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Abstract

Sensor network computing can be characterized as resource
constrained distributed computing using unreliable, landwidth
communication. This combination of characteristics pasgsifi-
cant software development and maintenance challenge=ctizé
and efficient debugging tools for sensor network are thugati
Extant development tools, such as TOSSIM, EmStar, ATEMU and
Avrora, provide useful debugging support, but not with tielity,
scale and functionality that we believe are sufficient to trike
needs of the next generation of applications.

In this paper, we propose a debugger, calléBB, based on a
distributed full system sensor network simulator with hfigtelity
and scalable performance, DiSenS. By exploiting the piatieot
DiSenS as a scalable full system simulatdiDB extends conven-
tional debugging methods by adding novel device level, g
source level, group level, and network level debuggingrabsons.
The performance evaluation shows that all these debuggatgres
introduce overhead that is generally less tha into the simula-
tor and thus making DB an efficient and effective debugging tool
for sensor networks.

Categories and Subject Descriptors  D.2.5 [Software Engineer-
ing]: Testing and Debugging; |.6imulation and Modelirig

General Terms Experimentation, Performance

Keywords Sensor Network, Debugging, Simulation

1. Introduction

Sensor networks, comprised of tiny resource-constrairesces
connected by short range radios and powered by batteries, pr
vide an innovative way to implement pervasive and non-gite!
environmental instrumentation and (potentially) acwmti The
resource-constrained nature of sensor network devicesssig-
nificant software development and maintenance challefiggs.o-
long battery life and promote miniaturization, most desit@ve
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little memory, use low-power and unreliable radios, and Inny
duty cycles. In addition to these per-device constraingsjldfini-
tion sensor networks are also distributed systems, witlofalhe
concomitant synchronization and consistency concernts disa
tributed coordination implies.

For these reasons, effective debugging support is critigal
number of sensor network development systems [2, 18, 3,3,7, 1
6] provide debugging support for individual devices ancitoe
complete network. However, they all have their limitatioBeme
rely on hardware support, subject to the same resourceraorist
that as the programs on which they operate. Some only monitor
the network radio traffic. And most importantly, as netwosksle,
these tools become difficult to apply to the details of caitets of
interacting sensor nodes.

In this paper, we present a new approach that is based on scal-
able full system sensor network simulation with enhancdslide
ging features. Our debugging tool is calletD® (where $ stands
for Simulation and Sensor network). The goal 6D is to adapt
conventional debugging methods to sensor network apjgitato
that we can have better control of hardware details and détmig
complete sensor network in a coordinated way. Our appragigsr
upon four principle innovations in the area of debugginguese
constrained devices.

e At the single device level, we introduce the conceptiebug-
ging point— a generalized notion of break point, watch point,
and state interrogation — that permits state display frdrees-
sor device subsystems (flash pages, buffers, etc.);

¢ Also at the device level, we introduce virtual registerdwvithe
simulator to support source level instrumentation andiricac
The access to these registers does not affect the correst fun
tioning of other components;

o At the multi-device level, we introduce a coordinated break
condition, which enables the coordinated execution cbwtro
multiple devices;

e Finally, at the network level, we provide a “time traveling”
facility to use with network level trace analysis, so thaber
site can be rapidly restored for detailed inspection.

S?DB is built upon DiSenS [25], a scalable distributed full sys
tem sensor network simulator DiSenS has a distributed simula-
tion framework. Individual sensor devices are emulatedeipas

1we will use the terms simulator and emulator interchangealiien de-
scribing DiSenS throughout this paper since it shares rfestwith both
simulation and emulation. It isgimulatorin that radio communication be-
tween devices is purely simulated. It is amulatorin that it can execute
binary code (including TinyOS for mote emulation and Faaniliinux for
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rated operating system threads. DiSenS then partitionsetmed-
ules these device emulations to the computer nodes of @clasd
simulates inter-device communication at the radio level felow
the communication protocol stack and radio hardware device
terfaces). Sensor device emulations in DiSenS are cycleraie.
Moreover, a plugin mechanism allows the insertion of powedm
els and radio models with different fidelity levels. Thus BiS is
capable of accurate, large-scale sensor network simolatiere
the application and operating system code can be executad+
ified on native hardware.

DiSenS benefits our design and implementation in many as-
pects. Its simulator infrastructure gives us the full cohtf de-
vice states, which enables the desigrdebugging poirg. Its high
performance makes our debugger execute efficiently. Italsitisy
enables us to debug large-scale sensor networks. Whilevttile a
ability of a high-fidelity radio model for sensor network iade-
mains elusive (making many senor network implementorsteht
to embrace simulation and/or emulation), we believe thétyald
debug sensor network programs at scale as a precursor & detu
ployment will cut development time and reduce the amouritof
situdebugging that will be required in an actual deployment.

We also wish to emphasize that in this paper we do not claim
S?DB adequately addresses many of the thorny difficultiesgisso
ated with all debugging tools (e.g. the ability to debug wyted
code). Rather our focus is on innovations that we believarare
portant to the development of large-scale senor networkogep
ments and that also improve the current state-of-the-ipesict sen-
sor network debugging. In Section 2, we first give the backgdo
of sensor network debugging. In Section 3, we briefly intzdthe
features and details of DiSenS that are relevant to our dghgg
purpose. In Section 4, we introduce tthebugging poinand its use
with break conditions. We also present the design of virhaab-
ware based source level instrumentation. In Section 5, seuds
how to control the execution of multiple devices in a cooadiél
way. We focus on the implementation detail in DiSenS infrast
ture. In Section 6, we talk about the checkpoint impleméwmatfor
fast time traveling. We evaluate the performance of our ecing
techniques in Section 7. And we conclude our work in Section 8

2. Related Work

Mote-VIEW [16] provide a way to trace, display and analyzé ne
work activities for a physical sensor network. These toalsally
use a software data collecting module running on sensorsnode
in the network. The collected data is transferred using flugpd
or multihop routing to the gateway node. The gateway node the
forwards the data to a PC class machine for analysis or visual
tion. These tools are useful for displaying the network togy and
and analyzing the dynamics of data flow, particularly witkpect

to specific inter-node communication events. Tools like Bathy
even specialize in detecting and localizing sensor netiaihlres

in data collection applications. However, these monigrimy be
intrusive in that they share many of the scarce device ressuhey
use with the applications they are intended to instrumeheseé
tools may complement what we have witft8 . When a commu-
nication anomaly is detected, for example, often a progearal
debugger may still be necessary to pinpoint the exact locaif
error in code.

