that are heasdyg in multimedia and office type of
applications. In Table 3, we describe the benchmarks thatsee We eliminate three benchmarks
due to the constraints of the underlying platforEpic does not run on the real Stargate platform
(due to memory constraintsf/PEG2 requires too many hours to execute due to the execution
of floating point operations, an@hostscriptdoes not fit in the available Stargate Flash memory
(25MBytes). We execute all remaining benchmarks from thé/Rikive.

To evaluate the accuracy of SimMote simulator componengschwose a set of five bench-
marks. Each benchmark contains data that is measured omhgdhbe execution of one particular
unit. We describe the benchmarks and the components in Fablbese benchmarks are stand-
alone applications (i.e. the measurements were indepenti&mGate simulator). Note that the
floating points test evaluates the software implementatfdloating point arithmetic.

To evaluate ensemble simulation, we employ open-sourckcappns as well as hand-coded
programs. We describe the applications in Table 5. Columinodvs the functional units of the



Benchmark| Description Functional Unit

Ping Echoes network packet back to sender Network interface

Sense Processes a sensor read query Analog/Digital converter

APS [24] Ad-hoc positioning system Arithmetic/Logic unit

Log Reads log from Flash Secondary Flash & UART interface
Multi Parallel APS computations on Mote and Stargaterithmetic/Logic unit

Table 5. Benchmarks that we used to evaluate the ensemble sim ulation of SimGate and Sim-
Mote. The third column shows the functional units that are ex ercised most heavily during
benchmark execution.

Motes that are heavily utilized during the execution of @as benchmarks. In choosing bench-
marks, we attempt to exercise the full device, and cover tA@nfunctions of a Mote: communi-
cation, sensing and logging. The difference between thistla@ previous set of benchmarks (the
ones given in Table 4) is that these benchmarks show the lglwdvthe application as perceived
by the SimGate (we will detail measurement methodologytsfjaand the previous benchmarks
show the behavior of that particular unit only (comparechgsixternal test equipment).

Each ensemble benchmark hakang and Shortform. The Short benchmarks exercise only
the Stargate and serially-attached Mote communicatinghaaJART interface. The Long bench-
marks exercise Stargate and the attached Mote, operatangateway or controller, and a remote
Mote communicating via radio. Moreover, each of these apfitins takes the form of a remote
procedure call (RPC). When the program on the Stargate sequlsry to the Mote, it blocks until
the receiver completes the appropriate execution andn®tiihe Multi benchmark also tests con-
current computation by running parallel computations ehad positioning system (APS) [24] on
both Mote and Stargate. This test is useful to evaluate tHfenpeance of simulating coordinated
computation on Mote and Stargate.

3.2 Experimental Apparatus

We execute TinyOS v1.1 on the Motes (and SimMote ) and a vamiaf Familiar Linux v0.5.1
on the Stargate (and SimGate). For the stand-alone Staappteations (i.e. Mediabench), we
measured the CPU clock cycles and instruction count usiagXtbcale hardware performance
monitors (HPM). The HPM system can monitor 3 events (CPUlkctycles and two events) con-
currently. We read the performance monitors using a kerwoelute that we developed.

We ran our simulators on a dedicated Linux (kernel ver 2. 8.&3hine. The machine has a 64bit
AMD Opteron CPU running at 2.4GHz and 4GB of memory. To measwll clock execution time
of each benchmark, we modified the simulator. Each time tHeqmeance monitoring registers of
the simulated machine (i.e. Stargate) are accessed, thasimreads the real (wall-clock) time
from the host system (which is synchronized using NTP), andputes and logs the delta (time
since previous access).

