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Abstract
Linux has emerged as the system-of-choice

in academic and production scientific comput-
ing settings. Much of the functionality in the
Linux kernel, however, has been designed to ar-
bitrate between competing applications thus en-
suring safety and fairness. In scientific computing
settings, particularly where resources are space-
shared and “batch” scheduled, an executing ap-
plication has exclusive access to the resources it
is using. As, much of the Linux mechanism de-
voted to the arbitration of sharing is unneeded,
and any performance degradation it introduces is
purely perceived as overhead.

In this paper, we investigate the performance
effects of specializing the Linux kernel for the
dedicated execution of scientific applications. We
analyze the kernel execution behavior of a pub-
licly available weather modeling application and
propose two different specializations that are de-
signed to improve its performance. We are able to
achieve a maximum performance improvement of
24% over a “stock” Linux installation though our
techniques, thus illustrating the potential power
of this approach.

∗ This work is sponsored in part by a grants from
the National Science Foundation (ST-HEC-0444412), Intel
Corporation, and Microsoft Research.

1 Introduction

Clusters of workstation-class computers have
emerged as popular, cost-effective, and high-
performance platforms for the execution of the
next generation of scientific applications. Low
per-unit cost, advances in computing and com-
munication power, and the availability of Linux
as a free, easy-to-use, and nearly standard operat-
ing system, make high-end computing with these
systems accessible both to a very large developer
base and to a wide range of users.

This accessibility is due primarily to the
ubiquity Linux and its extensive support for
a wide range of devices, services, and sys-
tems. System administrators commonly employ
Linux both for locally-controlled, highly respon-
sive application development environments and
for batch-controlled, production clusters for re-
peated, large-scale execution. As a result, scien-
tific programmers develop, debug, and tune their
programs and then submit them to a Linux-based,
high-end cluster with little or no porting effort.

A key limitation to the use of Linux for high-
end cluster computing however, is its poten-
tial performance impact on application execution.
Linux, like other general-purpose operating sys-
tems (OSs) with commercial application, con-
tinues to evolve to support an enormous range
of user requirements and preferences, application



domains, and devices (including supercomputers,
web-servers, hand-helds, and cellular phones).

As a consequence of this tension between ap-
plication requirements, the Linux OS includes
many features and built-in policies that do not
promote the performance of high-end scientific
applications. In addition, scientific applications
executing in clustered settings are frequently
large, resource intensive, long-running, and use
space-sharing to gain exclusive access to the ma-
chines they use through a batch system. They
do not compete dynamically for processor and
I/O resources since the batch system ensures that
any processors allocated to an application are not
time-shared by other applications. None the less,
the portability that Linux affords combined with
the familiarity that its wide-spread popularity has
bred make it a de facto standard operating system
for clustered architectures.

The goal of our research is to identify and de-
velop techniques that maintain the ease-of-use
and cost benefits of Linux while enhancing the
performance achievable by high-end scientific ap-
plications executing in large-scale cluster com-
puting settings. In particular, we are exploring
ways to exploit the exclusive processor access that
batch scheduling implements to relax or eliminate
unneeded mechanisms that are designed to facil-
itate effective time-sharing, but which introduce
unnecessary overhead in a space-sharing context.
With this paper, we take an initial step in this di-
rection. We present results detailing the effect
of two different specialization approaches on a
scientific application, and also on an exemplar
benchmark we developed based on inspection of
the I/O patterns in that application.

Surprisingly, we find that each approach has a
different effect, and also that the effect vary by
Linux kernel version. Moreover, from the anal-
ysis, the source of this variation is unclear. We
believe that, as a result, a profile-based approach
will be warranted as a simple static analysis yields
conflicting results.

In the next section, we motivate and overview

our research approach for customizing Linux for
scientific applications. We then present a behav-
ior analysis (Section 3) for two programs (one
hand-coded benchmark and one scientific appli-
cation) and articulate how we specialize the Linux
I/O subsystem for each (Section 4). In the same
section, we also present the performance impact
of our techniques and discussion of the results.
We present related work in Section 5 and our con-
clusions and future research plans in Section 6.