More generally, while debugging on real hardware is the ul-
timate way to verify the correctness of sensor network appli
tions, simulation based debuggers provide complementivgra
tages that have been successfully demonstrated by othectso
Many sensor network simulators, like TOSSIM [13], ATEMU [17
Avrora [23] and EmStar [6], provide significant debuggingpaa
bilities. TOSSIM is a discrete event simulator for TinyO$kqa-
tions. It translates the TinyOS code into emulation code larhd
with the emulator itself. So debugging with TOSSIM is actyal
debugging the emulator. Developers have to keep in theid thie
internal representation of device states. While discre¢atesimu-
lators are useful for verifying functional correctnes®tlypically
do not capture the precise timing characteristics of detiael-
ware, and thus have limited capability in exposing errorgprio-
gram logic. In contrast, full system simulators, such as MILE
and Avrora, have much higher fidelity. ATEMU features a seurc
level debugger XATDB, which has a graphic frontend for easy.u
XATDB can debug multiple sensor devices, but can only foaus o
one at a time. Avrora provides rich built-in support for pliof
and instrumentation. User code can be inserted at any progda
dress, watches can be attached to memory locations, anidicpec
events can be monitored. These facilities can be quite Lfmfu
debugging purposes. Indeed, we extend Avrora’s probe atchwa
concepts in the development ot[3B’s debugging points (cf. Sec-

Like most embedded devices, sensor network devices can-be deyjgn 4). In addition to this support for simulator instrunteion,

bugged with special hardware support. For motes (e.g. MicaR
MicaZz), Atmel's AVR JTAG ICE (In-Circuit Emulator) [2] is amof

the popular hardware-based debuggers. Atmel’s AVR faniitpio
crocontrollers (that are currently used as the process$aments in
many mote implementations) has built-in debugging suppelted
On-Chip Debugging (OCD). Developers can access the OCD func
tions via JTAG [10] hardware interface. With JTAG ICE, devel
opers can set break points, step-execute program and gasty h

S?DB also provides a source code level instrumentation fggili
via virtual debugging registers, since it is easier to ugestame
debugging problems.

Time traveling for debugging is currently the subject of tmuc
research [11, 20] in the field of software system developraedt
virtualization. Flashback [20] is a lightweight extensifar roll-
back and replay for software debugging. Flashback usesoshad
processes to take snapshots of the in-memory states of amgunn

ware resources. JTAG ICE can also be used with GUI interfaces process and logs the process’ 1/0 events with the underigiatem

or a GDB debugging console. Hardware-based approachesasuch
JTAG ICE typically have their limitations. For example, § mot
possible to synchronize the states of program execution M@

to support deterministic rollback or replay. VMM (virtualathine
monitor) level logging is used in [11] for replaying the syst exe-
cuting in a virtual machine. Checkpointing the state of afystem

systems in debugging. This is because when the program -execu gimyiator is easier than that in a real OS or virtual machineitor

tion is stopped in JTAG ICE, the I/O system continues to run at
full speed [1]. Also since the debugging support is only jpited
with the processing unit (i.e. the microcontroller), it istreasy to
interrogate the state of other on-board systems, like flassmany.
In contrast, by working with the full system DiSenS simuas,
S?DB does not suffer from these limitations.

At network level, many monitoring and visualization todlel
Sympathy [18, 19], SpyGlass [3], Surge Network Viewer [280 a

Stargate emulation) transparently. That is, the sameibmboot and run in
the emulator and on native devices without modification.
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since all the hardware are simulated in software. Our restiow
that time traveling support in DiSenS has very low overhaaaltd
the simpleness of sensor hardware it emulates.

3. TheDiSenS Simulator

S?DB is built upon DiSenS [25], a distributed sensor network-si
ulator designed for high fidelity and scalable performami&enS
provides sensor network applications an execution enwiesm as
“close” to real deployment as possible. DiSenS is also abén-
ulate a sensor network with hundreds of nodes in real timedspe
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using computer clusters. In this section, we briefly intrcathe
design aspects of DiSenS that are relevant to the impleti@mtat
S?DB . The complete discussion and evaluation of DiSenS are in
papers [25, 24].

3.1 Full System Device Simulation

The building blocks of DiSenS are full system device sinrst
supporting popular sensor network devices, including iHAR
Stargate [21] and Mica2/MicaZ motes [15]. In this paper, wa-c
fine our description to the functionality necessary for dgjdng
mote applications. However, the same functionality is enpénted

DiSenS achieves its scalability by using a simple yet effect
synchronization protocol for radio simulation and appiysuto-
matic node partition algorithms to spread the simulation/ation
workload across machines in a computer cluster. In DiSen& s
nodes are simulated in parallel, each running in its own atjrey
system thread and keeping its own virtual clock. Sensor s\ade
teract with each other only in the radio transmission, dyvifmich
radio packets are exchanged. The radio interaction of sestes
can be abstracted into two operations: read radio chandel&te
radio channel. The analysis [25] shows that only when a nedés
radio channel, it needs to synchronize its clock with itghbbrs
(i.e., potential radio transmitters in its radio range)isTénsures

for more complex devices such as the iPAQ and Stargate. A morethat each receiving node receives all the packets it is sgzhto

full examination of debugging for heterogeneous sensoicds\s
the subject of our future work.

