
Pairwise Edge Disjoint Shortest Paths in the n-Cube

Teofilo F. Gonzalez and David Serena

Department of Computer Science

University of California

Santa Barbara, CA 93106-5110

email: teo@cs.ucsb.edu

August 1, 2006

Abstract

Complexity issues intrinsic to certain fundamental data dissemination problems in high per-
formance network topologies are discussed. In particular, we study the p-pairwise edge disjoint
shortest paths problem. An efficient algorithm for the case when every source point is at a
distance at most two from its target is presented and for pairs at a distance at most three we
show that the problem is NP-complete.
Keywords: Hypercube, n-cube, edge disjoint shortest paths, NP-completeness.

1 Introduction

The n-cube is a fundamental structure for parallel computing. Several systems with this com-
munication architecture have been built. The SGI Origin2000 and Onyx2 computing systems are
platforms whose interconnection network is a variation of the n-cube. Different message rout-
ing problems arise while executing parallel programs on an n-cube connected machine. One type
of these problems consists of transmitting messages concurrently from source nodes to their cor-
responding target nodes. In this paper we study the offline version of one such problem: the
p-pairwise edge disjoint shortest paths problem. Path disjointness allows messages with different
origin/destination to be routed concurrently and shortest paths are likely to minimize communi-
cation time. The above communication patterns arise when executing parallel versions of many
well-known algorithms. These algorithms include: fast Fourier transform; transposing a matrix;
permuting the elements stored at the nodes of an n-cube, which is the final operation in a count
sort (permutation routing); concentrating (in the first k nodes of an n-cube) a sequence of ele-
ments stored in the nodes of an n-cube (data concentration), or the reverse process which is called
data spreading. More complex communication operations that include the above communication
patterns arise while multiplying matrices or solving systems of linear equations iteratively.

A routing request consists of p pairs of nodes denoted by

X = {X1, X2, . . . , Xp},

where Xi = (si, ti), for 1 ≤ i ≤ p, and all the sis and tis are distinct. Each pair Xi = (si, ti) consists
of two endpoints which are called the source and target, respectively. By the above definition the
number of source and target assigned to a vertex in the n-cube in a routing request is at most
one. Every node in the n-cube is represented by an n-bit string and there is an edge in the n-cube
between two nodes if their bit representation disagrees in exactly one bit. The distance between



the source and target nodes of pair Xi (or pair distance) is denoted by d(Xi) = d(si, ti) and in
the n-cube it is simply the number of bits that differ in the bit representation of si and ti. The
distance d(a, b) is frequently referred to as the “Hamming Distance” between the nodes a and b in
the n-cube. By a shortest path for the pair Xi we mean any path from si to ti with length equal to
d(Xi), i.e., the path must be a shortest path in the n-cube between the two nodes independent from
any other paths. Routing requests, by definition, limit the number of source and target assigned
to each vertex to at most one, therefore d(Xi) ≥ 1 for every pair Xi.

The p-pairwise edge disjoint shortest paths problem for the n-cube is given a routing request
X = {X1, X2, . . . , Xp}, find edge disjoint shortest paths in the n-cube for all the pairs Xi. That is,
for every pair Xi find a path with d(Xi) edges such that no two paths have an edge in common.
The node disjoint shortest paths problem is given a routing request X in the n-cube, find shortest
paths connecting each si to ti such that no two paths have a node (including the source and target)
in common (see [5] for results on node disjoint shortest paths and related problems). In the context
of the (undirected) n-cube the order of the source to target in the routing request is not important.
Therefore, we could have used undirected pairs Xi = {si, ti} instead of the directed pairs (si, ti).
In what follows when we establish NP-completeness and NP-hardness results it is for the decision
version of our problems.

For the 2-cube the routing request X = {(00, 01), (10, 11)}, has edge disjoint shortest paths
(00 ↔ 01 and 10 ↔ 11). However, the problem instance Y = {(00, 11}, (10, 01)} does not have edge
disjoint shortest paths. The instance X has node disjoint shortest paths, but Y does not have node
disjoint shortest paths. For the 3-cube the routing request X = {(000, 101), (010, 001), (100, 111)}
has edge disjoint shortest paths (000 ↔ 001 ↔ 101, 010 ↔ 011 ↔ 001, 100 ↔ 110 ↔ 111), but
it does not have node disjoint shortest paths because the three adjacent vertices to node 000 are
source or target nodes for other pairs.

