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Abstract
Sensor network computing can be characterized as resource-
constrained distributed computing using unreliable, low bandwidth
communication. This combination of characteristics posessignifi-
cant software development and maintenance challenges. Effective
and efficient debugging tools for sensor network are thus critical.
Extant development tools, such as TOSSIM, EmStar, ATEMU and
Avrora, provide useful debugging support, but not with the fidelity,
scale and functionality that we believe are sufficient to meet the
needs of the next generation of applications.

In this paper, we propose a debugger, called S2DB, based on a
distributed full system sensor network simulator with highfidelity
and scalable performance, DiSenS. By exploiting the potential of
DiSenS as a scalable full system simulator, S2DB extends conven-
tional debugging methods by adding novel device level, program
source level, group level, and network level debugging abstractions.
The performance evaluation shows that all these debugging features
introduce overhead that is generally less than10% into the simula-
tor and thus making S2DB an efficient and effective debugging tool
for sensor networks.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; I.6 [Simulation and Modeling]

General Terms Experimentation, Performance

Keywords Sensor Network, Debugging, Simulation

1. Introduction
Sensor networks, comprised of tiny resource-constrained devices
connected by short range radios and powered by batteries, pro-
vide an innovative way to implement pervasive and non-intrusive
environmental instrumentation and (potentially) actuation. The
resource-constrained nature of sensor network devices poses sig-
nificant software development and maintenance challenges.To pro-
long battery life and promote miniaturization, most devices have
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little memory, use low-power and unreliable radios, and runlong
duty cycles. In addition to these per-device constraints, by defini-
tion sensor networks are also distributed systems, with allof the
concomitant synchronization and consistency concerns that dis-
tributed coordination implies.

For these reasons, effective debugging support is critical. A
number of sensor network development systems [2, 18, 3, 17, 13,
6] provide debugging support for individual devices and/orthe
complete network. However, they all have their limitations. Some
rely on hardware support, subject to the same resource constraints
that as the programs on which they operate. Some only monitor
the network radio traffic. And most importantly, as networksscale,
these tools become difficult to apply to the details of collections of
interacting sensor nodes.

In this paper, we present a new approach that is based on scal-
able full system sensor network simulation with enhanced debug-
ging features. Our debugging tool is called S2DB (where S2 stands
for Simulation and Sensor network). The goal of S2DB is to adapt
conventional debugging methods to sensor network applications so
that we can have better control of hardware details and debugthe
complete sensor network in a coordinated way. Our approach relies
upon four principle innovations in the area of debugging resource
constrained devices.

• At the single device level, we introduce the concept ofdebug-
ging point– a generalized notion of break point, watch point,
and state interrogation – that permits state display from all sen-
sor device subsystems (flash pages, buffers, etc.);

• Also at the device level, we introduce virtual registers within the
simulator to support source level instrumentation and tracing.
The access to these registers does not affect the correct func-
tioning of other components;

• At the multi-device level, we introduce a coordinated break
condition, which enables the coordinated execution control of
multiple devices;

• Finally, at the network level, we provide a “time traveling”
facility to use with network level trace analysis, so that error
site can be rapidly restored for detailed inspection.

S2DB is built upon DiSenS [25], a scalable distributed full sys-
tem sensor network simulator1. DiSenS has a distributed simula-
tion framework. Individual sensor devices are emulated in sepa-

1 We will use the terms simulator and emulator interchangeably when de-
scribing DiSenS throughout this paper since it shares features with both
simulation and emulation. It is asimulatorin that radio communication be-
tween devices is purely simulated. It is anemulator in that it can execute
binary code (including TinyOS for mote emulation and Familiar Linux for
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rated operating system threads. DiSenS then partitions andsched-
ules these device emulations to the computer nodes of a cluster, and
simulates inter-device communication at the radio level (i.e. below
the communication protocol stack and radio hardware devicein-
terfaces). Sensor device emulations in DiSenS are cycle-accurate.
Moreover, a plugin mechanism allows the insertion of power mod-
els and radio models with different fidelity levels. Thus DiSenS is
capable of accurate, large-scale sensor network simulation where
the application and operating system code can be executed, unmod-
ified on native hardware.

DiSenS benefits our design and implementation in many as-
pects. Its simulator infrastructure gives us the full control of de-
vice states, which enables the design ofdebugging points. Its high
performance makes our debugger execute efficiently. Its scalability
enables us to debug large-scale sensor networks. While the avail-
ability of a high-fidelity radio model for sensor network radio re-
mains elusive (making many senor network implementors reluctant
to embrace simulation and/or emulation), we believe the ability to
debug sensor network programs at scale as a precursor to actual de-
ployment will cut development time and reduce the amount ofin
situdebugging that will be required in an actual deployment.

We also wish to emphasize that in this paper we do not claim
S2DB adequately addresses many of the thorny difficulties associ-
ated with all debugging tools (e.g. the ability to debug optimized
code). Rather our focus is on innovations that we believe areim-
portant to the development of large-scale senor network deploy-
ments and that also improve the current state-of-the-practice in sen-
sor network debugging. In Section 2, we first give the background
of sensor network debugging. In Section 3, we briefly introduce the
features and details of DiSenS that are relevant to our debugging
purpose. In Section 4, we introduce thedebugging pointand its use
with break conditions. We also present the design of virtualhard-
ware based source level instrumentation. In Section 5, we discuss
how to control the execution of multiple devices in a coordinated
way. We focus on the implementation detail in DiSenS infrastruc-
ture. In Section 6, we talk about the checkpoint implementations for
fast time traveling. We evaluate the performance of our enhancing
techniques in Section 7. And we conclude our work in Section 8.

2. Related Work
Like most embedded devices, sensor network devices can be de-
bugged with special hardware support. For motes (e.g. Mica2and
MicaZ), Atmel’s AVR JTAG ICE (In-Circuit Emulator) [2] is one of
the popular hardware-based debuggers. Atmel’s AVR family of mi-
crocontrollers (that are currently used as the processing elements in
many mote implementations) has built-in debugging support, called
On-Chip Debugging (OCD). Developers can access the OCD func-
tions via JTAG [10] hardware interface. With JTAG ICE, devel-
opers can set break points, step-execute program and query hard-
ware resources. JTAG ICE can also be used with GUI interfaces
or a GDB debugging console. Hardware-based approaches suchas
JTAG ICE typically have their limitations. For example, it is not
possible to synchronize the states of program execution with I/O
systems in debugging. This is because when the program execu-
tion is stopped in JTAG ICE, the I/O system continues to run at
full speed [1]. Also since the debugging support is only provided
with the processing unit (i.e. the microcontroller), it is not easy to
interrogate the state of other on-board systems, like flash memory.
In contrast, by working with the full system DiSenS simulations,
S2DB does not suffer from these limitations.

