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Abstract

Most space-sharing parallel computers presently operdted
high-performance computing centers use batch-queuintgpregs
to manage processor allocation. In many cases, users vgshin
to use these batch-queued resources have the option ofiogoos
between different queues (having different charging Jgpesen-
tially on a number of different machines where they have ssce
In such a situation, the amount of time a user’s job will wait i
any one batch queue can significantly impact the overall #@me
user waits from job submission to job completion. It thusobees
desirable to provide a prediction for the amount of time a ¢ain
expect to wait in the queue at a given time. Further, it is raltto
expect that attributes of an incoming job, specifically thenber
of processors requested and the amount of time requestgtit mi
impact that job’s wait time.

Previous work has shown that it is possible to determine mean
ingful upper-bounds on queuing delay using a simple norupaitric
technique, particularly when site administrators providéorma-
tion for how jobs should be grouped by processor count.

In this work, we explore the possibility of generating moce a
curate predictions by automatically grouping jobs havimgitar
attributes using model-based clustering. Moreover, wdémpent
this clustering technique for a time series of jobs so thadfm-
tions of future wait times can be generated in real time.

Using trace-based simulation on data from 7 machines over a
9-year period from across the country, comprising over ofile m
lion job records, we show that clustering either by requédsime
or by requested number of processors generally produceg mor
accurate predictions than the earlier more naive approaghieat
automatic clustering outperforms administrator-detened clus-
terings, and that clustering by requested time or the prodfice-
quested nodes and requested execution time is substamtiate
effective than clustering by requested number of procsssor

*We have chosen a somewhat obscure title for this work in an
effort to improve the anonymity of our submission. We wiliitle
the paper appropriately should it be accepted.

fThis work was supported by grants from the National Science
Foundation numbered CCF-0331654 and NGS-0305390.

1. Introduction

Typically, high-performance multi-processor computetgses
are managed usingpace sharinga scheduling strategy in which
each program is allocated a dedicated set of processotsefaiut
ration of its execution. In production computing settingsers
prefer space sharing to time sharing, since dedicated gsocac-
cess isolates program execution performance from thetsftdc
a competitive load. Because processes within a partitionato
compete for CPU or memory resources, they avoid the cache and
translation look-aside buffer (TLB) pollution effects thigme slic-
ing can induce. Additionally, inter-process communicati@curs
with minimal overhead, since a receiving process can nevprd
empted by a competing program.

For similar reasons, resource owners and administraters pr
fer space sharing as well. As long as the time to allocate-part
tions to, and reclaim partitions from, parallel programsiigll, no
compute cycles are lost to time-sharing overheads, andimeso
are efficiently utilized. Thus, at present, almost all preichn
high-performance computing (HPC) installations use soonm f
of space sharing to manage their multi-processor and closte
chines.

Because each program in a space-shared environment runs in
its own dedicated partition of the target machine, a progcam
not be initiated until there are a sufficient number of preoes
available for it to use. When a program must wait before it can
be initiated, it is queued as a “job* along with a description of
any parameters and environmental inpueg( input files, shell
environment variablestc) it will require to run. However, be-
cause of the need both to assign different priorities tosuard to
improve the overall efficiency of the resource, most inatahs
do not use a simple first-come-first-served (FCFS) queuisg di
cipline to manage the queue of waiting jobs. Indeed, a nurober
gueue management systems, including PBS [21], LoadLejgler
EASY [17], NQS/NQE [20], Maui [19] and GridEngine [13] each
offers a rich and sophisticated set of configuration optibas al-
low system administrators to implement highly customizedrp

1we will use the term “job” throughout this paper to refer toea d
scription of a program and its execution requirements toatea-

ing system can use to initiate a program once the necessary re
source become available.



ity mechanisms.

Unfortunately, while these mechanisms can be used to balanc
the need for high job throughput (in order to ensure machine e
ficiency) with the desires of end-users for rapid turnarotimes,
the interaction between offered workload and local quedisgi-
pline makes the amount of time a given job will wait highly ivar
able and difficult to predict. Users may wait a long time — con-
siderably longer the the job’s eventual execution time —afgob
to begin executing. Many users often find this potential fgone-
dictable queuing delay particularly frustrating sincepinduction
settings, theycan make fairly reliable predictions of how long a
program will execute once it starts running. Without anigbtb
predict its queue waiting time, however, users cannot phably
to have results by a specific point in time.

In this paper, we present a method for automatically predijct
bounds, with quantitative confidence levels, on the amofiitne
an individual job will wait in queue before it is initiatedrfexecu-
tion on a production “batch scheduled” resource. The metiood
sists of three interacting but essentially independentpmorants:
a percentile estimator, a change-point detector, and aecing
procedure. At a high level, clustering is used to identifg5mf
similar characteristics. Within each cluster, job subiniss are
treated as a time series and the change-point detectoedtn
regions of stationarity. Finally, the percentile estinmatomputes
a quantile that serves as a bound on future wait time based onl
on history from the most recent stationary region in eacktelu
All three components can be implemented efficiently so timat o
line, real-time predictions are possible. Thus, for eabhsjgbmis-
sion, our method can generate a predicted bound on its defay u
ing a stationary history of previous jobs having similar ofitative
characteristics. In addition, as jobs complete their timgueue,
new data becomes available. Our method automatically frmsor
rates this information by adjusting its clustering and gepoint
estimates.

In previous work [26, 26] we have investigated various meth-
ods for percentile estimation and explored the efficacy ab-au
matic change-point detection in such highly correlated.ddsing
a simple method based on binomial distributions, combinid w
on-line autocorrelation analysis, we have found that itasgible
to predict bounds on the delay of individual jobs that aréteg
then parametric methods based on Maximum Likelihood Estima
tion (MLE) of Weibull and log-normal distributions. This ried-
ology we term theBinomial Method Batch PredictBMBP).

In this work, we focus on improving the bounds achieved by

BMBP through a novel approach to model-based clustering ap-

plied hierarchically to the job submission history it ust¥ée de-
scribe the full methodology (Binomial percentile estimathange-
point detector, and clustering algorithm) and discuss ftem@om-
plicated interaction between change-point detection eralustering

the National Science Foundation and the Department of Energ
over the pasb years comprising approximately one million job
submissions. By examining job arrival time, requested etien
time, and requested node count, we simulate each queuehn eac
trace and compute a prediction for each job. Our resultsatdi
that BMBP (which is more effective than competitive parancet
methods) used with SCHMIB achieves significantly tighteutds

on job wait time in most cases. Thus, this new combinationerep
sents the most accurate available method for predictingdan
individual job delay times, and does so with a specifiableeeg
of certainty.

Thus, this paper makes three significant new contributidtis w
regard to predicting individual job queue delays.

e We present BMBP (briefly) and SCHMIB as an example of
an accurate, non-parametric, and fully automatic method fo
predicting bounds (with specific levels of certainty) on the
amount of queue delay each individual job will experience.

We verify the efficacy of these techniques using job sub-
mission logs from currently operating large-scale batch sy
tems, and from archival logs for systems that are no longer
in operation.

We find that SCHMIB improves the accuracy of the bounds,
that requested execution time is a more significant factor fo
clustering jobs than is processor count that jobs clusfer di

ferently from the way that expert site administrators (who
control the specific scheduling policies) have anticipated

We believe that these results constitute a new and important
capability for users of batch-controlled resources. Usingon-
line, web-based, real-time version of BMBP and SCHMIB [26]
that allows users to generate predictions on demand, theess u
are better able to decide on which machines to use, whichegueu
on those machines to use, the maximum amount of run time to re-
quest, and the number of processors to request so as to ménimi
job turnaround time or maximize the utilization of theirpestive
time allocations. Our techniques are also useful as a sthgdu
policy diagnostic for site administrators. For example;, @sults
indicate that the amount of requested execution time is méae
significant factor in determining queue delay than is retpeegro-
cessor count (presumably due to back-filling [16]). One ade
ministrator at a large scale computer ceftekpressed surprise at
this result, since she believed she had set the schedulliny o
this site to favor jobs with large processor counts in anretio
encourage users to use the resource for “big” jobs. Becdse s
jobs can be more readily scheduled when back-filling is useets
are circumventing the site policy and submitting small jaban-
prove turn-around time. This example illustrates how psqie
versions of BMBP and SCHMIB are already having an impact in

in response to newly available queue delay measurements whe large-scale batch-controlled settings. We discuss the@af this

the system is to be used in an on-line setting. Thus, our goal i
to explore the effect ofegregatingslustershierarchically tomake
improvedbounds (abbreviated as SCHMIB).

