
SCHMIB: Segregating Clusters Hierarchically Making Impro ved Bounds ∗

John Brevik, Daniel Nurmi, and Rich Wolski†

Computer Science Department
University of California, Santa Barbara

Santa Barbara, California 93106
UCSB Technical Report Number CS2005-27

November, 2006

Abstract

Most space-sharing parallel computers presently operatedby
high-performance computing centers use batch-queuing systems
to manage processor allocation. In many cases, users wishing
to use these batch-queued resources have the option of choosing
between different queues (having different charging rates) poten-
tially on a number of different machines where they have access.
In such a situation, the amount of time a user’s job will wait in
any one batch queue can significantly impact the overall timea
user waits from job submission to job completion. It thus becomes
desirable to provide a prediction for the amount of time a jobcan
expect to wait in the queue at a given time. Further, it is natural to
expect that attributes of an incoming job, specifically the number
of processors requested and the amount of time requested, might
impact that job’s wait time.

Previous work has shown that it is possible to determine mean-
ingful upper-bounds on queuing delay using a simple non-parametric
technique, particularly when site administrators provideinforma-
tion for how jobs should be grouped by processor count.

In this work, we explore the possibility of generating more ac-
curate predictions by automatically grouping jobs having similar
attributes using model-based clustering. Moreover, we implement
this clustering technique for a time series of jobs so that predic-
tions of future wait times can be generated in real time.

Using trace-based simulation on data from 7 machines over a
9-year period from across the country, comprising over one mil-
lion job records, we show that clustering either by requested time
or by requested number of processors generally produces more
accurate predictions than the earlier more naive approaches, that
automatic clustering outperforms administrator-determined clus-
terings, and that clustering by requested time or the product of re-
quested nodes and requested execution time is substantially more
effective than clustering by requested number of processors.

∗We have chosen a somewhat obscure title for this work in an
effort to improve the anonymity of our submission. We will retitle
the paper appropriately should it be accepted.
†This work was supported by grants from the National Science
Foundation numbered CCF-0331654 and NGS-0305390.

1. Introduction

Typically, high-performance multi-processor compute resources
are managed usingspace sharing, a scheduling strategy in which
each program is allocated a dedicated set of processors for the du-
ration of its execution. In production computing settings,users
prefer space sharing to time sharing, since dedicated processor ac-
cess isolates program execution performance from the effects of
a competitive load. Because processes within a partition donot
compete for CPU or memory resources, they avoid the cache and
translation look-aside buffer (TLB) pollution effects that time slic-
ing can induce. Additionally, inter-process communication occurs
with minimal overhead, since a receiving process can never be pre-
empted by a competing program.

For similar reasons, resource owners and administrators pre-
fer space sharing as well. As long as the time to allocate parti-
tions to, and reclaim partitions from, parallel programs issmall, no
compute cycles are lost to time-sharing overheads, and resources
are efficiently utilized. Thus, at present, almost all production
high-performance computing (HPC) installations use some form
of space sharing to manage their multi-processor and cluster ma-
chines.

Because each program in a space-shared environment runs in
its own dedicated partition of the target machine, a programcan-
not be initiated until there are a sufficient number of processors
available for it to use. When a program must wait before it can
be initiated, it is queued as a “job”1 along with a description of
any parameters and environmental inputs (e.g. input files, shell
environment variables,etc.) it will require to run. However, be-
cause of the need both to assign different priorities to users and to
improve the overall efficiency of the resource, most installations
do not use a simple first-come-first-served (FCFS) queuing dis-
cipline to manage the queue of waiting jobs. Indeed, a numberof
queue management systems, including PBS [21], LoadLeveler[1],
EASY [17], NQS/NQE [20], Maui [19] and GridEngine [13] each
offers a rich and sophisticated set of configuration optionsthat al-
low system administrators to implement highly customized prior-

1We will use the term “job” throughout this paper to refer to a de-
scription of a program and its execution requirements that aqueu-
ing system can use to initiate a program once the necessary re-
source become available.



ity mechanisms.

Unfortunately, while these mechanisms can be used to balance
the need for high job throughput (in order to ensure machine ef-
ficiency) with the desires of end-users for rapid turnaroundtimes,
the interaction between offered workload and local queuingdisci-
pline makes the amount of time a given job will wait highly vari-
able and difficult to predict. Users may wait a long time – con-
siderably longer the the job’s eventual execution time – fora job
to begin executing. Many users often find this potential for unpre-
dictable queuing delay particularly frustrating since, inproduction
settings, theycan make fairly reliable predictions of how long a
program will execute once it starts running. Without an ability to
predict its queue waiting time, however, users cannot plan reliably
to have results by a specific point in time.

In this paper, we present a method for automatically predicting
bounds, with quantitative confidence levels, on the amount of time
an individual job will wait in queue before it is initiated for execu-
tion on a production “batch scheduled” resource. The methodcon-
sists of three interacting but essentially independent components:
a percentile estimator, a change-point detector, and a clustering
procedure. At a high level, clustering is used to identify jobs of
similar characteristics. Within each cluster, job submissions are
treated as a time series and the change-point detector delineates
regions of stationarity. Finally, the percentile estimator computes
a quantile that serves as a bound on future wait time based only
on history from the most recent stationary region in each cluster.
All three components can be implemented efficiently so that on-
line, real-time predictions are possible. Thus, for each job submis-
sion, our method can generate a predicted bound on its delay us-
ing a stationary history of previous jobs having similar quantitative
characteristics. In addition, as jobs complete their time in queue,
new data becomes available. Our method automatically incorpo-
rates this information by adjusting its clustering and change-point
estimates.

In previous work [26, 26] we have investigated various meth-
ods for percentile estimation and explored the efficacy of auto-
matic change-point detection in such highly correlated data. Using
a simple method based on binomial distributions, combined with
on-line autocorrelation analysis, we have found that it is possible
to predict bounds on the delay of individual jobs that are tighter
then parametric methods based on Maximum Likelihood Estima-
tion (MLE) of Weibull and log-normal distributions. This method-
ology we term theBinomial Method Batch Predictor(BMBP).

In this work, we focus on improving the bounds achieved by
BMBP through a novel approach to model-based clustering ap-
plied hierarchically to the job submission history it uses.We de-
scribe the full methodology (Binomial percentile estimator, change-
point detector, and clustering algorithm) and discuss the often com-
plicated interaction between change-point detection and re-clustering
in response to newly available queue delay measurements when
the system is to be used in an on-line setting. Thus, our goal is
to explore the effect ofsegregatingclustershierarchically tomake
improvedbounds (abbreviated as SCHMIB).

To verify the effectiveness of the approach, we compare BMBP
with and without SCHMIB using job submission traces from7 su-
percomputers (including three currently in operation) operated by

the National Science Foundation and the Department of Energy
over the past9 years comprising approximately one million job
submissions. By examining job arrival time, requested execution
time, and requested node count, we simulate each queue in each
trace and compute a prediction for each job. Our results indicate
that BMBP (which is more effective than competitive parametric
methods) used with SCHMIB achieves significantly tighter bounds
on job wait time in most cases. Thus, this new combination repre-
sents the most accurate available method for predicting bounds on
individual job delay times, and does so with a specifiable degree
of certainty.

Thus, this paper makes three significant new contributions with
regard to predicting individual job queue delays.

• We present BMBP (briefly) and SCHMIB as an example of
an accurate, non-parametric, and fully automatic method for
predicting bounds (with specific levels of certainty) on the
amount of queue delay each individual job will experience.

• We verify the efficacy of these techniques using job sub-
mission logs from currently operating large-scale batch sys-
tems, and from archival logs for systems that are no longer
in operation.

