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Abstract

The Impartial Anonymous and Neutral Culture (IANC) model of social choice assumes that

the names of the voters as well as the identity of the alternatives are immaterial. This models

allows for comparison of structural properties social choice rules (SCRs) for large values of the

parameters empirically: whether Condorcet winners exist, whether Borda and Condorcet winners

are identical, whether Plurality with run-off winners are among Borda winners, for example.

We derive an exact formula for the number of equivalence classes of preference profiles (called

roots) in this model. The number of terms in the formula depends only on the number of al-

ternatives m, and not the much larger number of voters n. In IANC, the equivalence classes

defining the roots do not have the same size, making their uniform generation for large values

of the parameters nontrivial. We show that the Dixon-Wilf algorithm can be adapted to this

problem, and describe a symbolic algebra routine that can be used for Monte-Carlo algorithms

for the study of various structural properties of SCRs.

1 Introduction

There are a few basic models used for the analysis of the properties and behaviors of various social

choice rules (SCRs) through probabilistic methods designed to generate voter preferences. Among

these, Impartial Culture (IC) uses preference profiles (which show how each of n voters in an electorate

ranks m alternatives as an m × n matrix) in which each is profile is equally likely. This model has

been introduced in social choice literature by Guilbaud [9]. For linearly ordered m alternatives chosen

by n voters, IC assumes that each voter independently selects her preference ranking according to a

uniform distribution, resulting in a total number of m!n profiles.

The Impartial Anonymous Culture (IAC) model on the other hand, is based on the presentation of

voter preferences by anonymous profiles where the names of the voters are neglected. As introduced

by Fishburn and Gehrlein [6], an anonymous profile is the representative profile of an anonymous

equivalence class (AEC) which is the set of preference profiles that can be generated from each other

via permuting only the names of the voters. IAC assumes that each AEC is equally likely. The number
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of AECs for linearly ordered m alternatives by n voters is given by the binomial coefficient
(

n+m!−1
m!−1

)

,

as this is a balls-in-boxes type of a counting problem (see Feller [5]).

The Impartial Anonymous and Neutral Culture (IANC) model that is studied here, treats voter

preferences through a class of preference profiles where not only the names of the voters, but also

the names of the alternatives are immaterial. This approach reflects two basic axioms of social

choice theory: Anonymity and Neutrality. Anonymity requires voters to be treated equally whereas

neutrality prohibits a SCR from having a built-in bias for or against any one or more alternatives. The

equivalence classes in this model are the anonymous and neutral equivalence classes (ANECs). The

equivalence classes as well as equivalence class representatives are also referred to as roots. Thus, each

root represents a structurally distinct preference profile under simultaneous fulfillment of anonymity

and neutrality axioms. We denote by R(m, n) the number of roots for linearly ordered m alternatives

by n voters.

This paper provides a formula for R(m, n), which is then used to provide an algorithm that

generates roots from the uniform distribution. This allows for a testbed that can be used to answer

various questions about the properties of anonymous and neutral SCRs by the Monte-Carlo method.

Properties such as the likelihood of the existence of a Condorcet winner, the probability that the

Borda and the Condorcet winners are identical, the probability that Plurality winners are a subset of

Borda winners, etc., are among questions that can be empirically answered.

We use ideas from the theory of symmetric functions to obtain a formula for R(m, n) which is a

sum of terms where the number of terms depends only on m and not the much larger n. There is

a combinatorial explosion in the computation of R(m, n) for large values of m and n, and a simple

enumeration of roots is insufficient to select representatives from the uniform distribution. Further-

more, the ANECs do not all have the same size. This makes uniform generation appear somewhat

problematic, but we use the Dixon-Wilf algorithm along with the formula for R(m, n) to overcome

this problem.

This paper is organized as follows. Section 2 outlines the basic ideas and introduces the notation

we need. The first formula for the number of roots R(m, n) appears in Theorem 1 of Section 3. By

using a result from the theory of symmetric functions (Theorem 2), we obtain the simpler expression

for R(m, n) given in Theorem 3. This immediately yields a number of explicit formulas which we

derive for small values of m in Section 4. In Section 5 we outline the Dixon Wilf algorithm, and

indicate its use to generate roots from the uniform distribution. A symbolic algebra routine built on

this theory is then described, and sample Mathematica runs are given.

