
Efficient Processing of Distributed Top-k Queries

Hailing Yu Hua-Gang Li Ping Wu Divyakant Agrawal Amr El Abbadi

Department of Computer Science
University of California, Santa Barbara, 93106, USA

{hailing,huagang,pingwu,agrawal,amr}@cs.ucsb.edu

Abstract

Ranking-aware queries, or top-k queries, have received
much attention recently in various contexts such as web,
multimedia retrieval, relational databases, and distributed
systems. Top-k queries play a critical role in many decision-
making related activities such as, identifying interesting
objects, network monitoring, load balancing, etc. In this
paper, we study the ranking aggregation problem in dis-
tributed systems. Prior research addressing this problem
did not take data distributions into account, simply assum-
ing the uniform data distribution among nodes, which is not
realistic for real data sets and is, in general, inefficient. In
this paper, we propose three efficient algorithms that con-
sider data distributions in different ways. Our extensive ex-
periments demonstrate the advantages of our approaches in
terms of bandwidth consumption.

1. Introduction

Ranking-aware queries have been studied in various
contexts such as web, multimedia retrieval, relational
databases, and distributed systems. This is mainly be-
cause they are needed for decision-making related activities
such as identifying interesting objects, network monitor-
ing, distributed denial-of-service attack detection and load
balancing. For example, in a network monitoring setting,
top ranking sources of data packets need to be identified
to detect denial-of-service attacks. Alternatively, consider
an online advertisement tracking scenario, where each ad-
vertiser places its advertisements on different publishers’
pages, e.g., CNN and BBC. In such an application, advertis-
ers will often be interested in identifying the top publishers
that generate advertisement driven revenue. Fagin first in-
troduced the ranking aggregation problem in the context of
multimedia retrieval [6]. Assume there are m subsystems
with each maintaining a list of objects together with their
ranking scores. The score of an object can be any value

that describes a certain characteristic of the object, e.g., its
color, shape, etc. Top-k queries over the m subsystems re-
turn the objects with the k highest aggregated scores under a
monotonic function. The best known algorithm solving this
problem is the Threshold Algorithm (TA) which was inde-
pendently discovered by several groups [8, 11, 7]. Based on
Fagin’s seminal work [6], many approaches have been pro-
posed to solve the top-k query processing problem under
various scenarios. In data streams, distributed top-k mon-
itoring was studied in [1]. Supporting ranking query pro-
cessing in relational databases from different perspectives
has been studied in [3, 5, 9, 10, 15, 14]. More recently, ap-
proximate top-k queries on multidimensional datasets with
probabilistic guarantees were studied in [13]. A framework
for distributed top-k retrieval in peer-to-peer networks was
proposed in [2], which is mainly concerned with retrieving
the top-k matching objects given the query object, but does
not aggregate scores from all nodes in a distributed system.

In this paper, we are concerned with answering top-k
queries efficiently in distributed systems. In particular, we
consider Content Distribution Networks (CDNs), which are
deployed by many companies to avoid network congestion.
CDNs typically consist of cache servers scattered around
the globe for caching bandwidth-intensive objects from the
original server such as images and video clips. This enables
fast web and streaming media applications. When a request
is sent to the original server, it is redirected to one of the
cache servers which is closer to the client and/or can serve
data faster. Effective monitoring of activities (by a central
manager) over CDNs ensures successful content distribu-
tion. One such monitoring task is a top-k query, e.g., “what
are the top-k most popular URLs across the entire CDN?”.
A naı̈ve approach to answer such a query is to have each
cache server send the access statistics about all objects to
the central manager. However, this incurs significant band-
width consumption if the number of objects at each cache
server is large. Hence bandwidth efficient algorithms for
processing such top-k queries in a distributed environment
are needed.



While the Threshold Algorithm (TA) is generally ap-
plicable in database applications, it is inefficient when ap-
plied to answer top-k queries in large distributed networks
in terms of bandwidth consumption [4]. This is mainly be-
cause the number of rounds to finalize the answer to a top-k
query under TA cannot be predetermined and it varies with
different data distributions among the nodes. Hence, in [4]
the first constant number of round algorithm for calculat-
ing top-k objects in distributed systems is proposed and re-
ferred to as the Three-Phase Uniform-Threshold algorithm
(TPUT).

However, TPUT does not take data distributions into ac-
count and it simply assumes the uniform data distribution
among all nodes, which is not realistic due to the hetero-
geneous nature of distributed systems. Thus, in this paper,
we propose different algorithms to calculate top-k queries
in constant number of rounds to further enhance the perfor-
mance by accounting for varying data distributions. They
are referred to as the Three-Phase Adaptive-Threshold al-
gorithm (TPAT), the Three-Phase Object-Ranking based al-
gorithm (TPOR) and the Hybrid-Threshold algorithm (HT).
TPAT generalizes TPUT by utilizing summary statistics of
the data. However, it could be very expensive to use sum-
mary statistics to accurately estimate data distributions. The
main difficulty is for an algorithm to efficiently estimate
data distributions, without a-priori knowledge. TPOR and
HT are devised to overcome this difficulty. TPOR is funda-
mentally different from both TPUT and TPAT since it uses
object rankings rather than object scores when estimating
data distributions. TPOR is more bandwidth-efficient than
TPUT when handling the case that object rankings are sim-
ilar across all nodes. Nevertheless, TPOR performs worse
than TPUT in the case when object rankings widely vary
across all nodes. To remedy such a situation, HT is pro-
posed to combine the advantages of both TPUT and TPOR,
which is robust under different data distributions.