We wrappedeach simulated application using a small program: The waapgads the HPMs
immediately before and after the execution of simulatedy@m. This enables us to collect both
wall clock time and simulator statistics (number of instroles executed, number of clock cycles,
and many other system events supported by XScale archig@ctu

We found measuring real Mote hardware challenging sincA&timel CPU on the Mote does not



Benchmark Mmeas | Msimulated | Hmeas - Msimulated | Y0 €rror+ 95% conf. bound
adpcmdecode 3.367E+07| 3.069E+07 2.980E+06 8.9%+ 0.28%
adpcmencode 3.068E+07| 2.766E+07 3.014E+06 9.8%+ 0.36%
g721decode | 6.272E+08| 5.735E+08 5.368E+07 8.6%+ 0.17%
g721encode | 6.527E+08| 6.006E+08 5.213E+07 7.9%+ 0.44%
gsmdecode | 1.526E+08| 1.420E+08 1.061E+07 7.0%+ 0.57%
gsmencode | 4.335E+08| 3.995E+08 3.401E+07 7.8%+ 0.09%
jpegdecode | 2.554E+07| 2.235E+07 3.191E+06 12.5%+ 1.16%
jpegencode | 5.412E+07| 4.731E+07 6.813E+06 12.5%+ 0.41%

ons of MediaBench benchmarks,
ion of average measurement that

Table 6. Average cycle counts for measurements and simulati
95% confidence interval on the difference of the means, fract
interval constitutes

provide any mechanisms for performance monitoring featufe enable our measurements (and
hence validation of the correctness, accuracy, and pesioce of SimMote ), we measured the
CPU clock cycles of the Mote and its executing software ubkigf-precision external instrument.
To collect data accurately, we used the CPU output regfsIBT Con the Mote. PORTC is directly
connected pin 51 on the expansion bus. When we wanted tatendimeasurement, we raised the
voltage on the pin by writing a 1 to this register. When we \gdrtb stop measurement we disabled
pin by writing a 0. The overhead of accessing this registenesclock cycle.

To time Mote execution, we connected an Agilent 54621A Gssubpe (accurate up to 10
nanoseconds) to the output pin. We configured the oscilfmstmmonitor the pulse width (i.e. the
time between raising and lowering a signal), and recordedrteasurements. We then converted
timing measurements to clock cycles by multiplying it by tete clock speed7 3728 MHz).
We were not able to collect the instruction count, as thermig/ay of accessing this information
through the expansion bus.

To evaluate and compare the SimMote simulator with our tin@nd instruction cycle measure-
ments (which we described in previous paragraph), we imstnied the implementation of Mote’s
PORTC register in the simulator. Writing a 1 to this regigeables an internal instruction cycle
counter at the simulator. By comparing the two sets of nhusthext we collected from the simula-
tor and the oscilloscope, we were able to determine the acgwf the simulator with a very high
confidence.

4 Results

We detalil the accuracy of SimGate by comparing it to the &targn terms of the number of
cycles required to execute the benchmarks described inrthvéops section. In the first set of
comparisons, we mak®) identical runs of each benchmark on both SimGate and Seasyat
compare the average number of cycles required per benchmark

Table 6, Table 7 and Table 8 give the cycle accuracy resubhefstressmarks, MiBench and
Mediabench respectively, for SimGate. All tables use tHBviong format. The first column
shows the name of the benchmark, the second column.{) shows the average number of cycles
measured on the Stargate hardware, the third column,f.:.q) presents the cycles reported by
SimGate, and the fourth column shows the difference. In fite dolumn, we report the error



Benchmark Pmeas | Msimulated | Hmeas = Hsimulated | %0 €I1Or£ 95% conf. bound
DCacheReadHitDep 1.606E+07| 1.604E+07 2.263E+04 0.14%+ 0.10%
DCacheReadHit 5.852E+06| 5.863E+06 -1.118E+04 0.19%4 0.22%
DCacheReadMiss | 1.680E+09| 1.694E+09 -1.419E+07 0.84%+ 0.01%
DCacheWrite 1.606E+07| 1.605E+07 1.312E+04 0.08%+ 0.10%
BTB 6.142E+07| 6.547E+07 -4.044E+06 6.58%+ 0.07%
LUDecomp 1.207E+08| 1.196E+08 1.044E+06 0.87%+ 0.09%