The basic ideas of discrete mathematics, group theory and group actions to the extent used here

can be found in Feller [5], Wielandt [13], and Kerber [10]. Ideas related to the symmetric functions

can be found in MacDonald [11]. The main reference on SCRs is Moulin [12]. IC and IAC models are

presented in more detail in Berg and Lepelley [1] and Gehrlein [7].
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2 Preliminaries

In this section, we give a brief outline of the elements of permutations, integer partitions, and group

actions on finite sets and their application to the notion of roots. We start with preference profiles,

and give an example that demonstrates both type of equivalence classes of preference profiles: AEC,

and ANEC.

A preference profile is an m × n matrix which shows how each of the n voters linearly orders m

alternatives. We assume that the voters correspond to the columns and the alternatives correspond to

the rows of the matrix. As an example, let us consider a case with n = 4 voters and two alternatives a1

and a2. There are two possible linear preference rankings for two alternatives: a1 is strictly preferred

to a2, or a2 is strictly preferred to a1.

Example: For m = 2 and n = 4, m!n = 16 preference profiles are as listed below.

x1 =
a1 a1 a1 a1

a2 a2 a2 a2

x2 =
a2 a2 a2 a2

a1 a1 a1 a1

x3 =
a1 a1 a2 a2

a2 a2 a1 a1

x4 =
a1 a2 a1 a2

a2 a1 a2 a1

x5 =
a2 a2 a1 a1

a1 a1 a2 a2

x6 =
a2 a1 a2 a1

a1 a2 a1 a2

x7 =
a1 a2 a2 a1

a2 a1 a1 a2

x8 =
a2 a1 a1 a2

a1 a2 a2 a1

x9 =
a1 a1 a1 a2

a2 a2 a2 a1

x10 =
a1 a1 a2 a1

a2 a2 a1 a2

x11 =
a1 a2 a1 a1

a2 a1 a2 a2

x12 =
a2 a1 a1 a1

a1 a2 a2 a2

x13 =
a1 a2 a2 a2

a2 a1 a1 a1

x14 =
a2 a1 a2 a2

a1 a2 a1 a1

x15 =
a2 a2 a1 a2

a1 a1 a2 a1

x16 =
a2 a2 a2 a1

a1 a1 a1 a2

The
(

5
1

)

= 5 AECs for this example are

{x1}, {x2}, {x3, x4, x5, x6, x7, x8}, {x9, x10, x11, x12}, {x13, x14, x15, x16} (1)

The profiles x9 and x10 are in the same AEC since x10 is obtained from x9 by interchanging the 3-rd

and the 4-th columns. Preference profiles x9 and x15 are in different AECs as no permutation of the

columns of x9 will give x15.

When we construct the ANECs, in addition to renaming the columns, there are two possible ways

of renaming the alternatives: one leaves the names of the alternatives intact, and the other switches

a1 and a2. If we apply these operations to the AECs above, we obtain a coarser partition of the 16

preference profiles, giving us three roots (ANECs) θ1, θ2, θ3:

θ1 = {x1, x2}, θ2 = {x3, x4, x5, x6, x7, x8}, θ3 = {x9, x10, x11, x12, x13, x14, x15, x16} (2)

Therefore R(2, 4) = 3. In (2, preference profiles x9 and x15 are in the same equivalence class since x15

is obtained from x9 by interchanging the 3-rd and the 4-th columns, and simultaneously switching a1

and a2.
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Let [n] = {1, 2, . . . , n}. We denote by Sn the group of permutations on [n]. A group G acts on a

finite set Ω if each g ∈ G gives rise to a permutation of the elements of Ω, such a way that the identity

element does nothing, while a composition of actions corresponds to the action of the composition.

We denote by xg the image of x ∈ Ω under the permutation of Ω induced by g. The subset of Ω

{xg | g ∈ G}

is called the orbit of x ∈ Ω. A group action splits up Ω into a disjoint union of subsets

Ω = θ1 + θ2 + · · · + θR (3)

where each θi is a group orbit and the “+” signifies disjoint union. The θi are the equivalence classes

under the action of G on Ω where we define x, y ∈ Ω to be equivalent iff there exists some g ∈ G such

that y = xg . If xg = x then x is fixed by g. For g ∈ G let

Fg = {x ∈ Ω | xg = x}

denote the set of elements of Ω fixed by g. Consider now a finite group G acting on a set Ω. The

number R of equivalence classes can be computed by the formula

R =
1

|G|

∑

g∈G

|Fg | (4)

which is known as the Frobenius lemma, or Burnside lemma. For detailed information on permutations

groups and their actions on finite sets, we refer the reader to Kerber [10], or Wielandt [13].