The rest of the paper is organized as follows. Section 2
formulates the problem. Section 3 reviews TA and TPUT
to summarize the state of the art. Section 4 presents our
proposed algorithms. Section 5 evaluates the performance
of our proposed algorithms. Section 6 concludes the paper
and discusses the future work.

2. Problem Formulation and Performance
Metric

We formalize the problem of top-k query processing in
distributed systems by abstracting the above CDN example.
Assume there are m nodes and one single central manager
in a distributed system. Each node i is connected to the
central manager and maintains a list of pairs 〈O, Si(O)〉,
where O is an object and Si(O) is the score of the object.
Furthermore, we assume objects in each list are sorted in

the descending order of their scores. Note that an object
does not have to appear in all nodes. If an object does not
appear in the list of a node, its score in that list is zero
by default. The central manager initiates a top-k query
which retrieves objects from the network with the k high-
est f(S1(O), . . . , Sm(O)) where f is a monotonic function
such as the sum function SUM to compute the overall score
of an object. For simplicity, we assume the sum function
throughout this paper. In practice, this function could be
a weighted sum to account for the relative importance of
cache servers.

The goal of distributed top-k query algorithms is to
achieve low bandwidth consumption. We assume that the
computation cost in each node is negligible while the com-
munication cost among nodes dominates the query response
time. This is mainly due to the current trends in tech-
nology where the speed and bandwidth of the network is
still a bottleneck. In this paper, we take the number of
〈object, score〉 pairs transmitted across the network as our
performance metric, which dominates the communication
cost.

3. Background

This section introduces some background of the rank-
ing aggregation algorithms. In particular, the Threshold
Algorithm (TA) and the Three-Phase Uniform- Threshold
(TPUT) algorithm are discussed in detail.

3.1. Threshold Algorithm

Fagin [6] introduced the rank aggregation problem for
multimedia database systems. Recall that there are m sub-
systems each maintaining a list of objects with their scores.
Each list is sorted based on the object scores. There is a
predefined monotonic function f which returns an aggre-
gated score for a given object. The Threshold Algorithm
(TA) is an improvement of Fagin’s Algorithm (FA) in [6].
TA scans the lists in the subsystems simultaneously from
the top most ranked objects. In each round, only one object
is retrieved from each list. TA maintains a threshold value
that gives the upper-bound of the aggregated scores of all
objects not yet seen. Assume the last objects seen from
all the lists are Olast(i)(1 ≤ i ≤ m) and their respective
scores are Si(Olast(i)). The threshold value is calculated as
f(S1(Olast(1)), . . . , Sm(Olast(m))). This threshold value
is recomputed every time TA sees new objects from the m
lists. When a new object Onew is seen, TA retrieves its
scores by random accesses from those subsystems where
Onew has not been scanned yet. Hence, the actual aggre-
gated scores of the objects seen so far can be calculated. TA
maintains at most k objects at any time. Once TA finds k



objects whose aggregated scores are no less than the current
threshold value, it terminates and returns them as the top-k
objects.

subsystem
1

subsystem
2

subsystem
3

<O5, 21> <O4, 34> <O3, 30>

<O2, 17> <O1, 29> <O4, 14>

<O4, 11> <O0, 29> <O0, 9>

1

2

3

4

5

6

<O3, 11> <O3, 26> <O5, 7>

<O6, 10> <O5, 9> <O2, 1>

<O7, 10> <O9, 7> <O8, 1>

Figure 1. An example with 3 subsystems

Example 1 Figure 1 shows an example with three subsys-
tems. Assume that the top-k query requests the top 2 ob-
jects and the monotonic function f is the summation func-
tion SUM. TA first scans the top most objects in all sub-
systems which are O5, O4, and O3. Hence the threshold
value at this time is 21 + 34 + 30 = 85. Then TA calcu-
lates the aggregated score for each object seen so far by
random accesses to the three subsystems. We get the ag-
gregated score for O5, Ssum(O5) = 21 + 9 + 7 = 37,
for O4, Ssum(O4) = 11 + 34 + 14 = 59, and for O3,
Ssum(O3) = 11 + 26 + 30 = 67. TA maintains the top
2 objects seen so far, which are O3 and O4. As neither
of them has an aggregated score greater than the current
threshold value, TA continues to scan the objects at the sec-
ond positions of all lists. At this time, the threshold value
is recomputed as 17 + 29 + 14 = 60. The new objects
seen are O1 and O2. Their aggregated scores are retrieved
and calculated as Ssum(O1) = 0 + 29 + 0 = 29, and
Ssum(O2) = 17 + 0 + 1 = 18. TA still keeps objects O3

and O4 since their aggregated scores are higher than those
of both O1 and O2. Since only O3 has an aggregated score
greater than the current threshold value, TA algorithm con-
tinues to scan the objects in the third positions. Now the
threshold value is 11+29+9 = 49 and the new object seen
is O0. TA computes the aggregated score for O0, which is
38. O3 and O4 still maintain the two highest aggregated
scores, which are now greater than or equal to the current
threshold value. Thereby, TA terminates at this point and
returns O3 and O4 as the top 2 objects.

When adapting TA directly to distributed systems, a lot
of communication overhead is incurred since TA has to go
round by round and each round involves two round-trip
communications [4]. In the first round-trip, the central man-
ager asks each node in the network to send one object at a

certain position. In the second round-trip the central man-
ager sends a list of object IDs to every node in the net-
work and asks them to send the scores of these objects. As
the number of rounds in TA is arbitrary (dependent on the
data distribution), this results in unpredictable performance,
which is not desirable in distributed systems. As an alter-
native to reduce the number of rounds, batching objects in
the first round-trip does not help much as shown in [4].
Hence, new algorithms are needed that can terminate deter-
ministically. Such an algorithm is proposed in [4], which
is referred to as the Three-Phase Uniform-Threshold Algo-
rithm, and requires three rounds to return the exact top-k
objects.