At network level, many monitoring and visualization tools like
Sympathy [18, 19], SpyGlass [3], Surge Network Viewer [22] and

Stargate emulation) transparently. That is, the same binaries boot and run in
the emulator and on native devices without modification.

Mote-VIEW [16] provide a way to trace, display and analyze net-
work activities for a physical sensor network. These tools usually
use a software data collecting module running on sensor nodes
in the network. The collected data is transferred using flooding
or multihop routing to the gateway node. The gateway node then
forwards the data to a PC class machine for analysis or visualiza-
tion. These tools are useful for displaying the network topology and
and analyzing the dynamics of data flow, particularly with respect
to specific inter-node communication events. Tools like Sympathy
even specialize in detecting and localizing sensor networkfailures
in data collection applications. However, these monitoring may be
intrusive in that they share many of the scarce device resources they
use with the applications they are intended to instrument. These
tools may complement what we have with S2DB . When a commu-
nication anomaly is detected, for example, often a program-level
debugger may still be necessary to pinpoint the exact location of
error in code.

More generally, while debugging on real hardware is the ul-
timate way to verify the correctness of sensor network applica-
tions, simulation based debuggers provide complementary advan-
tages that have been successfully demonstrated by other projects.
Many sensor network simulators, like TOSSIM [13], ATEMU [17],
Avrora [23] and EmStar [6], provide significant debugging capa-
bilities. TOSSIM is a discrete event simulator for TinyOS applica-
tions. It translates the TinyOS code into emulation code andlinks
with the emulator itself. So debugging with TOSSIM is actually
debugging the emulator. Developers have to keep in their mind the
internal representation of device states. While discrete event simu-
lators are useful for verifying functional correctness, they typically
do not capture the precise timing characteristics of devicehard-
ware, and thus have limited capability in exposing errors inpro-
gram logic. In contrast, full system simulators, such as ATEMU
and Avrora, have much higher fidelity. ATEMU features a source
level debugger XATDB, which has a graphic frontend for easy use.
XATDB can debug multiple sensor devices, but can only focus on
one at a time. Avrora provides rich built-in support for profiling
and instrumentation. User code can be inserted at any program ad-
dress, watches can be attached to memory locations, and specific
events can be monitored. These facilities can be quite useful for
debugging purposes. Indeed, we extend Avrora’s probe and watch
concepts in the development of S2DB’s debugging points (cf. Sec-
tion 4). In addition to this support for simulator instrumentation,
S2DB also provides a source code level instrumentation facility,
via virtual debugging registers, since it is easier to use for some
debugging problems.

Time traveling for debugging is currently the subject of much
research [11, 20] in the field of software system developmentand
virtualization. Flashback [20] is a lightweight extensionfor roll-
back and replay for software debugging. Flashback uses shadow
processes to take snapshots of the in-memory states of a running
process and logs the process’ I/O events with the underlyingsystem
to support deterministic rollback or replay. VMM (virtual machine
monitor) level logging is used in [11] for replaying the system exe-
cuting in a virtual machine. Checkpointing the state of a full system
simulator is easier than that in a real OS or virtual machine monitor
since all the hardware are simulated in software. Our results show
that time traveling support in DiSenS has very low overhead due to
the simpleness of sensor hardware it emulates.

3. The DiSenS Simulator
S2DB is built upon DiSenS [25], a distributed sensor network sim-
ulator designed for high fidelity and scalable performance.DiSenS
provides sensor network applications an execution environment as
“close” to real deployment as possible. DiSenS is also able to sim-
ulate a sensor network with hundreds of nodes in real time speed
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using computer clusters. In this section, we briefly introduce the
design aspects of DiSenS that are relevant to the implementation of
S2DB . The complete discussion and evaluation of DiSenS are in
papers [25, 24].

3.1 Full System Device Simulation

The building blocks of DiSenS are full system device simulators,
supporting popular sensor network devices, including iPAQ[9],
Stargate [21] and Mica2/MicaZ motes [15]. In this paper, we con-
fine our description to the functionality necessary for debugging
mote applications. However, the same functionality is implemented
for more complex devices such as the iPAQ and Stargate. A more
full examination of debugging for heterogeneous sensor devices is
the subject of our future work.

The mote device simulator in DiSenS supports most of the
Mica2/MicaZ hardware features, including the AVR instruction set,
the ATmega128L microcontroller (memories, UARTs, timers,SPI
and ADC, etc.), the on-board Flash memory, CC1000 (Mica2) and
CC2420 (MicaZ) radio chips and other miscellaneous components
(like sensor board, LEDs, etc.).

The core of the device simulator is a cycle-accurate AVR in-
struction emulator. The instruction emulator interacts with other
hardware simulation components via memory mapped I/O. When
an application binary is executed in the simulator, each machine
instruction is fed into the instruction emulator, shiftingthe internal
representation of hardware states accordingly and faithfully. Asyn-
chronous state change is modelled as events. Events are scheduled
by hardware components and kept in an event queue. The instruc-
tion emulator checks the event queue for each instruction execu-
tion, triggering timed events. The collection of simulatedhardware
features is rich enough to boot and execute unmodified binaries
of TinyOS [8] and most sensor network applications, including
Surge, TinyDB [14] and Deluge [4]. By correctly simulating hard-
ware components, the device simulator ensures the cycle accuracy,
providing the basis of faithful simulation of a complete sensor net-
work.

The full system device simulator in DiSenS also presents ex-
tension points or “hooks” for integrating power and radio models.
This extensible architecture provides a way to support the devel-
opment of new models and to trade simulation speed for level of
accuracy. For debugging, this extensibility enables developers to
test applications with different settings. For example, radio models
representing different environments (like outdoor, indoor, etc.) can
be plugged in to test applications under different circumstances.