To verify the effectiveness of the approach, we compare BMBP
with and without SCHMIB using job submission traces frérsu-
percomputers (including three currently in operation)raped by

impact further in Section 4.

This ability to make predictions for individual jobs digginishes
our work from other previous efforts. An extensive body of re

2

The specific administrator and site have been elided to imepro
the anonymity of our blind submission but will be includedan
final version of the paper, should it be accepted.



search [3, 5, 6, 8, 9, 10, 11, 24] investigates the statlgticger-
ties of offered job workload for various HPC systems. In nafst
these efforts, the goal is to formulateredelof workload and/or
scheduling policy and then to derive the resulting statidtprop-
erties associated with queuing delay through simulatioar. &p-
proach focuses strictly on the problemfofecastingfuture delay
bounds; we do not claim to offer an explanatory, or even argesc
tive, model of user, job, and/or system behavior. Howewathaps
because of our narrower focus, our work is able to achievigre
tions which are, in a very specific and quantifiable sensegemor
accurate and more meaningful than those reported in théopiev
literature. We discuss related approaches further in @eeti

In the next section, we describe BMBP briefly and SCHMIB
in detail. As mentioned previously, Section 4 discussesewvatl-
uation procedure and the specific results we have achievad, S
tion 2 covers related approaches and efforts, and finallyeicr S
tionsec:conclusions we recap and conclude our descripfitinis
work.

2. Related Work

Previous work in this field can be categorized into three gsou
The first group of work belongs under the general headinghafcal-
ing jobs on parallel supercomputers. In a works by Feitetsmh
Rudolph [9, 10], the authors outline various schedulintnégues
employed by different supercomputer architectures andt pmit
strengths and deficiencies of each. The prevalence oflaistd
memory clusters as supercomputer architectures has ledsd m
large scale sites using a form of “variable partitioning” des
scribed in [9]. In this scheme, machines are space sharepbsd
are scheduled based on how many processors the user reauests
how much time they specify as part of the job submission. A&s th
authors point out, this scheme is effective for cluster ymhitec-
tures, but leads to fragmentation as well as potentially lvait
times for jobs in the queue.

The second field of previous work which is relevant to our work
involves using various models of large scale parallel jodnac-

ios to predict the amount of time jobs spend waiting in sched-

known. Both of these approaches make the underlying asgumpt
that the scheduler is employing a fairly straightforwartiestul-
ing algorithm (one which does not allow for special usersotr j
queues with higher or lower priorities), and also that tteotece
pool is static for the duration of their experiments (no dtomes,
administrator interference, or resource pool dynamism).

Our work differs from these approaches in two significantsvay
First, instead of inferring from a job execution model theoamt
of time jobs will wait, we make job wait time inference frometh
actual job wait time data itself. The motivation for why thss
desirable stems from research efforts [4, 14], which sugtpes
modelling job execution time may be difficult for large-seako-
duction computing centers. Further, making inferenceigiita
from the job wait time data, we avoid having to make underly-
ing assumptions about scheduler algorithms or machindigtab
We feel that in a real world scenario, where site scheduligg-a
rithms are rarely published and are not typically simpleugoto
model with a straightforward procedure, it is unlikely thvafid
gueue wait time predictions can be made with these assumsptio

Secondly, our approach differs in the statistic we use aga pr
diction. Most often, we see researchers using as a predliti®
mean amount of time a job is expected to wait in the queue. Our
approach instead uses bounds on the time an individual jdb wi
wait rather than a specific, single-valued prediction ofnigsting
time. We contend that the highly variable nature of obsequeziie
delay is better represented to potential system users asifigpc
confidence bounds than as a specific prediction, since uaers c
“know” the odds that their job will fall outside the range.

3. BMBP and SCHMIB

In this section, we describe our approach to the three klate
problems that we must solve to implement an effective ptedic
quantile estimatioh) change-point detection, and clustering. The
general approach we advocate is first to cluster the obséobed
submission history according to jobs having similar quatitie
characteristics (e.g. requested node count, requestemumax
execution time, or requested node-hours), next to idetitgymost

uler queues. These works attempt to show that batch queue jolrecent region of stationarity in each cluster (treated ama se-

wait times can be inferred under the conditions that one know
the length of time jobs actually execute and that the algoriem-
ployed by the scheduler is known. If both conditions are fihags
been shown that the mean job wait time can be predicted, asisho
in a paper from Smith, Taylor and Foster [24], but even when th
job execution times well modelled, the mean error ranges 88

to 73 percent. In this work, the authors use a template-baged
proach to categorize and then predict job execution timesmF
these execution-time predictions, they then derive meangde-
lay predictions by simulating the future behavior of thechatched-
uler in faster-than-real time. Downey [5, 6] uses a simikarof
assumptions for estimating queue wait times. In this woekex-
plores using a log-uniform distribution to model the renirain
lifetimes of jobs executing in all machine partitions as ayveh
predicting when a “cluster” of a given size will become aable
and thus when the job waiting at the head of the queue wilt.star
As a metric of success, Downey uses the correlation between t
wait time of the head job, if execution times are estimatéagisis
model, and the head job wait time if the execution time is #yac

ries), and finally to estimate a specific quantile from thafioe

to use as a statistical bound on the time a specific job wilt imai
queue. While logically the steps occur in this order, we dbec
them in reverse order, providing only a summarization ofquan-

tile estimation and stationarity approaches, primarilg thuspace
constraints but also because we have analyzed these eelgrisi

other publications [26, 26].

3.1 Inference for Quantiles using The Binomial

Method

Our goal, with this method, is to determine an upper bound
on a specific quantile at a fixed level of confidence, for a given
population whose distribution is unknown. If the quantilerey
known with certainty, and the population were the one fronictvh
a given job’s queue delay were to be drawn, this quantile &voul

3We use the term “quantile” instead of the term “percentile”
throughout the remainder of this paper.



serve as a statistical bound on the job’s waiting time. FangxXe,
the0.95 quantile for the population will be greater than or equal to
the delay experienced by all bifi; of the jobs. Colloquially, it can
be said that the job has @3% chance” of experiencing a delay
that is less than th8.95 quantile. We assume that the quantile
of interest (.95, 0.99, 0.50, etc.) is supplied to the method as a
parameter by the site administrator depending on how ceatbes
she believes the estimates need to be for a given user cortymuni

However, since the quantiles cannot be known exactly and mus
be estimated, we use an upper confidence bamthe quantile
that, in turn, serves as a conservative bound on the amodetayf

may be some autocorrelation structure in the data. We hgpoth
size that the time-series process associated to our deatgadic
which roughly amounts to saying that all the salient samfaiiss

tics asymptotically approach the corresponding popuigtiaram-
eters. Ergodicity is a typical and standard assumption dai-r
world data setssf., e.g.[12]. Under this hypothesis, a given sample-
based method of inference wilh the long run,provide accurate
confidence bounds.