The mote device simulator in DiSenS supports most of the
Mica2/MicaZ hardware features, including the AVR instiantset,
the ATmegal28L microcontroller (memories, UARTS, tim&B|
and ADC, etc.), the on-board Flash memory, CC1000 (Micad) an
CC2420 (Micaz) radio chips and other miscellaneous comptsne
(like sensor board, LEDs, etc.).

The core of the device simulator is a cycle-accurate AVR in-
struction emulator. The instruction emulator interactshwather
hardware simulation components via memory mapped I/O. When
an application binary is executed in the simulator, eachhinac
instruction is fed into the instruction emulator, shiftithge internal
representation of hardware states accordingly and falighAsyn-
chronous state change is modelled as events. Events adugsthe
by hardware components and kept in an event queue. Thednstru
tion emulator checks the event queue for each instructi@ciex
tion, triggering timed events. The collection of simulakeddware
features is rich enough to boot and execute unmodified lgigari
of TinyOS [8] and most sensor network applications, inahgdi
Surge, TinyDB [14] and Deluge [4]. By correctly simulatingrti-
ware components, the device simulator ensures the cydeang
providing the basis of faithful simulation of a complete sennet-
work.

The full system device simulator in DiSenS also presents ex-
tension points or “hooks” for integrating power and radiodeis.
This extensible architecture provides a way to support theld
opment of new models and to trade simulation speed for level o
accuracy. For debugging, this extensibility enables dpes to
test applications with different settings. For exampldjaanodels
representing different environments (like outdoor, ingetc.) can
be plugged in to test applications under different circamses.

In its default configuration, DiSenS incorporates an adeura
power model from [12], a simple linear battery model, a basic
lossless radio model, and a simple parameterized statisticdel.
The structure of the system, however, incorporates thesieinas
modules that can be replaced with more sophisticated cqants.

3.2 ScalableDistributed Simulation

DiSenS’s ability to simulate hundreds of mote devices usiisg
tributed cluster computing resources is its most disteckeature.
This level of scalability makes it possible to experimenthwarge
sensor network applications before they are actually gepland
to explore reconfiguration options “virtually” so that orthe most
promising need to be investigatedsitu. As a debugging tool, DiS-
enS’s scalability allows developers to identify and carproblems
associated with scale. For example, a data sink applicatian
work well in a network of dozens of nodes, but fails when the ne
work size increases to hundreds, due to the problems suaft as i
sufficient queue or buffer size. Even for small scale netwtrk
scalability is useful because it translates into simutatipeed, and
thus debugging efficiency.
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receive. A primitive calledvait.on.syncis introduced to perform
this synchronization, which forces the caller to wait foigidor
nodes to catch up with its current clock time. To implemeiig th
protocol, each node also has to keep its neighbors updated i
clock advance by periodically sending out its current clicie. A
more detailed description and analysis of this protocat i§25].

To utilize distributed computing resources, DiSenS fart#
nodes into groups, each simulated on one machine withinsteclu
Communication between sensor nodes assigned to the same ma-
chine is via a shared-memory communication channel. Horweve
when motes assigned to distinct machines communicategdnat
munication and synchronization must be implemented via s me
sage pass between machines. Due to the relatively largaeaar
of remote synchronization via message passing (causedprike
latency), partitioning of simulated nodes to cluster maekiplays
an important role in making the ensemble simulation efficien

To address this problem, graph-partitioning algorithmigio
nally developed for tightly-coupled data-parallel higbHiermance
computing applications, are employed. DiSenS uses a popata
titioning package [7] to partition nodes nearly optimally.

Our $DB debugging tool is built upon DiSenS , whose design
has huge impact on how the debugging facilities that we have
implemented, including both advantages and limitatiomsthe
next 3 sections, we'll discuss how DiSenS interacts witBB to
support both conventional and novel debugging techniques.

4. Debugging Individual Devices

S?DB was first built as a conventional distributed debuggerten t
DiSenS simulator. Each group of sensor nodes has a staedalon
debugging proxy waiting for incoming debugging commands. A
debugger console thus can attach to each individual semst® n
via this group proxy and perform debugging operations. Tae b
sic DB includes most functions in a conventional debugger, like
state (register and memory) checking, break points andestequ-
tion, etc.

In this section, we discuss how we exploit the potential of a
simulation environment to devise novel techniques for dging
single sensor devices.

4.1 Debugging Point

Debugging is essentially a process of exposing progranesnal
states relevant to its abnormal behavior and pinpointilegctiuse.
Visibility of execution states is a determining factor ofwhdiffi-
cult the debugging task is. Building upon a full system siabor
for each device gives?®B a great potential to expose time syn-
chronized state.

Conventional debuggers essentially manipulate threesstft
a program: register, memory and program counter (PC). @imul
tors can provide much more abundant state information, lwniay
enable or ease certain debugging tasks. For example, t@debu
TinyOS module that manages on-board flash memory, it is impor
tant for the internal buffers and flash pages to be displajredtty.

2006/2/27



Component Parameters Value Interrupt ~ Watchable Overhead
PC (o microcontroller none Int No Yes Large
Register (eg) microcontroller address Int No Yes Large
Memory Read fiemrd) SRAM address Boolean No Yes Small
Memory Write fnemwr) SRAM address Boolean No Yes Small
Memory (men) SRAM address Int No Yes Small
Flash Accessflashaccesy Flash command, address  Boolean No Yes Small
Flash glash Flash address Int No Yes Small
Power Changepowel Power Model none Float No Yes Small
Timer Match (imer) Timers none Boolean Yes No Small
Radio Data Readyspi) SPI (radio) none Boolean Yes No Small
ADC Data Readyddc ADC (radio/sensor) none Boolean Yes No Small
Serial Data Receivediért) UART none Boolean Yes No Small
Clock (clock Virtual none Int No Yes Minimal
Radio Packet Readyécke} Radio Chip none Packet No Yes Small
Program Definedouston) Virtual Debugging Hardware ID Int No Yes Program defined

Table 1. The current set of debugging points iAlEB .