In its default configuration, DiSenS incorporates an accurate
power model from [12], a simple linear battery model, a basic
lossless radio model, and a simple parameterized statistical model.
The structure of the system, however, incorporates these models as
modules that can be replaced with more sophisticated counterparts.

3.2 Scalable Distributed Simulation

DiSenS’s ability to simulate hundreds of mote devices usingdis-
tributed cluster computing resources is its most distinctive feature.
This level of scalability makes it possible to experiment with large
sensor network applications before they are actually deployed and
to explore reconfiguration options “virtually” so that onlythe most
promising need to be investigatedin situ. As a debugging tool, DiS-
enS’s scalability allows developers to identify and correct problems
associated with scale. For example, a data sink applicationmay
work well in a network of dozens of nodes, but fails when the net-
work size increases to hundreds, due to the problems such as in-
sufficient queue or buffer size. Even for small scale network, the
scalability is useful because it translates into simulation speed, and
thus debugging efficiency.

DiSenS achieves its scalability by using a simple yet effective
synchronization protocol for radio simulation and applying auto-
matic node partition algorithms to spread the simulation/emulation
workload across machines in a computer cluster. In DiSenS, sensor
nodes are simulated in parallel, each running in its own operating
system thread and keeping its own virtual clock. Sensor nodes in-
teract with each other only in the radio transmission, during which
radio packets are exchanged. The radio interaction of sensor nodes
can be abstracted into two operations: read radio channel and write
radio channel. The analysis [25] shows that only when a node reads
radio channel, it needs to synchronize its clock with its neighbors
(i.e., potential radio transmitters in its radio range). This ensures
that each receiving node receives all the packets it is supposed to
receive. A primitive calledwait on syncis introduced to perform
this synchronization, which forces the caller to wait for neighbor
nodes to catch up with its current clock time. To implement this
protocol, each node also has to keep its neighbors updated about its
clock advance by periodically sending out its current clocktime. A
more detailed description and analysis of this protocol is in [25].

To utilize distributed computing resources, DiSenS partitions
nodes into groups, each simulated on one machine within a cluster.
Communication between sensor nodes assigned to the same ma-
chine is via a shared-memory communication channel. However,
when motes assigned to distinct machines communicate, thatcom-
munication and synchronization must be implemented via a mes-
sage pass between machines. Due to the relatively large overhead
of remote synchronization via message passing (caused by network
latency), partitioning of simulated nodes to cluster machines plays
an important role in making the ensemble simulation efficient.

To address this problem, graph-partitioning algorithms, origi-
nally developed for tightly-coupled data-parallel high-performance
computing applications, are employed. DiSenS uses a popular par-
titioning package [7] to partition nodes nearly optimally.

Our S2DB debugging tool is built upon DiSenS , whose design
has huge impact on how the debugging facilities that we have
implemented, including both advantages and limitations. In the
next 3 sections, we’ll discuss how DiSenS interacts with S2DB to
support both conventional and novel debugging techniques.

4. Debugging Individual Devices
S2DB was first built as a conventional distributed debugger on the
DiSenS simulator. Each group of sensor nodes has a standalone
debugging proxy waiting for incoming debugging commands. A
debugger console thus can attach to each individual sensor node
via this group proxy and perform debugging operations. The ba-
sic S2DB includes most functions in a conventional debugger, like
state (register and memory) checking, break points and stepexecu-
tion, etc.

In this section, we discuss how we exploit the potential of a
simulation environment to devise novel techniques for debugging
single sensor devices.

4.1 Debugging Point

Debugging is essentially a process of exposing program’s internal
states relevant to its abnormal behavior and pinpointing the cause.
Visibility of execution states is a determining factor of how diffi-
cult the debugging task is. Building upon a full system simulator
for each device gives S2DB a great potential to expose time syn-
chronized state.

Conventional debuggers essentially manipulate three states of
a program: register, memory and program counter (PC). Simula-
tors can provide much more abundant state information, which may
enable or ease certain debugging tasks. For example, to debug a
TinyOS module that manages on-board flash memory, it is impor-
tant for the internal buffers and flash pages to be displayed directly.
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Component Parameters Value Interrupt Watchable Overhead
PC (pc) microcontroller none Int No Yes Large
Register (reg) microcontroller address Int No Yes Large
Memory Read (memrd) SRAM address Boolean No Yes Small
Memory Write (memwr) SRAM address Boolean No Yes Small
Memory (mem) SRAM address Int No Yes Small
Flash Access (flash access) Flash command, address Boolean No Yes Small
Flash (flash) Flash address Int No Yes Small
Power Change (power) Power Model none Float No Yes Small
Timer Match (timer) Timers none Boolean Yes No Small
Radio Data Ready (spi) SPI (radio) none Boolean Yes No Small
ADC Data Ready (adc) ADC (radio/sensor) none Boolean Yes No Small
Serial Data Received (uart) UART none Boolean Yes No Small
Clock (clock) Virtual none Int No Yes Minimal

Radio Packet Ready (packet) Radio Chip none Packet No Yes Small

Program Defined (custom) Virtual Debugging Hardware ID Int No Yes Program defined

Table 1. The current set of debugging points in S2DB .

It is straightforward for DiSenS but rather difficult in a conventional
debugger, which has to invoke complex code sequence to access the
flash indirectly.

We carefully studied the device states in DiSenS and defined a
series ofdebugging points. A debugging pointis the access point
to one of the internal states of the simulated device. The device
state that is exposed by adebugging pointcan then be used by the
debugger for displaying program status and controlling program
execution, e.g., break and watch, as that in a conventional debug-
ger. In this sense,debugging points have extended our debugger’s
capability of program manipulation.

Table 1 lists the current set ofdebugging points defined in
S2DB. It is not a complete list since we are still improving our im-
plementation and discovering more meaningfuldebugging points.
In the table, the first column shows thedebugging pointname
and the abbreviated notation (in parentheses) used by the debug-
ger console. The corresponding hardware component that adebug-
ging pointbelongs to is listed in the second column. The third and
fourth columns specify the parameters and return value of adebug-
ging point. For example, the “memory” point returns the byte con-
tent by the given memory address. The fifth column tells whether a
debugging pointhas an interrupt associated. And the sixth column
specifies whether a watch can be added to the point. The last col-
umn estimates the theoretical performance overhead of monitoring
a particulardebugging point.