3.2. Three-Phase Uniform-Threshold Algorithm

To describe the Three-Phase Uniform-Threshold Algo-
rithm (TPUT), we first introduce the notion of partial sums
of objects which are calculated by the central manager. For
an object O, the partial sum Spsum(O) = S′

1(O) + . . . +
S′

m(0) where S′

i(O) = Si(O) if O has been reported by
node i to the central manager, and S ′

i(O) = 0 otherwise.
Now we describe the three phases of TPUT.

1. Phase 1: Each node sends its top-k objects to the cen-
tral manager. The central manager then calculates the
partial sums for all objects seen so far and identifies
the objects with the k highest partial sums.

2. Phase 2: Let τ1 be the partial sum of the kth ob-
ject. This value is referred to as the “phase-1 bot-
tom”. The central manager first sends a threshold value
T = τ1/m to every node in the system. Then each
node sends its objects to the central manager, whose
scores are no less than T . The intuition is that if an
object is not reported by any node, its sum must be
less than τ1. Hence it cannot be a top-k object. Now
the central manager can re-calculate the lower bound.
It calculates the new partial sums for the objects seen
so far. Then the new lower bound τ2 (“phase-2 bot-
tom”) is the partial sum of the kth object. An up-
per bound of each object’s aggregated score is cal-
culated by Usum(O) = S′

1(O) + . . . + S′

m(0) where
S′

i(O) = Si(O) if O has been reported by node i, and
S′

i(O) = T otherwise. If the upper bound of an ob-
ject’s aggregate score is less than τ2, it can be pruned.
After pruning, the set of objects left are the top-k ob-
ject candidates.

3. Phase 3: This phase identifies the top-k objects. The
central manager sends the top-k object candidate set
to each node and each node in turn sends the scores of
these objects to the central manager. Hence, the central
manager can calculate the real scores for these objects
and then identify the exact top-k objects.



Example 2 Consider the lists shown in Figure 1 again and
the top-k query still requests the top 2 objects. In the first
phase, each node sends objects with scores at positions 1
and 2 to the central manager. The central manager calcu-
lates the partial sums: Spsum(O5) = 21, Spsum(O4) = 48,
Spsum(O3) = 30, Spsum(O2) = 17, Spsum(O1) = 29. The
two highest partial sums are 48 and 30. The phase-1 bot-
tom τ1 is 30. Thus the threshold value T used in phase 2 is
set to 30/3 = 10. In phase 2, node 1 sends 〈object, score〉
pairs up to position 6, node 2 up to position 4, and node 3
up to position 2. The central manager calculates the partial
sums for the objects and calculates the phase 2 bottom, τ2,
as 59 since the top 2 partial sums are Spsum(O3) = 67 and
Spsum(O4) = 59. Moreover objects O0, O1, O2, O5, O6

and O7 are pruned as their upper bounds are less than τ2.
Now the top 2 object candidate set Scandidate is {O4, O3}.
In phase 3, the central manager sends Scandidate to each
node. Then each node sends the scores of these candidate
objects to the central manager. In the end, the central man-
ager identifies the top 2 objects as O3 and O4.

4. New Ranking Aggregation Algorithms

In this section, we propose three new algorithms for
answering top-k queries in distributed systems. The first
algorithm, the Three-Phase Adaptive-Threshold algorithm
(TPAT), generalizes TPUT by exploiting data distributions
using summary statistics to further enhance the pruning
power of TPUT. The second algorithm, the Three-Phase
Object-Ranking based algorithm (TPOR), prunes ineligible
objects by their rankings (positions). In contrast, TPUT
prunes ineligible objects based on their scores. The last al-
gorithm, the Hybrid-Threshold algorithm (HT), combines
the advantages of both TPUT and TPOR, and demonstrates
that it is very robust to different data distributions.

4.1. Three-Phase Adaptive-Threshold Algorithm

In this section, we extend TPUT by relaxing the con-
dition on how to divide the phase-1 bottom τ1 among all
nodes. By dividing the phase-1 bottom τ1 uniformly among
the nodes, TPUT assumes object scores are uniformly dis-
tributed among nodes in the network, i.e., each node con-
tributes approximately the same to the result set of top-k ob-
jects. However this assumption does not consider the case
in the real world where some nodes in the systems are hot
spots for content-sharing. This results in non-uniformly dis-
tributed data among nodes. That is, some nodes may have
objects with larger score distributions while other nodes
may have objects with smaller score distributions. For con-
venience, they are referred to as hot nodes and cold nodes
respectively. The probability for a top-k object being from
a hot node is much higher than being from a cold node.

Intuitively, hot nodes usually contribute a larger portion of
top-k objects than cold nodes do. Hence, we propose to
divide τ1 to nodes adaptively according to their data distri-
butions. In general a threshold lower than τ1/m for a hot
node allows more objects to be sent to the central manager,
and vice versa. This adaptive division of phase-1 bottom
τ1 still guarantees the true top-k objects are among all the
objects returned by nodes in phase 2, which is summarized
in Theorem 1.

Theorem 1 Non-uniformly dividing the phase-1 bottom τ1

into thresholds T1, . . . , Tm assigned to node 1, . . ., node m
respectively such that

∑i=m

i=1
Ti = τ1 still guarantees that

the true top-k objects are among the objects sent from nodes
in phase 2.