• We find that SCHMIB improves the accuracy of the bounds,
that requested execution time is a more significant factor for
clustering jobs than is processor count that jobs cluster dif-
ferently from the way that expert site administrators (who
control the specific scheduling policies) have anticipated.

We believe that these results constitute a new and important
capability for users of batch-controlled resources. Usingan on-
line, web-based, real-time version of BMBP and SCHMIB [26]
that allows users to generate predictions on demand, these users
are better able to decide on which machines to use, which queues
on those machines to use, the maximum amount of run time to re-
quest, and the number of processors to request so as to minimize
job turnaround time or maximize the utilization of their respective
time allocations. Our techniques are also useful as a scheduling
policy diagnostic for site administrators. For example, our results
indicate that the amount of requested execution time is a farmore
significant factor in determining queue delay than is requested pro-
cessor count (presumably due to back-filling [16]). One sitead-
ministrator at a large scale computer center2 expressed surprise at
this result, since she believed she had set the scheduling policy at
this site to favor jobs with large processor counts in an effort to
encourage users to use the resource for “big” jobs. Because short
jobs can be more readily scheduled when back-filling is used,users
are circumventing the site policy and submitting small jobsto im-
prove turn-around time. This example illustrates how prototype
versions of BMBP and SCHMIB are already having an impact in
large-scale batch-controlled settings. We discuss the nature of this
impact further in Section 4.

This ability to make predictions for individual jobs distinguishes
our work from other previous efforts. An extensive body of re-

2The specific administrator and site have been elided to improve
the anonymity of our blind submission but will be included ina
final version of the paper, should it be accepted.



search [3, 5, 6, 8, 9, 10, 11, 24] investigates the statistical proper-
ties of offered job workload for various HPC systems. In mostof
these efforts, the goal is to formulate amodelof workload and/or
scheduling policy and then to derive the resulting statistical prop-
erties associated with queuing delay through simulation. Our ap-
proach focuses strictly on the problem offorecastingfuture delay
bounds; we do not claim to offer an explanatory, or even a descrip-
tive, model of user, job, and/or system behavior. However, perhaps
because of our narrower focus, our work is able to achieve predic-
tions which are, in a very specific and quantifiable sense, more
accurate and more meaningful than those reported in the previous
literature. We discuss related approaches further in Section 2.

In the next section, we describe BMBP briefly and SCHMIB
in detail. As mentioned previously, Section 4 discusses oureval-
uation procedure and the specific results we have achieved, Sec-
tion 2 covers related approaches and efforts, and finally in Sec-
tionsec:conclusions we recap and conclude our descriptionof this
work.

2. Related Work

Previous work in this field can be categorized into three groups.
The first group of work belongs under the general heading of schedul-
ing jobs on parallel supercomputers. In a works by Feitelsonand
Rudolph [9, 10], the authors outline various scheduling techniques
employed by different supercomputer architectures and point out
strengths and deficiencies of each. The prevalence of distributed
memory clusters as supercomputer architectures has led to most
large scale sites using a form of “variable partitioning” asde-
scribed in [9]. In this scheme, machines are space shared andjobs
are scheduled based on how many processors the user requestsand
how much time they specify as part of the job submission. As the
authors point out, this scheme is effective for cluster typearchitec-
tures, but leads to fragmentation as well as potentially long wait
times for jobs in the queue.

The second field of previous work which is relevant to our work
involves using various models of large scale parallel job scenar-
ios to predict the amount of time jobs spend waiting in sched-
uler queues. These works attempt to show that batch queue job
wait times can be inferred under the conditions that one knows
the length of time jobs actually execute and that the algorithm em-
ployed by the scheduler is known. If both conditions are met,it has
been shown that the mean job wait time can be predicted, as shown
in a paper from Smith, Taylor and Foster [24], but even when the
job execution times well modelled, the mean error ranges from 33
to 73 percent. In this work, the authors use a template-basedap-
proach to categorize and then predict job execution times. From
these execution-time predictions, they then derive mean queue de-
lay predictions by simulating the future behavior of the batch sched-
uler in faster-than-real time. Downey [5, 6] uses a similar set of
assumptions for estimating queue wait times. In this work, he ex-
plores using a log-uniform distribution to model the remaining
lifetimes of jobs executing in all machine partitions as a way of
predicting when a “cluster” of a given size will become available
and thus when the job waiting at the head of the queue will start.
As a metric of success, Downey uses the correlation between the
wait time of the head job, if execution times are estimated using his
model, and the head job wait time if the execution time is exactly

known. Both of these approaches make the underlying assumption
that the scheduler is employing a fairly straightforward schedul-
ing algorithm (one which does not allow for special users or job
queues with higher or lower priorities), and also that the resource
pool is static for the duration of their experiments (no downtimes,
administrator interference, or resource pool dynamism).

Our work differs from these approaches in two significant ways.
First, instead of inferring from a job execution model the amount
of time jobs will wait, we make job wait time inference from the
actual job wait time data itself. The motivation for why thisis
desirable stems from research efforts [4, 14], which suggest that
modelling job execution time may be difficult for large-scale pro-
duction computing centers. Further, making inference straight
from the job wait time data, we avoid having to make underly-
ing assumptions about scheduler algorithms or machine stability.
We feel that in a real world scenario, where site scheduling algo-
rithms are rarely published and are not typically simple enough to
model with a straightforward procedure, it is unlikely thatvalid
queue wait time predictions can be made with these assumptions.

Secondly, our approach differs in the statistic we use as a pre-
diction. Most often, we see researchers using as a prediction the
mean amount of time a job is expected to wait in the queue. Our
approach instead uses bounds on the time an individual job will
wait rather than a specific, single-valued prediction of itswaiting
time. We contend that the highly variable nature of observedqueue
delay is better represented to potential system users as quantified
confidence bounds than as a specific prediction, since users can
“know” the odds that their job will fall outside the range.

3. BMBP and SCHMIB

In this section, we describe our approach to the three related
problems that we must solve to implement an effective predictor:
quantile estimation3, change-point detection, and clustering. The
general approach we advocate is first to cluster the observedjob
submission history according to jobs having similar quantitative
characteristics (e.g. requested node count, requested maximum
execution time, or requested node-hours), next to identifythe most
recent region of stationarity in each cluster (treated as a time se-
ries), and finally to estimate a specific quantile from that region
to use as a statistical bound on the time a specific job will wait in
queue. While logically the steps occur in this order, we describe
them in reverse order, providing only a summarization of ourquan-
tile estimation and stationarity approaches, primarily due to space
constraints but also because we have analyzed these extensively in
other publications [26, 26].

3.1 Inference for Quantiles using The Binomial
Method

Our goal, with this method, is to determine an upper bound
on a specific quantile at a fixed level of confidence, for a given
population whose distribution is unknown. If the quantile were
known with certainty, and the population were the one from which
a given job’s queue delay were to be drawn, this quantile would

3We use the term “quantile” instead of the term “percentile”
throughout the remainder of this paper.



serve as a statistical bound on the job’s waiting time. For example,
the0.95 quantile for the population will be greater than or equal to
the delay experienced by all but5% of the jobs. Colloquially, it can
be said that the job has a “95% chance” of experiencing a delay
that is less than the0.95 quantile. We assume that the quantile
of interest (0.95, 0.99, 0.50, etc.) is supplied to the method as a
parameter by the site administrator depending on how conservative
she believes the estimates need to be for a given user community.

However, since the quantiles cannot be known exactly and must
be estimated, we use an upper confidence boundon the quantile
that, in turn, serves as a conservative bound on the amount ofdelay
that will be experienced by a job. To be precise, to say that a
method produces an upper95% confidence bound on the a given
quantile implies that the bound produced by this method will, over
the long run, overestimate the true quantile95% of the time. The
degree of conservatism we assume is also supplied to the method
as a confidence level. In practice, we find that while administrators
do have opinions about what quantile to estimate, the confidence
level for the upper bound is less meaningful to them. As a result,
we typically recommend estimating what ever quantile is desired
by the upper95% confidence bound on that quantile.