Message routing problems are known to be computationally intractable for general graphs when
one allows arbitrary length paths, rather than just shortest path ones. Madhavapeddy and Sud-
borough [7] show that the p-pairwise edge disjoint (arbitrary length) paths problem for the n-cube
is NP-complete. Unfortunately they did not include a proof that the problem is in NP and we are
unable to independently validate that proposition. Their version of the problem allows for nodes
to be the source and target of many pairs [7]. In this paper we consider the shortest paths version
of the problem when each vertex can be either the source or target of at most one pair. This
corresponds to the case when each n-cube node either sends or receives at most one message. We
show that the p-pairwise edge disjoint shortest paths problem for the n-cube is NP-complete even
when every pair has pair distance at most 3 (Section 2.2), but solvable in polynomial time when
all the pair distances are at most 2 (Section 2.1). Gonzalez and Serena [4] considered the extreme
version of the p-pairwise edge disjoint shortest paths problem where d(Xi) = n, for 1 ≤ i ≤ p. For
the extreme version of the problem a polynomial time algorithm for all possible values of p, as long
as n is odd, is given in [4].

Madhavapeddy and Sudborough [7] conjecture that the p-pairwise node disjoint paths problem
is also NP-complete. In [5] a reduction, based on the construction in Section 2.2, is used to show
this problem is NP-hard. The techniques used in this paper to establish our NP-completeness
results have been extended to the p-pairwise edge disjoint shortest paths problem in the doubled
n-cube [2]. The basic component used in [2] is a variation of Lubiw’s construction [6]. Gonzalez
and Serena [3] show that the node and the edge disjoint shortest paths problems in the grid (mesh)
are NP-complete.

2



2 Edge Disjoint Shortest Paths

We present a simple polynomial time algorithm for routing requests where all pairs have distance
at most two, and then we show that the for routing requests with pair distance at most three the
p-pairwise edge disjoint shortest paths problem in the n-cube is NP-complete.

2.1 Algorithm for Pairs at Distance at Most Two

Given an instance (X, p, n) of the p-pairwise edge disjoint shortest paths problem in the n-cube, we
construct an instance (U,C) of 2-SAT as follows. For each pair Xi ∈ X there is a Boolean variable
ui. For every pair Xi with d(Xi) = 2, there are two possible shortest paths from si to ti. Let
us denote such paths by Pi,0 and Pi,1. A satisfying assignment where Boolean variable ui has the
value true means that the pair Xi is connected by path Pi,1, otherwise it is connected by the path
Pi,0. For every pair Xi with d(Xi) = 1 we add the clause {ui} the path Pi,1 consists of the (only)
edge between the source and target of the pair.

For every two paths Pi,a and Pj,b, i 6= j, defined above with at least one edge in common, we
add the clause {ūi, ūj} if a = b = 1; {ūi, uj} if a = 1 and b = 0; {ui, ūj} if a = 0 and b = 1; and
{ui, uj} if a = b = 0.

It is simple to prove that the p-pairwise edge disjoint shortest paths problem in which each pair
has pair distance at most two has a solution if and only if the instance constructed from it, (U,C),
is satisfiable. A simple algorithm (which we call 2-EDSP) can implement the above strategy. The
following theorem, which we state without a proof, formalizes this result. Implementation details
for algorithm 2-EDSP and the proof of the theorem appear in [5].

Theorem 1 Given any instance of the p-pairwise edge disjoint shortest paths problem for the n-
cube, Algorithm 2-EDSP constructs a valid set of paths, whenever such paths exist, in O(pn) time.

2.2 Complexity for the Problem With Pairs at Distance at Most Three

In Theorem 2 we show that the p-pairwise edge disjoint shortest paths problem is NP-complete.
We establish this result by reducing the L3-SAT problem to it. The L3-SAT problem is defined as
follows.

Input: Given a set U of Boolean variables {u1, u2, . . . , uv}, and a collection of clauses C =
(c1, c2, . . . , cw) over U with each clause having two or three literals, such that all clauses include at
most three literals corresponding to same variable, and every literal is in at most two clauses.

Question: Is (U,C) satisfiable?

The 3-SAT problem is L3-SAT without the last two conditions and the removal of 2-literal
clauses. L3-SAT and 3-SAT are NP-complete problems [1].