Proof: Assume O is an object which is not reported to the
central manager by any node. That is, its score in node i,
si, must be smaller than Ti. Thus, its aggregated score must
be smaller than τ1. Since there are already k objects whose
partial sums are no less than τ1, O cannot be a top-k object.
Thus the true top-k objects must be among all the objects
sent from nodes in phase 2. 2

Phase-1: TPUT/TPAT Phase-2 : TPUT Phase-2 : TPAT

PSUM
O4 : 48
O3 : 30
O1 : 29
O5 : 21
O2 : 17

PSUM
O3 : 67
O4 : 59
O0 : 29
O1 : 29
O5 : 21
O2 : 17
O6 : 10
O7 : 10

PSUM
O3 : 56
O4 : 48
O5 : 30
O0 : 29
O1 : 29
O2 : 17

Figure 2. Phase 1 & 2 of both TPUT and TPAT

We illustrate the adaptive division of phase-1 bottom τ1

by using the example lists shown in Figure 1. Assume that
the central manager asks for a top 2 query. From Figure 2,
we observe that node 2 has objects with a larger score dis-
tribution as compared to node 1 and node 3. Hence node 2
plays an important role to the final scores of top-k objects in
the result set with higher probability than the other nodes.
Thus more objects are expected to be sent from node 2 to
the central manager and fewer objects from node 1 or node
3. If, on the other hand, τ1 is non-uniformly divided into
T1 = 12, T2 = 8, and T3 = 10, which are assigned to nodes
1, 2, 3 respectively as the thresholds. Then, in phase 2, node
1 sends 〈object, score〉 pairs up to position 2, node 2 up to
position 5, and node 3 up to position 2. As compared with
the uniform threshold, non-uniform thresholds send 3 fewer
number of 〈object, score〉 pairs. Furthermore, we can ob-
serve that the size of the partial sum lists calculated in phase



2 for the non-uniform threshold case is smaller than that for
the uniform threshold case. Therefore, at the end of phase
2, there is a smaller candidate set and this in turn reduces
the number of objects sent through the network. Figure 2
shows the number of 〈object, score〉 pairs sent in the first
two phases of both TPUT and TPAT.

TPAT algorithm is summarized as follows:

1. Phase 1: same as TPUT.

2. Phase 2: Instead of using a uniform threshold T =
τ1/m, the central manager divides τ1 non-uniformly
into T1, . . . , Tm according to some summary statistics
sent from nodes. Then it sends Ti, . . . , Tm to node i,
..., node m respectively as their thresholds. The rest is
the same as TPUT except that the upper bound of each
object’s aggregated score calculated by Usum(O) =
S′

1
(O) + . . . + S′

m(0) where S′

i(O) = Si(O) if O has
been reported by node i, and S ′

i(O) = Ti otherwise.

3. Phase 3: same as TPUT.

Theorem 2 The TPAT algorithm correctly returns the exact
top-k objects for any data distribution in each node of a
two-tier distributed system.

Proof: To prove the correctness of TPAT, first we need to
prove that the objects returned from each node whose scores
are no less than their assigned thresholds guarantee that top-
k objects are among them. This is established by Theorem
1. Second, we need to prove that any object pruned by the
upper bound calculation in Phase 2 cannot be a top-k object.
If the upper bound of an object’s aggregated score is less
than τ2, it cannot be a top-k object since there are already
k objects whose partial sums are no less than τ2. Hence we
proved the correctness of TPAT. 2

The motivating example above only develops the general
framework for an adaptive division of the phase-1 bottom τ1

according to the data distribution in the network to help re-
duce bandwidth consumption. The main challenge is how
the data distribution can be captured approximately using
summary statistics and how they are used to guide the adap-
tive division of τ1.

Since histograms have been widely used in various
database problems and are the most commonly used form
of statistics in practice, we now investigate them as a tool
to guide the adaptive division of τ1. The main advantages
of histograms over other techniques are that they incur al-
most no run-time overhead and for real database applica-
tions, they provide low-error estimate while requiring min-
imal space [12]. Equi-depth histograms [12] are used to
illustrate the framework of our proposed technique. Note
that any kind of histograms can fit in our framework. Equi-
depth histograms are constructed by dividing the domain

into b buckets with roughly the same number of tuples in
each bucket. This number and the bucket boundaries are
stored. Equi-depth histograms usually handle skewed data
well with relatively low estimation error. For notational
convenience, the equi-depth histogram for the data in node
i is represented by Hi = {Bi

1
, . . . , Bi

bi
}. Bi

j(1 ≤ j ≤ bi)

is in the form of ([V i
min, V i

max], f), where [V i
min, V i

max] is
the boundary of bucket Bi

j and f is the total number of ob-
jects in the bucket. Hence, given a score predicate s ≥ p,
the total number of objects within the range can be approx-
imated by examining the overlapped buckets by assuming a
uniform distribution in each bucket.

In general, we need to divide the phase-1 bottom τ1

among the different histograms of the different nodes so as
to minimize the number of objects retrieved from each node.
This is a linear programming problem, whose complexity
increases as the number of buckets in the histogram per
node increases. To simplify the problem, we consider one
bucket histograms. Now the histogram for node i is repre-
sented by Hi = {Bi

1
= ([V i

min, V i
max], f i)}, i.e., each node

returns the score range of its objects and the total number of
objects at the node. Assume τ1 is divided into T1, . . . , Tm

such that
∑m

i=1
Ti = τ1. Assuming uniform score distribu-

tion at each node, we can approximate the number of objects
whose scores are no less than Ti by using the score range

and the number of objects, i.e., f i

V i
max

−V i

min

∗ (V i
max − Ti).