Although our method is not invalidated by dependence, a sep-
arate issue from thealidity of our method is that exploiting any
autocorrelation structure in the time series shoidprinciple,

that will be experienced by a job. To be precise, to say that a produce more accurate predictions than a static binomiéhade

method produces an upp@5% confidence bound on the a given
guantile implies that the bound produced by this method wilér
the long run, overestimate the true quan$i$é% of the time. The
degree of conservatism we assume is also supplied to thedheth
as a confidence level. In practice, we find that while admiaists

do have opinions about what quantile to estimate, the camfiele
level for the upper bound is less meaningful to them. As altesu
we typically recommend estimating what ever quantile isréds
by the uppeB5% confidence bound on that quantile.

Our approach, which we term tignomial Method is based
on the following simple observation: IX is a random variable,
and X, is the ¢ quantile of the distribution ofX, then a single
observationz from X will be greater thanX, with probability
(1—q). (For our application, if we regard the wait time, in secands
of a particular job submitted to a queue as a random variahle
the probability that it will wait for less thaX o5 seconds is exactly
.95.)

Thus (provisionally under the typical assumptions of irelep
dence and identical distribution) we can regard all of theeob
vations as a sequence of independent Bernoulli trials withag-
bility of success equal tg, where an observation is regarded as
a “success” if it is less thaX,. If there aren observations, the
probability of exactlyk “successes” is described by a Binomial
distribution with parameterg andn. Therefore, the probability
that more thark observations are greater thaf is equal to

)

1‘2(?) (1—q) "7

§=0

Now, if we find the smallest value @ffor which Equation 1 is
larger than some specified confidence leVekhen we can assert
that we are confident at levél that thek'" value in a sorted set
of n observations will be greater than or equal to &g quantile
of the underlying population — in other words, & sorted value
provides arupper level€ confidence bountbr X,.

Clearly, as a practical matter, neither the assumption aé-in
pendence nor that of identical distribution (stationaggya time
series) holds true for observed sequences of job wait timoes f
the real systems, and these failures present distinct fpaiteliffi-
culties for our method.

Let us first (briefly) address the issue of independence, as-

suming for the moment that our series is stationary but theet

which ignores these effects. Indeed, most time-serieysisand
modeling techniques are primarily focused on using deperele
between measurements to improve forecasting [2]. For tbwsepit
application, however, there are a number of obfuscatintpfac
that foil typical time-series methods. First of all, for avgm job
entering a queue, there are typically several jobs in theeuso
that the most recent available wait-time measurement isdor
eral time-lags ahead. The correlation between the moshtece
measurement at the time a job enters the queue and that job’s
eventual wait time is typically modest, aroufid, and does not
reliably contribute to the accuracy of wait-time prediogo An-
other issue is the complexity of the underlying distribotad wait
times: They typically have more weight in their tails thapesen-

tial distributions, and many queues exhibit bimodal or muidal
tendencies as well. All of this makes any linear analysisaifd
relationships (which is the basis of the “classical” tinegiss ap-
proach) very difficult. Thus while the data is not indeperidiris
also not amenable to standard time-series approachesfimitex
ing correlation.

3.2 Correct and Accurate Predictions

Because we are predicting a probabilistic bound on the delay
for each job, it is useful to differentiate between a cornae-
diction and an accurate one in this context. We defimeraect
prediction to be one that is greater than or equal to a jolgsal
queueing delay, and eorrect predictorto be one for which the
total fraction of correct predictions is greater than orada the
success probability specified by the target quantile. Fampte, a
correct predictor of th@.95 quantile generates correct predictions
for at least95% of the jobs that are submitted.

Notice that it is trivial to specify a correct predictor umdbkis
definition. For example, to achieve a correct predictiorteetage
of 95%, a predictor could return an excessively large prediction
(e.g.,a predicted delay of several years) fidr of every 20 jobs,
and a prediction 0 for the 20*". To distinguish among correct
predictors, we compare theiiccuracyin terms of the error they
generate, where error is some measure of the differenceebatw
predicted value and the value it predicts.

In this work, we will use Root Mean Square (RMS) error for
the over-predictions as a measure of accuracy for correci@r
tors. We consider only over-prediction error, as we belibed the
error generated for the percentage of jobs that are indbyee-
dicted is relatively unimportant to the user. For examptapag
predictors that ar®5% correct, it is our contention that users
would prefer one that achieves lower over-prediction eiwothe



95% of the jobs it predicts correctly over one that achieves &tow
error rate on thé% that are incorrectly predicted at the expense
of greater overall error in the correct predictions.

Note that comparing predictors strictly in terms of theiroer
(without consideration of their correctness) is difficior exam-
ple, a predictor that estimates the mean of each statioegigr
will generate a lower RMS than one that estimatesithé quan-
tile, but the mean predictor will not provide the user with eam-
ingful delay boundi(e., one having a probability value attached
to it). Thus, for a given job workload, we only compare préatic
accuracy among those predictors that are correct.

will occur every8000 values; this strikes a balance between sensi-
tivity to a change in the underlying distribution of the pégtion
and certainty that a change is not being falsely reported.

Now, suppose that the data, regarded as a time series, tsxhibi
some autocorrelation structure. If the lagutocorrelation is fairly
strong, three or even five measurements in a row abovedthe
quantile might not be such a rare occurrence, since, for pleam
one unusually high value makes it more likely that the nekteva
will also be high. In order to determine the number of consecu
tive high values (top% of the population) that constitute a “rare
event” approximately in line with the criterion spelled dotinde-
pendent sequences, we conducted a Monte Carlo simulatibn wi

Note also that, while RMS error is used widely as a measure of various levels of lag- autocorrelation inAR(1) time series [12],

accuracy for predictions of expected valueg(in time series), its
meaning is less clear in the context of quantile predictiorthis
paper, we are focusing on estimating a time value which iatgre
than the wait time of a specific job with probabili§s. Therefore,

if the distribution of wait times is highly right-skewed, eeglictor
may be working quite well and still have a very high RMS error.
Thus, the actuaralueof the RMS error is not particularly mean-
ingful; however, it is still useful as a meansa@mparison For a
particular set of jobs, if one correct prediction method &émwver
RMS than another, then that first method is preferable ingexsfn
producing tighter, less conservative upper boundis§ection 4.5
for further discussion of RMS error).

3.3 Non-stationarity and Change-Point Analysis

Unlike the issue of independence and correlation, the iefue
non-stationaritydoesplace limitations on the applicability of our
method. Clearly, for example, it will fail in the face of datéth a
“trend,” say, a mean value that increases linearly with ti@e the
other hand, insisting that the data be stationary is tocicése to
be realistic: Large compute centers change their schegplti-

cies to meet new demands, new user communities migrate to or

from a particular machinetc. It seems to be generally true across
the spectrum of traces we have examined that wait-time data i
typically stationary for a relatively long period and thender-
goes a “change-point” into another stationary regime wiffed

ent population characteristics. We thus use the Binomiahit

as a prediction method for data which are stationary forggisri
and for which the underlying distribution changes suddeiyg
relatively infrequently; we next discuss the problem ofed#ing
change-points in this setting.

Given an independent sequence of data from a random variable
X, we deem that the occurrence of three values in a row above
X g5 constitutes a “rare event” and one which should be taken to

signify a change-point. Why three in a row? To borrow a well-
known expression from Tuke$; two is not enough and four is
too many; this comes from consideration of “Type I” error.dgn
the hypothesis of identical distribution, a string of twameecutive
high or low values occurs every)0 values in a time series, which
is an unacceptable frequency for false positives. Threerowa

“We refer here to Tukey's notorious explanation why the
“whiskers” in a boxplot should extend5 IQRs, namely that1' is

too small and is too large”; beyond its beautiful “sound bite”
quality, Tukey’s quote serves as a reminder that any Statist
threshold, such a$5% confidence or05 significance level, is an
artificial entity ultimately chosen for its usefulness.

observed the frequencies of occurrences of consecutivedrd
low values, and generated a lookup table for rare-evenstiotds.
Thus, to determine if a change-point has occurred, we coenput
the autocorrelation of the most recent history, look up theex-m
imum number of “rare” events that should normally occur with
this level of autocorrelation, and determine whether weetsw-
passed this number. If so, our method assumes the underlying
system has changed, and that the relevant history mustt ¢l

as much as possible to maximize the possibility that thisohjs
corresponds to a region of stationarity. Note that indisorate
history-trimming will not allow our method to function pregy,
since the resulting small sample sizes will generate urssaciy
conservative confidence bounds.