2 Application Specific Linux

The focus of our research is to enable
application-specific Linux customization for sci-
entific programs in an effort to enable sig-
nificantly higher application performance while
maintaining the ease-of-use, familiarity, availabil-
ity across diverse platforms, and cost benefits, of
Linux. Our overall approach exploits the popu-
lar batched-execution methodology currently em-
ployed for clusters of high-end computer systems.
Using this model, application developers imple-
ment, debug, and test their codes using a devel-
opment (non-production) machine and they sub-
mit the resulting application to a batch process-
ing system that manages a cluster of production
compute engines. When a sufficient portion of the
cluster is available, the batch system allocates the
number of nodes required for the application, in-
stalls and initializes the application (and its data)
on the cluster resources, and invokes the program
with the specified parameters.

Using a batch execution model, applications
run in isolation on the cluster. Thus, if the cost
of installation is not too great, it should be pos-
sible to install a customized Linux kernel for
each application when it is launched. For long-
running scientific applications, this start-up over-
head should be negligible. In the same light, it
may be that machines are dedicated to the execu-
tion of one single application or suite of applica-
tions. We wish to explore the performance impact
of building (automatically eventually) Linux ker-
nel instances that are specifically tuned for a small



collection of applications.
In this work, we first profile the application us-

ing a particular parameterization and data set to
identify system calls that are frequently executed.
We then modify the Linux kernel by-hand to spe-
cialize these calls according to how they are used
by the program. Our focus in this paper is on spe-
cializing the Linux I/O subsystem. Our special-
izations bypass much of the general-purpose code
that Linux employs along the critical path of the
I/O system call sequence. In addition, we inves-
tigate the impact of reducing the Linux image so
that it contains only the necessary functionality
required by the application.

We focus on disk file write behavior. While
much research has centered on improving read
performance (c.f. Section 5 for a survey of the re-
lated work) we notice that many scientific codes
are affected by write performance due to the need
to checkpoint periodically. In the following sec-
tions, we describe the applications that we con-
sider as well as the analyses that we use to charac-
terize their I/O file write behavior. We then show
how we exploit this behavior to reduce the over-
head of the I/O subsystem in Linux for our appli-
cation’s specific IO pattern.

3 Application Specific Behavior

In this section, we describe our behavior anal-
ysis methodology, the two applications that we
consider, and the results of our analysis for each.
The applications are a small I/O benchmark that
we developed and the MIT implementation of the
General Circulation Model (MITGCM) [?].

3.1 Behavior Analysis Methodology

To specialize the Linux operating system for
an application, we need to understand its full sys-
tem dynamic behavior. Therefore, we extract two
dynamic system analyses from each application:
an annotated, full system (application and operat-
ing system), dynamic call graph and an analysis
of the I/O patterns. Both analyses are program-

independent and do not require modification to
the source program or the availability of the pro-
gram source.

To generate the former, we employ Kern-
Prof [?], an open-source full-system profiler from
Silicon Graphics Incorporated. KernProf consists
of a kernel patch that deploys a number of profile
data collection mechanisms and a device driver
that controls them. It implements a user-level
commands that allow users to configure and con-
trol the kernel profiling functionality. KernProf
introduces some overhead for profile collection,
however this overhead is distributed evenly over
each dynamic function invocation. We feed the
KernProf output to GNU gprof [?] which con-
verts the profile information into the gprof format.
Gprof is an application-level profiler that is part of
the Linux GNU binutils library. We produce the
annotated kernel call graph from the gprof output,
using a tool that we have developed, and use the
DOT [?] utility to visualize the call graph. The
annotations are counts for each edge that the pro-
gram traverses during execution and the total time
spent in each function.

We note that other kernel profiling capabilities
are available, but none that are as facile as Kern-
Prof. The Oprofile utility [ ?] that is available
for most modern Linux kernels can capture sys-
tem behavior, but cannot instrument specific call-
paths when specific applications are running. We
believe that the KernInst [?] utility would have
provided a second option but we found that we
could not, ultimately, make it function properly in
our environment. The choice of KernProf, how-
ever, limits our analysis to Linux 2.4 and 2.5 ker-
nels exclusively and the 2.95 version of gcc. We
discuss some of the effects of these limitations in
Subsection 4.1.

The second analysis that we perform is the ex-
traction of I/O patterns. In particular, we identify
patterns in the way an application exercises the
Linux I/O system during execution. Our analysis
produces patterns from the number of unique files
read and written, the size of the files, the num-



User Time System Time Real Time
5.5645sec 38.117sec 44.3sec

Table 1. Execution time breakdown for the
simple benchmark code. The times are the
average over 20 executions of the benchmark
on a dedicated x86-based 2.8GHz machine
running Linux 2.4.18.

ber of bytes read and written on each I/O system
call, and the total number of system calls invoked.
The analysis identifies the the most frequent pat-
terns the the program uses to access the I/O sub-
system. We employ both analyses to characterize
the I/O behavior of an application and to identify
opportunities for customization and specialization
of the Linux system according to the application’s
requirements and behavior.