Itis straightforward for DiSenS but rather difficult in a e@mtional
debugger, which has to invoke complex code sequence tositees
flash indirectly.

transient and all related to an interrupt. Thebugging poirg
provide a natural and convenient way to debug sensor network
programs since many of these programs are event-driveh, asic

We carefully studied the device states in DiSenS and defined a TinyOS and its application suite. As an example, if we want to

series ofdebugging pointsA debugging points the access point
to one of the internal states of the simulated device. Thécdev
state that is exposed bydebugging pointan then be used by the
debugger for displaying program status and controllingymm
execution, e.g., break and watch, as that in a conventicetalgt
ger. In this sensajebugging poirg have extended our debugger's
capability of program manipulation.

Table 1 lists the current set afebugging poirg defined in
S?DB. It is not a complete list since we are still improving onn-i
plementation and discovering more meaningfabugging poirg.

In the table, the first column shows tliebugging pointhame
and the abbreviated notation (in parentheses) used by thegde
ger console. The corresponding hardware component helbag-
ging pointbelongs to is listed in the second column. The third and
fourth columns specify the parameters and return valuedetag-
ging point For example, the “memory” point returns the byte con-
tent by the given memory address. The fifth column tells wéresh
debugging poinhas an interrupt associated. And the sixth column
specifies whether a watch can be added to the point. The last co
umn estimates the theoretical performance overhead oftorong

a particulardebugging point

As we see in the table, the common program states interro-
gated by conventional debuggers, i.e. register, memorypaod
gram counter, are also generalizeddebugging poirg in DB ,
listed asreg, memandpc. For memory, we also introduced two ex-
tra debugging poirgt, memrd and memwr, to monitor the access
to memory in terms of direction. Notice thd&bugging poirg have
different time properties: some are persistent while atlage tran-
sient. In the memory case, the memory contergm is persistent,
while memory accesses)emrd andmemwr, are transient. They
are valid only when memory is read or written.

Similar to memory, the on-board flash has two defired
bugging poins: one for the page contentigsh) and the other
(flash.acces} for the flash access, including read, program and
erase. The@owerdebugging point is used to access the simulated
power state of the device, which may be useful for debugging
power-aware algorithms.

Four important hardware events are defined dabugging
points: timer match eventtimer), radio (SPI) data readysgi),
ADC data ready dd¢ and serial data readyrt). They are all
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break the program execution at the occurrence of a timerhmatc
event, we can simply invoke the command:

> break when tinmer() == true

In a more conventional debugger, a breakpoint is typicadlyis
the interrupt handling code, the name of which must be knawn t
the programmer. Furthermore, breaking on these eventiliese
bugging poins is much more efficient than breaking on a source
code line (i.e., a specific program address). This is becaaseh-
ing program addresses requires a comparison after the teecu
of each instruction while matching event-basbugging poirg
only happens when the corresponding hardware events gre tri
gered, which occur much less frequently. We will discuss how
usedebugging poirg to set break conditions and their overhead in
later this subsection.

The clock debugging point provides a way for accurate timing
control over program execution. It can be used to fast faivthe
execution to a certain point if we know that the bug of ourriest
will not occur until after a period of time. It would be rathifficult
to implement this in a conventional debugger since there isasy
way to obtain accurate clock timing across device subsystem

It is also possible to analyze the states and data in the simu-
lator to extract useful high-level semantics and use thetutia
advanceddebugging poirg. An example is the recognition of ra-
dio packet. The Mica2 sensor device uses the CC1000 radi chi
which operates at the byte level. Thus an emulator can ordy se
the byte stream transmitted from/to neighbor nodes and axckeat
boundaries. For application debugging, however, it isrofteces-
sary to break program execution when a complete packet leas be
transmitted or received. A typical debugging strategy iséb a
breakpoint in the radio software stack at the the line of daue
that finishes a packet reception. However, this process ednoth
tedious and unreliable (e.g. software stack may change ainew
image is installed), especially during development or rtegiance
of the radio stack itself. Fortunately, in the current Tir§@adio
stack implementation, the radio packet has a fixed formatirive
plemented a tiny radio packet recognizer in the radio chiputa-
tion code. A “radio packet ready’pécke} debugging point is de-
fined to signal the state when a complete packet is receivezser
extracted high-level semantics are useful because we taydgp-
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plications without relying on the source code, especialiewthe
application binary is optimized code and it is hard to asstecxact
program addresses with specific source code line. Howegeowd
ering these semantics using low-level data/states isasfgilig and
non-obvious (at least, to us) and as such continues to beua fdc
our on-going research in this area.

4.1.1 Break ConditionsUsing Debugging Points

Debugging poirg are used in a functional form. For example, if we
want to print a variableX, we can use:

> print nmen(X)

To implement conditional break or watch points, they canrbe i
cluded in imperatives such as:

> break when flash_access(erase, 0x1)

which breaks the execution when the first page of the flaskageelr
It is also possible to compose them:

> break when tiner() && nemY) > 1

which breaks when a timer match event occurs and a statélaria
Y, like a counter, is larger thah

The basic algorithm for monitoring and evaluating break-con
ditions is as follows. Eacldebugging poinimaintains a monitor
queue. Whenever a break point is set, its condition is acul¢ioet
queue of everglebugging pointhat is used by the condition. Ev-
ery time the state changes ati@bugging pointthe conditions in
its queue is re-evaluated to check whether any of them isfieati
If so, one of the break points is reached and the executiounsis s
pended. Otherwise, the execution continues.

Note that the monitoring overhead varies for differdebug-
ging poins revealing the possibility for optimization of the basic
condition evaluating algorithm. The monitoring overheadléter-
mined by the frequency of state change aebugging pointOb-

viously, pc has the largest overhead because it changes at each in-

struction execution. Event related debugging points have low
overhead since hardware events occur less frequently. X@on-e
ple, the timer event may be triggered for every hundreds desy
Clockis logically has a large overhead since it changes everkcloc
cycle. However, in simulation, clock time is checked anyviary
event triggering. By implementing the clock monitoringeifsas an
event, we introduce no extra overhead for monitocheck debug-
ging point.