The minimum useful history length depends on the quantile
being estimated and the level of confidence specified for stie e
mate. For example, it follows from Equation 1 above that itheor
to produce an uppe¥5% confidence bound for thé5 quantile,
the minimum history size that can be used9s (This reflects the
fact that.95°° < .05, while .95°% > .05.)

Again, a more complete description of the Binomial Method
and its concomitant procedure for change-point detectisnwell
as a more detailed rationale and analysis of the assumptjmoT s
which it is based are available in [26], as is evidence of its e
fectiveness in comparison to other methods. Additionadevie
for its effectiveness is described in [26]. Here we endeaviy
to summarize the approaches, which we will heretofore refer
together as th&inomial M ethod Batch Predictor (BMBP), and
provide a general motivation for their effectiveness.

3.4 SCHMIB: Prediction with Model-Based Clus-
tering

According to our observations and to anecdotal evidence pro
vided by users and site administrators, there are diffe®eamong
the wait times various jobs might expect to experience irstrae
gueue, based purely on characteristics of the jobs sucle asrtbunt
of time and the number of nodes requested. This is certaagy e
to believe on an intuitive level; for example, if a partiautpueue
employs backfilling [16], it is more likely that a shorterning
job requesting a smaller number of nodes will be processed du
ing a time when the machine is being “drained.” Thus, for &giv
job, we might hope to make a better prediction for its waitetim
if we took its characteristics into account rather than mglaone
uniform prediction which ignores these characteristics.



On the other hand, the same difficulties arise in trying te pro
duce regression models [24] as we encountered in the prafiflem
trying to use autoregressive methods: In particular, tha dee
typically multimodal and do not admit of simple parametriodn
els. We therefore explore the ideadtfisteringthe data into groups
having similar attributes, so that we can use our non-par&ne
predictor on each cluster separately.

In fact, in [26], based on advice we received from severabexp
site administrators for currently operating systems, weleyed
a rather arbitrary partitioning of jobs in each queue by pssor
count, running separate predictors within each partitiwhich
resulted in substantially better predictions. Howevenvdatuld
clearly be desirable to find a partition which is in some {stifal)
sense “optimal” rather than relying on such arbitrary mdghdor
our purposes, it is also desirable to find a partitioning roettnat
can be machine-learned and is therefore applicable acifbss d
ent queues with different policies and user charactesistiith-
out direct administrator intervention or tuning. Moreqvas a
diagnostic tool, it would be advantageous to be able to compa
the machine-determined clustering with that determinedsibsy
administrators to illuminate the effects of administratoposed
scheduling policies. In this section, we describe our apgndo
this problem, which falls under the rubric nfodel-based cluster-
ing [15, 22, 25].

3.5 Model-Based Clustering

The problem of partitioning a heterogeneous data set ini cl
ters is fairly old and well studied [15, 18, 22, 25]. The sigxil
and most common clustering problems involve using the adfie
the data, relative to some notion of distance. Often, onéupos
lates that the distribution within each cluster is Gaussamd the
clusters are formed using some well-known method, suches th
so-calledk-means algorithm [18] or one of various “hierarchical”
or “partitional” methods [22, 25]. If the nhumber of clustéssalso
unknown, a model-selection criterion such as BIC [23], whie
will discuss further below, is often used to balance gooslroédit
with model complexity.

In fact, it is tempting, if for no other reason than that of sim
plicity, to form our clusters in this way, according to howeyh
naturally group in terms of one or more job attributes. Nbtay-
ever, that this method of clustering in no way takes into anto
the wait times experienced by jobs, which is ultimately thei-v
able of interest; it is by no means clear that a clusteringlog joy
how their requested wait times group will result in clustet®ose
wait-time distributions are relatively homogeneous. Bareple,
it is possible that a subset of the requested job executinasti
form a nice Gaussian cluster betweand 12 minutes, but that
due to some combination of administrative policy, backfgliand
various “random” characteristics of the system as a whales j
requesting less thath minutes experience substantially different
wait times than those requesting more th@anminutes, so this
cluster is actually meaningless in terms of predicting waies.

In our case, then, the situation is somewhat more compticate
than ordinary clustering: We wish to cluster the data adogrtb
some characteristics which aobservable at the time the job is
submittedexplanatory variables), but using the actual wait times
(response variable) as the basis for clustering. That iswish

to use observed wait times to cluster jobs, but then to déberm
how each cluster is characterized by quantitative atteibthat are
available when each job is submitted so that an arriving ji ¢
be categorized before it begins to wait. In the discussian fibl-
lows, we will use theequested execution tinfesed to implement
backfilling) as the explanatory characteristic, but thisméy for
the sake of ease of exposition.

The idea behind our method runs as follows: We postulate
that the set of requested times can be partitioned inttusters
C1,...,Ck, which take the form of intervals on the positive time
axis, such that within eacti; the wait times are governed by an
exponential distribution with unspecified parameter

The choice of exponential distributions is something ofegro
simplification — in fact a Weibull, log-normal or hyperexantial
would probably be a more accurate choice — but the fact tleat th
clusters are relatively homogeneous makes the exponembicé|
accurate enough with relatively little computational exge more-
over, in practice, exponentials are more than discerniogigimto
produce an adequate number of clusters. As a check, we gener-
ated an artificial trace using different log-normally distited wait
times corresponding to the intervals of requested tifile$00],
[101, 200], [201, 300], [301, 400], and[401, 500] and fed this data
to our clustering method. It recovered the following clusttor
the datai1, 39], [40, 40], [41, 100], [101, 197], [198, 300], [301, 398],
[399, 492], [493, 493], [494, 500]. Since our method always clus-
ters the ends together to ensure that these clusters cattiaiast
59 elements, the exponential clustering method recoversrige o
inal clusters almost exactly.

We assume that the appropriate clustering is into connéated
tervals along the time axis; this provides an intuitive mddethe
eventual users of our predictions. Given a desired valuehier
numberk of clusters, then, we use a modified formhiérarchical
clustering According to this method, we start with each unique
value for the requested time in its own cluster. We then merge
the two adjacent (in the sense of adjacency on the time dxis) ¢
ters that give the largest value of tlog-likelihood functioriog L,
calculated jointly across the clusters, according to th&imam-
likelihood estimators for the exponential parameterswhich are

given by E#—(CCJ% This process continues until the number of
zeCy

clustersis equél té. Note that this is a well-accepted method for
clustering [18, 22, 25]; however, it does not guarantee tthate-
sulting clustering will maximize the log-likelihood ovell possi-

ble choices of clusters, even if we assume that the clusters are all
intervals. This latter problem is prohibitively expensa@mputa-
tionally for an on-line, real-time application, even for devately
large data sets, and we are therefore forced to use somietesstr
method.

Each arriving job can then be categorized by identifying the
cluster whose minimum and maximum requested time straldle t
job’s requested time.