3.2 I/O Benchmark

The first application that we investigate is a
simple program that writes an 80MB file to a local
EXT2 Linux file system. The program executes a
single loop that repeats 10,000,000 times. Each it-
eration of the loop executes a write call with an 8-
byte string parameter. This benchmark simulates
the write behavior of an application that writes a
small amount of data to a file at a time, e.g., for
logging or check-pointing during execution.

Table 1 shows the average execution time
breakdown of this benchmark across 20 runs (us-
ing a dedicated, x86-based 2.8GHz machine).
The kernel executes for 38 seconds (86% of the
total time) on average during execution of the pro-
gram. The most frequent system call made by the
benchmark is to the syswrite function. The total
time of the benchmark consists mainly of the time
spent in the write call and the time spent crossing
the user-kernel boundary.

Figure 1 shows a portion of the Linux 2.4.18
dynamic call graph from our I/O analysis for the
benchmark program. Each oval represents a func-

tion and we annotate each oval with two values.
“self” is the time the kernel spends executing
the function on behalf of the user program, and
“children” is time the kernel spends executing the
function’s children, i.e., the callees, of the func-
tion. We only show a subset of children in this
figure. An arrow represents a call edge from a
caller (arrow source) to a callee (arrow destina-
tion). The value on an edge shows the number of
times the kernel traverses the edge during execu-
tion.

The kernel spends 34 seconds (88% of sys-
tem time) executing syswrite and its children
on behalf of the application. The kernel calls
all the functions along this path approximately
10,000,000 times, calling them each time the ap-
plication executes a write operation.
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Figure 1. Subgraph from the full-system, dy-
namic call graph of the Linux 2.4.18 kernel ex-
ecuting on behalf of the benchmark program

There are two important functions along the
syswrite call path: fget() and fput(). fget() is the
kernel function that is responsible for converting



a process file descriptor to a file object and for
returning the latter to the process. fput() is the
kernel function that cleans up after a process is
finished using the file object. When the file usage
counter becomes 0, fput releases the the internal
representation (resource) of the file object.

The call graph indicates that fget and fput are
called every time syswrite is called. However,
fget returns the same file object each time. In ad-
dition, fput is invoked needlessly for all but the
last invocation of syswrite. fget and fput account
for 6 seconds of the total execution time (14%) on
average.

find lock page() and find lock pagehelper()
are two other functions in which the kernel spends
11% (4 seconds) of its time on average. These
functions find pages on which the new bytes
should be written. This process requires traver-
sal over all of the processes’ pages; however, the
page often returned is the same page as returned
by the last call to the function sequence.

The I/O pattern analysis for the benchmark is
simple since the program employs only a single
write system call. The pattern is a large num-
ber of sequential writes, each very small in size.
Moreover, the execution of this pattern repeats it-
self over the lifetime of the program.

This small example shows that there is much
redundancy and unnecessary processing required
for managing file writes in the Linux kernel de-
spite the predictability (repetition) of the I/O pat-
tern for this code. The kernel is designed in this
way such to avoid saving process-specific state
and to maintain the integrity and safety of the file
system in a multi-program environment. How-
ever, when a single process accesses a particular
file in some memory chunks, this policy consti-
tutes unnecessarily performance overhead.

3.3 MITGCM Ocean Circulation

The second application that we consider is an
implementation of the General Circulation Model
(GCM), a popular numerical model used by appli-

cation scientists to study oceanographic and cli-
matologic phenomena. GCM simulates ocean and
wind currents and their circulation in the earth
atmosphere thousands of years in advance. A
widely used implementation of GCM is made
available by MIT Climate Modelling Initiative
(CMI) team [?, ?, ?]. Researchers commonly
integrate this implementation into oceanographic
simulations, as in [?, ?, ?]. The MIT CMI team
supports a publically available version that they
package with several test inputs, which are care-
fully optimized to decrease any overhead and en-
hance system resources’ utilization.

We employ theexp2 for this study.exp2 sim-
ulates the planetary ocean circulation at a 4 de-
gree resolution. The simulation uses twenty lay-
ers on the vertical grid, ranging in thickness be-
tween 50m at the surface to 815m at depth. We
configure the experiment to simulate 365 days of
ocean circulation at a one-second resolution.