Thus we are able to optimize the implementation of condition
evaluation. For example, considering the following breakdi-
tion:

> break when pc() foo && mem(Y) > 1

Using the basic algorithm, the overhead of monitoring thedétion
is the sum ofpc's overhead andnen's overhead. However, since
the condition is satisfied when bottebugging poirg match their
expression, we could only trackemsince it has smaller overhead
thanpc. Whenmemis satisfied, we then continue to cheo& In
this way, the overall overhead reduces.

Now we present the general condition evaluation algorithm.
Given a condition as a logic expressidn, it is first converted into
canonical form using product of maxterms:

C=tiANtaA...\tpn (1)

wheret; is a maxterm. The overhead functig, is defined as the
total overhead to monitor all théebugging poirg in a maxterm.
Then we sort the maxterms by the valuefef (¢;) in incremental
order, saygty,, ..., tx, . We start the monitoring of” first using
maxtermt, by addingC' to all thedebugging poirg that belong
to tx,. Whenty, is satisfied, we re-evaluat€ and stop if it is
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true. Otherwise, we remov€' from t,,’s debugging poirg and
start monitoring, . If tx,, is monitored and”' is still not satisfied,
we loop back ta, . We repeat this process undil is satisfied. If
C is unsatisfiable, this process never ends.

Debugging poirg give us powerful capability to debug sensor
network programs at a level between the hardware level amd th
source-code level. However, a direct instrumentation efsthurce
code is sometimes easiest and most straight-forward defgg
method. The typical methodology for implementing soumeel
instrumentation is to use print statements to dump statettiri,
however, can introduce considerable overhead that can thask
problem being tracked.

In S’DB we include an instrumentation facility based on virtual
registers that serves the same purpose with reduced odeMéea
introduce our instrumentation facility in the next subgatt

4.2 Virtual Hardware Based Source Code | nstrumentation

Sensor devices are usually resource-constrained, latkingec-
essary facility for debugging in both hardware and softw&@e

a Mica2 sensor device, the only I/0O method that can be used for
display internal status by the program is to flash the threB4.E
which is tedious and error-prone to decode. DiSenS faithfiin-
ulates the sensor hardware, thus inheriting this limitat®ecause

we insist that DiSenS maintain binary transparency withniig/e
hardware it emulates, the simulated sensor network progauot

able to perform a simple “printf”.

To solve this problem, we introduce three virtual registss
an 1/0 channel for the communication between applicatiod an
simulator. Their I/O addresses are allocated in the redenemory
space of ATmegal28L. Thus the access of these virtual eegist
will not affect the correct functioning of other componeriiable 2
lists the three registers and their functions.

Address
0x75
0x76
Ox77

Name Functionality
VDBCMD Command Register
VDBIN Input Register
VDBOUT Output Register

Table 2. Virtual registers for communication between application
and simulator.

The operation of virtual registers is as follows: an appiara
first issues a command in the command regisSt®@BCMD; then
the output data is transferred VielDBOUT register and the input
data is read from em VDBIN register. The simplest applicatd
virtual registers is to print debugging messages by firstlisgn
a “PRINT” command and then continuously writing the ASCII
characters in a string to théDBOUT register until a new line is
reached. On the simulator side, whenever a command is isgued
either reads from thg DBOUTregister or sending data ¥DBIN.

In the print case, when the simulator gets all the chara¢éeded
by a new line), it will print out on the host console of the slating
machine.

A more advanced use of virtual registers is to contrdeug-
ging point We term this combination of virtual registers and debug-
ging points gprogram defined debugging poiftustom as listed in
the last line of Table 1). The state oftastomdebugging point is
generated by the instrumentation code in the program. Todhe
instrumentation code first sends a “DEBUG” command to\tbe
BCMD register, then outputs the debugging data onMB8OUT
register, in the form of a tuples id, value >. Theid is used to
identify the instrumentation point in the source code amtbthiue
is any value generated by the instrumented code. If theretisak
condition registered at this point, it will be checked agaihe tu-
ple and execution will stop when it is matched. As an examiple,
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we want to break at th@0th entry of a function, we can instru-

It is necessary to review DiSenS’s synchronization memani

ment the function and keep a counter of entries. Every tinee th first. We summarize the major rules as follows:

counter changes, we output the counter value via virtuaste.
The break condition will be satisfied when the value equal$)to

To make it easy to use, we developed a small C library for
accessing the virtual registers transparently. Devetopan invoke
accessing functions on these registers by simply calliagtiAPIs,
for example, in a TinyOS program.

Instrumentation via the virtual registers has the miniméiu-
siveness on application execution. When generatinglaugging
point event by sending & id, value > tuple, only three register
accesses are needed if both values in the tupl8-bits each (one
for the command and two for the data).

5. Coordinated Parallel Debugging of Multiple
Devices

DiSenS’s scalability and performance enablé®B to debug large
cooperating ensembles of sensors as a simulated sensarketw
deployment. Like other debuggers (3B permits its user to attach
to and “focus” on a specific sensor while the other sensorkén t
ensemble execute independently. However, often, morersyic
errors emerge from the interactions among sensor nodesdam
individual devices and/or applications are functioningeotly. To
reveal these kinds of errors, developers must be able toagete
and control multiple sensor devices in a coordinated way.

Debugging a program normally involves displaying program
status, breaking program execution at arbitrary poingp-siecuting,
etc. By extending this concept to parallel debugging, wetw@he
able to:

1. Display the status of multiple devices in parallel;

2. Break the execution of multiple devices at certain common
point;

3. Step-execute multiple devices at the same pace.

The first and third items in the above “wish list” are easy te im
plement in a simulation context>BB can simply “multicast” its
debugging commands to a batch of sensor nodes once their-exec
tion stop at a certain common point. As for the second itengesi
DiSenS is, in effect, executing multiple parallel simuas without
a centralized clock, implementing a time-correlated antiroon
breakpoint shares the same coordination challenges wjitarallel
debugging counterpart.