Continuing, the question of which value bfto use is a prob-
lem in model selectionwhich recognizes the balance between
modeling data accurately and model simplicity. The most-gen
erally accepted model-selection criterion is Beyes Information



Criterion (BIC) [23], the form of which is
BIC(0) = log L(0) — g log n,

whered stands for the (vector of) free parameters in the model,
L is the joint likelihood function across the whole data satce-
lated using the MLE fo#, p is the dimensionality of (2k — 1

in our case: thé: — 1 break points on the time axis to define our
clusters, and thé values for the)\;, all of which are scalars),
andn is the total sample size. The first term in the BIC formula

should be seen as a measure of goodness of fit, while the second

term is a “penalty” for model complexityi.6. one with a large
number of parameters). It is always true that for a lessiotst
model (in our case, one allowing a larger number of clusténs)
log L term will be larger, so the penalty function is critical taaV
over-parameterizing. Maximizing the BIC expression oveset
of proposed models has good theoretical properties andasne
produces good results in practice. Thus, our clusteriragesty is
to specify a range of acceptablevalues; perform the hierarchi-
cal clustering described above for each of these valuds ahd
then calculate the BIC expression for each resulting dimgend
choose the one for which BIC is greatest.

3.6 Change-point Detection and Clustering

There is a potential difficulty implementing re-clustering
new job delay information becomes available. When SCHMIB
finds a new clustering, it does not take into account the mimim
necessary history required by BMBP (calculated, using treng
tile of interest and desired confidence level, from EquatipriAs a
result, clusters determined by SCHMIB may not be suitable$e
by BMBP. We address this problem in the following way. When
BMBP is required to make a forecast from a cluster that doés no
contain enough data, it augments the history it consideeslding
the data from the nedttigher cluster in the adjacency list, adding
histories from further higher clusters if necessary umtilegh his-
tory is available. This temporary merge is recomputed eich t
a forecast from a short cluster is needed, so that it is onhedo
for a given cluster until that cluster has enough data. We ter
this processhistory borrowing. Borrowing is done fromhigher
adjacent clusters in the interest of safeguarding the coress of
the predictor, possibly at the expense of generating $jigiver-
conservative estimates.

4. Results

In this section, we describe our method for evaluating BMBP
and SCHMIB, and we then detail a set of simulation experisment
that use, as their input, traces of job submission logs gathat
various supercomputing centers. While we have implemeated
deployed a prototype of BMBP at a number of nationally adeess
ble large-scale sites, and we are in the processes of enigathés
prototype with SCHMIB, a rigorous comparison is best setwed
repeatable, trace-based simulation. We describe thdglefahe
simulations (we use a single simulator that can parse eadbgd
and then report the prediction performance usesald haveseen
had BMBP and/or SCHMIB been available at the time each job in
each trace was submitted.
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Figure 1. Example output of BMBP simulator
without the use of SCHMIB clustering or static

grouping.

bound on the0.95 quantile of queuing delay, however our ap-
proach can be similarly formulated to produce lower configen
bounds, or two-sided confidence intervals, at any desinesl &
confidence. It can also be used, of course, for any populgtian-

tile. For example, while we have focused in this paper on the
relative certainty provided by th@5 quantile, our method esti-
mates confidence bounds for the mediam,(the point of “50-50”
probability) with equal effectiveness. We note that thergies

at the tail of the distribution corresponding to rarely atimg but
large values are more variable, hence more difficult to egBm
than those nearer the center of the distribution. Thus, iypa t
cal batch queue setting, which is characterized by largebeusn

of jobs experiencing short wait times and a few jobs expeiren
long wait times, the upper quantiles provide the greatesiteige

for a prediction method. By focusing on an upper bound for the
.95 quantile, we are testing the limits of what can be predicted f
queue delay.

Note also that our assertion of retroactive prediction exirr
ness and accuracy assumes that users would not have chheged t
characteristics of the jobs they submitted in responsed@tail-
ability of the quantile predictions we generate. Moreotieg, on-
line prototype we have developed, while operational, isse by
only a few users, making difficult an analysis of whether BMBP
and SCHMIB predictions affect workload characteristicsowH
ever, unless such feedback induces undamped oscillasaitirg
in frequent “spikes” in delay (cf. Subsection 4.5 below), BRI
and SCHMIB are likely to continue to make correct and aceurat
predictions. We do plan to monitor the workloads experidring
various sites after BMBP and SCHMIB are deployed for general
use at various large-scale sites and report on the effegtarasf
our future work.

4.1 Simulation

Our simulator takes as input a file containing historicathat

SWe count ourselves in the category of BMBP and SCHMIB users,
as we used the on-line system to schedule the simulationgeve e
cuted for this paper at various sites where our system iothyr

We investigate the problem in terms of estimating an upper operating.



queue job wait times from a variety of machines/queue coaibin
tions and parameters directing the behavior of our modets. F
each machine/queue for which we have historical infornmatice

were able to create parsed data files which contain one job en-

try per line comprising the UNIX time stamp when the job was
submitted, the duration of time the job stayed in the quetierbe
executing, the amount of requested execution time, anddte n
count.

The steady-state operation of the simulation reads in a line

from the data file, makes a prediction (using BMBP or BMBP and
SCHMIB) and stores the job in a “pending queue”. We then incre
ment a virtual clock until one of two events occur:

e The virtual time specified for the job to wait in the pending
expires.

e A new job enters the system according to the virtual clock.

When the first case occurs, the job is simply added to a grow-

ing list of historical job wait times stored in memory. Altigh
the waiting time for the job is carried in the trace, the pceati
is not entitled to “see” the waiting time in the history uritistops
waiting in queue and is released for execution. When theffiist
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Figure 2. Example output of BMBP/SCHMIB
simulator when using the requested time to
cluster jobs and make predictions.

as though there are multiple predictions for any given paitime,
each job can only belong to one cluster, and therefore thghgsa

record changes, BMBP is given the new record so that it can up- €0mMposed of unique job wait time/prediction pairs.

date its internal state. If SCHMIB is in use, the BMBP preaii(s)
for the cluster(s) into which the jobs are placed are updated

Notice that many of the predictions shown in Figure 2 are al-
most an order of magnitude lower than the predictions for the

When the second case occurs, the current prediction value iscorresponding point in time in Figure 1. Thus if the SCHMIB-

used to make a prediction for the job entering the queue,jtg-s
lation checks to see if the predicted time for that job is tgethan
or equal to the actual time the job will spend in the pendingugu
(success), or the predicted time was less than the actualgitb
time (failure). The success or failure is recorded, and tiei$
placed on the pending queue. Note that in a “live” setting $lic-
cess or failure could only be determined after the job cotedle
its waiting period.

In addition to events which occur with respect to time, one fi-
nal simulation event, re-clustering, occurs after a premeined
number (000 in our study) of simulated job arrivals have oc-
curred. That is, the simulator presents new delay measutsme
to BMBP when the simulated waiting times have expired, résor
forecast accuracy, and triggers re-clustering. The cogéeiment-
ing BMBP and SCHMIB are modularized so that the same imple-
mentation can be operated by the simulator or by the opesdtio
infrastructure that makes “live” job predictions in reaha.

As an example, in Figure 1 we show the time series of job
queue delays and.95 quantile predictions generated by BMBP
without SCHMIB for the SDSC SP-2 machine and tigh queue.

On they-axis using a log scale we show delay measured in sec-

onds. Along thec-axis are Unix time stamps. Each dark-colored
graph feature represents the queue delay experienced hyjia pa
ular job, and the light-colored features near the top regrethe
predictions.

determined clusters correctly categorize jobs by theparse vari-
ables, BMBP applied to each cluster should yield correatlipre
tions that are more accurate (produce a “tighter” boundaj th
without clustering.

4.2 Data Sets

We obtainedr archival batch-queue logs from different high-
performance production computing settings covering ciffiema-
chine generations and time periods. From each log, we ggttac
data for the various queues implemented by each site. Feys
tems except the ASCI Blue Pacific system at Lawrence Liveemor
National Laboratory (LLNL), each queue determines, in pitue
priority of the jobs submitted to it.