Table 7. Average cycle counts for measurements and simulati
dence interval on the difference of the means, fraction of av

ons of stressmarks, 95% confi-
erage measurement that interval

constitutes
Benchmark Hmeas Hsimulated | Hmeas = Hsimulated % error+ 95% conf. bound
BitCount 3.648E+07| 3.589E+07 5.959E+05 1.63%=+ 0.09%
Dijkstra 1.867E+08| 1.731E+08 1.360E+07 7.29%= 0.07%
FFT 9.955E+07| 9.332E+07 6.225E+06 6.25%= 2.39%
Mesa 2.105E+08| 1.932E+08 1.730E+07 8.22%=+ 4.79%
SHA 6.391E+07| 6.208E+07 1.834E+06 2.87%= 4.90%
StringSearch 3.249E+08| 3.315E+08 -6.574E+06 2.02%+ 0.13%

Table 8. Average cycle counts for measurements and simulati
95% confidence interval on the difference of the means, fract

interval constitutes

ons of MiBench benchmarks,
ion of average measurement that



Benchmark Mmeas | Msimulated | Mmeas - Msimulated | Y0 €rror+ 95% conf. bound
ALU unit 2.884E+06| 2.954E+06 -7.031E+04 2.44%4+ 0.12%
Radio 4.672E+05| 4.862E+05 -1.898E+04 4.06%4+ 26.50%
Floating Pts| 3.498E+06| 3.499E+06 -6.357E+02 0.02%+ 0.10%
Flash Read | 2.884E+06| 2.954E+06 -7.031E+04 2.44%4+ 0.12%
Flash Write | 2.521E+03| 2.434E+03 8.688E+01 3.44%+ 27.90%

ons of Mote benchmarks, 95%
of average measurement that

Table 9. Average cycle counts for measurements and simulati
confidence interval on the difference of the means, fraction
interval constitutes

percentage] (tmeas — Msimutated)/ meas|) Which is difference between the average of the measured
cycle counts and the average of those generated by the simuM/e also compute thg5%
confidence interval for the error percentage using a Studeistribution [10] with19 degrees of
freedom to model the difference of the averages (marked e@nfidence bound in the table).

Note that the error percentage and confidence interval adcate whether the we should reject
the null hypothesis of equivalence in a two-sided hypogiesit ab5% confidence. If the “margin
for error” (confidence interval) spari®o (i.e. the margin is greater than the error percentage
itself), we fail to reject the null hypothesis of equivalerand hence cannot determine whether the
observed difference in averages is due to random variatiaonto In this experiment, however, the
confidence intervals are all quite narrow indicating thegher percentage we observe for each
benchmark is statistically significant at th8% confidence level. There are three benchmarks
whose confidence interval spais. However, the difference is so close that witi, confidence
you can’t determine if it is a true difference or random noise

We observe that the accuracy of SimGate for this set of beadksris acceptable as a full-
system simulation. While error percentages bel@w have been achieved for individual system
components [7, 31], because we simulate the full devicdug@heg all parts of the memory hierar-
chy and the interrupt structure) and run both an operatistegy and application on it, we expect
to introduce additional error. That the maximum error is narenthan13.5% (with 95% confi-
dence) and most of the errors are beldWo, is surprising and is an indication that the simulation
is of high quality.

Table 9 gives the cycle accuracy result of timing benchméok§&imMote. The format of the
table is same as Table 6. The data indicates that the accafamyr Mote simulator is similar
to that of SimGate. For floating point programs as well as #utorand flash write benchmarks,
the error rate is insignificant since the error margin is tgnetinan error percentage itself. For the
ALU and flash read benchmarks, the confidence intervals atremgrrow and the error rate is very
small.