Assume that this number is fi(Ti). Hence, the goal of adap-
tive division of τ1 into T1, . . . , Tm is to minimize

∑m

i=1
fi(Ti) =

∑m

i=1

f i

V i
max

−V i

min

∗ (V i
max − Ti)

such that
∑m

i=1
Ti = τ1 and V i

min ≤ Ti ≤ V i
max.

k 5 10 25 50 100
TPAT 37125 37188 37599 38406 40417
TPUT 90894 91341 93111 94446 96080
Improved 53769 54153 55512 56040 55663
Percentage 59.16% 59.29% 59.62%59.34% 57.93%

Figure 3. Performance comparisons between
TPAT and TPUT

We generated a set of synthetic data sets by varying the
number of nodes and the number of objects in each node.
They are chosen to simulate the hot and cold nodes and the
score distribution in each node is uniform. From the ex-
perimental results, we observed that TPAT, as compared to
TPUT, reduces the number of 〈object, score〉 pairs trans-
mitted by 10%-60%. Figure 3 shows one of the experimen-
tal results we obtained for a data set with 20 nodes and the
number of objects for each node ranges from 500-10000.

However, when the score distribution in each node is
non-uniform, the selectivity estimation accuracy using only



one bucket for each histogram cannot be guaranteed. Us-
ing more than one bucket for each histogram to summarize
score distribution makes the optimization much more com-
plex. Since we do not know which bucket Ti will fall in,
one optimization function for the linear programming prob-
lem is not enough. In the worst case, Ti may lie within the
boundary of any bucket and thus, for m nodes, we will have
b1 ∗ b2 ∗ . . . ∗ bm optimization functions. which is compu-
tationally infeasible due to the large number of nodes.

The main contribution of TPAT is to generalize TPUT
and exploit data distributions among nodes to further en-
hance the pruning power by non-uniformly dividing the
phase-1 bottom. However, when the data distribution in
each node is not uniform, to accurately estimate data dis-
tributions incurs efficiency concern. Hence, we introduce
alternative techniques without using a priori knowledge on
data distributions.

4.2. Three-Phase Object-Ranking Based Algorithm

We now propose a new algorithm, referred to as Three-
Phase Object-Ranking based algorithm (TPOR), that is
more likely to capture the heterogeneous nature of dis-
tributed networks without using any summary statistics. Its
pruning of ineligible objects is based on object rankings in-
stead of their scores. In particular, in the second phase of
this new algorithm, instead of assigning a threshold for each
node, the central manager sends the current top-k object list
to each node. Upon receiving this “top-k” object list, each
node examines its objects and passes all of its local objects
that are ranked higher than any of the objects in the list to
the central manager. In this way, the correlation between
the object score and the object ranking are captured, which
can avoid the case where an inappropriately small phase-1
bottom τ1 is obtained by TPUT. In the following we use an
example to show how TPOR works.

Example 3 We again consider the lists shown in Figure 1
and the top-k query still requests the top 2 objects. As
described in Example 2, after the first phase, the objects
with the two highest partial sums are O4 and O3, which
can be also seen from Figure 2. Hence in phase 2, the
central manager sends the set of objects {O4, O3} to each
node. The lowest ranking of these two objects in node
1, 2, 3 are 4, 4 and 2 respectively. Therefore, node 1
sends {O5, O2, O4, O3}, node 2 sends {O4, O1, O0, O3},
and node 3 sends {O3, O4}. As compared with TPUT, 2
fewer objects are needed to be sent to the central manager.
The central manager calculates the partial sums for the ob-
jects and identifies the phase 2 bottom, τ2, as 59 since the
top 2 partial sums are Spsum(O3) = 67 and Spsum(O4) =
59. Furthermore objects O0, O1, and O2 are pruned as
Usum(O0) = 54, Usum(O1) = 54, and Usum(O2) = 57 are
less than τ2. Now the top 2 object candidate set Scandidate

is {O3, O4, O5}. In phase 3, the central manager sends
Scandidate to each node. Then each node sends the scores of
these candidate objects to the central manager. In the end,
the central manager identifies the top 2 objects as O3 and
O4.

The Three-Phase Object-Ranking based algorithm
(TPOR) is summarized as follows.

1. Phase 1: same as TPUT.

2. Phase 2: The central manager broadcasts the list L of
the top-k object IDs from the partial sum list to all the
nodes in the network.

Upon receiving the list L, for each object Oj in L, node
i finds its local score Vi,j (if Oj does not occur in the
local list, Vi,j = 0) and determines the lowest local
score Ti among all the k objects in L. Then node i
sends the list of local objects whose values are ≥ Ti to
the central manager.

Now the central manager calculates the partial sums
of all the objects seen so far, and identifies the objects
with the k highest partial sums. Let us call the kth
highest partial sum “phase-2 bottom” and denote it by
τ2. Then the central manager tries to prune away more
objects. It calculates the upper bounds of the objects
seen so far using Usum(O) = S′

1
(O) + . . . + S′

m(0)
where S′

i(O) = Si(O) if O has been reported by node
i, and S′

i(O) = Ti otherwise. Then the central man-
ager removes any object Oj from the candidate set
whose upper bound is less than τ2.

3. Phase 3: same as TPUT.

Theorem 3 The TPOR algorithm correctly returns the ex-
act top-k objects for any data distribution in each node of a
two-tier distributed system.