In the setting of IANC, a preference profile of voters [n] and alternatives A = {a1, a2, . . . , am} is

represented as an m×n matrix in which each column is a permutation of A. Let Ω = Ω(m, n) denote

the set of these preference profiles. Evidently, |Ω| = (m!)n.

Roots can be characterized as the orbits of the action of the product group Sn×Sm on Ω = Ω(m, n).

R = R(m, n) is then the number of roots. Elements of Sn ×Sm are pairs of permutations (σ, τ) with

σ ∈ Sn and τ ∈ Sm, where the group operation is componentwise composition of permutations. In

the action of g = (σ, τ) on Ω, a preference profile xg is obtained from the profile x by permuting the

columns (voters) according to σ, and simultaneously permuting the alternatives by mapping each ai

to aτ(i), i = 1, 2, . . . , m. Representing permutations by their cycle factorization, the following example

illustrates this action for n = 4 voters and alternatives A = {a1, a2}:.

Example:

x =
a1 a1 a2 a2

a2 a2 a1 a1

g = ((13)(24), (1)(2)) → xg =
a2 a2 a1 a1

a1 a1 a2 a2

g = ((13)(24), (12)) → xg =
a1 a1 a2 a2

a2 a2 a1 a1

= x

In particular, g = ((13)(24), (12)) fixes x.
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R(m, n) can now be computed using the Frobenius lemma (4). To state our results we need

more notation. A partition λ of an integer n is a weakly decreasing sequence of nonnegative integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) with n = λ1 + λ2 + · · · + λn. Each of the integers λi > 0 is called a part

of λ. For example λ = (3, 2, 2) is a partition of n = 7 into three parts. It has two parts of size two

and one part of size three. If λ is a partition of n, then this is denoted by λ ` n. Each partition of

n has a type denoted by the symbol 1α12α2 · · ·nαn , which signifies that λ has αi parts of size i for

1 ≤ i ≤ n. For example the type of λ = (3, 2, 2) is 10223140506070. We can omit the zeros that appear

as exponents and write the type of λ as 2231.

A permutation σ of [n] defines a partition of n where the parts of the partition are the cycle lengths

in the cycle decomposition of σ. The cycle type of σ is defined as the type of the resulting partition.

For example σ = (142)(35)(67) has cycle type 2231. For any λ ` n of type 1α12α2 · · ·nαn , define the

number

zλ = 1α12α2 · · ·nαnα1!α2! · · ·αn!. (5)

It is well known that the number of permutations of cycle type 1α12α2 · · ·nαn is given by z−1
λ n! where

λ is the partition of cycle lengths of σ. For example in the symmetric group S7, there are

7!

22312!1!
= 210

permutations having the same cycle type 2231 as σ. The collection of permutations which have a

given cycle type is called a conjugacy class. In the group Sn ×Sm conjugacy classes are indexed by a

pair of partitions λ ` n, µ ` m. If C is the conjugacy class where the cycle types are given by λ and

µ, then |C| = n!m! z−1
λ z−1

µ .

For integers d and n we use the symbol d |n to mean that d divides n evenly. For any statement

S the indicator function of S is

χ(S) =







1 if S is True,

0 if S is False

For partitions λ and µ, GCD(λ) denotes the greatest common divisor (GCD) of the parts of λ, and

LCM(µ) denotes the least common multiple (LCM) of the parts of µ.