We begin by discussing our polynomial time transformation from L3-SAT to the decision version
of the p-pairwise edge disjoint shortest paths problem. There are three types of components:
setting-and-fan-out, conveyor, and clause-checking, as well as an auxiliary component called the
edge-blocking component. The setting-and-fan-out component assigns to each variable a value,
making two copies of the variable and its negation. This component includes two edge-blocking
components whose purpose is to block an edge by using only one of the edge’s endpoints in its
pairs. The conveyor component transports the value of a Boolean variable or its negation from one
area in the n-cube to another. The clause-checking component makes sure that a clause is satisfied
if at least one of its literals has the value true.

3



Figure 1 depicts the setting-and-fan-out component that assigns values to two copies of a
Boolean variable and its complement. The construction consists of a length three pair (s ′, t′) =
(000, 111) and two blocking edges (t′′, s′) = (010, 000) and (s′′, t′) = (101, 111). We explain in sub-
section 2.2.1 how we can force an edge to be a blocking edge by using an edge-blocking component.
This is not a trivial matter because nodes 000 and 111 are already occupied by a setting-and-fan-
out component pair. Note that when excluding the blocking edges there are only two possible
edge disjoint shortest paths for the pair: 000 ↔ 100 ↔ 110 ↔ 111 and 000 ↔ 001 ↔ 011 ↔ 111.
The construction provides two consistent copies of the value of the variable and its negation. In
particular, when the edges (000, 100) and (110, 111) are in the path for pair {000, 111} the Boolean
variable u has the value false, and when the edges (000, 001) and (011, 111) are in the path for the
pair then the variable u has the value true. The reason one needs only two copies of each value of a
variable and its negation is that we are reducing from the L3-SAT problem which has the property
that no literal is in more than two clauses. The edges labeled x or x̄ in Figure 1 will be used later
on by the conveyor components to transmit to the clause-checking component the value assigned
to the variable.

x

x x̄

x̄

t
′ = {111}

s
′ = {000}

s
′
2 = {001}

t
′
2 = {011}

s
′
1 = {100}

t
′
1 = {110}

t
′′ = {010}

s
′′ = {101}

Figure 1: Setting-and-fan-out component.
The symbol × represents a blocked edge.

u

sA

sC

sB

tA

tB

tC

z

Figure 2: Edge-blocking component. The
symbol × represents a blocked edge.

2.2.1 The Edge-Blocking Component

To complete the functionality of the setting-and-fan-out component we need a component to block
an edge without using both of its vertices to do it.

Consider the edge-blocking component given in Figure 2. The routing request is given by
{(sA, tA), (sB , tB), (sC , tC)}. We claim that the only possible routing must use the edge between
nodes z and tA. When the route sA ↔ z ↔ tA is selected for the pair (sA, tA) then the following
edge disjoint shortest paths exist for all the pairs in the 3-cube.

sA ↔ z ↔ tA

sB ↔ tC ↔ sA ↔ tB

sC ↔ u ↔ tC

On the other hand, when the path sA ↔ tB ↔ tA is used for pair (sA, tA), then the path for
(sB , tB) must be either

sB ↔ tC ↔ u ↔ tB

or

4



sB ↔ sC ↔ u ↔ tB .

Since the possible paths for the pair {sC , tC} are either sC ↔ u ↔ tC or sC ↔ sB ↔ tC , it then
follows that there are no edge disjoint paths for the edge-blocking component, because each path
for the pair (sB, tB) has an edge in common with each of the possible paths for (sC , tC).

Therefore, there are edge disjoint paths for all the pairs in an edge-blocking component if, and
only if, the edge between node z and tA is used by the path for the {sA, tA} pair.

2.2.2 Joining the Edge-Blocking Component with the Setting-and-Fan-out Compo-

nent

Now we need to incorporate two edge-blocking components (denoted by (z, sA, tA, sB, tB , sC , tC , u)
and (z′, s′A, t′A, s′B, t′B, s′C , t′C , u′)) with a setting-and-fan-out component. The setting-and-fan-out
component is defined using the bits F0G0H0 for the 3-cube in Figure 1. The two edge-blocking
components are defined by means of bits G0, F1, and G1, while keeping F0 = H0 = 0 for one
edge-blocking component and F0 = H0 = 1 for the other edge-blocking component. For the nodes
in the setting-and-fan-out component F1 = G1 = 0.