Our approach, which we term theBinomial Method, is based
on the following simple observation: IfX is a random variable,
andXq is the q quantile of the distribution ofX, then a single
observationx from X will be greater thanXq with probability
(1−q). (For our application, if we regard the wait time, in seconds,
of a particular job submitted to a queue as a random variableX,
the probability that it will wait for less thanX.95 seconds is exactly
.95.)

Thus (provisionally under the typical assumptions of indepen-
dence and identical distribution) we can regard all of the obser-
vations as a sequence of independent Bernoulli trials with proba-
bility of success equal toq, where an observation is regarded as
a “success” if it is less thanXq . If there aren observations, the
probability of exactlyk “successes” is described by a Binomial
distribution with parametersq andn. Therefore, the probability
that more thank observations are greater thanXq is equal to

1 −

k
X

j=0

 

n

j

!

· (1 − q)j
· q

n−j (1)

Now, if we find the smallest value ofk for which Equation 1 is
larger than some specified confidence levelC, then we can assert
that we are confident at levelC that thekth value in a sorted set
of n observations will be greater than or equal to theXq quantile
of the underlying population – in other words, thekth sorted value
provides anupper level-C confidence boundfor Xq .

Clearly, as a practical matter, neither the assumption of inde-
pendence nor that of identical distribution (stationarityas a time
series) holds true for observed sequences of job wait times from
the real systems, and these failures present distinct potential diffi-
culties for our method.

Let us first (briefly) address the issue of independence, as-
suming for the moment that our series is stationary but that there

may be some autocorrelation structure in the data. We hypothe-
size that the time-series process associated to our data isergodic,
which roughly amounts to saying that all the salient sample statis-
tics asymptotically approach the corresponding population param-
eters. Ergodicity is a typical and standard assumption for real-
world data sets;cf., e.g.,[12]. Under this hypothesis, a given sample-
based method of inference will,in the long run,provide accurate
confidence bounds.

Although our method is not invalidated by dependence, a sep-
arate issue from thevalidity of our method is that exploiting any
autocorrelation structure in the time series should,in principle,
produce more accurate predictions than a static binomial method
which ignores these effects. Indeed, most time-series analysis and
modeling techniques are primarily focused on using dependence
between measurements to improve forecasting [2]. For the present
application, however, there are a number of obfuscating factors
that foil typical time-series methods. First of all, for a given job
entering a queue, there are typically several jobs in the queue, so
that the most recent available wait-time measurement is forsev-
eral time-lags ahead. The correlation between the most recent
measurement at the time a job enters the queue and that job’s
eventual wait time is typically modest, around0.1, and does not
reliably contribute to the accuracy of wait-time predictions. An-
other issue is the complexity of the underlying distribution of wait
times: They typically have more weight in their tails than exponen-
tial distributions, and many queues exhibit bimodal or multimodal
tendencies as well. All of this makes any linear analysis of data
relationships (which is the basis of the “classical” time-series ap-
proach) very difficult. Thus while the data is not independent, it is
also not amenable to standard time-series approaches for exploit-
ing correlation.

3.2 Correct and Accurate Predictions

Because we are predicting a probabilistic bound on the delay
for each job, it is useful to differentiate between a correctpre-
diction and an accurate one in this context. We define acorrect
prediction to be one that is greater than or equal to a job’s eventual
queueing delay, and acorrect predictorto be one for which the
total fraction of correct predictions is greater than or equal to the
success probability specified by the target quantile. For example, a
correct predictor of the0.95 quantile generates correct predictions
for at least95% of the jobs that are submitted.

Notice that it is trivial to specify a correct predictor under this
definition. For example, to achieve a correct prediction percentage
of 95%, a predictor could return an excessively large prediction
(e.g.,a predicted delay of several years) for19 of every20 jobs,
and a prediction of0 for the20th. To distinguish among correct
predictors, we compare theiraccuracyin terms of the error they
generate, where error is some measure of the difference between
predicted value and the value it predicts.

In this work, we will use Root Mean Square (RMS) error for
the over-predictions as a measure of accuracy for correct predic-
tors. We consider only over-prediction error, as we believethat the
error generated for the percentage of jobs that are incorrectly pre-
dicted is relatively unimportant to the user. For example, among
predictors that are95% correct, it is our contention that users
would prefer one that achieves lower over-prediction errorfor the



95% of the jobs it predicts correctly over one that achieves a lower
error rate on the5% that are incorrectly predicted at the expense
of greater overall error in the correct predictions.

Note that comparing predictors strictly in terms of their error
(without consideration of their correctness) is difficult.For exam-
ple, a predictor that estimates the mean of each stationary region
will generate a lower RMS than one that estimates the0.95 quan-
tile, but the mean predictor will not provide the user with a mean-
ingful delay bound (i.e., one having a probability value attached
to it). Thus, for a given job workload, we only compare predictor
accuracy among those predictors that are correct.

Note also that, while RMS error is used widely as a measure of
accuracy for predictions of expected values (e.g.in time series), its
meaning is less clear in the context of quantile prediction.In this
paper, we are focusing on estimating a time value which is greater
than the wait time of a specific job with probability.95. Therefore,
if the distribution of wait times is highly right-skewed, a predictor
may be working quite well and still have a very high RMS error.
Thus, the actualvalueof the RMS error is not particularly mean-
ingful; however, it is still useful as a means ofcomparison: For a
particular set of jobs, if one correct prediction method hasa lower
RMS than another, then that first method is preferable in terms of
producing tighter, less conservative upper bounds (cf. Section 4.5
for further discussion of RMS error).

3.3 Non-stationarity and Change-Point Analysis

Unlike the issue of independence and correlation, the issueof
non-stationaritydoesplace limitations on the applicability of our
method. Clearly, for example, it will fail in the face of datawith a
“trend,” say, a mean value that increases linearly with time. On the
other hand, insisting that the data be stationary is too restrictive to
be realistic: Large compute centers change their scheduling poli-
cies to meet new demands, new user communities migrate to or
from a particular machine,etc. It seems to be generally true across
the spectrum of traces we have examined that wait-time data is
typically stationary for a relatively long period and then under-
goes a “change-point” into another stationary regime with differ-
ent population characteristics. We thus use the Binomial Method
as a prediction method for data which are stationary for periods
and for which the underlying distribution changes suddenlyand
relatively infrequently; we next discuss the problem of detecting
change-points in this setting.

Given an independent sequence of data from a random variable
X, we deem that the occurrence of three values in a row above
X.95 constitutes a “rare event” and one which should be taken to
signify a change-point. Why three in a row? To borrow a well-
known expression from Tukey4, two is not enough and four is
too many; this comes from consideration of “Type I” error. Under
the hypothesis of identical distribution, a string of two consecutive
high or low values occurs every400 values in a time series, which
is an unacceptable frequency for false positives. Three in arow
4We refer here to Tukey’s notorious explanation why the
“whiskers” in a boxplot should extend1.5 IQRs, namely that “1 is
too small and2 is too large”; beyond its beautiful “sound bite”
quality, Tukey’s quote serves as a reminder that any statistical
threshold, such as95% confidence or.05 significance level, is an
artificial entity ultimately chosen for its usefulness.

will occur every8000 values; this strikes a balance between sensi-
tivity to a change in the underlying distribution of the population
and certainty that a change is not being falsely reported.