Proof: To prove the correctness of TPOR, first we need to
prove that the objects returned from each node in phase 2
guarantee that the top-k objects are among them. This can
be established as follows. If an object O is not reported
by a node, there are at least k objects from list L whose
scores are greater than its score in any of the node. Hence,
O cannot be a top-k object. Second, we need to prove that
any object pruned by the upper bound calculation in phase 2
cannot be a top-k object. This is similar to that of Theorem
2. 2

The difference between TPOR and TPUT lies in the fact
that in TPOR, during phase 1, the central manager sends
the entire top-k object ID list to all the nodes. We argue this
will not incur much overhead since, in practice, the object
ID can be hashed to integers, the value of k is in general



not large and the object ID list can be multicast to all the
nodes simultaneously. However, similar to TPUT, TPOR
also depends on the data distribution. For example, in phase
2, if one node does not have any object in the object ID list
calculated in phase 1, it will send all its local objects to the
central manager.

4.3. Hybrid-Threshold Algorithm

Since distributed systems have the heterogeneous nature
and the number of nodes in them is usually large, the uni-
form threshold calculated by TPUT for each node to prune
objects may be very small. This results in many more ob-
jects returned from all the nodes. Alternatively, if an object
in the object ID list calculated by TPOR in phase 1 ranks
very low in some nodes or even does not appear, then those
nodes will send almost their entire list to the central man-
ager. In this subsection, we propose a hybrid algorithm,
the Hybrid-Threshold algorithm (HT), which tries to com-
bine the advantages of both TPOR and TPUT. In the second
phase of HT, the central manager asks each node to send
objects whose scores are no less than a hybrid threshold,
which is calculated as the maximum of the uniform thresh-
old T = τ1/m from TPUT and the threshold obtained by
TPOR. However, this cannot guarantee the correctness of
the algorithm. It is possible that some objects in a node
whose scores are between the uniform threshold by TPUT
and the threshold by TPOR, are top-k objects. Thus, we
devise to add a patch phase in order to make the algorithm
correctly return the top-k objects. After phase 2, the cen-
tral manager calculates the new partial sums for all the ob-
jects seen so far and identifies the objects with the k high-
est partial sums. Let the kth partial sum denote τ2. Then
the central manager calculates Tpatch = τ2/m. Since af-
ter phase 2, the central manager knows the lower bounds
of the object scores of nodes, denoted as T1, . . . , Tm. If
Tpatch ≤ Ti, the central manager sends Tpatch to node i and
asks node i to send the objects whose scores are no less than
Tpatch. Since Tpatch is greater than T , calculated in the be-
ginning of phase 2, the total number of objects sent by HT
is no greater than that of TPUT. However, if Tpatch > Ti

for every i, there is no need for this patch phase, i.e., all
top-k object candidates have been considered. The Hybrid-
Threshold algorithm is summarized as follows:

1. Phase 1: same as TPUT.

2. Phase 2: The central manager broadcasts the list L to
all the nodes in the network and T = τ1/m as well.

Upon receiving the list L, for each object Oj in L, node
i finds its local score Vi,j (if Oj does not occur in the
local list, Vi,j = 0) and determines the lowest local
score Si

lowest among all the k objects in L. Then node i

sends the list of local objects whose values are ≥ Ti =
max(Si

lowest, T ) to the central manager.

Now the central manager calculates the partial sums
for all the objects seen so far, and identifies the objects
with the k highest partial sums. Let us call the kth
highest partial sum “phase-2 bottom” and denote it by
τ2.

3. Phase 3 (patch phase if necessary) : The central man-
ager checks if the threshold from node i, Ti in phase 2
is greater than Tpatch = τ2/m. If so, the central man-
ager will send Tpatch to node i as the threshold and ask
it to send all the objects whose scores are no less than
Tpatch.

Now the central manager calculates the partial sums
for all the objects seen so far, and identifies the objects
with the k highest partial sums. Let us call the kth
highest partial sum “phase-3 bottom” and denote it by
τ3.

Then the central manager tries to prune away more ob-
jects. It calculates the upper bounds of the objects seen
so far using Usum(O) = S′

1(O) + . . . + S′

m(0) where
S′

i(O) = Si(O) if O has been reported by node i, and
S′

i(O) = min(Ti, Tpatch) otherwise. Then the central
manager removes any object Oj from the candidate set
whose upper bound is less than τ3.

4. Phase 4: same as TPUT.

Theorem 4 The HT algorithm correctly returns the exact
top-k objects for any data distribution in each node of a
two-tier distributed system.

Proof: The proof is similar to that for the correctness of
TPAT. 2

5. Experimental Evaluation

In this section, we experimentally evaluate the perfor-
mance of our proposed algorithms TPOR and HT. Note that
TPAT is not included here due to the computational over-
head of using multi-bin histograms. However, TPAT is sig-
nificant in that it provides us the basic framework which en-
ables us to develop TPOR and HT. We implemented TPUT,
TPOR, and HT in Java and compared their performance
over various synthetic and real data sets. Since TPUT out-
performs TA in most cases as shown in [4], we do not com-
pare our proposed algorithms with TA. The performance
metric we use for the algorithms is the bandwidth con-
sumption. We are mainly concerned with the number of
〈object, score〉 pairs sent from nodes to the central man-
ager since it is the dominant factor in bandwidth consump-
tion. The control messages from the central manager to the



nodes are broadcast through a broadcast media. Their size
is very small and hence can be ignored.

5.1. Synthetic Data Sets

We generated various synthetic data sets for performance
evaluation of our proposed algorithms. These synthetic data
sets are generated as follows. Assume there are m nodes,
node 0, ..., m − 1, in the network and each node has n ob-
jects. Initially n values v1, . . . , vn are generated, which fol-
low the Zipf’s distribution [16] with a Zipf factor α. These
n values are assigned to the n objects as their scores in node
0. The scores of an object O in other nodes are generated
by using a random walk model:

S[i] = S[i − 1] + si

S[i] represents the score of object O at node i. si is a ran-
dom number in the range [−r, +r]. r is set to c×S[0] where
c is a constant which is less than or equal to 10%. By vary-
ing α and c, we can simulate different scenarios such as the
scenario in which the object rankings are similar in different
nodes or the scenario in which the object rankings vary in
different nodes.