Each edge labeled in Figure 1 with an × symbol is coincident with the edge labeled × in one
of the two edge-blocking components. More specifically, the edge (s′, t′′) is the same as (z, tA),
and edge (t′, s′′) is (z′, t′A). The setting-and-fan-out component has s′ = 000 00, t′′ = 010 00,
s′′ = 101 00 and t′ = 111 00, where the first three bits are F0G0H0 and the remaining two bits are
F1 and G1. The edge-blocking components are defined by the as (z = s′, sA, tA = t′′, sB , tB, sC , tC ,

u) = (000 00, 000 01, 010 00, 000 10, 010 01, 010 10, 000 11, 010 11) and (z ′ = t′, s′A, t′A = s′′, s′B ,

t′B, s′C , t′C , u′) = (111 00, 111 01, 101 00, 111 10, 101 01, 101 10, 111 11, 101 11). Bits F0 and H0

form a distinct signature that guarantees that both of the edge-blocking components are distinct.
The two bits F1 and G1 make the edge-blocking components different from the setting-and-fan-out
components, except at the two nodes where they overlap. Figure 3 shows the resulting 5-cube. The
outermost dash-line quadrilateral and its interior form the setting-and-fan-out component 3-cube
with the solid edges being the edges labeled × in Figure 1. The two ovals and solid dark lines on the
top side of the figure represent the edge-blocking component (z, sA, . . . , u), and the corresponding
objects on the bottom side of the figure represent the edge-blocking component (z ′, s′A, . . . , u′).

2.2.3 The Clause-Checking Component

The clause-checking component is a single pair (s, t) in a 3-cube with edges (b1, t), (b2, t) and (b3, t)
which may be included in a path from either a clause-checking pair or another pair (conveyor
pair). For clause checking components representing clauses with two literals there is no (b3, t) edge.
Clearly, there is no feasible shortest path from s to t if all the edges of t are in paths for pairs that
are not the clause-checking pair. Note that t = 111 and s = 000 in Figure 4(a) and t = 11 and
s = 00 in Figure 4(b). In other words t has one more bit set to one than b1, b2, or b3.

2.2.4 The Conveyor Component

The conveyor component is used for connecting setting-and-fan-out components to the appropriate
clause-checking components. At most three different conveyor components will be joined to a
setting-and-fan-out component.

First we outline the basic idea and then indicate why the components do not interfere with
each other. Figure 5 illustrates the basic construction. The conveyor consists of the pairs (s1, t1),

5



* * * 0 0 * * * 0 1 * * * 1 1 * * * 1 0

0 0 0 * *

0 1 0 * *

1 1 1 * *

1 0 1 * *

sA tC

t′′ = tA tB sC

sB

u

t′
B

u′s′′ = t′
A

s′
A

s′
B

s′
C

t′
C

s′ = z

t′ = z′

x̄

x̄

x

t′2t′1 s′2

s′1

x

Figure 3: The 5-cube composed of one setting-and-fan-out component and two edge-blocking com-
ponents.

b3b1

s

t

b2

(a)

b2b1

s

t

(b)

Figure 4: Clause checking component for clauses with three (a) and two (b) literals.

(s2, t2), . . . (sl+r, tl+r), where r and l will be defined later on. The conveyor operates as follows.
If the edge labeled A in Figure 5 is covered by a path for a non-conveyor pair, then it will always
be the case that the edge labeled B will be covered by a path for the conveyor pair (sl+r, tl+r).
However, if the edge labeled A is not covered by a path for a non-conveyor pair, then the edge
labeled B may or may not be covered by the path for the conveyor pair (sl+r, tl+r).

The conveyor components join setting-and-fan-out components to clause-checking components
as follows. The edge labeled A in the conveyor component (Figure 5) will be the same as one of
the edges labeled x or x̄ in the setting-and-fan-out component (Figure 1). That is, (u0, t1) will be
the same as (s′, s′1), (s′, s′2), (t′, t′1) or (t′, t′2). The edge from t to b1, b2, or b3 in the clause-checking
components will be the same as the edge labeled B in a conveyor component (Figure 5). That is,
(u1, tl+r) will be the same as (t, b1), (t, b2), or (t, b3).

Consider the following bit numbering for the n-cube nodes.

D0D1 . . . Ddlog
2
(v+1)e E0E1 . . . Edlog

2
(w+1)e F0G0H0 F1G1 α1α2 JKL β1β2β3

6



A

t3

B

tl+1

tl+r

sl+r

sl+2

sl+1sl−1

sl

tl

s2

t2

s1

t1

tl+r−1u0 u1

Figure 5: Conveyor component.