The simplest form of coordinated break is to pause the exatut
of a set of involved nodes at a specific virtual tirfie,

> : break when cl ock()

where the colon before “break” indicates that it is a batahiand
and will be sent to all the nodes in a global batch list (maied
by other commands).

Update Transmit
B D
Y T T »
clock updatel/ /l
b /) / clock update & byte transmissior
X y ¥ -
A C

Receive Receive

Figure 1. lllustration of synchronization between sensor nodes
in DiSenS . Dashed arrows indicate the update and transmissi
messagesd < B< C < D.

UCSB Tech. Report 2006-01

1. A node that receives or samples radio channel must wadtlfor
its neighbors to catch up with its current clock time;

2. All nodes must periodically broadcast their clock updatie
neighbors;

3. Before any wait, a node must first send its clock updatevima
loop waiting);

4. Radio byte is always sent with a clock update at the endsof it
last bit transmission.

Figure 1 illustrates the process. At time poiitnodeX receives.

It first sends an update of its clock and wait for its neighlor
(rule 3 & 1).Y runs toB and sends its clock update (rule 2), which
wakes upX. X proceeds t@” and receives agaifY, starts a byte
transmission aB3. At D, the last bit transmitted and so the byte
along with a clock update is sent 26 (rule 4). X receives the byte,
knowingY passes its current time, and proceeds.

Last update Next update

Y 5 < -
update for breay%
| Break point
A
Receive

Figure 2. Break at a certain point of time. Dashed arrows indicate
the update and transmission messages: A < C.

Now, let's see what happens when we ask multiple nodes to
stop at the same time. Figure 2 shows one case of the situafion
receives at timed and sends an update and waits YorY sends
an update aB. Its next update time i€'. But we want to break at a
point beforeC' but afterA. SinceY breaks (thus waits), it sends an
update (rule 3)X receives the update, wakes up, proceeds to the
break point and stops. Now bofti andY” are stopped at the same
time point.

Transmit start Transmit

B |
Y ' |
I
update & pre—transmit | | \
N | Break point
I : /
X A -
A
Receive

Figure 3. Extension to the synchronization protocopre-
transmissionDashed arrows indicate the update and transmission
messagesB < A < C.

In Figure 3, the situation is similar to the case in Figure Re T
difference is that now the break point is in the middle of aebyt
transmission fol”. Y can not just send an update X0 and letX
proceeds to break point as in Figure 2. becausé glets the update
fromY, it believesY” has no byte to send up to the break point and
will continue its radio receiving logic. Thus the partialtbyfrom
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Y is lost. This problem is caused by rule 4. We solve it by reigxi
the rule: Whenever a node is stopped (thus it waits) in thedlaid
of a byte transmission, the byte fpge-transmittedwith the clock
update. We can do this because mote radio always transniysen
unit. Once a byte transmission starts, we already know it$em.
Also, in DiSenS , each byte received by a node is buffered with
timestamp. It will be processed only when the time matches th
local clock. With this relaxed rule, we are now able to stoptiple
sensor nodes at the same virtual time.

The next question is how to perform a conditional break on
multiple nodes. Notice that we cannot simply implement:

> :break when nem(X) > 3

because it asks the nodes to break independently. Whenever a

node breaks at some point, other nodes with direct or indirec
neighborhood relationship with it will wait at indetermtegpoints
due to the synchronization requirement. Whether they disfya
the condition is not clear. A reasonable version of this camehis:

> :break when *.memX) > 3
or

> :break when nodel.men(X) > 3
&& ... && nodek.nmemX) > 3

which means “break wheX > 3 for all the nodes”. In the general
form, we define acoordinated breakas a break with condition
condi A condz A ... A\ condy, wherecond; is a logic expression
for node:.

C(IJnditi on wlisfitlad

X ——777227777

G —
z ——V 722 22—
A B C >

B D
Y T »
Coh
X . |
A C
B D
Y //} //4
//i //i
AR
/ [ |
3 .
X r _r -
A C E

Figure 5. TOP: peer synchronizationin DiSenS .A < B <
D < C. BOTTOM: partially ordered synchronizatiofor S*DB.
A< C < E,B=C,D = E. Dashed arrows indicate the update
and transmission messages. (Some update messages aeglpmitt

X can proceed t& (=D). If Y needs to wait to receiveX will
wake it up whenX reachesE according to rule 3. Obviously, in
this schemeX always followsY'.

Now we can give our algorithm foroordinated breakUsing
Figure 4 as the example, we first design&tas the master. At point
A, X's condition is satisfiedX stops atA. SinceY and Z follow
X, they all stop atA. Then we choose the next node as the new
master, whose condition is not satisfied yet. If'isX andZ follow
Y until Y reachesB. Next, similarly, we choos& as new master.

Figure4. Coordinated break. The shaded boxes represent the timeAt time C, we find cond. A cond, A cond. = true. We break

range during which a local condition is satisfied. Betwégand
D, the global condition is satisfiedl < B < C < D.

Figure 4 illustrates the meaning of this form of breakpdirite
shaded boxes are the time period during which the local tiondi
for a node is satisfied. In Figure 4, the global condition do@d. A
condy A cond, is satisfied between tim& and D. Time C' is the
exact point where we want to break.