The experimental results in this section are based on five
synthetic data sets. Each of them has m = 100 nodes and
each node has 10000 objects. These five data sets have α =
0.1, 0.3, 0.5, 0.8, 1.0 respectively. They are referred to as
Synthetic-α. Synthetic-0.1 simulates a scenario where the
rankings of objects in each node are quite different. Since
α = 0.1, the initial scores generated for objects are less
skewed. Also the constant c of the random walk model is set
to a larger value for those objects which have lower scores
in node 0 and a smaller value for those objects which have
higher scores in node 0. This ensures that some objects with
higher initial rankings have lower rankings in other nodes
and vice versa. With α increasing, the rankings of objects
among all nodes tend to be similar. When α = 1, the initial
scores generated for objects are quite skewed. Moreover,
since c is at most 10%, it is highly probable that the initial
rankings of objects remain approximately the same for the
other nodes. Thus, Synthetic-1.0 simulates a scenario in
which object rankings are very similar in different nodes.

In the following, we present the performance compar-
isons of TPUT, TPOR, and HT over synthetic data sets. The
queries are for the top-k referenced objects. We ran exten-
sive experiments over each data set by varying k from 5 to
100 and only report the results for k = 5, 10, 25, 50, 100.
Figures 4 and 5 show the performance comparisons over
Synthetic-0.1 and Synthetic-0.5 data sets respectively. We
have the following observations.

• TPOR and HT outperform TPUT, and the improve-
ment of TPOR and HT is significant. On aver-

age TPUT sends 2 to 3 times more number of
〈object, score〉 pairs than TPOR and HT do.

• When the object rankings among nodes become more
similar, i.e., Figure 5 where α = 0.5, the performance
of TPOR and HT over them becomes relatively stable
when k increases while this is not the case with TPUT.
This is because, for such cases, TPOR and HT prune
objects mainly based on their rankings, which is less
sensitive to the score variations of objects.

• For data sets in which the object rankings among nodes
are less similar, i.e., Figure 4 where α = 0.1, when
k increases, the improvement of HT over TPOR de-
creases. This is because a higher k results in more
objects sent to the central manager. Thus, the object
ID list calculated for TPOR more accurately captures
the true top-k objects. Then more nodes in HT use the
thresholds calculated by the object rankings instead of
the uniform threshold calculated by TPUT. Therefore,
fewer 〈object, score〉 pairs are eliminated by using the
uniform threshold.

• The less the object rankings among nodes are similar,
the more 〈object, score〉 pairs are eliminated by HT as
compared with TPOR. The reason is that for data sets
in which the object rankings are less similar, TPOR
may calculate a less accurate object ID list and send
more objects in the second phase. However, HT com-
bines the advantages of both TPUT and TPOR, which
can lead to significant gains.

Figure 6 examines the effect of the Zipf factor on the
performance of our algorithms where k is set to 50. As
α increases, the object rankings in different nodes become
more similar and the number of 〈object, score〉 pairs sent
by TPUT, TPOR and HT decreases. This is because the ob-
jects collected from the first phase provide more accurate
information for pruning. Also, the improvement of TPOR
and HT over TPUT becomes more pronounced. In Fig-
ure 6, for Synthetic-0.8 and Synthetic-1.0 data sets, TPOR
outperforms HT. This is because these two datasets have
very similar object rankings in different nodes and hence,
most thresholds calculated in the second phase are actually
greater than the threshold calculated by the TPUT method.
Nevertheless, HT requires the patch phase which may have
a lower threshold and thus more objects are sent during the
patch phase.

5.2. Real Data Set

We studied the performance of the algorithms on a real
data set containing the 2 hour URL access log from the 29
servers hosting the website for the 1998 World Cup Soccer



Synthetic Data Set (m = 100, Zipf factor = 0.1)

0

100000

200000

300000

400000

500000

600000

700000

k = 5 k=10 k=25 k=50 k=100

N
u

m
b

er
 o

f 
<o

b
je

ct
,s

co
re

> 
p

ai
rs



TPUT TPOR HT

Figure 4. Performance comparisons over the
Synthetic-0.1 data set

Synthetic Data Set (m = 100, Zipf factor = 0.5)

0

50000

100000

150000

200000

250000

300000

350000

400000

k = 5 k=10 k=25 k=50 k=100

N
u

m
b

er
 o

f 
<o

b
je

ct
,s

co
re

> 
p

ai
rs



TPUT TPOR HT

Figure 5. Performance comparisons over the
Synthetic-0.5 data set

Effect of Zipf factor (k = 50)

0

100000

200000

300000

400000

500000

600000

Synthetic-0.1 Synthetic-0.3 Synthetic-0.5 Synthetic-0.8 Synthetic-1.0

Zipf factor alpha

N
u

m
b

er
 o

f 
<o

b
je

ct
,s

co
re

> 
p

ai
rs



TPUT TPOR HT

Figure 6. Examine effect of Zipf factor α

on June 18, 1998. It is referred to as WorldCup98-29. This
data set contains 29 nodes and the zipped size is 759KB.

In the following, we discuss the performance compar-

isons of TPUT, TPOR, and HT over the real data set in
Figure 7. The queries are for the top-k referenced URLs.
Also note that we ran extensive experiments over the data
set by varying k from 5 to 100 and only report the results
for k = 5, 10, 25, 50, 100.