As we see in the table, the common program states interro-
gated by conventional debuggers, i.e. register, memory andpro-
gram counter, are also generalized asdebugging points in S2DB ,
listed asreg, memandpc. For memory, we also introduced two ex-
tra debugging points, memrd andmemwr, to monitor the access
to memory in terms of direction. Notice thatdebugging points have
different time properties: some are persistent while others are tran-
sient. In the memory case, the memory content,mem, is persistent,
while memory accesses,memrd andmemwr, are transient. They
are valid only when memory is read or written.

Similar to memory, the on-board flash has two definedde-
bugging points: one for the page content (flash) and the other
(flash access) for the flash access, including read, program and
erase. Thepowerdebugging point is used to access the simulated
power state of the device, which may be useful for debugging
power-aware algorithms.

Four important hardware events are defined asdebugging
points: timer match event (timer), radio (SPI) data ready (spi),
ADC data ready (adc) and serial data ready (uart). They are all

transient and all related to an interrupt. Thesedebugging points
provide a natural and convenient way to debug sensor network
programs since many of these programs are event-driven, such as
TinyOS and its application suite. As an example, if we want to
break the program execution at the occurrence of a timer match
event, we can simply invoke the command:

> break when timer() == true

In a more conventional debugger, a breakpoint is typically set in
the interrupt handling code, the name of which must be known to
the programmer. Furthermore, breaking on these event-based de-
bugging points is much more efficient than breaking on a source
code line (i.e., a specific program address). This is becausematch-
ing program addresses requires a comparison after the execution
of each instruction while matching event-baseddebugging points
only happens when the corresponding hardware events are trig-
gered, which occur much less frequently. We will discuss howto
usedebugging points to set break conditions and their overhead in
later this subsection.

The clockdebugging point provides a way for accurate timing
control over program execution. It can be used to fast forward the
execution to a certain point if we know that the bug of our interest
will not occur until after a period of time. It would be ratherdifficult
to implement this in a conventional debugger since there is no easy
way to obtain accurate clock timing across device subsystems.

It is also possible to analyze the states and data in the simu-
lator to extract useful high-level semantics and use them tobuild
advanceddebugging points. An example is the recognition of ra-
dio packet. The Mica2 sensor device uses the CC1000 radio chip,
which operates at the byte level. Thus an emulator can only see
the byte stream transmitted from/to neighbor nodes and not packet
boundaries. For application debugging, however, it is often neces-
sary to break program execution when a complete packet has been
transmitted or received. A typical debugging strategy is toset a
breakpoint in the radio software stack at the the line of codeline
that finishes a packet reception. However, this process can be both
tedious and unreliable (e.g. software stack may change whena new
image is installed), especially during development or maintenance
of the radio stack itself. Fortunately, in the current TinyOS radio
stack implementation, the radio packet has a fixed format. Weim-
plemented a tiny radio packet recognizer in the radio chip simula-
tion code. A “radio packet ready” (packet) debugging point is de-
fined to signal the state when a complete packet is received. These
extracted high-level semantics are useful because we can debug ap-
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plications without relying on the source code, especially when the
application binary is optimized code and it is hard to associate exact
program addresses with specific source code line. However, discov-
ering these semantics using low-level data/states is challenging and
non-obvious (at least, to us) and as such continues to be a focus of
our on-going research in this area.

4.1.1 Break Conditions Using Debugging Points

Debugging points are used in a functional form. For example, if we
want to print a variableX, we can use:

> print mem(X)

To implement conditional break or watch points, they can be in-
cluded in imperatives such as:

> break when flash_access(erase, 0x1)

which breaks the execution when the first page of the flash is erased.
It is also possible to compose them:

> break when timer() && mem(Y) > 1

which breaks when a timer match event occurs and a state variable
Y , like a counter, is larger than1.

The basic algorithm for monitoring and evaluating break con-
ditions is as follows. Eachdebugging pointmaintains a monitor
queue. Whenever a break point is set, its condition is added to the
queue of everydebugging pointthat is used by the condition. Ev-
ery time the state changes at adebugging point, the conditions in
its queue is re-evaluated to check whether any of them is satisfied.
If so, one of the break points is reached and the execution is sus-
pended. Otherwise, the execution continues.

Note that the monitoring overhead varies for differentdebug-
ging points revealing the possibility for optimization of the basic
condition evaluating algorithm. The monitoring overhead is deter-
mined by the frequency of state change at adebugging point. Ob-
viously, pc has the largest overhead because it changes at each in-
struction execution. Event related debugging points have very low
overhead since hardware events occur less frequently. For exam-
ple, the timer event may be triggered for every hundreds of cycles.
Clock is logically has a large overhead since it changes every clock
cycle. However, in simulation, clock time is checked anywayfor
event triggering. By implementing the clock monitoring itself as an
event, we introduce no extra overhead for monitoringclockdebug-
ging point.

Thus we are able to optimize the implementation of condition
evaluation. For example, considering the following break condi-
tion:

> break when pc() == foo && mem(Y) > 1

Using the basic algorithm, the overhead of monitoring the condition
is the sum ofpc’s overhead andmem’s overhead. However, since
the condition is satisfied when bothdebugging points match their
expression, we could only trackmemsince it has smaller overhead
thanpc. Whenmemis satisfied, we then continue to checkpc. In
this way, the overall overhead reduces.

Now we present the general condition evaluation algorithm.
Given a condition as a logic expression,C, it is first converted into
canonical form using product of maxterms:

C = t1 ∧ t2 ∧ ... ∧ tn (1)

whereti is a maxterm. The overhead functionfov is defined as the
total overhead to monitor all thedebugging points in a maxterm.
Then we sort the maxterms by the value offov(ti) in incremental
order, say,tk1

, ..., tkn
. We start the monitoring ofC first using

maxtermtk1
by addingC to all thedebugging points that belong

to tk1
. When tk1

is satisfied, we re-evaluateC and stop if it is

true. Otherwise, we removeC from tk1
’s debugging points and

start monitoringtk2
. If tkn

is monitored andC is still not satisfied,
we loop back totk1

. We repeat this process untilC is satisfied. If
C is unsatisfiable, this process never ends.