The job logs come from three machines operated by the San
Diego Supercomputer Center during three different peridds
the IBM SP-2 édsg, The SDSC “Blue Horizon” ¢dscblug and
the IBM Power-4 systemd@atastar). We also use traces from the
Cornell Theory Center (ctc) Lawrence Livermore Nationabia
oratory’s SP-21(nl), the Cray-Dell cluster operated by the Texas
Advanced Computing Centdpfestar), and the Argonne National
Labs/University of Chicago TeraGridi¢teragrid). Thectc, sdsg
and sdscbluelogs we obtained from Feitelson’s workload web
site [7], thellnl data appears courtesy of Brent Gorda at LLNL, and
we gathered théatastar, lonestar, anducteragrid traces using
our own infrastructure for real-time predictions. Colleety com-

In contrast, Figure 2 shows the same data as does Figure 1 irprises over one million job submissions spanning approteima
dark graph features, but thed5 quantile predictions generated by an9-year period. The site and queue names, the durations cbvere
BMBP and SCHMIB using requested execution time as a responseby each job log, and the number of predictions we make for each
variable as light graph features. Note that although it napear queue is shown in Table 1. Within each log, each job is repre-



| Machine/Queue | Start Date] End Date | Pred Count] [ Machine/Queue | plain | static | nodes] rtime [ rmprod |
ctc/all Jun 1996 | May 1997 | 76206 ctc/all 96.0 | 95.8 | 95.7 | 96.2 | 95.9
datastar/express | Apr 2004 | Apr 2005 | 18242 datastar/express | 97.2 | 96.6 | 96.5 | 95.3 | 95.4
datastar/high Apr 2004 | Apr 2005 | 6781 datastar/high 95.1 | 94.2 | 934 | 92.0 | 92.1
datastar/normal Apr 2004 | Apr 2005 | 63751 datastar/normal 95.8 | 95.8 | 95.5 | 95.5 | 94.7
datastar/TGnormal Apr 2004 | Apr 2005 | 6091 datastar/TGnormal 97.3 | 97.3 | 97.3 | 94.6 | 94.7
lInl/all Jan 2002 | Oct 2002 | 54953 lInl/all 96.4 | 96.9 | 96.3 | 96.9 | 96.7
lonestar/normal Jan 2004 | Mar 2005 | 27486 lonestar/normal 95.3 | 95.7 | 959 | 974 | 97.2
lonestar/serial Jan 2004 | Mar 2005 | 2181 lonestar/serial 96.2 | 96.2 | 96.2 | 95.0 | 95.0
sdscblue/express | Apr 2000 | Dec 2002 | 66320 sdscblue/express | 93.6 | 93.0 | 93.3 | 95.7 | 96.1
sdscblue/high Apr 2000 | Dec 2002 | 15781 sdscblue/high 96.1 | 95.6 | 95.1 | 95.1 | 94.7
sdscblue/low Apr 2000 | Dec 2002 | 16104 sdscblue/low 95.0 | 94.8 | 945 | 94.8 | 93.2
sdscblue/normal | Apr 2000 | Dec 2002 | 47407 sdscblue/normal | 96.0 | 95.8 | 95.3 | 95.2 | 95.2
sdsc/express Apr 1998 | Apr 2000 | 3985 sdsc/express 96.7 | 96.4 | 96.7 | 96.5 | 96.2
sdsc/high Apr 1998 | Apr 2000 | 7794 sdsc/high 96.5 | 96.3 | 95.5 | 95.7 | 95.9
sdsc/low Apr 1998 | Apr 2000 | 21126 sdsc/low 955 | 95.0 | 94.6 | 94.6 | 945
sdsc/normal Apr 1998 | Apr 2000 | 29765 sdsc/normal 96.5 | 96.3 | 95.2 | 955 | 95.1
ucteragrid/dque | Jan 2004 | Oct 2005 | 58163 ucteragrid/dque 97.0 | 97.0 | 97.0 | 96.8 | 96.8

Table 1. Machine and queue names, start and
end dates for each log, and the number of
predictions made from each log.

sented uniquely by four values: submission time, queuetinadt,
number of nodes requested and number of seconds requested.

In addition, we contacted several site administrators, hde
graciously allowed us to install and experiment with the BRIB
real-time prediction system. After many consultations, dkdmin-
istrators furnished us with a scheme for node partitionimghie
currently active systems that they believe would improveEsM
That is, we asked each administrator to give us a static nlode ¢
tering to use for his or her site. After several iterations, @@n-
verged on a single static clusteringlofo 4 nodes 5 to 16 nodes,
17 to 64 nodes, and greater than or equabtonodes, which we
currently use for the real-time prediction system.

4.3 Nodes, Runtime, and Node-Seconds

Table 2. Correctness percentages for five
BMBP simulation methods for predicting the
.95 quantile with 95% confidence.

In each row, we boldface the largest ratio among the cornezt p
dictions and denote with an asterisk the cases where theskarg
ratio comes from an incorrect predictor. From these twoesil

is evident that, in general, BMBP using SCHMIB to clustergob
by requested execution time is the most effective method.

4.4 Accuracy Analysis

As the results in the previous subsection indicate, clusier
jobs by requested run time or by the product of run time aneé:nod
count (node-seconds) tends to yield the most accurate bound
In all but four of the cases (Datasthigh, LLNL all, Lonestar
normal, and SDSCBIludow) either the requested time or node-
seconds SCHMIB method produces results which are correet (s
Table 2) and have the largest RMS ratio (see Table 3). We sus-
pect that the effect is a result of backfilling, in which thedba

In the following two tables we summarize the performance of scheduler opportunistically runs short jobs while it is tivey for
BMBP and SCHMIB. Each table compares the performance of enough resources to become idle to run longer jobs. Sinde eac

“plain” BMBP (without SCHMIB), BMBP applied to the “static”
node clustering obtained from expert administrators, aedcom-
bination of BMBP and SCHMIB when clustering by requested
“nodes”, maximum execution time, abbreviated “rtime”, ahd
product of the two (node-seconds) respectively, abbregiatm-
prod.”

In Table 2 we show the name of each site in the first column, the

job can be terminated when its maximum requested run time ex-
pires, the scheduler can set a deadline for a large job amd the
“backfill” the resources with jobs that it will terminate loeé the
deadline. Anecdotally, in our experience, users genelslieve

that short jobs will experience less delay than long jobsatithe
sites where we are currently running BMBP.

Somewhat more surprisingly, clustering by requested nodatc

gueue name in the second column, and the percentage oftcorredeither using SCHMIB or according to the static partitianinve

predictions in the remaining columns.

In Table 3 we show a similar comparison of the RMS over-
prediction errors. The numbers represent the reciprodalsese
numbers, normalized so that the value for “plain” is alwayso
that larger numbers in the table reflect predictions thatremee ac-
curate in our sense. That is, each number is the ratio of thé"p

discussed previously) is less effective. Most of the adstiat

tors who we have interviewed indicated that jobs requesteef
nodes would also enjoy preferential treatment, with theeption

of the SDSC Datastar machine, leading us to suspect that node
seconds would yield the best results. At SDSC, the scheglulin
policy for Datastar has been to encourage large (in termeadé n
count) jobs, resulting in a complex interaction betweenptier-

RMS to that of the RMS denoted by the header of each column. ity given to large jobs on the one hand and the ability to b#ckfi



Machine/Queue | plain | static | nodes] rtime | rnprod |

cte/all 1.000| 1.292| 1.269 | 1.248| 1.615
datastar/express | 1.000| 1.049| 1.040 | 1.171| 1.262
datastar/high* 1.000| 0.928 | 0.960 | 1.725| 1.333
datastar/normal 1.000| 0.912 0.922| 1.190| 1.110
datastar/TGnormal 1.000| 0.992 | 0.990 | 1.317 | 1.295
linl/all 1.000| 0.894 | 0.856 | 0.822| 0.856
lonestar/normal 1.000| 1.216| 1.793 | 1.287| 1.112
lonestar/serial 1.000| 1.000| 1.000 | 1.074| 1.074
sdscblue/express*| 1.000 | 0.946 | 0.965 | 0.946 | 0.819
sdscblue/high 1.000 | 1.079| 1.042 | 1.194| 1.046
sdscblue/low 1.000| 0.944| 0.883 | 0.909| 0.824
sdscblue/normal | 1.000| 0.932| 1.040 | 1.202| 1.132
sdsc/express 1.000| 1.113| 1.037 | 1.131| 1.135
sdsc/high 1.000| 1.242| 1.837 | 1.512| 2.899
sdsc/low 1.000| 1.350| 1.273 | 1.369| 1.287
sdsc/normal 1.000| 1.006 | 0.979 | 1.451| 1.127
ucteragrid/dque 1.000| 1.058 | 1.068 | 1.239| 1.100