Now, suppose that the data, regarded as a time series, exhibits
some autocorrelation structure. If the lag-1 autocorrelation is fairly
strong, three or even five measurements in a row above the.95
quantile might not be such a rare occurrence, since, for example,
one unusually high value makes it more likely that the next value
will also be high. In order to determine the number of consecu-
tive high values (top5% of the population) that constitute a “rare
event” approximately in line with the criterion spelled outfor inde-
pendent sequences, we conducted a Monte Carlo simulation with
various levels of lag-1 autocorrelation inAR(1) time series [12],
observed the frequencies of occurrences of consecutive high and
low values, and generated a lookup table for rare-event thresholds.
Thus, to determine if a change-point has occurred, we compute
the autocorrelation of the most recent history, look up the max-
imum number of “rare” events that should normally occur with
this level of autocorrelation, and determine whether we have sur-
passed this number. If so, our method assumes the underlying
system has changed, and that the relevant history must be trimmed
as much as possible to maximize the possibility that this history
corresponds to a region of stationarity. Note that indiscriminate
history-trimming will not allow our method to function properly,
since the resulting small sample sizes will generate unnecessarily
conservative confidence bounds.

The minimum useful history length depends on the quantile
being estimated and the level of confidence specified for the esti-
mate. For example, it follows from Equation 1 above that in order
to produce an upper95% confidence bound for the.95 quantile,
the minimum history size that can be used is59. (This reflects the
fact that.9559 < .05, while .9558 > .05.)

Again, a more complete description of the Binomial Method
and its concomitant procedure for change-point detection,as well
as a more detailed rationale and analysis of the assumptionsupon
which it is based are available in [26], as is evidence of its ef-
fectiveness in comparison to other methods. Additional evidence
for its effectiveness is described in [26]. Here we endeavoronly
to summarize the approaches, which we will heretofore referto
together as theBinomial MethodBatch Predictor (BMBP), and
provide a general motivation for their effectiveness.

3.4 SCHMIB: Prediction with Model-Based Clus-
tering

According to our observations and to anecdotal evidence pro-
vided by users and site administrators, there are differences among
the wait times various jobs might expect to experience in thesame
queue, based purely on characteristics of the jobs such as the amount
of time and the number of nodes requested. This is certainly easy
to believe on an intuitive level; for example, if a particular queue
employs backfilling [16], it is more likely that a shorter-running
job requesting a smaller number of nodes will be processed dur-
ing a time when the machine is being “drained.” Thus, for a given
job, we might hope to make a better prediction for its wait time
if we took its characteristics into account rather than making one
uniform prediction which ignores these characteristics.



On the other hand, the same difficulties arise in trying to pro-
duce regression models [24] as we encountered in the problemof
trying to use autoregressive methods: In particular, the data are
typically multimodal and do not admit of simple parametric mod-
els. We therefore explore the idea ofclusteringthe data into groups
having similar attributes, so that we can use our non-parametric
predictor on each cluster separately.

In fact, in [26], based on advice we received from several expert
site administrators for currently operating systems, we employed
a rather arbitrary partitioning of jobs in each queue by processor
count, running separate predictors within each partition,which
resulted in substantially better predictions. However, itwould
clearly be desirable to find a partition which is in some (statistical)
sense “optimal” rather than relying on such arbitrary methods; for
our purposes, it is also desirable to find a partitioning method that
can be machine-learned and is therefore applicable across differ-
ent queues with different policies and user characteristics with-
out direct administrator intervention or tuning. Moreover, as a
diagnostic tool, it would be advantageous to be able to compare
the machine-determined clustering with that determined bysite
administrators to illuminate the effects of administrator-imposed
scheduling policies. In this section, we describe our approach to
this problem, which falls under the rubric ofmodel-based cluster-
ing [15, 22, 25].

3.5 Model-Based Clustering

The problem of partitioning a heterogeneous data set into clus-
ters is fairly old and well studied [15, 18, 22, 25]. The simplest
and most common clustering problems involve using the values of
the data, relative to some notion of distance. Often, one postu-
lates that the distribution within each cluster is Gaussian, and the
clusters are formed using some well-known method, such as the
so-calledk-means algorithm [18] or one of various “hierarchical”
or “partitional” methods [22, 25]. If the number of clustersis also
unknown, a model-selection criterion such as BIC [23], which we
will discuss further below, is often used to balance goodness of fit
with model complexity.

In fact, it is tempting, if for no other reason than that of sim-
plicity, to form our clusters in this way, according to how they
naturally group in terms of one or more job attributes. Note,how-
ever, that this method of clustering in no way takes into account
the wait times experienced by jobs, which is ultimately the vari-
able of interest; it is by no means clear that a clustering of jobs by
how their requested wait times group will result in clusterswhose
wait-time distributions are relatively homogeneous. For example,
it is possible that a subset of the requested job execution times
form a nice Gaussian cluster between8 and12 minutes, but that
due to some combination of administrative policy, backfilling, and
various “random” characteristics of the system as a whole, jobs
requesting less than10 minutes experience substantially different
wait times than those requesting more than10 minutes, so this
cluster is actually meaningless in terms of predicting waittimes.

In our case, then, the situation is somewhat more complicated
than ordinary clustering: We wish to cluster the data according to
some characteristics which areobservable at the time the job is
submitted(explanatory variables), but using the actual wait times
(response variable) as the basis for clustering. That is, wewish

to use observed wait times to cluster jobs, but then to determine
how each cluster is characterized by quantitative attributes that are
available when each job is submitted so that an arriving job can
be categorized before it begins to wait. In the discussion that fol-
lows, we will use therequested execution time(used to implement
backfilling) as the explanatory characteristic, but this isonly for
the sake of ease of exposition.

The idea behind our method runs as follows: We postulate
that the set of requested times can be partitioned intok clusters
C1, . . . , Ck, which take the form of intervals on the positive time
axis, such that within eachCj the wait times are governed by an
exponential distribution with unspecified parameterλj .

The choice of exponential distributions is something of an over-
simplification – in fact a Weibull, log-normal or hyperexponential
would probably be a more accurate choice – but the fact that the
clusters are relatively homogeneous makes the exponentialmodel
accurate enough with relatively little computational expense; more-
over, in practice, exponentials are more than discerning enough to
produce an adequate number of clusters. As a check, we gener-
ated an artificial trace using different log-normally distributed wait
times corresponding to the intervals of requested times[1, 100],
[101, 200], [201, 300], [301, 400], and[401, 500] and fed this data
to our clustering method. It recovered the following clusters for
the data:[1, 39], [40, 40], [41, 100], [101, 197], [198, 300], [301, 398],
[399, 492], [493, 493], [494, 500]. Since our method always clus-
ters the ends together to ensure that these clusters containat least
59 elements, the exponential clustering method recovers the orig-
inal clusters almost exactly.

We assume that the appropriate clustering is into connectedin-
tervals along the time axis; this provides an intuitive model for the
eventual users of our predictions. Given a desired value forthe
numberk of clusters, then, we use a modified form ofhierarchical
clustering. According to this method, we start with each unique
value for the requested time in its own cluster. We then merge
the two adjacent (in the sense of adjacency on the time axis) clus-
ters that give the largest value of thelog-likelihood functionlog L,
calculated jointly across the clusters, according to the maximum-
likelihood estimators for the exponential parametersλj , which are

given by
#(Cj)

P

x∈Cj
x

. This process continues until the number of

clusters is equal tok. Note that this is a well-accepted method for
clustering [18, 22, 25]; however, it does not guarantee thatthe re-
sulting clustering will maximize the log-likelihood over all possi-
ble choices ofk clusters, even if we assume that the clusters are all
intervals. This latter problem is prohibitively expensivecomputa-
tionally for an on-line, real-time application, even for moderately
large data sets, and we are therefore forced to use some restricted
method.