Before we present the algorithm that implemeot®rdinated

the execution and’ is exactly our break point. In this algorithm,
the aforementionepre-transmissiomlso plays an important role in
that it enables us to stop all nodes at the same time poinispigc
Coordinated break, however, does not work with arbitranyco
ditions. Consider the case where the local conditions inf€id are
connected by injunction instead of conjunction. The breakp
now should be at timel. Since we are not able to predict which
node will first satisfy its condition, it is not possible fos to stop
all the nodes together at timeunless we synchronize all the nodes
cycle by cycle, which would limit the scalability and the foer

break we need to firstintroduce a new synchronization scheme. We mance significantly. For the same reason, we can not set ujptaul

call it partially ordered synchronizatiorBy default DiSenS imple-
mentspeer synchronizatiarall the nodes are running in arbitrary
order except synchronized during receiving or sampling fiéw
scheme imposes a partial order. In this scheme, a node nisister
first specified. Then all the other nodes proceed by follovtirey
master node. That is, at any wall clock timg.; (i.e., the real
world time), for anynode;, clock; <= clockmaster-

Figure 5 illustrates the two synchronization schemes. Bpe t
part shows DiSenS’peer synchronizatioscheme. NodeX waits
at A. Y sends update aB and wakesX. ThenY waits atD,
waken byX's update at’. X andY proceed in parallel afterwards.
The bottom part shows?®B’s partially ordered synchronization
scheme. Her&  is the masterX first waits atA. Y sends its update

coordinated break point3Ne reiterate that these limitations are a
direct result of our desire to scale DiSenS and to #&850n large-
scale simulated networks. That is, we have sacrificed gktydara
favor of the performance gained through parallel and disted-
memory implementation.

Although the generality ofoordinated breals limited, it is still
useful in many situations. For example, for a data sink appbn,
we may want to determine why data is lost when a surge of data
flows to the sink node. In this case, we would break the exacuti
of the sink node based on the condition that its neighbor sibdee
sent data to it. Then we step-execute the program runningpen t
sink node to determine why the data is being lost. To implémen
the condition of data sent on neighbor nodes we can simply use

at B. X receives the update and runs to the updated point, which is source code instrumentation exportingwstomdebugging point.

C (=B). ThenX waits again. Wheiy” runs toD and sends update.

UCSB Tech. Report 2006-01

Thus this example also illustrates how the single-devitridging
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features discussed in the previous section can be intelgnatie the
group debugging features.

6. Fast Time Traveling for Replayable Debugging

Even with the ability to perform coordinated breakpointe hor-

mal debugging cycle of break/step/print is still cumbersomhen

the complete sensor network is debugged, especially ifiteecs

network is large. The high level nature of some systematiorer
requires a global view of the interactions among sensor s1okle

alternative model for debugging sensor networks is:

¢ A simulation is conducted with tracing. Trace log is anatyze
to pinpoint the anomaly.

o Quickly return to the point when the anomaly occurs to penfor
detailed source code level debugging.

To achieve this, we need to trace the simulation and reshae t
state of network at any point in the trace. Tthebugging poirg
and virtual hardware based instrumentation discussedciinse4
can be used to trace the simulation in a way similar to [23thia
section, we present thé BB’s design of fast time traveling, which
enables the restoration of network states.

The basic mechanism required to implement time traveling is
a periodic checkpoint. A checkpoint of a simulation is a com-
plete copy of the state of the simulated sensor network. lE83e
an object oriented framework in representing device coraptm
When a checkpoint is initiated, the state saving functidnieked
first at the highest level “machine” object. Recursivelye sub-
components in the “machine” invoke their own state savingcfu
tions. The saved state is comprised of registers, mem@RA,
EEPROM, etc.) and auxiliary state variables in each comporie
also includes some simulation related states. For exampleged
to save the event queue content, the received radio byteegoneu
the radio model and the status of the power model, etc. The com
plete binary of the state is saved into a timestamped file rébglt
checkpoint file for DiSenS has a size 45148 bytes, mostly com-
prised of SRAM ¢KB) content.

Checkpoint for the on-board flash has to be handled diffgrent
Motes have &12KB flash chip used for sensor data logging and
in-network programming. If flash content is saved as othermm
nents, the checkpoint file will be as large as over half meggaby
which is 128 times larger than the one without flash. So if flash is
also saved in a snapshot way, it is both extremely space ara ti
inefficient for a large scale sensor network. We solve thidblam
by saving flash operations in a log file. Since most sensorarktw
applications use flash infrequently and flash content is tejpidia
page unit, the overhead of saving log is much smaller thamgav
flash snapshots. Notice that the flash buffers have to be sateel
snapshot checkpoint file.

checkpoint to be triggered in conjunction witlebugging points
S?DB integrates the replay and state-saving capabilitiesethéo
efficiently re-examine an error condition with the execationtrol
over state changes.

7. Evaluation

Since $DB is built upon DiSenS , its performance is highly depen-
dent on DiSenS itself. We begin this section by focusing ertlie
performance of DiSenS simulation/emulation and then shwav t
overhead introduced by varioug[3B debugging facilities. All ex-
periments described in this section are conducted usingreodé
cluster in which each host has dual 3.2GHz Intel Xeon pragess
with 1GB memory. The hosts are connected via switched digabi
Ethernet. To make fair comparison, we use the same sensor net
work applicationCntToRfrrfor evaluation.

7.1 Performance of DiSenS

For brevity, we present only the typical simulation speeBi&enS
on the cluster. A more thorough examination of scalabilitgl per-
formance under different configurations can be found in pgi.

10.00

—4— one dimension
—%— two dimensions

Normalized simulated clock speed

0.01
1

T T T T T T T T T T T T

1 2 4 8 16 32 64 128 256 512 1024
Total number of nodes

Figure 6. DiSenS simulation performance 1rRD and2-D topolo-
gies. X -axis is total number of nodes simulatéd-axis is normal-
ized simulation speed (compared to execution speed on eesal d
vice).