Debugging points give us powerful capability to debug sensor
network programs at a level between the hardware level and the
source-code level. However, a direct instrumentation of the source
code is sometimes easiest and most straight-forward debugging
method. The typical methodology for implementing source-level
instrumentation is to use print statements to dump states. Printing,
however, can introduce considerable overhead that can maskthe
problem being tracked.

In S2DB we include an instrumentation facility based on virtual
registers that serves the same purpose with reduced overhead. We
introduce our instrumentation facility in the next subsection.

4.2 Virtual Hardware Based Source Code Instrumentation

Sensor devices are usually resource-constrained, lackingthe nec-
essary facility for debugging in both hardware and software. On
a Mica2 sensor device, the only I/O method that can be used for
display internal status by the program is to flash the three LEDs,
which is tedious and error-prone to decode. DiSenS faithfully sim-
ulates the sensor hardware, thus inheriting this limitation. Because
we insist that DiSenS maintain binary transparency with thenative
hardware it emulates, the simulated sensor network programis not
able to perform a simple “printf”.

To solve this problem, we introduce three virtual registersas
an I/O channel for the communication between application and
simulator. Their I/O addresses are allocated in the reserved memory
space of ATmega128L. Thus the access of these virtual registers
will not affect the correct functioning of other components. Table 2
lists the three registers and their functions.

Address Name Functionality
0x75 VDBCMD Command Register
0x76 VDBIN Input Register
0x77 VDBOUT Output Register

Table 2. Virtual registers for communication between application
and simulator.

The operation of virtual registers is as follows: an application
first issues a command in the command register,VDBCMD; then
the output data is transferred viaVDBOUTregister and the input
data is read from em VDBIN register. The simplest application of
virtual registers is to print debugging messages by first sending
a “PRINT” command and then continuously writing the ASCII
characters in a string to theVDBOUT register until a new line is
reached. On the simulator side, whenever a command is issued, it
either reads from theVDBOUTregister or sending data toVDBIN.
In the print case, when the simulator gets all the characters(ended
by a new line), it will print out on the host console of the simulating
machine.

A more advanced use of virtual registers is to control adebug-
ging point. We term this combination of virtual registers and debug-
ging points aprogram defined debugging point(custom, as listed in
the last line of Table 1). The state of acustomdebugging point is
generated by the instrumentation code in the program. To do so, the
instrumentation code first sends a “DEBUG” command to theVD-
BCMD register, then outputs the debugging data on theVDBOUT
register, in the form of a tuple,< id, value >. The id is used to
identify the instrumentation point in the source code and thevalue
is any value generated by the instrumented code. If there is abreak
condition registered at this point, it will be checked against the tu-
ple and execution will stop when it is matched. As an example,if

UCSB Tech. Report 2006-01 5 2006/2/27



we want to break at the10th entry of a function, we can instru-
ment the function and keep a counter of entries. Every time the
counter changes, we output the counter value via virtual registers.
The break condition will be satisfied when the value equals to10.

To make it easy to use, we developed a small C library for
accessing the virtual registers transparently. Developers can invoke
accessing functions on these registers by simply calling the C APIs,
for example, in a TinyOS program.

Instrumentation via the virtual registers has the minimal intru-
siveness on application execution. When generating adebugging
point event by sending a< id, value > tuple, only three register
accesses are needed if both values in the tuple are8-bits each (one
for the command and two for the data).

5. Coordinated Parallel Debugging of Multiple
Devices

DiSenS’s scalability and performance enables S2DB to debug large
cooperating ensembles of sensors as a simulated sensor network
deployment. Like other debuggers, S2DB permits its user to attach
to and “focus” on a specific sensor while the other sensors in the
ensemble execute independently. However, often, more systematic
errors emerge from the interactions among sensor nodes evenwhen
individual devices and/or applications are functioning correctly. To
reveal these kinds of errors, developers must be able to interrogate
and control multiple sensor devices in a coordinated way.

Debugging a program normally involves displaying program
status, breaking program execution at arbitrary points, step-executing,
etc. By extending this concept to parallel debugging, we want to be
able to:

1. Display the status of multiple devices in parallel;

2. Break the execution of multiple devices at certain common
point;

3. Step-execute multiple devices at the same pace.

The first and third items in the above “wish list” are easy to im-
plement in a simulation context. S2DB can simply “multicast” its
debugging commands to a batch of sensor nodes once their execu-
tion stop at a certain common point. As for the second item, since
DiSenS is, in effect, executing multiple parallel simulations without
a centralized clock, implementing a time-correlated and common
breakpoint shares the same coordination challenges with inparallel
debugging counterpart.

The simplest form of coordinated break is to pause the execution
of a set of involved nodes at a specific virtual time,T :

> :break when clock() == T

where the colon before “break” indicates that it is a batch command
and will be sent to all the nodes in a global batch list (maintained
by other commands).

A C

B D
Y

Receive Receive

Update Transmit

X

clock update & byte transmission

clock update

Figure 1. Illustration of synchronization between sensor nodes
in DiSenS . Dashed arrows indicate the update and transmission
messages.A < B < C < D.

It is necessary to review DiSenS’s synchronization mechanism
first. We summarize the major rules as follows:

1. A node that receives or samples radio channel must wait forall
its neighbors to catch up with its current clock time;

2. All nodes must periodically broadcast their clock updates to
neighbors;

3. Before any wait, a node must first send its clock update (to avoid
loop waiting);

4. Radio byte is always sent with a clock update at the end of its
last bit transmission.

Figure 1 illustrates the process. At time pointA, nodeX receives.
It first sends an update of its clock and wait for its neighborY
(rule 3 & 1).Y runs toB and sends its clock update (rule 2), which
wakes upX. X proceeds toC and receives again.Y starts a byte
transmission atB. At D, the last bit transmitted and so the byte
along with a clock update is sent toX (rule 4).X receives the byte,
knowingY passes its current time, and proceeds.

B
Y

X
A

Receive

C

Break point

Last update Next update

update for break

Figure 2. Break at a certain point of time. Dashed arrows indicate
the update and transmission messages.B < A < C.