4.1 Coupled SmGate and SmM ote Simulations

To gauge how well SimGate will work in a simulation of a hetgneous sensor network, we
examine its cycle-count accuracy when it is used in conjanawith one or two SimMotes (as
described in Section 3). Table 10 shows the cycle countteeful the benchmarks that exercise
the Stargate device and the Mote that is connected to it \eaial snterface (scenario 1). As noted
previously, the Stargate device does not support a radiceleapable of communicating directly



Benchmark Hmeas Usimulated | Pmeas ~ Msimulated % error+ 95% conf. bound
PingShort | 9.414299E+07| 9.592680E+07, -1.783813E+06 1.9%+ 6.6%
SenseShort 2.040608E+08 2.051871E+08 -1.126267E+06 0.6%+ 1.1%
APSShort | 1.997744E+08 1.966910E+08 3.083427E+06 1.5%+ 0.07%
MultiShort | 2.128019E+08 2.080650E+08, 4.736897E+06 2.2%+ 1.5%
LogShort | 1.637669E+08 1.695956E+08  -5.828771E+06 3.6%=+ 1.25%

Table 10. Average cycle counts for measurements and simulat ions of benchmarks coupling
SimGate with simulated Mote via serial link , error percenta ge, 95% confidence range for error

with Motes in a sensor network. Instead, it uses Mote diyemihnected to it via a serial interface
as a network interface peripheral. These benchmarks amedatl to exercise this interaction in a
representative way.

The format of Table 10 is the same as that described for Taliretlde previous subsection.
Again, the sample size used to calculate each average and we compute 85% confidence
interval on the error percentage usingdistribution with19 degrees of freedom.

Again, the accuracy of the coupled simulation is reasorfablisvo communicating independent
full-device simulations. Note that while the error per@ges appear significantly lower than for
the SimGate simulation alone, the confidence intervals lagesagnificantly wider. Thus, based
on error percentage alone it may appear that the coupledations are more accurate. However,
there is more relative variation (as we might expect) in thegpted case. As a result, it is the error
range, and not the specific error value, that is significathigcase.

For example, consider the results for tARemgShortbenchmark shown in row 1 of Table 10.
From the data, it is not possible to determine that the diffee between the measured average
and simulated average is statistically significant at%8é confidence level (since the error range
span9)%). However, there is enough variation in both measurenmamssimulation to make the
difference indistinguishable from random variation asras interval that ist6.6% centered on
the observed average.

ThePingShortbenchmark exhibits the widest variation, as indicated leyettior range. For the
SenseShotienchmark the difference in observed average is, once,agjatrstically undetectable
with 95% confidence, but the error range is smaller. In the remaittireg cases, there is a sta-
tistically significant difference, but both the error paertages and the confidence bounds on those
percentages are remarkably small. From this data, we cd@that cycle-counts taken from Sim-
Gate when coupled to SimMote via a serial interface, whiteoolucing additional variation, are
still reasonably accurate.

The final set of accuracy results we present is for benchntadtouple SimGate with a Sim-
Mote via its serial interface that is then used to commueieath a second SimMote via the radio
interface (scenario 2). As described previously, we do mtkpow of a Mote radio commu-
nication simulation that is accurate enough not to oversatthe accuracy (or lack thereof) of
SimGate. Thus, these experiments reflect a configuratiorhiohathe antenna of the two Motes
are in physical contact. It is our experience that this caméigon eliminates much of the variation
resulting from radio communication.