The bits D0D1 . . . Ddlog2(v+1)e represent the value of i, the index of the ith variable ui. The jth

clause-checking component will be set, using the bits, E0E1 . . . Edlog2(w+1)e. The setting-and-fan-out
component plus its two corresponding 3-cube edge-blocking components use the bits F0G0H0 F1G1.
The clause-checking component will use the bits JKL (3-cube or 2-cube as indicated in Figure 4).
The bits α and β are used in the conveyor component and identify the edge in the ith setting-and-
fan-out component and the edge in the j th clause-checking component that the conveyor component
joins.

For each literal in a clause in the instance of L3-SAT that we start from, we make an association
between the corresponding edges in the setting-and-fan-out and the clause checking components in
such a way that the edges involved in the association are unique. An edge in the ith setting and
fan out component is defined by (y, i′), where y ∈ {s, t} and i′ ∈ {1, 2}, and it represents the edge
(y′, y′i′). For example, (y = s, i′ = 1) → (y′ = s′, y′i′ = s′1), (y = s, i′ = 2) → (y′ = s′, y′i′ = s′2),
(y = t, i′ = 1) → (y′ = t′, y′i′ = t′1), and (y = t, i′ = 2) → (y′ = t′, y′i′ = t′2), where → means
“represents the edge”. An edge in the j th clause checking component is defined by (j ′), where
j′ ∈ {1, 2, 3}, and it represents the edge (t, bj′). For example, (j ′ = 1) → (t, bj′ = b1), (j′ = 2)
→ (t, bj′ = b2), and (j′ = 3) → (t, bj′ = b3). Once the associations are defined, we introduce a
conveyor component for every such association.

Before we describe in detail the conveyor component we need to introduce additional notation
to represent bit strings. In what follows ellipses in bit representations indicate a sequence of zero
or more bits all of which are zeroes. For bit αi or βj we use bitone(bit) to represent a bit with
value one in the appropriate position in the bit string. By bitrep(value), where value is i or j, we
mean the binary representation of value and its length is defined by dlog2(v + 1)e or dlog2(w + 1)e
depending on whether it represents a setting-and-fan-out or a clause checking component. These
bits are located at the appropriate position in the bit string. Similarly, bitrep(y ′) and bitrep(y′i′)
(resp. bitrep(t) and bitrep(bj′)) represents a vertex in the 5-cube F0G0H0F1G1 (resp. 3-cube JKL).
The sequence is five (resp. three) bits long and it is located at the appropriate position in the bit
string.

In what follows we discuss in detail the conveyor component for the association between the edge
(y′, y′i′) in the ith setting-and-fan-out component and edge (t, bj′) in the jth clause-checking compo-
nent. The conveyor component consists of three sections: first, middle and last. The first section
joins to a setting-and-fan-out component and the last one joins to a clause checking component.

The first section starts with the edge (u0, t1) which is identical to (y′, y′i′). Clearly, the difference

7



between nodes u0 and t1 is in one bit in the bitrep(y′) and bitrep(y′i′). It is important to note that
the number of ones in bitrep(y′) is either one more or one fewer than those in bitrep(y ′

i′). The
transition from (u0, t1) to (s1, t2) is by setting to one αi′ .

u0 = bitrep(i) . . . bitrep(y′) . . .

t1 = bitrep(i) . . . bitrep(y′
i′) . . .

s1 = bitrep(i) . . . bitrep(y′) . . . bitone(αi′) . . .

t2 = bitrep(i) . . . bitrep(y′
i′) . . . bitone(αi′) . . .

The transition (s1, t2), (s2, t3), . . ., (sl−1, tl) is by changing a 0-bit to a 1-bit in such a way that
we incorporate bitrep(j), bitrep(bj′) and bitone(βj′) into the bit strings. Clearly, the difference
between the pairs of nodes (s1, t2), (s2, t3), . . ., and (sl−1, tl) is in one bit in the bitrep(y′) and
bitrep(y′i′). By construction we know that the value of l is the total number of ones in bitrep(j),
bitrep(bj′) and bitone(βj′) plus 2.

A

t2

s1

t1

u0

Figure 6: First section of the
conveyor component (includ-
ing u0, t1, s1 and t2).

sl−1 sl+1

tl

sl

Figure 7: Middle section of
the conveyor component (in-
cluding nodes sl−1, tl, sl and
sl+1).

tl+r−1

B

tl+r

sl+r

u1

Figure 8: Last section of the
conveyor component (includ-
ing nodes tl+r−1, sl+r, tl+r

and u1).