Table 3. Root Mean Square (RMS) ratios for
five BMBP simulation methods comparing
the various grouping methods (static and
SCHMIB) to a simulation run without group-

ing.

small jobs on the other. Because SCHMIB yields a higher RMS
ratio when requested time or node-seconds are used thaader n
count, we conclude that these administrator-imposed ipsliare
being overshadowed by the effects of opportunistic sclivegluln-
deed, it may be that by artificially boosting the priority efde
jobs, users are incentivized to submit even smaller jobsisoire

the effects of backfilling will be realized. We plan to ex@dur-
ther the use of SCHMIB as a diagnostic and analysis tool as par
of our future work.

Also surprisingly, the administrator-determined statictjtion-
ing is never the most successful approach. In one case (tavnes
normal), SCHMIB is able to determine node clusterings that yield
the largest RMS ratio, but in general clustering by nodesléss
desirable strategy. We were quite surprised by this resinite the
administrators with whom we spoke were largely responditne
setting the scheduling policies for their respective maeti We
note that SCHMIB (which adjusts its clustering dynamicpby
ten achieves a more accurate result than the static appesding
us to suspect that user demands vary too dynamically fortia sta
partitioning to be effective.

Finally, “plain” BMBP without SCHMIB is the most accurate
approach in three cases. We discuss the Dathgjarcase in the
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Figure 3. Queue delay measured in sec-
onds, all jobs, Datastar high queue, June 22"¢
through July 4™ 2005

alone. Our theory (which is refuted by the SD&® ratio) was
that the low queue was used for low-priority jobs and thusnditl
employ preferential treatment by job characteristics.

4.5 Correctness Analysis

Table 2 shows that SCHMIB fails to be correct in one case
where “plain” BMBP succeeds: the Dataskagh queue. As we
mentioned previously, long runs of increasing delays willBMBP.

In Figure 3 we show an 12-day-long period (Ju#? through
July 4** 2005) from the Datastarigh queue during which time
such a spike in delay is evident.

The delay experienced by job #43 in this trace (submitted at
9:56 AM on June24*") was15, 840 seconds hours and.9 min-
utes). Job #44, submitted at 11:55 AM, experienced a queuing
delay of217, 878 seconds0 hours and31 minutes). From that
point forward until job #184, submitted on Juzie” at 11:31 AM,
the queuing delay increases monotonically for each suivegss,
peaking atl, 763,936 seconds Z0 days, 8 hours, 59 minutes).
Thus, during a three-day period for this queue, the delay-exp
rienced by submitted jobs climbs steadily through threemaf
magnitude. Note that the-axis of the graph shows job delay in the
order of submission sequence and does not depict the irwatar
time between jobs. If it did, the monotonic trend would appE=a
an almost vertical “spike.” Curiously, job #185, submittadJune
27" at 11:55 AM, experienced a delay of only, 359 seconds
(3 hours and minutes) and thus began executi2@days and

next Subsection. In the case of the the LLNL queue, it appearshourssoonerthan job #184.

from the log that all jobs go into a single queue that servelimu
ple machines of varying architectures and configurationsuth

a heterogeneous node pool, it is possible that demand fatia-pa
ular type of machine or machine configuration is the most impo
tant explanatory variable, which may even confound theatdes

we have considered. Finally, we had hypothesized befongimgn
these experiments that thewv queues for both the SDSC SP-2 and
the Blue Horizon would be most accurately forecasted by BMBP

Spikes such as the one depicted in Figure 3 occur on four sep-
arate occasions in the approximatdlys year-long trace. The
highqueue, we believe, is intended for higher priority jobs (@bhi
should experience lower queuing delays at a greater albocek-
pense) than jobs submitted to the other Datastar queues.réks a
sult, we believe, only781 jobs were submitted during this period
to thehigh queue, compared %8, 751 in thenormalqueue.



categorize jobs seems to indicate a (possibly plannedjityrio-

version.
BMBP 0.95 Prediction . )
Datastar Interestingly, SCHMIB can also have the reverse effect emd i
Jule 3rd through July 5th, 2005 prove correctness, as indicated by the SDSCRixgressqueue
entry in Table 2. For this machine and queue, “plain” BMBP
700000 | achieves a correctness percentag@sof% until very near the end
650000 of the trace, where a single spike causes a series of faitticpr
5600000 Normal Queue tions. Because the failures occur so near the end, the alewer-
2 550000 A all success percentage is bel@ui% (we analyze this phenomenon
8 500000 /U\Julv 4th, 8:26 AM more completely in [26]). When SCHMIB clusters by requested
2450000 | execution time or node-seconds, however, the overall gtiediis
2 s00000 |9 Queue correct, despite the presence of a spike in delay near thefend
350000 ————B iy 3rd, 23:50 oM the trace. In this case the data shows a series of spikesith rap
200000 succession, with the largest occurring near the end. Beoalus
1120400000 1120486400 1120572800 the large variance in the data, SCHMIB maintains a consgevat
Job Sequence Number .. . . ..
BMBP prediction in all clusters, so that the incorrect potidins
Figure 4. BMBP 0.95 predictions without near the end cause the correctness percentage for onlyrgestia
SCHMIB, all jobs, Datastar normal and high cluste.r.to degr.ade belo®5%. Because the other clusters aghleve
queues, July 3" through July 5" 2005 a sufficiently high success percentage, however, the dyeealic-

tor is correct.

Perhaps more generally, the data shown in Table 3 calls into
The size of the spikes combined with the relative infreqyenc question the way in which accuracy should be measured. Note
of job submissions conspire to degrade the effectiveneSEsMIB.  that “plain” BMBP, even in cases where it achieves a lower RMS
When BMBP is used without SCHMIB, the history used for each mis-predicts jobs with relatively long delays. In other dsy it
prediction considers all jobs in the queue. When the firgidar ~ will disproportionately mis-predict those jobs which wddll in
spike in delay occurs, BMBP makes a series of incorrect predi the clusters corresponding to longer wait times. If, as wsitpo
tions. However, the sparsity of the data causes it to incthile ~ these jobs also have the largest resource requiremergdikiely

spike in the valid history until the next similar episode. €Tin- that the mis-predictions are for users who are most intedeist
tervening predictions are conservative but correct andnvthe accurate bounds. Conversely, SCHMIB attempts to “sprefael” t
next spike occurs, there are enough residual large valuestie mis-predictions among various clusters evenly. As a regwdn if
last spike to allow BMBP to make a sufficient number of correct it achieves a higher RMS error overall, users may find theltsu
predictions to ensure overall correctness. more useful.

When SCHMIB is added, the large values from the previous 4.6 Choosing a “Best” Strategy
spike are present in, at most, the clustering corresportdiriige
longest wait times. Yet all jobs (regardless of their chemastics)
appear to experience increasing delay. Thus, at best, SBHMI
would cause BMBP to return a correct prediction only for these
ter of largest values and job categorized into other clasgcept
for this largest one will see incorrect predictions. Durthg in-
tervening periods the predictions are far less conseryalivt ul-
timately SCHMIB degrades BMBP to the point where it does not
achieve its correctness goal.