Each arriving job can then be categorized by identifying the
cluster whose minimum and maximum requested time straddle the
job’s requested time.

Continuing, the question of which value ofk to use is a prob-
lem in model selection, which recognizes the balance between
modeling data accurately and model simplicity. The most gen-
erally accepted model-selection criterion is theBayes Information



Criterion (BIC) [23], the form of which is

BIC(θ) = log L(θ) −
p

2
log n,

whereθ stands for the (vector of) free parameters in the model,
L is the joint likelihood function across the whole data set, calcu-
lated using the MLE forθ, p is the dimensionality ofθ (2k − 1
in our case: thek − 1 break points on the time axis to define our
clusters, and thek values for theλj , all of which are scalars),
andn is the total sample size. The first term in the BIC formula
should be seen as a measure of goodness of fit, while the second
term is a “penalty” for model complexity (i.e. one with a large
number of parameters). It is always true that for a less restricted
model (in our case, one allowing a larger number of clusters), the
log L term will be larger, so the penalty function is critical to avoid
over-parameterizing. Maximizing the BIC expression over aset
of proposed models has good theoretical properties and generally
produces good results in practice. Thus, our clustering strategy is
to specify a range of acceptablek-values; perform the hierarchi-
cal clustering described above for each of these values ofk; and
then calculate the BIC expression for each resulting clustering and
choose the one for which BIC is greatest.

3.6 Change-point Detection and Clustering

There is a potential difficulty implementing re-clusteringas
new job delay information becomes available. When SCHMIB
finds a new clustering, it does not take into account the minimum
necessary history required by BMBP (calculated, using the quan-
tile of interest and desired confidence level, from Equation1). As a
result, clusters determined by SCHMIB may not be suitable for use
by BMBP. We address this problem in the following way. When
BMBP is required to make a forecast from a cluster that does not
contain enough data, it augments the history it considers byadding
the data from the nexthighercluster in the adjacency list, adding
histories from further higher clusters if necessary until enough his-
tory is available. This temporary merge is recomputed each time
a forecast from a short cluster is needed, so that it is only done
for a given cluster until that cluster has enough data. We term
this processhistory borrowing. Borrowing is done fromhigher
adjacent clusters in the interest of safeguarding the correctness of
the predictor, possibly at the expense of generating slightly over-
conservative estimates.

4. Results

In this section, we describe our method for evaluating BMBP
and SCHMIB, and we then detail a set of simulation experiments
that use, as their input, traces of job submission logs gathered at
various supercomputing centers. While we have implementedand
deployed a prototype of BMBP at a number of nationally accessi-
ble large-scale sites, and we are in the processes of enhancing this
prototype with SCHMIB, a rigorous comparison is best servedby
repeatable, trace-based simulation. We describe the details of the
simulations (we use a single simulator that can parse each job log)
and then report the prediction performance userswould haveseen
had BMBP and/or SCHMIB been available at the time each job in
each trace was submitted.

We investigate the problem in terms of estimating an upper

Figure 1. Example output of BMBP simulator
without the use of SCHMIB clustering or static
grouping.

bound on the0.95 quantile of queuing delay, however our ap-
proach can be similarly formulated to produce lower confidence
bounds, or two-sided confidence intervals, at any desired level of
confidence. It can also be used, of course, for any populationquan-
tile. For example, while we have focused in this paper on the
relative certainty provided by the.95 quantile, our method esti-
mates confidence bounds for the median (i.e., the point of “50-50”
probability) with equal effectiveness. We note that the quantiles
at the tail of the distribution corresponding to rarely occurring but
large values are more variable, hence more difficult to estimate,
than those nearer the center of the distribution. Thus, in a typi-
cal batch queue setting, which is characterized by large numbers
of jobs experiencing short wait times and a few jobs experiencing
long wait times, the upper quantiles provide the greatest challenge
for a prediction method. By focusing on an upper bound for the
.95 quantile, we are testing the limits of what can be predicted for
queue delay.

Note also that our assertion of retroactive prediction correct-
ness and accuracy assumes that users would not have changed the
characteristics of the jobs they submitted in response to the avail-
ability of the quantile predictions we generate. Moreover,the on-
line prototype we have developed, while operational, is in use by
only a few users5, making difficult an analysis of whether BMBP
and SCHMIB predictions affect workload characteristics. How-
ever, unless such feedback induces undamped oscillation resulting
in frequent “spikes” in delay (cf. Subsection 4.5 below), BMBP
and SCHMIB are likely to continue to make correct and accurate
predictions. We do plan to monitor the workloads experienced by
various sites after BMBP and SCHMIB are deployed for general
use at various large-scale sites and report on the effects aspart of
our future work.

4.1 Simulation

Our simulator takes as input a file containing historical batch-
5We count ourselves in the category of BMBP and SCHMIB users,
as we used the on-line system to schedule the simulations we exe-
cuted for this paper at various sites where our system is currently
operating.



queue job wait times from a variety of machines/queue combina-
tions and parameters directing the behavior of our models. For
each machine/queue for which we have historical information, we
were able to create parsed data files which contain one job en-
try per line comprising the UNIX time stamp when the job was
submitted, the duration of time the job stayed in the queue before
executing, the amount of requested execution time, and the node
count.

The steady-state operation of the simulation reads in a line
from the data file, makes a prediction (using BMBP or BMBP and
SCHMIB) and stores the job in a “pending queue”. We then incre-
ment a virtual clock until one of two events occur:

• The virtual time specified for the job to wait in the pending
expires.

• A new job enters the system according to the virtual clock.

When the first case occurs, the job is simply added to a grow-
ing list of historical job wait times stored in memory. Although
the waiting time for the job is carried in the trace, the predictor
is not entitled to “see” the waiting time in the history untilit stops
waiting in queue and is released for execution. When the historical
record changes, BMBP is given the new record so that it can up-
date its internal state. If SCHMIB is in use, the BMBP predictor(s)
for the cluster(s) into which the jobs are placed are updated.

When the second case occurs, the current prediction value is
used to make a prediction for the job entering the queue, the simu-
lation checks to see if the predicted time for that job is greater than
or equal to the actual time the job will spend in the pending queue
(success), or the predicted time was less than the actual jobwait
time (failure). The success or failure is recorded, and the job is
placed on the pending queue. Note that in a “live” setting this suc-
cess or failure could only be determined after the job completed
its waiting period.

In addition to events which occur with respect to time, one fi-
nal simulation event, re-clustering, occurs after a pre-determined
number (1000 in our study) of simulated job arrivals have oc-
curred. That is, the simulator presents new delay measurements
to BMBP when the simulated waiting times have expired, records
forecast accuracy, and triggers re-clustering. The code implement-
ing BMBP and SCHMIB are modularized so that the same imple-
mentation can be operated by the simulator or by the operational
infrastructure that makes “live” job predictions in real time.

As an example, in Figure 1 we show the time series of job
queue delays and0.95 quantile predictions generated by BMBP
without SCHMIB for the SDSC SP-2 machine and thehighqueue.
On they-axis using a log scale we show delay measured in sec-
onds. Along thex-axis are Unix time stamps. Each dark-colored
graph feature represents the queue delay experienced by a partic-
ular job, and the light-colored features near the top represent the
predictions.

In contrast, Figure 2 shows the same data as does Figure 1 in
dark graph features, but the0.95 quantile predictions generated by
BMBP and SCHMIB using requested execution time as a response
variable as light graph features. Note that although it may appear

Figure 2. Example output of BMBP/SCHMIB
simulator when using the requested time to
cluster jobs and make predictions.

as though there are multiple predictions for any given pointin time,
each job can only belong to one cluster, and therefore the graph is
composed of unique job wait time/prediction pairs.