Figure 6 shows the performance achieved by DiSenS when

Once a simulation is finished, we have a set of snapshot check-Simulating various numbers of nodes on the cluster in bathand

points and a continuous flash log. Given an arbitrary timetdbj
to restore the state of system includes the following steps:

1. Restore find the latest checkpoint' P that is prior to7" and
load the snapshot checkpoint file;

2. Replay if flash is used, replay the flash operation log up to
CP'stime;

3. Re-run start fromC P, re-run the simulation until timé&".

2-D topologies. In the figure, th& axis shows the total number

of nodes simulated. ThE-axis is the normalized simulation speed

(compared to real time speed on hardware). Foritletopology,

all nodes are oriented on a straight lié,meters apart (assuming

the maximal radio range &) meters). For the-D topology, nodes

are arranged in a square grid. Again the distance betweenddes

is 50 meters. Both performance curves are very close except in the

middle part, where-D topology has slightly worse performance.
The simulation speed drops noticeably frdnto 4 nodes but

Checkpoints can also be initiated by methods other than the then the speed curve keeps flat unfi8 nodes are simulated. After

need to take a periodic snapshot. For example, unt2B% break
point can be associated with a checkpoint so that once thegeae

that, the speed decreases linearly. The transition fronticflitear
decrement is because there is not enough computing resource

breaks, a checkpoint is generated. Thus, a developer cae mov within the cluster {6 hosts).

between the checkpoints to find the exact point when erranrscc
during a replayed simulation. Checkpoint can also be teitidoy a
debugging pointespeciallycustomdebugging points. By allowing

UCSB Tech. Report 2006-01

To summarize the results from [25], DiSenS is able to sinsulat
one mote9 times faster than real time speed,160 nodes at near
real time speed, ®048 nodes at nearly a tenth of real time speed.
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7.2 Performance of a Break Condition on a Single Device

We first evaluate the cost of monitoring debugging pointsrigle-
device debugging. Not all the listed (in Table 1) debugginmts
are evaluated since the overhead for some of them is apphcat
dependent.

1.0

0.8

Relative Simulation Speed
0.4

0.2

—
pc

0.0

memrd  memwr power timer spi

Debugging Point

Figure 7. Relative simulation speed for various debugging points.
X -axis shows the name of debugging poifitsaxis is the ratio to
original simulation speed (without monitoring debuggiraints).

Figure 7 gives the relative simulation speed of evaluatizg-v
ous debugging points. For each one, we set a break condgiog u
the debugging point and run the simulation. The result shtbas

pc has the largest overhead since the PC change occurs for every

instruction execution. Memory related debugging points less
overheadPowerand event-based debugging points have the least
overhead since their states change infrequently.

7.3 Performance of a Coordinated Break Condition with
Multiple Devices

We evaluate the overhead of monitoring the coordinatedkbrea
condition in this subsection. We run our experiments witk-2
4 x 4 grid of sensor nodes, distributed4rgroups (hosts).
Figure 8 shows the speed ratio between the simulation with
monitoring and without. When the group numbei jonly nodes
in one group are involved in the break condition. For groumber
2, nodes in both groups are used in the break condition, and.so o
The speed ratio curve drops when the number of groups ireseas
The overhead of monitoring coordinated break condition is
mostly due to the extra synchronization cost introducechieynew
partially ordered synchronizatioscheme. Obviously, when more
nodes (especially remote nodes) involved, the simulati@nt®ad
is higher.

7.4 Performance of Checkpointing for Time Traveling

We evaluate the overhead of checkpointing in four configomat
1x1,4x 1,16 x 1 and4 x 4, wherez x y meanse nodes per
group andy groups. For each one, we vary the checkpoint interval
from 1/8 up to4 virtual seconds.

Figure 9 shows the relative simulation speed when checkpoin
ing the system periodically. Naturally, the overhead inses when
checkpointing more frequently. It is hard to distinguisk #ingle-
group curves since their differences are so small. In gérareck-
pointing in multi-group simulation seems to have largerrbead
than single-group. However, the checkpoint overhead &tively
small. All four curves lie abové6% of original simulation speed,
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0.95 1.00

Relative Simulation Speed
0.90

0.85

Involved Groups

Figure 8. Relative simulation speed of monitoring a coordinated
break condition for multiple devicesX-axis is the number of
groups (hosts) involvedy -axis is the ratio to original simulation
speed (without condition monitoring).

Relative Simulation Speed

0.96 098 1.00 1.02 1.04

Checkpoint Interval in Virtual Time (second)

Figure 9. Relative simulation speed for checkpointing-axis is
the interval between two checkpoints (in terms of virtuab&ltime

of mote device).Y -axis is the ratio to original simulation speed
(without checkpointing).

which translates to less thai¥% of overhead. This result encour-
ages us to use time-traveling extensively in debuggingeDpers
thus can always return to the last break point or a previcaetr
point with little cost.

To summarize, we find that most of the new debugging facili-
ties we have introduced withi®®B have small overhead (less than
10%). As aresult, we are able to debug sensor network applitatio
using tools that operate at different levels of abstractibile pre-
serving the high performance and scalability provided b8dmS

8. Conclusion

S?DB is an efficient and effective sensor network debuggerdase
on DiSenS, a scalable distributed sensor network simulgteB
makes four innovations to the conventional debugging seham
different levels of abstraction. For effective debuggirfgsimgle

2006/2/27



sensor deviceslebugging poirg are introduced for the interroga-

tion of all interested subsystem states in a sensor devacaclli-
tate source level tracing and instrumentation, we exteadsitmu-
lated sensor device hardware with a set of virtual regisiersid-
ing a way for the communication between simulator and sitedla
program. At the multi-device level, we discuss the impletagan
of coordinated break condition in the distributed framdwdrhis
new type of break condition enables coordinated paralletetion
control of multiple sensor devices. A time traveling fagilis in-
troduced for the network level debugging, used for rapidresite
restoration when working with sensor network trace analy@ver-
all, these debugging features impose overhead of less 1thn
(generally) to DiSenS, and thus enable efficient debugginarge
scale sensor networks.

S?DB is still an ongoing project that we think to make it a com-

prehensive debugging tool for sensor networks, thereligdtit of

work to do. The most imperative task is to design and implémen

a graphic user interface for intuitive and productive dejing. We
are planning to build a plugin in the famous Eclipse [5] depel
ment environment, which controls the debugging and sirorat

functions in SDB and DiSenS. We are also interested in incor-

porating the debugging needs according to people’s expErsein
sensor network development and discovering new debuggutg t
nigues, especially at the network level.
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