While no single methodology is uniformly best, in the absenc
of specific information about the policies in place, usingH3aB
to cluster by requested execution time appears to be thesuost
cessful approach. Of the3 cases where “rtime” or “rnprod” are
the most accurate, in only two (CT&l and SDSChigh) is “rn-
prod” better thari 0% more accurate than “rtime.” It is quite pos-
sible that these cases reflect some explicit node-houdtztain-
istrative policy, especially in the case of the SDEigh queue, for

. . . o which “rnprod” does so much better than any other method. We
While this example demonstrates an uncontrived settindnilhwv similarly postulate that the cases for which SCHMIB is Ieféace

SCHMIB hinders BMBP, we believe it also illustrates theityiof tive than “plain” prediction also reflect some policg.g, lack of

both approaches (used in combination) as a diagnosticdodhé backfilling) which tends to homogenize the jobs’ wait times.
user or administrator.

However, it also may be possible to use an ensemble of SCHMIBs
(one for each job characteristic) and simply to choose tleetioat
has the lowers RMS over time. Usinglagigahertz Pentium I,
the average time required to make each prediction over &dhba
queue logs is approximately milliseconds. With this perfor-
mance cost, it should be possible to run all methods simedtan
ously for each queue and then to track the RMS so that the most
accurate can be selected in each setting.

In Figure 4 we show thé.95 BMBP predictions without SCHMIB

for both the Datastanigh queue and thaormal queue from July

374 through July5t". Starting late on th&"?, the predictions for

the high queue start to increase as BMBP recognizes a series of
consecutive misses as a change-point. By 8:30 AM ortthethe
predictions exceed those for thermal queue which, if nothing
else, might have indicated a less-than-happy user comyn e

do not know whether this event corresponds to a policy ongott
failure, but if it does, the combination of BMBP’s succesgfte-
dictions without SCHMIB and the failure of SCHMIBtocorraet 5. Conclusions



Space-shared parallel computers use queuing system$ifaide  [7] The Dror Feitelson’s Parallel Workload Page.t p:
ing parallel jobs to processor partitions in such a way tlaahe [ Ivww. cs. huji.ac.il/labs/parallel/workload.
job runs exclusively on the processors it is given. In presio [8] D. G. Feitelson and B. Nitzbergiob characteristics of a production

. . parallel scientific workload on the NASA Ames iPSC/860
work [26, 26] we have proposed a method for estimating bounds Springer-Verlag, 1996.

on the queuing delay experienced by each each job and shoéw tha [9] b. G. Feitelson and L. RudolpiRarallel Job Scheduling: Issues

this non-parametric method — termed the Binomial Method:Bat and ApproachesSpringer-Verlag, 1995.

Predictor (BMBP) — outperforms competitive approaches. [10] D. G. Feitelson and L. Rudolpfiowards Convergence in Job
Schedulers for Parallel SupercomputeBpringer-Verlag, 1996.

[11] E. Frachtenberg, D. G. Feitelson, J. Fernandez, andtinP
Parallel Job Scheduling Under Dynamic Workloads
Springer-Verlag, 2003.

Site administrators, however, use scheduling policiet sisc
backfilling, as well as various explicit priority schemasbalance

the need for high resource utilization with the desire toimine [12] C. Granger and P. Newbol8orecasting Economic Time Series
the queuing delay experienced by users. Many of these eslici Academic Press, 1986.
use requested execution time, requested node count, arttieqy [13] Gridengine home page —

; ; ; P : http://gridengi ne. sunsource. net/.
of the two 1o determine how a job will be prioritized. Thuskitg [14] M. Harchol-Balter. The effect of heavy-tailed job siistributions

these characteristics into account as a way of categoriping on computer system design. Rtoceedings of ASA-IMS Conference
should yield tighter predictions of queue delay bounds. on Applications of Heavy Tailed Distributions in Economics
Engineering and StatisticSune 1999.
We therefore introduce SCHMIB, a hierarchical clustericigesne, [15] é};{tﬁca;nHled Iﬁ-CCUDutéfﬁs\f;J:éhg;g?f I\CLIJUSLBeSriAnglggg
to improve the accuracy of the bqunds generated by BMBP, anon [16] D. Lifka, The'ANL/'IBI\eIpSP scheduling s’yst,émlun{e 949,
parametric approach to estimating bounds for batch-queaie w Springer-Verlag, 1995.
times. We find that using SCHMIB to cluster jobs according to [17] D. Lifka, M. Henderson, and K. Rayl. Users guide to thgcamne

their requested time generally results in better predistithan SP scheduling system. Technical Report TM-201, Argonne
those generated by BMBP alone and is more efficacious than clu National Laboratory, Mathematics and Computer SciencésDiv,
tering either by requested number of nodes or by requestatiew May 1995.

[18] J. MacQueen. Some methods for classification and asalys
multivariate observations. pages 281-297, 1967.
[19] Maui scheduler home pagehtt p:

of node-seconds.

In the future, we will consider other approaches to the bl /1 www. cl ust erresour ces. coml product s/ maui / .
of clustering. No clustering method short of exhaustivecess [20] Cray NQE User's Guide ht t p:
guaranteed to find an optimal clustering (in terms of, in agec 211 {letsigrzshocrgg);éggrif books/ 2148.3. 3/ htm - 2148.3. 3.
BIC); it may_be that fo_r_data of the type we are consideringavee http: //waw al tair. com sof t war e/ pbspro. ht m
better off using a partitional approach or model-basedeans. In [22] C. Posse. Hierarchical model-based clustering fadatatasets.
addition, the sensitivity of clustering to chosen modeldtide in- Journal of Computational and Graphical Statistid®9(3):464-22,
vestigated: it may be that by choosing a family of models énat 2001.

more accurate than the exponential at the cost of some extta ¢~ [23] G. Schwartz. Estimating the dimension of a modelAfm. of
plexity (e.g, Weibull distributions) will produce clusters for which Statistics pages 461464, 1979.

. L . [24] W. Smith, V. E. Taylor, and |. T. Foster. Using run-timeegictions
BMBP can perform better. In addition, it is possible to enypo to estimate queue wait times and improve scheduler perfurea

multidimensional clustering scheme, so that we can evaltha In IPPS/SPDP '99/JSSPP '99: Proceedings of the Job Scheduling
effectiveness of using both requested time and requestéesras Strategies for Parallel Processingages 202-219, London, UK,
clustering variables. There are also other variables (glength, 1999. Springer-Verlag. ] )

longest current wait time in the queue, requested procégper [25] S. . Zhong. Journal of machine learning research 4300

- 1001-1037 submitted 3/03; revised 7/03; published 11/08iféed
requested memorgtc) that might also be used as explanatory framework for model-based clustering

Varlables for Wa|t times and could therefore be used as 3 basi [26] Reference removed for the purpose of blind submission.
clustering. Finally, we plan to monitor the effects of BMBRda

SCHMIB deployment for scientific user communities to discer

its ultimate effects on workload and queuing performance.

6. REFERENCES

[1] IBM LoadLeveler User's Guide. Technical report, Intational
Business Machines Corporation, 1993.

[2] G.Box, G. Jenkins, and G. Reins&ime Series Analysis,
Forecasting, and Control, 3rd editiofPrentice Hall, 1994.

[3] S.-H. Chiang and M. K. VernorDynamic vs. Static
Quantum-based Processor Allocatidggpringer-Verlag, 1996.

[4] S. Clearwater and S. Kleban. Heavy-tailed distribugiam
supercomputer jobs. Technical Report SAND2002-2378Cdigan
National Labs, 2002.

[5] A. Downey. Predicting queue times on space-sharinglighra
computers. IrProceedings of the 11th International Parallel
Processing SymposiyiApril 1997.

[6] A. Downey. Using queue time predictions for processécation.
In Proceedings of the 3rd Workshop on Job Scheduling Strategie
for Parallel ProcessingApril 1997.