Table 11 depicts these results using the same format as the previous two tables. Similar
to the results foPingShortandSenseShoih Table 10, the additional variation introduced by the



Benchmark Hmeas Usimulated | Pmeas ~ Msimulated % error+ 95% conf. bound
PingLong | 3.228130E+08 3.116003E+08 1.121275E+07 3.5%+ 2.9%
SenselLong| 2.267467E+08 2.254300E+08 1.316726E+06 0.58%+ 2.1%
APSLong | 2.273877E+08 2.212660E+08 6.121661E+06 2.7%=+ 6.3%
MultiLong | 2.362925E+08 2.285356E+08, 7.756869E+06 3.3%=+ 3.3%
LogLong 1.891255E+08 1.915953E+08  -2.469811E+06 1.3%=+ 2.4%

Table 11. Average cycle counts for measurements and simulat ions of benchmarks coupling
SimGate with simulated Mote via serial link communicating w ith a Mote via the radio , error
percentage, 95% confidence range for error

Benchmark tmeas tnocycle tcycle Tnocycle | Teycle
adpcmdecode 7.60E-2| 1.05E+00| 3.23E+00| 13.84| 42.50
adpcmencode 8.40E-2| 1.21E-02| 3.61E+00| 14.34| 42.97
g721ldecode | 1.57E+00| 3.70E+01| 1.13E+02| 23.51| 71.73
g72lencode | 1.64E+00| 4.19E+01| 1.19E+02| 25.45| 72.39
gsmdecode | 3.82E-01| 1.06E+01| 2.86E+01| 27.65| 74.79
gsmencode | 1.09E+00| 3.01E+01| 8.54E+01| 27.67| 78.64
jpegdecode | 6.31E-02| 7.28E-01| 2.37E+00| 11.54| 37.61
jpegencode | 1.35E-01| 2.02E+00| 6.18E+00| 14.95| 45.85

Table 12. Average execution time (in seconds) of measuremen  ts and simulations (cycle accu-
racy disabled and enabled versions) of MediaBench benchmar ks, slowdown rate for simulation
when cycle accuracy disabled and slowdown rate for simulati on when cycle accuracy enabled

second Mote and the radio communication makes the differertween observed and simulated
averages indistinguishable from random variation 86% confidence level. However, tl#%
confidence intervals on the error percentage are, once,agjaiilar in magnitude to the error
percentages in Tables 6 and 10 for the cases where the avenagsignificantly different.

From all three tables, then, we conclude that SimGate aehiasimilar level of accuracy both
when it is used as a single device simulation, and when itrisqgiaa multi-device simulation in
which the devices are communicating. Because the softwareding the operating system, run
by the physical hardware in each of these three experimgptecisely the same as that executed
by the simulated devices, we believe that SimGate can beassad effective tool for estimating
Stargate cycle counts in heterogeneous sensor networkyacations.

4.2 SimGate Execution Performance

Since our ultimate goal is to provide a complete sensor nétwsionulation capability that can
be used to complement current deployment-based reseaatbgits, the real-time slowdown of
SimGate versus the physical hardware is an important cereagidn. Table 12 and Table 13 com-
pare wall-clock timings of the Stargate device to SimGatg;() and to SimGate with the cycle-
accuracy features disablet),{.,..). For cases where cycle accuracy is desired, we can enable
the parts of SimGate that are necessary to make cycle coumiaéss internally. Comparing the
performance of the resulting functional simulator to thik 8imGate simulation gives the cost of



Benchmark tmeas tnocycle tcycle Tnocycle | Teycle
DCacheReadHitDep 6.20E-02| 6.25E-01| 2.07E+00| 10.08| 33.37
DCacheReadHit 3.60E-02| 5.80E-01| 1.63E+00| 16.11| 45.14
DCacheReadMiss | 4.24E+00| 1.61E+00| 7.56E+01 0.38 | 17.83
DCacheWrite 6.20E-02| 6.60E-01| 2.14E+00| 10.65| 34.47
BTB 1.76E-01| 4.38E+00| 1.27E+01| 24.91| 71.93
LUDecomp 3.28E-01| 6.73E+00| 2.05E+01| 20.53| 62.48
BitCount 1.15E-01| 2.18E+00| 6.73E+00| 18.95| 58.53
Dijkstra 5.63E-01| 1.00E+01| 3.18E+01| 17.80| 56.55
Mesa 6.54E-01| 1.18E+01| 4.09E+01| 17.98| 62.55
StringSearch 8.42E-01| 2.30E+01| 6.77E+01| 27.34| 80.44
SHA 2.37E-01| 4.89E+00| 1.41E+01| 20.65| 59.49
FFT 2.87E-01| 5.14E+00| 1.57E+01| 17.89| 54.68