The I/O behavior of the simulation involves
reading several input file at the beginning of the
run for initialization, check-pointing processed
data at equal time intervals in sequential order to
several files, and outputting the final results to an-
other file. The total number of write system calls
that the application invokes is 179,579. The num-
ber of read system calls that the program executes
is 630. Table 2 shows the average execution time
breakdown across 40 runs of the MITGCM appli-
cation. 95% of the total time is spent in user space
for computation. 4% of the total is spent in sys-
tem time; it is this portion of the execution time
on which we focus.

Figure 2 shows a portion of the dynamic call
graph for Linux 2.4.18 kernel when executing on
behalf of MITGCM. syswrite() and sysllseek()
are the most frequently called system calls. They
constitute 82% of time spent within systemcall
and 19% of total system time. On the other hand,
the asynchronous calldo IRQ() and its children
consume 53% of the system time, which is not
shown in this portion of the graph.

sys write() and sysllseek() both call fget() and



User Time System Time Real Time
170.887sec 7.71974sec 180.4sec

Table 2. Execution time breakdown for the
MITGCM Ocean Circulation code. The times
are the average over 40 executions of the
benchmark on a dedicated x86-based 2.8GHz
machine running Linux 2.4.18.

system_call()
Self: 0.24s 

Children: 1.60s

sys_write()
Self: 0.07s

Children: 1.32s

fget()
Self: 0.07s

Children: 0.0s

generic_file_write()
Self: 0.16s 

Children: 0.35s

fput()
Self: 0.03s

Children: 0.0s

__free_pages()
Self: 0.04s 

Children: 0.0s

generic_commit_write()
Self: 0.0s

Children: 0.11s block_prepare_write()
Self: 0.01s 

Children: 0.07s

unlock_page()
Self: 0.04s 

Children: 0.0s

__block_commit_write()
Self: 0.1s 

Children: 0.01s

__find_lock_page_helper()
Self: 0.01s 

Children: 0.0s

__block_prepare_write()
Self: 0.07s 

Children: 0.0s

sys_llseek()
Self: 0.03s

Children: 0.08s

_mark_inode_dirty()
Self: 0.01s 

Children: 0.0s

ext2_prepare_write()
Self: 0.00s 

Children: 0.08s

179579 165579

17
95

79

179579

165579165579

160831

find_lock_page()
Self: 0.06s 

Children: 0.01s

160831

16
83

51

16835116
83

51

168351168351

16
83

51

16
83

51

16
83

51
16

83
51

Figure 2. Subgraph from the full-system, dy-
namic call graph of the MITGCM application

fput() on every file access and return the same
file object for every call sequence. Moreover,
as in the benchmark program, the invocation of
syswrite triggers invocation of each of its chil-
dren, e.g. findlock page(), mark inodedirty()
and other functions along the syswrite call path.

block commit write() for MITGCM is also fre-
quently invoked as part of this path. In this func-
tion, the kernel scans all pages involved in the
write operation, in order to map the data from user
space to kernel space. Moreover, the kernel per-
forms a second scan to count the pages with their
dirty bit set. This process introduces additional
I/O overhead that is specific to the I/O pattern of
MITGCM code, which degrades performance.

We categorize the I/O behavior of MITGCM
using three patterns. For all patterns, MITGCM
opens a single file at a time, reads from or writes
to it, and closes the file before opening another
file. The first we callbin-files. In this pat-
tern, MITGCM consumes data input from sev-
eral input files with extensionbin. MITGCM
reads each of these files, 4 kilobytes at a time,
and repeats this process until execution termi-
nates. The second pattern, which we refer to as
meta-files, writes files of typemeta. These
files are small in size (183-212 bytes) and MIT-
GCM writes all of the data to each file in this cat-
egory as one chunk using one syswrite call. For
the final pattern, which we calldata-files,
MITGCM writes to large files, the size of which
can exceed 1 megabyte. MITGCM writes to
these files at a rate of 180-360 bytes per call to
syswrite. This pattern accounts for 98% of the
total bytes that MITGCM writes and for almost
100% of the number of calls to the syswrite func-
tion.