Now, let’s see what happens when we ask multiple nodes to
stop at the same time. Figure 2 shows one case of the situation. X
receives at timeA and sends an update and waits forY . Y sends
an update atB. Its next update time isC. But we want to break at a
point beforeC but afterA. SinceY breaks (thus waits), it sends an
update (rule 3).X receives the update, wakes up, proceeds to the
break point and stops. Now bothX andY are stopped at the same
time point.

B
Y

X
A

Receive

C

Break point

Transmit start Transmit

update & pre−transmit

Figure 3. Extension to the synchronization protocol:pre-
transmission. Dashed arrows indicate the update and transmission
messages.B < A < C.

In Figure 3, the situation is similar to the case in Figure 2. The
difference is that now the break point is in the middle of a byte
transmission forY . Y can not just send an update toX and letX
proceeds to break point as in Figure 2. because ifX gets the update
from Y , it believesY has no byte to send up to the break point and
will continue its radio receiving logic. Thus the partial byte from
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Y is lost. This problem is caused by rule 4. We solve it by relaxing
the rule: Whenever a node is stopped (thus it waits) in the middle
of a byte transmission, the byte ispre-transmittedwith the clock
update. We can do this because mote radio always transmits inbyte
unit. Once a byte transmission starts, we already know its content.
Also, in DiSenS , each byte received by a node is buffered with
timestamp. It will be processed only when the time matches the
local clock. With this relaxed rule, we are now able to stop multiple
sensor nodes at the same virtual time.

The next question is how to perform a conditional break on
multiple nodes. Notice that we cannot simply implement:

> :break when mem(X) > 3

because it asks the nodes to break independently. Whenever a
node breaks at some point, other nodes with direct or indirect
neighborhood relationship with it will wait at indeterminate points
due to the synchronization requirement. Whether they all satisfy
the condition is not clear. A reasonable version of this command is:

> :break when *.mem(X) > 3

or

> :break when node1.mem(X) > 3
&& ... && nodek.mem(X) > 3

which means “break whenX > 3 for all the nodes”. In the general
form, we define acoordinated breakas a break with condition
cond1 ∧ cond2 ∧ ... ∧ condk, wherecondi is a logic expression
for nodei.
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X

Y

Z

A B C D

Condition satisfied

Figure 4. Coordinated break. The shaded boxes represent the time
range during which a local condition is satisfied. BetweenC and
D, the global condition is satisfied.A < B < C < D.

Figure 4 illustrates the meaning of this form of breakpoint.The
shaded boxes are the time period during which the local condition
for a node is satisfied. In Figure 4, the global condition, i.e. condx∧

condy ∧ condz , is satisfied between timeC andD. TimeC is the
exact point where we want to break.

Before we present the algorithm that implementscoordinated
break, we need to first introduce a new synchronization scheme. We
call it partially ordered synchronization. By default DiSenS imple-
mentspeer synchronization: all the nodes are running in arbitrary
order except synchronized during receiving or sampling. The new
scheme imposes a partial order. In this scheme, a node masteris
first specified. Then all the other nodes proceed by followingthe
master node. That is, at any wall clock timetwall (i.e., the real
world time), for anynodei, clocki <= clockmaster.

Figure 5 illustrates the two synchronization schemes. The top
part shows DiSenS’speer synchronizationscheme. NodeX waits
at A. Y sends update atB and wakesX. Then Y waits atD,
waken byX ’s update atC. X andY proceed in parallel afterwards.
The bottom part shows S2DB’s partially ordered synchronization
scheme. HereY is the master.X first waits atA. Y sends its update
atB. X receives the update and runs to the updated point, which is
C (=B). ThenX waits again. WhenY runs toD and sends update.

A C

B D

A C E

B D

X

Y

X

Y

Figure 5. TOP: peer synchronizationin DiSenS .A < B <
D < C. BOTTOM: partially ordered synchronizationfor S2DB.
A < C < E, B = C, D = E. Dashed arrows indicate the update
and transmission messages. (Some update messages are omitted)

X can proceed toE (=D). If Y needs to wait to receive,X will
wake it up whenX reachesE according to rule 3. Obviously, in
this scheme,X always followsY .

Now we can give our algorithm forcoordinated break. Using
Figure 4 as the example, we first designateX as the master. At point
A, X ’s condition is satisfied.X stops atA. SinceY andZ follow
X, they all stop atA. Then we choose the next node as the new
master, whose condition is not satisfied yet. It isY . X andZ follow
Y until Y reachesB. Next, similarly, we chooseZ as new master.
At time C, we find condx ∧ condy ∧ condz = true. We break
the execution andC is exactly our break point. In this algorithm,
the aforementionedpre-transmissionalso plays an important role in
that it enables us to stop all nodes at the same time point precisely.

Coordinated break, however, does not work with arbitrary con-
ditions. Consider the case where the local conditions in Figure 4 are
connected by injunction instead of conjunction. The break point
now should be at timeA. Since we are not able to predict which
node will first satisfy its condition, it is not possible for us to stop
all the nodes together at timeA unless we synchronize all the nodes
cycle by cycle, which would limit the scalability and the perfor-
mance significantly. For the same reason, we can not set up multiple
coordinated break points. We reiterate that these limitations are a
direct result of our desire to scale DiSenS and to use S2DB on large-
scale simulated networks. That is, we have sacrificed generality in
favor of the performance gained through parallel and distributed-
memory implementation.

Although the generality ofcoordinated breakis limited, it is still
useful in many situations. For example, for a data sink application,
we may want to determine why data is lost when a surge of data
flows to the sink node. In this case, we would break the execution
of the sink node based on the condition that its neighbor nodes have
sent data to it. Then we step-execute the program running on the
sink node to determine why the data is being lost. To implement
the condition of data sent on neighbor nodes we can simply use
source code instrumentation exporting acustomdebugging point.
Thus this example also illustrates how the single-device debugging
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features discussed in the previous section can be integrated with the
group debugging features.

6. Fast Time Traveling for Replayable Debugging
Even with the ability to perform coordinated breakpoints, the nor-
mal debugging cycle of break/step/print is still cumbersome when
the complete sensor network is debugged, especially if the size of
network is large. The high level nature of some systematic errors
requires a global view of the interactions among sensor nodes. An
alternative model for debugging sensor networks is:

• A simulation is conducted with tracing. Trace log is analyzed
to pinpoint the anomaly.