For an integer k with 0 ≤ k ≤ x, extend the definition of the ordinary binomial coefficient
(

x
k

)

to

nonintegral values of x by setting

(

x

k

)

=











x!
k!(x−k)! if x is integral,

0 otherwise

(6)

3 Counting roots

Theorem 1 The number of roots R(m, n) is given by

R(m, n) =
∑

λ ` n

∑

µ ` m

χ(LCM(µ) | GCD(λ)) z−1
λ z−1

µ m!α1+α2+···+αn (7)

where the type of λ is 1α12α2 · · ·nαn and zλ is as defined in (5).
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Proof As we have remarked, the number of roots R(m, n) is given by the number of orbits R in the

decomposition (3). We first determine the nature of the fixed points of g ∈ Sn ×Sm, and then use the

Frobenius lemma to prove this theorem. Suppose g = (σ, τ) with the corresponding partitions λ ` n

and µ ` m. Suppose the type of λ is 1α12α2 · · ·nαn . Then

|Fg | =







m!α1+α2+···+αn if LCM(µ) | GCD(λ),

0 otherwise

(8)

To prove this claim, suppose xg = x. Let t be the order of τ in Sm. Thus t is the smallest integer

such that the permutations τ, τ2, . . . , τ t are all distinct. Consider a cycle c in the cyle decomposition

of σ. Without loss of generality, we can assume that c = (1 2 · · · k), and the first column of x

is (a1, a2, . . . , am). Under the action of g on x, the first column of x is mapped to the second

column, the second column to the third, etc., and finally the k-th column is mapped back to the

first. At the same time under the action of τ , (a1, a2, . . . , am) is mapped to (aτ(1), aτ(2), . . . , aτ(m));

(aτ(1), aτ(2), . . . , aτ(m)) to (aτ2(1), aτ2(2), . . . , aτ2(m)), etc, and finally (aτ t−1(1), aτ t−1(2), . . . , aτ t−1(m))

back to (a1, a2, . . . , am). It follows that if x is fixed by g, then the first k columns of x must be made

up of a number of repetitions of the block of t columns

a1 aτ(1) aτ2(1) · · · aτ t−1(1)

a2 aτ(2) aτ2(2) · · · aτ t−1(2)

...
...

... · · ·
...

am aτ(m) aτ2(m) · · · aτ t−1(m)

(9)

Therefore t |k. Since this holds for any cycle of σ, t divides the GCD of the cycle lengths of σ, which is

GCD(λ). On the other hand, the order of a permutation is the LCM of its cycle lengths, and therefore

t = LCM(µ). Conversely, if LCM(µ) | GCD(λ) then the above argument shows that xg = x. Hence

xg = x iff LCM(µ) | GCD(λ). The quantity α1 + α2 + · · · + αn is the total number of cycles of σ.

The columns of x permuted by each cycle of σ is determined by a single column of the cycle, which

can be picked one of m! ways. It follows that the number of fixed points of

|Fg | = χ(LCM(µ) | GCD(λ)) m!α1+α2+···+αn (10)

Since |Fg | depends only on the cycle structure of σ and τ , we can make the summation in the Frobenius

lemma (4) over pairs of partitions that define the conjugacy classes, and multiply the expression in

(10) by the cardinality of the corresponding conjugacy class. This gives

R(m, n) =
1

n!m!

∑

λ ` n

∑

µ ` m

χ(LCM(µ) | GCD(λ)) n!m! z−1
λ z−1

µ m!α1+α2+···+αn

which is (7). •

The expression in (7) for R(m, n) is a double sum, and the number of terms involved in the

summation is the product of the number of partitions of n and the number of partitions of m. Since

the number of partitions of an integer grows exponentially, the evaluation of R(m, n) via (7) does not

look practical.
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Suppose however that LCM(µ) = d. Then the contribution of µ to the sum (7) can be written as

z−1
µ

∑

λ ` n

d |λi, ∀i

z−1
λ m!α1+···+αn (11)

To be able to use this expression to simplify the number of terms in the computation of R(m, n), we

need to evaluate the sum
∑

λ ` n

d |λi, ∀i

z−1
λ m!α1+···+αn (12)

Fortunately, we can find a closed form expression for (12) by using methods from the theory of

symmetric functions.

Theorem 2 For positive integers n, r, d with d | r,

∑

λ ` n

d |λi, ∀i

z−1
λ rα1+···+αn =

(

n
d

+ r
d
− 1

r
d
− 1

)

(13)

where the type of λ is λ is 1α12α2 · · ·nαn and the binomial coefficient is defined as in (6).