Indeed, while we have presented the bench-
mark application before MITGCM in this paper
for clarity, we in fact designed the benchmark ap-
plication based on this analysis. Specifically, the
benchmark we constructed to make a series of
small, short disk writes to mimic only the short-
write behavior of the MITGCM code. In this way,



bin-files meta-files data-files All
pattern pattern pattern patterns

Total bytes
read/written 648000 102940 32356800 33107740
% of bytes

read/written 1.957% 0.310% 97.731% 100%
Num. of calls
to syswrite 0 508 160240 160240

% of syswrite
calls 0% 0.316% 99.683% 100%

Number of files 7 508 508 1023

Table 3. MITGCM I/O patterns

we can examine the effect of specialization on the
specific pattern of interest in isolation, and alsoin
situ.

Table 3 summarizes the MITGCM I/O pattern
data. These analyses expose opportunities for
us to exploit application-specific behavior to cus-
tomize the Linux kernel and reduce I/O overhead.
We next describe how we use these analyses to do
so.

4 Specialization And Results

We investigate two different forms of special-
ization for the MITGCM and benchmark codes.
In the first, we use the behavioral characteristics
that we extract using our analyses to avoid per-
formance bottlenecks of the programs. To enable
this, we use the analyses tocustomizethe Linux
kernel according to the specific usage patterns of
the applications. In particular, we focus on the
file write patterns of each application and intro-
duce buffering to avoid the system call overhead
as we described earlier. It is clear from the data in
Table 1 that buffering writes should improve the
performance of the benchmark. For the MITGCM
code which has been optimized to avoid I/O as a
bottleneck, the expected improvement should be
less.

We also evaluate the performance of these
codes when we reduce the footprint of the Linux

kernel by eliminating unused components from
the system. In particular, we model the case
where each code is to be executed on a dedicated
machine sequentially. Thus we disable all sub-
systems except the serial interface (needed for the
console) and the disk system. This form of spe-
cialization, we believe, is most appropriate for
CPU-intensive programs such as the MITGCM
code where memory and cache performance are
critical. By eliminating unused kernel subsys-
tems, this specialization should reduce page-table
and swapping overhead as well as TLB pressure.

Table 4 shows the in core memory footprint (in
megabytes) for all of the configurations we test in
this work. The original kernel, which we refer to
in the table and elsewhere in this paper, uses the
default configuration provided by the menuconfig
tool, including the modules support. The Modi-
fied kernel is the Linux kernel with the buffered
short disk writes, as it is described in the next
subsection. The third column describes the slim-
kernel size, a kernel configured with the basic
support for only the necessary devices and sub-
systems for the correct operation of the applica-
tions we are considering here. Slim-kernel would
not be useful to run other applications since it
is missing support for many basic devices. The
fourth column illustrates the memory size of the
kernel image for a slim-kernel with the special-



Kernel size Original Modified Slim Slim+Modified
in Mbytes kernel kernel kernel kernel

2.4.18
kernel footprint 1.86 1.86 0.57 0.567

2.6.10
kernel footprint 4.182 4.182 1.423 1.423

Table 4. Kernel memory footprint sizes (in megabytes) for 2. 4.18 and 2.6.10 kernels.

ized I/O system call.
Also, we test two different kernel versions:

2.4.18 and 2.6.10. To generate the call-graph in-
formation described in Section 3 we needed to use
2.4.18 as thekernprofutility is only available for
that kernel version. We realize that most kernels
in use today, however, track the latest stable re-
leases and, thus, we also example 2.6.10. How-
ever, since we cannot extract the same hot-path
information for 2.6.10, we are relying on the anal-
ysis of 2.4.18 to be applicable to the later kernel.
As we describe below, this assumption is most
likely invalid. To keep the comparison as con-
trolled as possible, however, we use gcc 2.95 with
the 2.6.10 kernel in all experiments even though a
more modern version of gcc is available.

4.1 Buffering Short Disk Writes

Our analysis of the benchmark application in-
dicates that a significant source of overhead on the
program is imposed by the repeated invocation of
the write system call. The overhead results from
the user-kernel boundary crossing and the redun-
dant operations that we identify in the previous
section.

To avoid this overhead, we investigate two im-
plementations of buffering. In the first, we modify
the program itself to perform the buffering. This
specialization amounts to an application-level-
only optimization and should represent an upper-
bound on what can be achieved by a kernel-level
specialization designed for the same access pat-
tern. Instead of performing the individual write
calls, the benchmark program buffers the data in

memory. The program then writes the buffer to
disk when the buffer fills.