• Quickly return to the point when the anomaly occurs to perform
detailed source code level debugging.

To achieve this, we need to trace the simulation and restore the
state of network at any point in the trace. Thedebugging points
and virtual hardware based instrumentation discussed in section 4
can be used to trace the simulation in a way similar to [23]. Inthis
section, we present the S2DB’s design of fast time traveling, which
enables the restoration of network states.

The basic mechanism required to implement time traveling is
a periodic checkpoint. A checkpoint of a simulation is a com-
plete copy of the state of the simulated sensor network. DiSenS is
an object oriented framework in representing device components.
When a checkpoint is initiated, the state saving function isinvoked
first at the highest level “machine” object. Recursively, the sub-
components in the “machine” invoke their own state saving func-
tions. The saved state is comprised of registers, memories (SRAM,
EEPROM, etc.) and auxiliary state variables in each component. It
also includes some simulation related states. For example,we need
to save the event queue content, the received radio byte queue in
the radio model and the status of the power model, etc. The com-
plete binary of the state is saved into a timestamped file. Theresult
checkpoint file for DiSenS has a size of4948 bytes, mostly com-
prised of SRAM (4KB) content.

Checkpoint for the on-board flash has to be handled differently.
Motes have a512KB flash chip used for sensor data logging and
in-network programming. If flash content is saved as other compo-
nents, the checkpoint file will be as large as over half megabyte,
which is128 times larger than the one without flash. So if flash is
also saved in a snapshot way, it is both extremely space and time
inefficient for a large scale sensor network. We solve this problem
by saving flash operations in a log file. Since most sensor network
applications use flash infrequently and flash content is updated in
page unit, the overhead of saving log is much smaller than saving
flash snapshots. Notice that the flash buffers have to be savedin the
snapshot checkpoint file.

Once a simulation is finished, we have a set of snapshot check-
points and a continuous flash log. Given an arbitrary time point T ,
to restore the state of system includes the following steps:

1. Restore: find the latest checkpointCP that is prior toT and
load the snapshot checkpoint file;

2. Replay: if flash is used, replay the flash operation log up to
CP ’s time;

3. Re-run: start fromCP , re-run the simulation until timeT .

Checkpoints can also be initiated by methods other than the
need to take a periodic snapshot. For example, under S2DB a break
point can be associated with a checkpoint so that once the execution
breaks, a checkpoint is generated. Thus, a developer can move
between the checkpoints to find the exact point when error occurs
during a replayed simulation. Checkpoint can also be initiated by a
debugging point, especiallycustomdebugging points. By allowing

checkpoint to be triggered in conjunction withdebugging points
S2DB integrates the replay and state-saving capabilities needed to
efficiently re-examine an error condition with the execution control
over state changes.

7. Evaluation
Since S2DB is built upon DiSenS , its performance is highly depen-
dent on DiSenS itself. We begin this section by focusing on the the
performance of DiSenS simulation/emulation and then show the
overhead introduced by various S2DB debugging facilities. All ex-
periments described in this section are conducted using a 16-node
cluster in which each host has dual 3.2GHz Intel Xeon processors
with 1GB memory. The hosts are connected via switched gigabit
Ethernet. To make fair comparison, we use the same sensor net-
work applicationCntToRfmfor evaluation.

7.1 Performance of DiSenS

For brevity, we present only the typical simulation speed ofDiSenS
on the cluster. A more thorough examination of scalability and per-
formance under different configurations can be found in paper [25].
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Figure 6. DiSenS simulation performance in1-D and2-D topolo-
gies.X-axis is total number of nodes simulated.Y -axis is normal-
ized simulation speed (compared to execution speed on real de-
vice).

Figure 6 shows the performance achieved by DiSenS when
simulating various numbers of nodes on the cluster in both1-D and
2-D topologies. In the figure, theX axis shows the total number
of nodes simulated. TheY -axis is the normalized simulation speed
(compared to real time speed on hardware). For the1-D topology,
all nodes are oriented on a straight line,50 meters apart (assuming
the maximal radio range is60 meters). For the2-D topology, nodes
are arranged in a square grid. Again the distance between twonodes
is 50 meters. Both performance curves are very close except in the
middle part, where2-D topology has slightly worse performance.

The simulation speed drops noticeably from1 to 4 nodes but
then the speed curve keeps flat until128 nodes are simulated. After
that, the speed decreases linearly. The transition from flatto linear
decrement is because there is not enough computing resources
within the cluster (16 hosts).

To summarize the results from [25], DiSenS is able to simulate
one mote9 times faster than real time speed, or160 nodes at near
real time speed, or2048 nodes at nearly a tenth of real time speed.
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7.2 Performance of a Break Condition on a Single Device

We first evaluate the cost of monitoring debugging points in single-
device debugging. Not all the listed (in Table 1) debugging points
are evaluated since the overhead for some of them is application
dependent.
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Figure 7. Relative simulation speed for various debugging points.
X-axis shows the name of debugging points.Y -axis is the ratio to
original simulation speed (without monitoring debugging points).

Figure 7 gives the relative simulation speed of evaluating vari-
ous debugging points. For each one, we set a break condition using
the debugging point and run the simulation. The result showsthat
pc has the largest overhead since the PC change occurs for every
instruction execution. Memory related debugging points has less
overhead.Powerand event-based debugging points have the least
overhead since their states change infrequently.

7.3 Performance of a Coordinated Break Condition with
Multiple Devices

We evaluate the overhead of monitoring the coordinated break
condition in this subsection. We run our experiments with a2-D
4 × 4 grid of sensor nodes, distributed in4 groups (hosts).

Figure 8 shows the speed ratio between the simulation with
monitoring and without. When the group number is1, only nodes
in one group are involved in the break condition. For group number
2, nodes in both groups are used in the break condition, and so on.
The speed ratio curve drops when the number of groups increases.

The overhead of monitoring coordinated break condition is
mostly due to the extra synchronization cost introduced by the new
partially ordered synchronizationscheme. Obviously, when more
nodes (especially remote nodes) involved, the simulation overhead
is higher.