Notice that many of the predictions shown in Figure 2 are al-
most an order of magnitude lower than the predictions for the
corresponding point in time in Figure 1. Thus if the SCHMIB-
determined clusters correctly categorize jobs by their response vari-
ables, BMBP applied to each cluster should yield correct predic-
tions that are more accurate (produce a “tighter” bounds) than
without clustering.

4.2 Data Sets

We obtained7 archival batch-queue logs from different high-
performance production computing settings covering different ma-
chine generations and time periods. From each log, we extracted
data for the various queues implemented by each site. For allsys-
tems except the ASCI Blue Pacific system at Lawrence Livermore
National Laboratory (LLNL), each queue determines, in part, the
priority of the jobs submitted to it.

The job logs come from three machines operated by the San
Diego Supercomputer Center during three different periods: the
the IBM SP-2 (sdsc), The SDSC “Blue Horizon” (sdscblue) and
the IBM Power-4 system (datastar). We also use traces from the
Cornell Theory Center (ctc) Lawrence Livermore National Lab-
oratory’s SP-2 (llnl ), the Cray-Dell cluster operated by the Texas
Advanced Computing Center (lonestar), and the Argonne National
Labs/University of Chicago TeraGrid (ucteragrid). Thectc, sdsc,
and sdscbluelogs we obtained from Feitelson’s workload web
site [7], thellnl data appears courtesy of Brent Gorda at LLNL, and
we gathered thedatastar, lonestar, anducteragrid traces using
our own infrastructure for real-time predictions. Collectively com-
prises over one million job submissions spanning approximately
an9-year period. The site and queue names, the durations covered
by each job log, and the number of predictions we make for each
queue is shown in Table 1. Within each log, each job is repre-



Machine/Queue Start Date End Date Pred Count

ctc/all Jun 1996 May 1997 76206
datastar/express Apr 2004 Apr 2005 18242
datastar/high Apr 2004 Apr 2005 6781
datastar/normal Apr 2004 Apr 2005 63751
datastar/TGnormal Apr 2004 Apr 2005 6091
llnl/all Jan 2002 Oct 2002 54953
lonestar/normal Jan 2004 Mar 2005 27486
lonestar/serial Jan 2004 Mar 2005 2181
sdscblue/express Apr 2000 Dec 2002 66320
sdscblue/high Apr 2000 Dec 2002 15781
sdscblue/low Apr 2000 Dec 2002 16104
sdscblue/normal Apr 2000 Dec 2002 47407
sdsc/express Apr 1998 Apr 2000 3985
sdsc/high Apr 1998 Apr 2000 7794
sdsc/low Apr 1998 Apr 2000 21126
sdsc/normal Apr 1998 Apr 2000 29765
ucteragrid/dque Jan 2004 Oct 2005 58163

Table 1. Machine and queue names, start and
end dates for each log, and the number of
predictions made from each log.

sented uniquely by four values: submission time, queue waittime,
number of nodes requested and number of seconds requested.

In addition, we contacted several site administrators, whohave
graciously allowed us to install and experiment with the BMBP
real-time prediction system. After many consultations, the admin-
istrators furnished us with a scheme for node partitioning in the
currently active systems that they believe would improve BMBP.
That is, we asked each administrator to give us a static node clus-
tering to use for his or her site. After several iterations, we con-
verged on a single static clustering of1 to 4 nodes,5 to 16 nodes,
17 to 64 nodes, and greater than or equal to65 nodes, which we
currently use for the real-time prediction system.

4.3 Nodes, Runtime, and Node-Seconds

In the following two tables we summarize the performance of
BMBP and SCHMIB. Each table compares the performance of
“plain” BMBP (without SCHMIB), BMBP applied to the “static”
node clustering obtained from expert administrators, and the com-
bination of BMBP and SCHMIB when clustering by requested
“nodes”, maximum execution time, abbreviated “rtime”, andthe
product of the two (node-seconds) respectively, abbreviated “rn-
prod.”

In Table 2 we show the name of each site in the first column, the
queue name in the second column, and the percentage of correct
predictions in the remaining5 columns.

In Table 3 we show a similar comparison of the RMS over-
prediction errors. The numbers represent the reciprocals of these
numbers, normalized so that the value for “plain” is always1, so
that larger numbers in the table reflect predictions that aremore ac-
curate in our sense. That is, each number is the ratio of the “plain”
RMS to that of the RMS denoted by the header of each column.

Machine/Queue plain static nodes rtime rnprod

ctc/all 96.0 95.8 95.7 96.2 95.9
datastar/express 97.2 96.6 96.5 95.3 95.4
datastar/high 95.1 94.2 93.4 92.0 92.1
datastar/normal 95.8 95.8 95.5 95.5 94.7
datastar/TGnormal 97.3 97.3 97.3 94.6 94.7
llnl/all 96.4 96.9 96.3 96.9 96.7
lonestar/normal 95.3 95.7 95.9 97.4 97.2
lonestar/serial 96.2 96.2 96.2 95.0 95.0
sdscblue/express 93.6 93.0 93.3 95.7 96.1
sdscblue/high 96.1 95.6 95.1 95.1 94.7
sdscblue/low 95.0 94.8 94.5 94.8 93.2
sdscblue/normal 96.0 95.8 95.3 95.2 95.2
sdsc/express 96.7 96.4 96.7 96.5 96.2
sdsc/high 96.5 96.3 95.5 95.7 95.9
sdsc/low 95.5 95.0 94.6 94.6 94.5
sdsc/normal 96.5 96.3 95.2 95.5 95.1
ucteragrid/dque 97.0 97.0 97.0 96.8 96.8

Table 2. Correctness percentages for five
BMBP simulation methods for predicting the
.95 quantile with 95% confidence.

In each row, we boldface the largest ratio among the correct pre-
dictions and denote with an asterisk the cases where the largest
ratio comes from an incorrect predictor. From these two tables it
is evident that, in general, BMBP using SCHMIB to cluster jobs
by requested execution time is the most effective method.

4.4 Accuracy Analysis

As the results in the previous subsection indicate, clustering
jobs by requested run time or by the product of run time and node
count (node-seconds) tends to yield the most accurate bounds.
In all but four of the cases (Datastarhigh, LLNL all, Lonestar
normal, and SDSCBluelow) either the requested time or node-
seconds SCHMIB method produces results which are correct (see
Table 2) and have the largest RMS ratio (see Table 3). We sus-
pect that the effect is a result of backfilling, in which the batch
scheduler opportunistically runs short jobs while it is waiting for
enough resources to become idle to run longer jobs. Since each
job can be terminated when its maximum requested run time ex-
pires, the scheduler can set a deadline for a large job and then
“backfill” the resources with jobs that it will terminate before the
deadline. Anecdotally, in our experience, users generallybelieve
that short jobs will experience less delay than long jobs will at the
sites where we are currently running BMBP.