Proof Let S denote the left hand side of (13). Unless d divides each λi (and consequently n), S is

zero. Otherwise let ρi = λi

d
for i = 1, 2, . . . , n. Then ρ ` n

d
. If the type of λ is 1α12α23α3 · · ·, then the

type of ρ is 1αd2α2d3α3d · · ·. Then

S =
∑

λ ` n

d |λi, ∀i

rαd+α2d+α3d+···

dαd(2d)α2d(3d)α3d · · ·αd!α2d!α3d! · · ·

=
∑

ρ ` n

d

rαd+α2d+α3d+···

dαd(2d)α2d(3d)α3d · · ·αd!α2d!α3d! · · ·

=
∑

ρ ` n

d

z−1
ρ

( r

d

)αd+α2d+α3d+···

To evaluate this last expression, we use an identity from the theory of symmetric functions. The

n-th power sum pn and the n-th homogeneous (or complete) symmetric function hn in the variables

x1, x2, . . . , xN are defined by setting

pn =
N

∑

i=1

xn
i (14)

hn =
∑

1≤i1≤i2≤···≤in≤N

xi1xi2 · · ·xin
(15)

For any partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) of n, define

pλ =
n

∏

i=1

pλi
(16)
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It can be shown that (see MacDonald [11])

hn =
∑

λ ` n

z−1
λ pλ

Take the number of variables N = r
d

and put each xi = 1. Then each pλi
evaluates to r

d
. Therefore pλ

evaluates to ( r
d
)
α1+α2+···+αn where the type of λ is 1α12α2 · · ·nαn . In our case the partition in question

is ρ and consequently pρ evaluates to ( r
d
)
α1+α2d+α3d+···

. Therefore S is given by n-th homogeneous

symmetric function hn in the variables x1, x2, . . . , x r

d
where each variable is set equal to 1. From

the definition (15), this is a balls-in-boxes type of a count: it is the number of ways of distributing
n
d

indistinguishable balls into r
d

distinguishable boxes (see Feller [5]). This is given by the binomial

expression on the right hand side of (13). •

Combining the two results we obtain

Theorem 3

R(m, n) =
∑

µ ` m

z−1
µ

(n
d

+ m!
d

− 1
m!
d

− 1

)

(17)

where d = d(µ) = LCM(µ), the binomial coefficient is defined as in (6), and zµ is as defined in (5).

Note that the summation in (17) is over partitions of m only, and is independent of the number

of voters n.

4 Explicit formulas

Theorem 3 has some immediate implications. We obtain explicit formulas for the number of roots for

small values of m as follows.

4.1 n voters and m = 2 alternatives

For m = 2, the partitions of m are (1, 1) and (2) with LCM(1, 1) = 1, LCM(2) = 2 and z(1,1) =

z(2) = 2. Therefore

R(2, n) =
1

2

(

n + 1

1

)

+
1

2

(

n
2

0

)

(18)

This is another way of saying

R(2, n) =











1
2n + 1 if n is even,

1
2 (n + 1) if n is odd

4.2 n voters and m = 3 alternatives

For m = 3, there are three partitions (1, 1, 1), (2, 1), and (3) of m with LCM(1, 1, 1) = 1, LCM(2, 1) =

2, LCM(3) = 3, and z(1,1,1) = 6, z(2,1) = 2, and z(3) = 3. Thus

R(3, n) =
1

6

(

n + 5

5

)

+
1

2

(

n
2 + 2

2

)

+
1

3

(

n
3 + 1

1

)

(19)
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4.3 n voters and m = 4 alternatives

The partitions of m = 4 are (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4) with

LCM(1, 1, 1, 1) = 1, LCM(2, 1, 1) = LCM(2, 2) = 2, LCM(3, 1) = 3, LCM(4) = 4,

z(1,1,1,1) = 24, z(2,1,1) = 4, z(2,2) = 8, z(3,1) = 3, z(4) = 4

Therefore

R(4, n) =
1

24

(

n + 23

23

)

+
3

8

(

n
2 + 11

11

)

+
1

3

(

n
3 + 7

7

)

+
1

4

(

n
4 + 5

5

)

4.4 n and m! relatively prime

In this case, only the term corresponding to the partition is µ = (1, 1, . . . , 1) in the sum (17) is nonzero.

Since with zµ = m! for this partition, an immediate corollary is the following result [8]:

Corollary When n and m! are relatively prime, the number of roots R(m, n) is given by

R(m, n) =
1

m!