Figure 7 shows the performance comparisons over the
WorldCup98-29 data set. TPOR and HT outperform TPUT
in most cases. The saving in bandwidth consumption for
k = 10 is significant and up to 75%. The reason is that,
for the WorldCup98-29 case, the final top 10 objects have
very high rankings in all nodes. Thus, TPOR and HT can
easily avoid returning ineligible objects, which are possibly
returned by TPUT because of the lower value of τ1. TPOR
and HT perform approximately the same in most cases ex-
cept for the top 5 case. This is because, in the first phase of
TPOR, each node in the distributed system only returns its
local top 5 objects to the central manager. The number of
objects returned from all nodes is not sufficient to capture
the final top-k objects. Alternatively, some objects which
actually rank very low in some nodes are included in the
object ID list which is calculated in the first phase. This in
turn results in some nodes returning too many objects.

WorldCup98-29 Dataset

0

1000

2000

3000

4000

5000

6000

k = 5 k=10 k=25 k=50 k=100

N
u

m
b

er
 o

f 
<O

b
je

ct
,V

al
u

e>
 p

ai
r

TPUT TPOR FPOR

WorldCup98-29 Dataset

0

1000

2000

3000

4000

5000

6000

k = 5 k=10 k=25 k=50 k=100

N
u

m
b

er
 o

f 
<o

b
je

ct
,s

co
re

> 
p

ai
rs

 TPUT TPOR FPHT

WorldCup98-29 Dataset

0

1000

2000

3000

4000

5000

6000

k = 5 k=10 k=25 k=50 k=100

N
u

m
b

er
 o

f 
<o

b
je

ct
,s

co
re

> 
p

ai
rs



TPUT TPOR HT

Figure 7. Performance comparisons over
WorldCup98-29 data set

6. Conclusion and Future Work

In this paper, top-k query calculation in distributed net-
works is studied. Prior research on distributed top-k query
calculation did not take into account data distributions when
pruning ineligible objects. Non-uniformity of data distribu-
tions is likely to occur frequently due to the heterogeneous
nature of distributed systems. In this paper, we proposed
three different distributed top-k query algorithms that con-
sider data distributions in different ways. We performed
extensive experiments over both real and synthetic data sets
to evaluate our proposed algorithms as compared with prior



research. Our experimental results demonstrate that our
final algorithm, HT, is more suitable for answering top-k
queries in distributed systems when dealing with data with
different distributions. So far, we only considered two-tier
distributed systems. One natural step for our future work is
to study the top-k query problem over distributed systems
with hierarchical structures such as peer-to-peer systems.

References

[1] B. Babcock and C. Olston. Distributed top-k moni-
toring. In Proc. of Intl. Conf. on Managment of Data
(SIGMOD), pages 563–574, 2003.

[2] W-T. Balke, W. Nejdl, W. Siberski, and U. Thaden.
Progressive distributed top-k retrieval in peer-to-peer
networks. In Proc. of Intl. Conf. on Data Engineering
(ICDE), 2005, to appear.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k se-
lection queries over relational databases: Mapping
strategies and performance evaluation. ACM Trans.
on Database Systems, 27(2):153–187, 2002.

[4] P. Cao and Z. Wang. Efficient top-k query calculation
in distributed networks. In Proc. of Intl. Symposium on
Principles Of Distributed Computing (PODC), pages
206–215, 2004.

[5] S. Chaudhuri and L. Gravano. Evaluating top-k selec-
tion queries. In Proc. of Intl. Conf. on Very Large Data
Bases (VLDB), pages 397–410, 1999.

[6] R. Fagin. Combining fuzzy information from multi-
ple systems. In Proc. of Intl. Symp. on Principles of
Database Systems (PODS), pages 216–226, 1996.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggrega-
tion algorithms for middleware. In Proc. of Intl. Sym-
posium on Principles of Database Systems (PODS),
pages 102–113, 2001.

[8] U. Guntzer, W-T. Balke, and W. Kiessling. Optimizing
multi-feature queries in image databases. In Proc. of
Intl. Conf. on Very Large Data Bases (VLDB), pages
419–428, 2000.

[9] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Sup-
porting top-k join queries in relational databases. In
Proc. of Intl. Conf. on Very Large Data Base (VLDB),
pages 754–765, 2003.

[10] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and
A. K. Elmagarmi. Rank-aware query optimization.
In Proc. of Intl. Conf. on Managment of Data (SIG-
MOD), pages 203–214, 2004.

[11] S. Nepal and M.V. Ramakrishna. Query processing
issues in image (multimedia) databases. In Proc. of
Intl. Conf. on Data Engineering (ICDE), pages 22–31,
1999.

[12] W. Poosala, P.J. Haas, Y.E. Ioannidis, and E.J. Shekita.
Improved histograms for selectivity estimation of
range predicates. In Proc. of Intl. Conf. on Manage-
ment of Data (SIGMOD), pages 294–305, 1996.

[13] M. Theobald, G. Weikum, and R. Schenkel. Top-
k query evaluation with probabilistic guarantees. In
Proc. of Intl. Conf. on Very Large Data Bases (VLDB),
pages 648–659, 2004.

[14] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and
D. Srivastava. Ranked join indices. In Proc. of Intl.
Conf. on Data Engineering (ICDE), pages 277–288,
2003.

[15] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient
maintenance of materialized top-k views. In Proc. of
Intl. Conf. on Data Engineering (ICDE), pages 189–
200, 2003.

[16] G. K. Zipf. Human Behaviour and the Principle
of Least Effort: an Introduction to Human Ecology.
Addison-Wesley, 1949.