Somewhat more surprisingly, clustering by requested node count
(either using SCHMIB or according to the static partitioning we
discussed previously) is less effective. Most of the administra-
tors who we have interviewed indicated that jobs requested fewer
nodes would also enjoy preferential treatment, with the exception
of the SDSC Datastar machine, leading us to suspect that node-
seconds would yield the best results. At SDSC, the scheduling
policy for Datastar has been to encourage large (in terms of node
count) jobs, resulting in a complex interaction between theprior-
ity given to large jobs on the one hand and the ability to backfill



Machine/Queue plain static nodes rtime rnprod

ctc/all 1.000 1.292 1.269 1.248 1.615
datastar/express 1.000 1.049 1.040 1.171 1.262
datastar/high* 1.000 0.928 0.960 1.725 1.333
datastar/normal 1.000 0.912 0.922 1.190 1.110
datastar/TGnormal 1.000 0.992 0.990 1.317 1.295
llnl/all 1.000 0.894 0.856 0.822 0.856
lonestar/normal 1.000 1.216 1.793 1.287 1.112
lonestar/serial 1.000 1.000 1.000 1.074 1.074
sdscblue/express* 1.000 0.946 0.965 0.946 0.819
sdscblue/high 1.000 1.079 1.042 1.194 1.046
sdscblue/low 1.000 0.944 0.883 0.909 0.824
sdscblue/normal 1.000 0.932 1.040 1.202 1.132
sdsc/express 1.000 1.113 1.037 1.131 1.135
sdsc/high 1.000 1.242 1.837 1.512 2.899
sdsc/low 1.000 1.350 1.273 1.369 1.287
sdsc/normal 1.000 1.006 0.979 1.451 1.127
ucteragrid/dque 1.000 1.058 1.068 1.239 1.100

Table 3. Root Mean Square (RMS) ratios for
five BMBP simulation methods comparing
the various grouping methods (static and
SCHMIB) to a simulation run without group-
ing.

small jobs on the other. Because SCHMIB yields a higher RMS
ratio when requested time or node-seconds are used than for node
count, we conclude that these administrator-imposed policies are
being overshadowed by the effects of opportunistic scheduling. In-
deed, it may be that by artificially boosting the priority of large
jobs, users are incentivized to submit even smaller jobs to ensure
the effects of backfilling will be realized. We plan to explore fur-
ther the use of SCHMIB as a diagnostic and analysis tool as part
of our future work.

Also surprisingly, the administrator-determined static partition-
ing is never the most successful approach. In one case (Lonestar
normal), SCHMIB is able to determine node clusterings that yield
the largest RMS ratio, but in general clustering by nodes is aless
desirable strategy. We were quite surprised by this result,since the
administrators with whom we spoke were largely responsiblefor
setting the scheduling policies for their respective machines. We
note that SCHMIB (which adjusts its clustering dynamically) of-
ten achieves a more accurate result than the static approachleading
us to suspect that user demands vary too dynamically for a static
partitioning to be effective.

Finally, “plain” BMBP without SCHMIB is the most accurate
approach in three cases. We discuss the Datastarhigh case in the
next Subsection. In the case of the the LLNL queue, it appears
from the log that all jobs go into a single queue that serves multi-
ple machines of varying architectures and configurations. In such
a heterogeneous node pool, it is possible that demand for a partic-
ular type of machine or machine configuration is the most impor-
tant explanatory variable, which may even confound the variables
we have considered. Finally, we had hypothesized before running
these experiments that thelow queues for both the SDSC SP-2 and
the Blue Horizon would be most accurately forecasted by BMBP

Figure 3. Queue delay measured in sec-
onds, all jobs, Datastar high queue, June 22nd

through July 4th 2005

alone. Our theory (which is refuted by the SDSClow ratio) was
that the low queue was used for low-priority jobs and thus didnot
employ preferential treatment by job characteristics.

4.5 Correctness Analysis

Table 2 shows that SCHMIB fails to be correct in one case
where “plain” BMBP succeeds: the Datastarhigh queue. As we
mentioned previously, long runs of increasing delays will foil BMBP.
In Figure 3 we show an 12-day-long period (June22nd through
July 4th 2005) from the Datastarhigh queue during which time
such a spike in delay is evident.

The delay experienced by job #43 in this trace (submitted at
9:56 AM on June24th) was15, 840 seconds (7 hours and19 min-
utes). Job #44, submitted at 11:55 AM, experienced a queuing
delay of217, 878 seconds (60 hours and31 minutes). From that
point forward until job #184, submitted on June27th at 11:31 AM,
the queuing delay increases monotonically for each successive job,
peaking at1, 763, 936 seconds (20 days,8 hours,59 minutes).
Thus, during a three-day period for this queue, the delay expe-
rienced by submitted jobs climbs steadily through three orders of
magnitude. Note that thex-axis of the graph shows job delay in the
order of submission sequence and does not depict the interarrival
time between jobs. If it did, the monotonic trend would appear as
an almost vertical “spike.” Curiously, job #185, submittedon June
27th at 11:55 AM, experienced a delay of only11, 359 seconds
(3 hours and9 minutes) and thus began executing20 days and5
hourssoonerthan job #184.

Spikes such as the one depicted in Figure 3 occur on four sep-
arate occasions in the approximately1.5 year-long trace. The
highqueue, we believe, is intended for higher priority jobs (which
should experience lower queuing delays at a greater allocation ex-
pense) than jobs submitted to the other Datastar queues. As are-
sult, we believe, only6781 jobs were submitted during this period
to thehighqueue, compared to63, 751 in thenormalqueue.



Figure 4. BMBP 0.95 predictions without
SCHMIB, all jobs, Datastar normal and high
queues, July 3nd through July 5th 2005

The size of the spikes combined with the relative infrequency
of job submissions conspire to degrade the effectiveness ofSCHMIB.
When BMBP is used without SCHMIB, the history used for each
prediction considers all jobs in the queue. When the first large
spike in delay occurs, BMBP makes a series of incorrect predic-
tions. However, the sparsity of the data causes it to includethis
spike in the valid history until the next similar episode. The in-
tervening predictions are conservative but correct and when the
next spike occurs, there are enough residual large values form the
last spike to allow BMBP to make a sufficient number of correct
predictions to ensure overall correctness.

When SCHMIB is added, the large values from the previous
spike are present in, at most, the clustering correspondingto the
longest wait times. Yet all jobs (regardless of their characteristics)
appear to experience increasing delay. Thus, at best, SCHMIB
would cause BMBP to return a correct prediction only for the clus-
ter of largest values and job categorized into other clusters except
for this largest one will see incorrect predictions. Duringthe in-
tervening periods the predictions are far less conservative, but ul-
timately SCHMIB degrades BMBP to the point where it does not
achieve its correctness goal.

While this example demonstrates an uncontrived setting in which
SCHMIB hinders BMBP, we believe it also illustrates the utility of
both approaches (used in combination) as a diagnostic tool for the
user or administrator.

In Figure 4 we show the0.95 BMBP predictions without SCHMIB
for both the Datastarhigh queue and thenormal queue from July
3rd through July5th. Starting late on the3rd, the predictions for
the high queue start to increase as BMBP recognizes a series of
consecutive misses as a change-point. By 8:30 AM on the4th, the
predictions exceed those for thenormal queue which, if nothing
else, might have indicated a less-than-happy user community. We
do not know whether this event corresponds to a policy or software
failure, but if it does, the combination of BMBP’s successful pre-
dictions without SCHMIB and the failure of SCHMIB to correctly

categorize jobs seems to indicate a (possibly planned) priority in-
version.

Interestingly, SCHMIB can also have the reverse effect and im-
prove correctness, as indicated by the SDSCBlueexpressqueue
entry in Table 2. For this machine and queue, “plain” BMBP
achieves a correctness percentage of95.4% until very near the end
of the trace, where a single spike causes a series of failed predic-
tions. Because the failures occur so near the end, the eventual over-
all success percentage is below95% (we analyze this phenomenon
more completely in [26]). When SCHMIB clusters by requested
execution time or node-seconds, however, the overall prediction is
correct, despite the presence of a spike in delay near the endof
the trace. In this case the data shows a series of spikes in rapid
succession, with the largest occurring near the end. Because of
the large variance in the data, SCHMIB maintains a conservative
BMBP prediction in all clusters, so that the incorrect predictions
near the end cause the correctness percentage for only the largest
cluster to degrade below95%. Because the other clusters achieve
a sufficiently high success percentage, however, the overall predic-
tor is correct.