(

n + m! − 1

m! − 1

)

Remark: By means of a symbolic algebra package such as Mathematica, we can easily calculate the

value of R(m, n) for relatively large values of m and n using the general formula in Theorem 3. As

examples

R(5, 5) = 1876255

R(5, 10) = 2049242056940

R(5, 20) = 5908312923863263889174

R(5, 30) = 214658568936630826879925768420

as well as incomprehensibly large values such as

17758069318650119858962669239674956879327271587948512064321599292646589480794890970501606240176140489486440

for R(10, 20).

5 Dixon-Wilf algorithm and uniform generation of roots

The importance of being able to access the values of R(m, n) for large and unconstrained values of

m and n becomes apparent when we try to generate roots from the uniform distribution. The ability

to compute the value of R(m, n) together with the Dixon-Wilf algorithm allows us to construct a

symbolic package to generate the roots such that each root is produced with probability 1/R(m, n).

Suppose in general that a group of permutations G acts on a set Ω. Consider the decomposition of

Ω into orbits θ1, θ2, . . . , θR as in (3). If the number of orbits R is known, then the following procedure,

usually referred to as the Dixon-Wilf algorithm (Dixon and Wilf [2]) can be used to generate an orbit

θ from the uniform distribution.
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5.1 Basic elements of the Dixon-Wilf Algorithm

1. Select a conjugacy class C ⊆ G with probability

pC =
|C||Fg |

R · |G|

where g is some member of C.

2. Select uniformly at random some x ∈ Fg .

3. Return the orbit θ that contains x.

The crucial aspect of the Dixon-Wilf algorithm is that it is guaranteed to return an orbit (or the

representative x of the orbit) distributed uniformly over the set of all orbits. The task of having to

generate an orbit from the uniform distribution is transferred to being able to select a conjugacy class

in G with a certain probability as given in the first step of the Dixon-Wilf algorithm, and then being

able to pick uniformly a random profile from a fixed point set Fg .

We calculate the number of orbits R = R(m, n) by using Theorem 3. In addition, we can calculate

the necessary parameters as required in the Dixon-Wilf algorithm such as the size of the conjugacy

classes for the product group of IANC.

A conjugacy class C ⊆ Sn × Sm is defined by a pair of partitions λ ` n, µ ` m. Suppose the type

of λ is 1α12α2 · · ·nαn and g = (σ, τ) is an arbitrary element of C. We have

|G| = n!m!

|C| = n!m! z−1
λ z−1

µ

|Fg | = χ(LCM(µ) | GCD(λ)) m!α1+α2+···+αn

R = R(m, n)

Therefore we need to pick C with probability

pC =
χ(LCM(µ) | GCD(λ)) z−1

λ z−1
µ m!α1+α2+···+αn

R(m, n)

Consider the list L = {(πi, fi) | i = 1, 2, . . . , R} where each πi is a pair of partitions λ ` n, µ ` m

with LCM(µ) | GCD(λ). For such a pair πi, the corresponding fraction fi is defined by

fi =
χ(LCM(µ) | GCD(λ)) z−1

λ z−1
µ m!α1+α2+···+αn

R(m, n)

Thus f1, f2, . . . , fR is an ordering of the nonzero probabilities pC of conjugacy classes. Compute the

partial sums

s1 = f1, s2 = f1 + f2, s3 = f1 + f2 + f3, . . . , sR = f1 + f2 + · · · + fR = 1

If we generate a real number in x ∈ [0, 1] uniformly, the probability that si−1 < x ≤ si is precisely

the probability pC , where C is the i-th conjugacy class in the ordering of the elements of L. Suppose

the selected class is defined by the pair of partitions λ ` n, µ ` m. We pick σ ∈ Sn of type λ by
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writing the integers 1, 2, . . . , n, and grouping them into cycles in the order they appear. For instance

for λ = (3, 2, 2) this yields σ = (1 2 3)(4 5)(6 7). Similarly we construct τ ∈ Sm by considering the

type of µ and grouping the integers 1, 2, . . . , m accordingly in the order they appear. The resulting

pair is our element g ∈ C.

Finally, we need to return a preference profile x ∈ Fg , making sure that x is selected uniformly

at random from Fg . This is easily accomplished by picking uniformly at random a permutation of

a1, a2, . . . , am for every cycle of σ, and by placing the permuted alternatives as the smallest indexed

column in each cycle. The other columns of the cycle are then filled up by the images of this initial

permuted column under the iterates of τ as in (9).