Table 13. Average execution time (in seconds) of measuremen
curacy disabled and enabled versions) of stressmarks and Mi
rate for simulation when cycle accuracy disabled and slowdo
accuracy enabled

ts and simulations (cycle ac-
Bench benchmarks, slowdown
wn rate for simulation when cycle

achieving the accuracy levels described previously.

The simulator is 10 to 27 times slower than the real hardwdrenacycle accuracy is not re-
quired. This factor is smallest fddCacheReadM ss. There is no slowdown and instead the
simulation is faster than actual hardware. The reason tsothaeal hardware, the cost of cache
miss is so large that our simulation on a fast, high-end nmacban catch up with its speed. Cycle
accurate simulatiorr(,;.) increases the cost l2y93.X (37 to 80 times slower than real hardware).
There is a higher variance in these numbers, ggmvs | peg, than for functional simulation
(Tnoeyeie)- ONe reason for this is cycle-accurate cache simulatibi.time required to simulate a
cache miss and a cache hit is the samalthough the simulator adjusts the simulated clock and
cycle counts appropriately for each. On a real device a chithi® much faster than a cache miss.
Thus, application memory access patterns can have a |dege e@h the relative slow down of sim-
ulation. We are encouraged by these results since othesyfstém, cycle-accurate, simulations of
advanced computer systems executing an OS and applicatgpn SimOS, report slowdowns of
4000X — 6000X [29] although the results are not completely comparableesie use different
host machines and simulate different targets.

5 Reated Work

There is a large body of research on simulation systems.drséttion, we identify techniques
that are most similar to our work. In particular, we descabé contrast frameworks for ensemble
simulation for devices relevant to a sensor network anddolstfor full system emulation.

5.1 Frameworksfor Ensemble Sensor Network Simulation

There have been a number of significant efforts to simulateeanulate sensor network de-
vices. Most of this prior work has focused on the sensingasvand in particular Mote devices.
These projects include Simulavr [32], ATEMU [27], Mule [3&}rora [36], TOSSIM [19], Sen-



sorSim [25] and SENS [35]. Although, we implemented Moteldation as part of this project,

we did so only to investigate ensemble simulation systenSiorGate. We could have alterna-
tively coupled current approaches with SimGate but decidstad to implement our own Mote
simulator to expedite the coupling process.

The ATEMU and Avrora Mote simulation platforms are most $anto our system. Both pro-
vide full-system multi-simulation of Mote devices. Howevéhe multi-simulation enabled by
these systems Bomogeneous only simulation of Mote devices are coupled and no othes@en
network devices, e.g., intermediate nodes, are suppoBeth systems use a lock-step method
similar to ours to synchronize simulation threads and enabturate timing and correct commu-
nication. ATEMU synchronizes at each cycle and Avrora lossine synchronization period to
thousands Mote cycles. Both ATEMU and Avrora can simulateddan real time. Since Avrora
is written in Java, its performance is highly dependent oMJwplementation. In our work, we
use the similar synchronization technigue as in Avrora. el®v, we must deal with more com-
plex situation in which coordination between devices haggeetween very different devices. To
simulate only Motes (as is done in these prior works), weeahslightly better performance than
Avrora because of the use of C++ instead of Java.