The second implementation of buffering that
we investigate, is to modify the kernel to perform
buffering while at the same time maintaining the
correct Linux I/O call semantics. Our customiza-
tion allocates a new buffer of size 4096 bytes in
kernel memory when the application opens the
file. We modify the write call so that when the
application performs subsequent writes to the file
which are less than 4096 bytes in length, the rou-
tine stores them in the buffer and returns from the
system call instead of invoking the full Linux sys-
tem write apparatus. Only when the buffer is full,
the application closes the file, or the application
flushes the file does the routine send the data to
disk through the regular file-system code. Thus,
this process eliminates the calling sequence of the
children of the syswrite system call in the dy-
namic call graph for every short write waiting, in-
stead, until there is a full page worth of data to
be written. We also added an additional file posi-
tion pointer to the file struct. The new file posi-
tion pointer tracks the point in the file to which
the buffer should be written. Thus this pointer
ensures that we maintain the integrity of the file
data. We selected 4096 since it is the virtual page
size in our system hoping that it would be treated
efficiently by the virtual memory subsystem.

For each method, we record the average wall-
clock time reported by the Unix time utility and
we compute the average improvement over the
“stock” Linux 2.4.18 kernel over 20 runs. Un-
surprisingly, the results show substantial improve-



ment in both cases. For the simple bench-
mark, the application-level buffering reduces sys-
tem time, on average by 97%, i.e., buffering
avoids both the overhead of user-kernel bound-
ary crossing and of performing redundant work
in the call sequence of file writes within Linux it-
self. Kernel-level buffering reduces system time
by 66% on average. Kernel-level buffering is
unable to reduce overhead to the same degree
as application-level buffering since the program
must still cross the user-kernel boundary repeat-
edly on each syswrite call. This boundary cross-
ing accounts for a significant portion of the over-
head. This result motivates and provides insight
into the potential of customization techniques for
which we can move part of the application exe-
cution into the kernel itself to avoid the boundary
crossing overhead.

4.2 Performance Comparison
Among Kernel Approaches

Having determined that a kernel-level interme-
diate buffering scheme can generate appreciable
performance gains, we detail the wall-clock per-
formance of the benchmark and the MITGCM
codes using two different versions of the Linux
kernel: 2.4.18 and 2.6.10. In both cases we use
the Fedora Core FC1 Linux distribution and gcc
2.95.3 on a 2.8 GHz Pentium IV with 40 giga-
bytes of disk attached, a 100 megabit ethernet
connection and 512 Mbytes of RAM.

Figure 3 shows the relative performance of four
different execution configurations for the simple
I/O benchmark using each kernel. The left-most
verticle bar (labelledoriginal kernel) in each case,
shows the base-line performance of an unmod-
ified kernel installation with a default configu-
ration. The bar second from the left (labelled
Modified kernel) shows the performance of the
benchmark when the kernel is customized to in-
clude a buffer for short disk writes. The bar third
from the left indicates the performance of the
benchmark when the kernel has been “slimmed”

(marked slim kernel in the figure) to include
only those features that are needed to execute
the program. Finally, the full specialized version
(markedSlim+Modified kernelin the figure) in-
dicates the performance when the kernel is con-
figured with the buffering customization and as a
slim kernel. Furthermore, we uset-test on our
data to measure the statistical significance of our
averages.

On the Linux 2.4.18 kernel, the buffering cus-
tomization improves execution performance of
the simple I/O benchmark from44.3 seconds to
17.4 seconds as expected. What is somewhat sur-
prising is that the slim kernel without the buffer-
ing (11.8 seconds) customization out performs
the customized but unslimmed version (17.4 sec-
onds). Each number represents an average over
20 separate runs after system initialization. We
computed at statistic of4.14 over the data which
indicates that the difference in the observed aver-
age performance between these two cases is sta-
tistically significant at the0.05 significance level.
By the same token, the average observed perfor-
mance of the slimmed kernel and the slimmed
kernel with the buffering customization (12.8 sec-
onds in the figure) results in at statistic of0.68

indicating that the results are not statistically dis-
tinguishable at the0.05 significance level.