7.4 Performance of Checkpointing for Time Traveling

We evaluate the overhead of checkpointing in four configurations:
1 × 1, 4 × 1, 16 × 1 and4 × 4, wherex × y meansx nodes per
group andy groups. For each one, we vary the checkpoint interval
from 1/8 up to4 virtual seconds.

Figure 9 shows the relative simulation speed when checkpoint-
ing the system periodically. Naturally, the overhead increases when
checkpointing more frequently. It is hard to distinguish the single-
group curves since their differences are so small. In general, check-
pointing in multi-group simulation seems to have larger overhead
than single-group. However, the checkpoint overhead is relatively
small. All four curves lie above96% of original simulation speed,
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Figure 8. Relative simulation speed of monitoring a coordinated
break condition for multiple devices.X-axis is the number of
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which translates to less than4% of overhead. This result encour-
ages us to use time-traveling extensively in debugging. Developers
thus can always return to the last break point or a previous trace
point with little cost.

To summarize, we find that most of the new debugging facili-
ties we have introduced with S2DB have small overhead (less than
10%). As a result, we are able to debug sensor network applications
using tools that operate at different levels of abstractionwhile pre-
serving the high performance and scalability provided by DiSenS
.

8. Conclusion
S2DB is an efficient and effective sensor network debugger based
on DiSenS, a scalable distributed sensor network simulator. S2DB
makes four innovations to the conventional debugging scheme at
different levels of abstraction. For effective debugging of single
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sensor devices,debugging points are introduced for the interroga-
tion of all interested subsystem states in a sensor device. To facili-
tate source level tracing and instrumentation, we extend the simu-
lated sensor device hardware with a set of virtual registersprovid-
ing a way for the communication between simulator and simulated
program. At the multi-device level, we discuss the implementation
of coordinated break condition in the distributed framework. This
new type of break condition enables coordinated parallel execution
control of multiple sensor devices. A time traveling facility is in-
troduced for the network level debugging, used for rapid error site
restoration when working with sensor network trace analysis. Over-
all, these debugging features impose overhead of less than10%
(generally) to DiSenS, and thus enable efficient debugging of large
scale sensor networks.

S2DB is still an ongoing project that we think to make it a com-
prehensive debugging tool for sensor networks, there is still a lot of
work to do. The most imperative task is to design and implement
a graphic user interface for intuitive and productive debugging. We
are planning to build a plugin in the famous Eclipse [5] develop-
ment environment, which controls the debugging and simulation
functions in S2DB and DiSenS. We are also interested in incor-
porating the debugging needs according to people’s experiences in
sensor network development and discovering new debugging tech-
niques, especially at the network level.
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SpyGlass: taking a closer look at sensor networks.In the Proceedings
of the 2nd international conference on Embedded networked sensor
systems, pages 301–302, 2004. New York, NY, USA.

[4] A. Chlipala, J. W. Hui, and G. Tolle. Deluge: Dissemination Protocols
for Network Reprogramming at Scale.Fall 2003 UC Berkeley class
project paper, 2003.

[5] Eclipse: an extensible development platform and application frame-
works for building software.http://www.eclipse.org.

[6] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan,
and D. Estrin. EmStar: a Software Environment for Developing
and Deploying Wireless Sensor Networks.USENIX Technical
Conference, 2004.

[7] B. Hendrickson and R. Leland. The Chaco User’s Guide: Version 2.0.
Technical Report SAND94–2692, Sandia National Lab, 1994.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for network sensors.International
Conference on Architectural Support for Programming Languages
and Operating Systems, Oct. 2000.

[9] iPAQ devices.http://welcome.hp.com/country/us/en/
prodserv/handheld.html.

[10] Boundary-Scan (JTAG) test and in-system programming solutions
(IEEE 1149.1).http://www.jtag.com/main.php.

[11] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging Operating
Systems with Time-Traveling Virtual Machines.In the Proceedings
of USENIX Annual Technical Conference 2005, Apr. 2005. Anaheim,
CA.

[12] O. Landsiedel, K. Wehrle, and S. Gtz. Accurate Prediction of Power
Consumption in Sensor Networks.In Proceedings of The Second
IEEE Workshop on Embedded Networked Sensors (EmNetS-II), May
2005. Sydney, Australia.

[13] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications.ACM Conference
on Embedded Networked Sensor Systems, Nov. 2003.

[14] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
Design of an Acquisitional Query Processor for Sensor Networks. In
Proceedings of SIGMOD 2003, June 2003.

[15] Mote hardware platform.http://www.tinyos.net/scoop/
special/hardware.

[16] MOTE-VIEW Monitoring Software.http://www.xbow.com/
Products/productsdetails.aspx?sid=88.

[17] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras. ATEMU:
A Fine-grained Sensor Network Simulator.IEEE Communications
Society Conference on Sensor and Ad Hoc Communications and
Networks, 2004.

[18] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and
D. Estrin. Sympathy for the Sensor Network Debugger.In the
Proceedings of 3rd ACM Conference on Embedded Networked Sensor
Systems (SenSys ’05), Nov. 2005. San Diego, California.

[19] N. Ramanathan, E. Kohler, and D. Estrin. Towards a debugging
system for sensor networks.International Journal of Network
Management, 15(4):223–234, 2005.

[20] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.Flashback:
A Lightweight Extension for Rollback and Deterministic Replay
for Software Debugging.In the Proceedings of USENIX Annual
Technical Conference 2004, June 2004. Boston, MA.

[21] Stargate: a platform X project.http://platformx.sourceforge.
net/.

[22] Surge Network Viewer. http://xbow.com/Products/
productsdetails.aspx?sid=86.

[23] B. Titzer and J. Palsberg. Nonintrusive Precision Instrumentation
of Microcontroller Software. In the Proceedings of ACM SIG-
PLAN/SIGBED 2005 Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES’05), June 2005. Chicago,
Illinois.

[24] Y. Wen, S. Gurun, N. Chohan, R. Wolski, and C. Krintz. Toward Full-
System, Cycle-Accurate Simulation of Sensor Networks. Technical
Report CS2005-12, University of California, Santa Barbara, 2005.

[25] Y. Wen, R. Wolski, and G. Moore. DiSenS: Scalable Distributed
Sensor Network Simulation. Technical Report CS2005-30, University
of California, Santa Barbara, 2005.

UCSB Tech. Report 2006-01 10 2006/2/27