There are also systems that emplmterogeneoysensemble simulation. In particular, our de-
sign vision is similar to the work of [12]. The work in [12] is@mprehensive framework that
supports the simulation, emulation, and deployment ofrbgneous sensor network systems and
applications. This framework uses TOSSIM [19] to emulated@dcand EmStar [11] to emulate
“microservers” (a general term for platforms like Stargaféhe authors employ a wrapper library
to glue the two simulation systems together. All applicasionust be re-compiled and linked to
the EmStar library if they are to be emulated by the system.

In SimGate, our goal is to enable the study, verificationugdeging, and analysis of sensor net-
work applications using a simulation platform that doesrequire any modification to the binaries
of the applications or operating system on which they runis Enables increased flexibility for
researchers and ensures that the simulation executioroament is the same as that on the real
devices. This SimGate model also enables us to easily obt@iortant application characteristics
(e.g. accurate cycle estimation and interrupt properties)is more difficult to collect in a purely
emulative environment. Pure emulation systems do haveedspdvantage however. For exam-
ple, TOSSIM [19] can emulate a Mote 50 times faster that 4&fisde execution using a 1.8GHz
Pentium IV machine. EmStar can execute re-compiled, mgcvas code at native speed. In Sim-
Gate, we enable users to toggle functional and cycle-atesgrmulation to reduce the overhead
of the latter. Moreover, we are currently investigatingestbptimization techniques to improve
simulation speed while maintaining cycle accuracy, likeayic binary translation [6, 39].

5.2 Full System Simulation

From the perspective of full system simulation and emultgtihere are number of software
systems that support a wide range of devices [29, 40, 39, R022, 2, 33, 28, 3, 26]. Once
such, very popular, system is SImOS [29]. SImOS is a fullayssimulator containing simulation
models for most common hardware components, e.g., pragessmory, disk, network interfaces,
etc. SIMOS features a range of advanced processor modetsatthe-off accuracy for simulation
speed. The fastest model applies dynamic binary translggic89] for maximal simulation speed.
The finest-grain model simulates the advanced pipelinetsirel to provide accurate cycle-level
behavior. SImOS is able to simulate the MIPS R4000 processa machine with the same



architecture, with a slowdown of abol.X for binary translation and000.X for detailed pipeline
simulation on a SGI 4-processor (150MHz) machine.

Skyeye [33] is a similar project that simulates a number ofVABased processors and devel-
opment boards. Skyeye also emulates a number of peripharelisding LCD and the Ethernet
interface. Skyeye is based on the GDB ARM emulator which nadliuenables the use of gdb
as a debugging interface — in much the same way that we dooudtihhsome of the techniques
employed in these projects are complementary and usefulrtermdeavor, these systems are not
intended or used for sensor network research. The focusrafark is on a toolset for full-system
emulation combined with cycle-accurate simulation of hegeneous sensor network devices.

6 Conclusion

In an effort to make sensor network research more widelyssilske to ease sensor software
development and evolution, we have developed a system Hesyfstem, functional and cycle-
accurate simulation of intermediate sensor nodes. Ouesystalled SimGate, implements the
complete Intel Stargate device and executes the Linux tpgrsystem XScale applications trans-
parently, without modification.

We investigate the accuracy and efficiency of SimGate imtgwh as well as in concert with sen-
sor device (Mote) simulation. Our results indicate that Sate is functionally correct and enables
cycle accuracy (if desired) within 9% on average for the hemarks that we evaluated. When we
co-simulate SimGates with SimMotes(our Mote simulaton) ystem introduces accuracy error
of less than 4% in all cases. On average, our syst&fisslower than a real device when using
functional emulation and8 X slower when using cycle-accurate pipeline simulation. \&keke
that these results indicate that SimGate can be used asemtivadftool for accurately simulating
Stargate intermediate nodes in heterogeneous sensorrketomfigurations. As part of future
work, we plan to investigate techniques for accurate radablzattery modeling, optimization of
simulation speed, the scalability of our multi-simulatsystem for large-scale sensor networks,
and simulation of other devices and components.
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