We have implemented this idea to generate roots from the uniform distribution as a Mathematica

program called GenerateRoot[m, n]. The program takes a pair of integers m, n as input and generates

an m× n preference profile x. The resulting x is guaranteed to be distributed over the R(m, n) roots

uniformly. This is the surprising application of the Dixon-Wilf algorithm.

Example: We have run the uniform root generation algorithm k times, for k running from 10 to

10000 in powers of 10 for m = 2 and n = 4. For each x returned by GenerateRoot[2, 4] we checked

whether x ∈ θ1, x ∈ θ2, or x ∈ θ3 (see (2) in Section 2). Pr[Hits from orbit θ1] is the ratio of the

number of x ∈ θ1 to k. Pr[Hits from orbit θ2] and Pr[Hits from orbit θ3] are calculated similarly.

Table 1 shows the resulting computed probabilities. Since there are 3 roots θ1, θ2, θ3 in this case, the

actual probability for each is 0.333...

No. of trials k Pr[Hits from orbit θ1] Pr[Hits from orbit θ2] Pr[Hits from orbit θ3]

10 0.2 0.5 0.3

100 0.34 0.29 0.37

1000 0.352 0.348 0.3

10000 0.3235 0.3396 0.3369

Figure 1: Random generation of roots from the uniform distribution with n = 4 voters and m = 2 alternatives. Each

trial is the generation of a root from Ω(2, 4) by using the Mathematica routine GenerateRoot[2, 4].

5.2 Likelihood of Condorcet winner to be a Plurality winner

As an example of applications of IANC and GenerateRoot[m, n], we describe a Monte-Carlo experiment

to compute the probability of Condorcet and Plurality Rule’s winners to coincide for varying values

of m and n.

Recall that an alternative is a Condorcet-winner if it is preferred to each other alternative by a

majority of voters. However, a Condorcet Paradox occurs when social outcome is not transitive, even

though the individual preferences are not, due to the conflict in majority wishes.

Plurality Rule simply chooses the alternatives which are most popular as top-ranked candidates in

a profile. Consider the likelihood of Condorcet Rule and Plurality Rule choosing the same winner. For
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simplicity, consider only odd values of n which guarantees that the Condorcet winner, when it exists,

is unique. Plurality can choose multiple winners. In this case, we check if any one of the Plurality

winners is the Condorcet winner.

The procedure followed for the experiment is as follows: Given n and m, let GenerateRoot[m, n]

generate a random root uniformly. If the generated profile x does not have a Condorcet winner, then

we simply generate another root. For each root that does have a Condorcet winner, say ai, we check

and see if ai is also chosen by Plurality. For this we consider the first row of x and make sure that

ai occurs in this row at least as many times as every aj , for 1 ≤ j ≤ m. The ratio of the number of

roots in which the Condorcet winner is also a plurality winner to the total number of roots generated

which have Condorcet winners is an approximation to the probability that a Condorcet winner is also

a Plurality winner.

A plot of these probabilities for various n and m computed by using k = 1000 Condorcet winners

for each case, appears in Figure 2.

11 21 31 41

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

m=5

m=4

m=3

Figure 2: The probability that the Condorcet winner is also a Plurality winner in the IANC model. The raw data

has been smoothed out by a 5-term moving-average filter. The horizontal axis is the number of voters n, through odd

integers from 3 to 41. The number of samples used is k = 1000 per m/n pair.

6 Concluding remarks

Based on two fundamental axioms of social choice, anonymity and neutrality, the IANC model uses

root profiles for generating public preferences, where the names of both the voters and the alternatives

are ignored.

We derived an efficient formula for their number, and described the the ingredients of a symbolic

algebra package for the generation of roots from the uniform distribution by means of the Dixon-Wilf

algorithm. In this way, IANC allows for the analysis of the behaviors of anonymous and neutral SCRs

with respect to varying number of alternatives and voters by means of Monte-Carlo methods.
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Applications of this model and the procedure GenerateRoot[m, n] to the study of experimental

comparisons for various SCRs is in progress (Eğecioğlu and Giritligil [3], [4]).
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[3] Eğecioğlu, Ö. and A. E. Giritligil, “Public Preference Structures with Impartial Anonymous and

Neutral Culture Model,” preprint.
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