Perhaps more generally, the data shown in Table 3 calls into
question the way in which accuracy should be measured. Note
that “plain” BMBP, even in cases where it achieves a lower RMS,
mis-predicts jobs with relatively long delays. In other words, it
will disproportionately mis-predict those jobs which would fall in
the clusters corresponding to longer wait times. If, as we posit,
these jobs also have the largest resource requirements, it is likely
that the mis-predictions are for users who are most interested in
accurate bounds. Conversely, SCHMIB attempts to “spread” the
mis-predictions among various clusters evenly. As a result, even if
it achieves a higher RMS error overall, users may find the results
more useful.

4.6 Choosing a “Best” Strategy

While no single methodology is uniformly best, in the absence
of specific information about the policies in place, using SCHMIB
to cluster by requested execution time appears to be the mostsuc-
cessful approach. Of the13 cases where “rtime” or “rnprod” are
the most accurate, in only two (CTCall and SDSChigh) is “rn-
prod” better than10% more accurate than “rtime.” It is quite pos-
sible that these cases reflect some explicit node-hour-based admin-
istrative policy, especially in the case of the SDSChighqueue, for
which “rnprod” does so much better than any other method. We
similarly postulate that the cases for which SCHMIB is less effec-
tive than “plain” prediction also reflect some policy (e.g., lack of
backfilling) which tends to homogenize the jobs’ wait times.

However, it also may be possible to use an ensemble of SCHMIBs
(one for each job characteristic) and simply to choose the one that
has the lowers RMS over time. Using a1-gigahertz Pentium III,
the average time required to make each prediction over all batch
queue logs is approximately8 milliseconds. With this perfor-
mance cost, it should be possible to run all methods simultane-
ously for each queue and then to track the RMS so that the most
accurate can be selected in each setting.

5. Conclusions



Space-shared parallel computers use queuing systems for schedul-
ing parallel jobs to processor partitions in such a way that each
job runs exclusively on the processors it is given. In previous
work [26, 26] we have proposed a method for estimating bounds
on the queuing delay experienced by each each job and show that
this non-parametric method – termed the Binomial Method Batch
Predictor (BMBP) – outperforms competitive approaches.

Site administrators, however, use scheduling policies such as
backfilling, as well as various explicit priority schemes, to balance
the need for high resource utilization with the desire to minimize
the queuing delay experienced by users. Many of these policies
use requested execution time, requested node count, or the product
of the two to determine how a job will be prioritized. Thus, taking
these characteristics into account as a way of categorizingjobs
should yield tighter predictions of queue delay bounds.

We therefore introduce SCHMIB, a hierarchical clustering scheme,
to improve the accuracy of the bounds generated by BMBP, a non-
parametric approach to estimating bounds for batch-queue wait
times. We find that using SCHMIB to cluster jobs according to
their requested time generally results in better predictions than
those generated by BMBP alone and is more efficacious than clus-
tering either by requested number of nodes or by requested number
of node-seconds.

In the future, we will consider other approaches to the problem
of clustering. No clustering method short of exhaustive search is
guaranteed to find an optimal clustering (in terms of, in our case,
BIC); it may be that for data of the type we are considering, weare
better off using a partitional approach or model-basedk-means. In
addition, the sensitivity of clustering to chosen model should be in-
vestigated: it may be that by choosing a family of models thatare
more accurate than the exponential at the cost of some extra com-
plexity (e.g., Weibull distributions) will produce clusters for which
BMBP can perform better. In addition, it is possible to employ a
multidimensional clustering scheme, so that we can evaluate the
effectiveness of using both requested time and requested nodes as
clustering variables. There are also other variables (queue length,
longest current wait time in the queue, requested processortype,
requested memory,etc.) that might also be used as explanatory
variables for wait times and could therefore be used as a basis for
clustering. Finally, we plan to monitor the effects of BMBP and
SCHMIB deployment for scientific user communities to discern
its ultimate effects on workload and queuing performance.

6. REFERENCES
[1] IBM LoadLeveler User’s Guide. Technical report, International

Business Machines Corporation, 1993.
[2] G. Box, G. Jenkins, and G. Reinsel.Time Series Analysis,

Forecasting, and Control, 3rd edition. Prentice Hall, 1994.
[3] S.-H. Chiang and M. K. Vernon.Dynamic vs. Static

Quantum-based Processor Allocation. Springer-Verlag, 1996.
[4] S. Clearwater and S. Kleban. Heavy-tailed distributions in

supercomputer jobs. Technical Report SAND2002-2378C, Sandia
National Labs, 2002.

[5] A. Downey. Predicting queue times on space-sharing parallel
computers. InProceedings of the 11th International Parallel
Processing Symposium, April 1997.

[6] A. Downey. Using queue time predictions for processor allocation.
In Proceedings of the 3rd Workshop on Job Scheduling Strategies
for Parallel Processing, April 1997.

[7] The Dror Feitelson’s Parallel Workload Page.http:
//www.cs.huji.ac.il/labs/parallel/workload.

[8] D. G. Feitelson and B. Nitzberg.Job characteristics of a production
parallel scientific workload on the NASA Ames iPSC/860.
Springer-Verlag, 1996.

[9] D. G. Feitelson and L. Rudolph.Parallel Job Scheduling: Issues
and Approaches. Springer-Verlag, 1995.

[10] D. G. Feitelson and L. Rudolph.Towards Convergence in Job
Schedulers for Parallel Supercomputers. Springer-Verlag, 1996.

[11] E. Frachtenberg, D. G. Feitelson, J. Fernandez, and F. Petrini.
Parallel Job Scheduling Under Dynamic Workloads.
Springer-Verlag, 2003.

[12] C. Granger and P. Newbold.Forecasting Economic Time Series.
Academic Press, 1986.

[13] Gridengine home page –
http://gridengine.sunsource.net/.

[14] M. Harchol-Balter. The effect of heavy-tailed job sizedistributions
on computer system design. InProceedings of ASA-IMS Conference
on Applications of Heavy Tailed Distributions in Economics,
Engineering and Statistics, June 1999.

[15] A. K. Jain and R. C. Dubes.Algorithms for clustering data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[16] D. Lifka. The ANL/IBM SP scheduling system, volume 949.
Springer-Verlag, 1995.

[17] D. Lifka, M. Henderson, and K. Rayl. Users guide to the argonne
SP scheduling system. Technical Report TM-201, Argonne
National Laboratory, Mathematics and Computer Science Division,
May 1995.

[18] J. MacQueen. Some methods for classification and analysis of
multivariate observations. pages 281–297, 1967.

[19] Maui scheduler home page –http:
//www.clusterresources.com/products/maui/.

[20] Cray NQE User’s Guide –http:
//docs.cray.com/books/2148 3.3/html-2148 3.3.

[21] Pbspro home page –
http://www.altair.com/software/pbspro.htm.

[22] C. Posse. Hierarchical model-based clustering for large datasets.
Journal of Computational and Graphical Statistics, 10(3):464–??,
2001.

[23] G. Schwartz. Estimating the dimension of a model. InAnn. of
Statistics, pages 461–464, 1979.

[24] W. Smith, V. E. Taylor, and I. T. Foster. Using run-time predictions
to estimate queue wait times and improve scheduler performance.
In IPPS/SPDP ’99/JSSPP ’99: Proceedings of the Job Scheduling
Strategies for Parallel Processing, pages 202–219, London, UK,
1999. Springer-Verlag.

[25] S. Z. Zhong. Journal of machine learning research 4 (2003)
1001-1037 submitted 3/03; revised 7/03; published 11/03 a unified
framework for model-based clustering.

[26] Reference removed for the purpose of blind submission.