For the 2.6.10 kernel, however, the results are
quite different. In this case, the buffer cus-
tomization generates the most significant im-
provements. Using the short-write buffer im-
proves performance from19.7 seconds to10.17

seconds whereas the slimmed kernel without the
buffer customization generates an average run
time of 14.8 seconds. These differences are all
statistically significant at the0.05 significance
level when considered pairwise. However, the
difference between the unslimmed, customized
kernel (10.17 seconds) and the Slim+Modified
kernel (10.3 seconds in the figure) fails a hypoth-
esis test at the0.05 significance level. Thus, un-
like the case for the 2.4.18 kernel, for 2.6.10, the
buffer customization (and not kernel slimming) is



Figure 3. Comparison of wall-clock timings for I/O benchmar k using buffering customization and
kernel slimming for Linux 2.4.18 and Linux 2.6.10 kernels.

Figure 4. Comparison of wall-clock timings for MITGCM bench mark using buffering customization
and kernel slimming for Linux 2.4.18 and Linux 2.6.10 kernel s.



the most performance impacting optimization.
Figure 4 shows the same comparison for the

MITGCM test code. For the 2.4.18 kernel, the
average Slim+Modified times are lowest, but the
only statistically detectable difference at the0.05

significance level is between the largest time (in
this case187.89 seconds for the slimmed ker-
nel) and the smallest time (163.1 seconds for the
Slim+Modified kernel). In the 2.6.10 case, the
uncustomized slimmed kernel performs best, and
the differences between all averages except the
original kernel and the customized but unslimmed
kernel are statistically significant at the0.05 sig-
nificance level.

4.3 Discussion

From this data, it is difficult to identify a sin-
gle customization strategy that works for both test
codes on both kernels. Even though we devel-
oped the simple disk-write benchmark based on
our observation of I/O behavior in the MITGCM
code, the best customization strategy in each case
appears to be different. We can conclude, how-
ever, that the performance of both of these codes
can be significantly affected by the choice of cus-
tomization method. In all cases, there is at least
one detectable difference in average wall-clock
performance between the methods we investigate.
Moreover, in the cases where the differences are
significant, they are often a large portion of the to-
tal execution time. For example, the average exe-
cution time for the MITGCM code on the 2.6.10
kernel is reduced from95.7 seconds to72.385

seconds – a savings of approximately24%. For
weather modeling and prediction codes, such as
MITGCM, which tend to be long-running, CPU-
intensive codes, it is somewhat surprising that
such a large gain in performance can be achieved
through a reduction in the footprint size of the ker-
nel.

To test the theory that the slimmed kernel is
using the cache and/or TLB resources more effi-
ciently, we recompiled the MITGCM code using

the PAPI [?] profiling tool so that we could in-
terrogate the hardware performance counters sup-
porting by the CPU. Figure 5 compares the cache-
miss and TLB-miss counts in all configurations
on the 2.6.10 kernel. Note that PAPI requires gcc
3.2.3 or greater. Thus the accuracy of these re-
sults may be affected since the original experi-
ments were conducted using gcc 2.95.

From the figure, it appears that both cache and
TLB performance is improved as a result of ker-
nel slimming. Additionally, we suspected that
the short-buffer modification would have a neg-
ative effect on cache-performance since it intro-
duces an additional copy of each datum. This af-
fect is visible in the L2 cache miss column, but
is not as noticeable for the L1 cache. We do no-
tice a slight improvement in TLB miss rate with
the slimmed versions, but overall it is difficult to
believe that the24% improvement shown in Fig-
ure 4 results from improved memory system per-
formance. We are exploring different hypotheses
for how the minimalist configurations are able to
achieve large performance gains, but in the con-
text of this work, these results lead us to pursue
profile-based approaches. It is clear that some
of the subsystems interact in a performance re-
tarding way, even when those subsystems are not
used directly by the running applications. Pro-
filing seems a more promising methodology for
capturing these interactions than static analysis
alone.

5 Related Research

Operating system (OS) customization and spe-
cialization techniques have been proposed, stud-
ied, and evaluated extensively over the past
decade and a half [?, ?, ?, ?, ?, ?, ?]. Two
primary approaches to these OSs are microker-
nels [?, ?, ?, ?, ?, ?] and systems that allow user
code to be injected into the kernel [?, ?, ?, ?, ?, ?].

These systems have gained limited acceptance
and use due to the performance overheads they
introduce and the significant change in program-
ming model and environment that they require of



Figure 5. Cache-miss and TLB-miss counts for MITGCM as Measu red by PAPI.

users. These systems take the approach that ex-
tensibility is the common case. As a result, these
systems introduce significant overheads for inter-
process communication and memory sharing, ex-
pensive system calls, dynamic linking of new ser-
vices, and context switching overhead. Moreover,
these systems require applications to be written
for the specific OS implementation at hand (re-
quiring a new programming methodology) and to
selectthe versions of services that will provide
them the most performance benefit. That is, these
systems require that applications be expertly pro-
grammed to use the OS functionality correctly
and efficiently and that the application program-
mer be able to integrate the application with the
OS explicitly. Our approach maintains the current
programming model without modification (thus
supporting legacy codes and enabling program-
mer productivity).

An alternative approach that is more similar to
our own is to customize an existing operating sys-
tem for common application behaviors [?, ?, ?, ?].
These systems perform specialization using par-
tial evaluation of system call parameters to re-
duce the length of critical paths through the ker-
nel. Such systems systems focus onspecializing

existing OS code and automatically infer when
specialized version should be employed. In addi-
tion, as different applications execute, specialized
code is either selected using a template mecha-
nism [?, ?, ?, ?, ?] or dynamically replacedwith
new versions [?, ?, ?, ?, ?, ?].

Our work differs from this prior research in that
we focus our efforts on scientific applications and
the familiar and ubiquitous Linux operating sys-
tem. Prior work has either developed entirely new
systems or have extended upon proprietary OSs
(AIX [ ?], HP-UX [?], and Solaris [?]). Moreover,
these systems focus on enabling general-purpose,
multi-program execution. We assume an iso-
lated application model – one that is commonly
used for batched execution of scientific codes us-
ing cluster resources, which significantly simplify
the OS customization process. We need not be
concerned with cross-application interference, re-
source sharing, and conflicting customizations.
As a result, we can focus on aggressive, profile-
guided, customization and footprint reduction of
Linux that is application-specific and low over-
head.

Reducing the size of the Linux footprint is
the focus of prior work primarily in the area of



resource-constrained systems. For example, the
researchers in [?] and [?], show that reducing the
size of Linux is effective for running Linux on
embedded systems. Chanet et al [?] employs link-
time binary rewriting for compacting and special-
izing the kernel for embedded systems. This spe-
cialization is different from ours since they do not
modify the system call policy and instead use par-
tial evaluation of system call parameters and un-
needed system calls elimination. The researchers
in this prior work show that they are able to reduce
Linux version 2.4.19 from 1095KB to 925KB;
however, their results show that doing so intro-
duces 4% performance overhead on average. We
show that we can concurrently reduce the Linux
footprint and improve execution performance. To
our knowledge, we are the first researchers to
consider footprint reduction for OSs intended for
high-end application execution.

Finally, other prior work has identified oppor-
tunities for I/O customization by showing em-
pirically that many scientific workloads and ap-
plication behavior is not well supported by the
current I/O policies of modern OSs, including
Linux [?, ?, ?, ?, ?, ?, ?]. The work described
in [?] is similar to our customization of short
file writes. However, they modify the applica-
tion to perform specialization (as we describe ini-
tially for the I/O benchmark in Section 4.1). We
show that kernel modification performs similarly
to application modification, however the former
does not require the use or understanding of the
source code. Moreover, our work employs hot,
full-system, dynamic call paths to identify oppor-
tunities for customization and implements Linux
specialization that is guided by this profile infor-
mation and I/O pattern analysis.

6 Conclusions and Future Work

We believe that this work demonstrates the
potential performance benefits of kernel special-
ization. Even for CPU-intensive programs such
as the MITGCM code, substantial performance
gains are possible if the application is running

in isolation, and the kernel has been specialized
specifically for it.

At the same time, it is clear that determining
what specializations will prove most profitable is
a difficult problem. Even when detailed infor-
mation about application behavior in the kernel
is available (through intensive call-path analysis)
specializations designed to improve performance
in one application may retard performance in an-
other that exhibits similar behavior. Moreover, the
performance benefits are sensitive to the version
of the kernel employed and, perhaps more alarm-
ingly, the specific kernel configurations that are
chosen. Given the combinatoric complexity as-
sociated with testing all possible kernel configu-
rations for some version of the Linux kernel, we
believe that a more profile-guided analysis tech-
nique is needed. Thus one future direction we will
explore focuses on the analysis techniques needed
to specify application-specific kernel specializa-
tions.

We also plan to explore how specialized ker-
nels can be employed in batch systems. Using
high-speed Linux configurators (such as SDSC
Rocks [?]). We believe it is possible to auto-
mate kernel installation with an acceptable level
of overhead. Doing so while maintaining the in-
tegrity of the overall system is also a focus of our
current and future work.
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