The middle section consists of the transition from (sl−1, tl) to (sl, sl+1). By definition, bitrep(t)
has one more bit than bitrep(bj′). The only transition in this middle section changes bitrep(bj′) to
bitrep(t).

sl−1 = bitrep(i)bitrep(j)bitrep(y′) . . . bitone(αi′) . . . bitrep(bj′) . . . bitone(βj′) . . .

tl = bitrep(i)bitrep(j)bitrep(y′
i′) . . . bitone(αi′) . . . bitrep(bj′) . . . bitone(βj′) . . .

sl = bitrep(i)bitrep(j)bitrep(y′) . . . bitone(αi′) . . . bitrep(t) . . . bitone(βj′) . . .

sl+1 = bitrep(i)bitrep(j)bitrep(y′
i′) . . . bitone(αi′) . . . bitrep(t) . . . bitone(βj′) . . .

In the last section of the conveyor component the difference between the two nodes in (t l, sl+1),
(tl+1, sl+2), . . ., (tl+r−1, sl+r) and (tl+r, u1) is that the first element of the pair has bitrep(bj′) and
the second one has bitrep(t).

Each transition from pair (tl, sl+1) to pair (tl+r−1, sl+r) will have one fewer bit set to one in
the portion bitrep(i), bitrep(y′

i′), and bitone(αi′). The last transition from, (tl+r−1, sl+r) to (tl+r,
u1), sets bitone(βj′) to zero. So vertices tl+r and u1 correspond to the edge (bj′ , t) in the jth

clause-checking component.

8



By construction we know that the value of r is the total number of ones in bitrep(i), bitrep(y ′
i′)

and bitone(αi′) plus 1.

tl+r−1 = . . . bitrep(j) . . . bitrep(bj′) . . . bitone(βj′) . . .

sl+r = . . . bitrep(j) . . . bitrep(t′) . . . bitone(βj′) . . .

tl+r = . . . bitrep(j) . . . bitrep(bj′) . . .

u1 = . . . bitrep(j) . . . bitrep(t) . . .

The above construction defines values for l and r. Note that l and r are normally different, and
conveyor components normally have different values for l as well as different values for r.

Lemma 1 The conveyor component which connects setting-and-fan-out component i and clause-
checking component j does not overlap with any other conveyor component and nodes u1, u2, s1,

s2, . . . , sl+r, t1, t2, . . . , tl+r of this conveyor component are unique.

Proof: Besides the nodes incident to the edges A and B in the conveyor components, no other
nodes in the conveyor components belong to more than one conveyor component nor a node is
more than once in the same conveyor component. The reason for this is that in the first part of the
conveyor component ((s1, t2), (s2, t3), . . ., (sl−1, tl), (sl, sl+1)) every node has either the signature

bitrep(i) bitrep(y′
i′) bitone(αi′)

or

bitrep(i) bitrep(y′) bitone(αi′)

These signatures are unique for every conveyor. All of these nodes in the same conveyor component
are unique because each one in the sequence has one additional bit set to one. The nodes t1 and
u0 overlap with a pair of nodes of the setting-and-fan-out components. These nodes are unique in
this conveyor component and both of the nodes are not assigned to another conveyor component.

In the second part of a conveyor component ((sl−1, sl), (tl, sl+1), (tl+1, sl+2), . . ., (tl+r−1, sl+r))
all the nodes have the signature

. . . bitrep(j) bitrep(bj′) bitone(βj′)

or

. . . bitrep(j) bitrep(t) bitone(βj′).

These signatures are unique for every conveyor. All of these nodes in the same conveyor compo-
nent are unique because each one in the sequence has one fewer bit set to one. The only exception
may be (sl−1, sl) and (tl+1, sl+2). This occurs when bitrep(y′) has one fewer bit set to one than
bitrep(y′i′). But these pairs of nodes differ in that the first pair has bitone(αi′) but the second pair
does not. The nodes tl+r and u1 overlap with a pair of nodes of the clause checking components.
These nodes are unique in the conveyor component and both of the nodes are not assigned to
another conveyor component.

9



Every node in the first part of the conveyor component is different from ones in the second part
of other conveyor components because of the uniqueness of these signatures. This completes the
proof of this lemma.

2

Theorem 2 The p-pairwise edge disjoint shortest paths problem for the n-cube is NP-complete.

Proof: For any pair Xi = {si, ti} the maximum number of edges in a shortest path is n. Given
a set of paths for a routing request one can check in polynomial time that every two edges in the
paths are distinct and that the paths are indeed shortest paths for the pairs. Therefore the problem
is in NP.

By the previous discussion we note that only a polynomial number of pairs are required in our
polynomial transformation from L3-SAT to our problem. By the discussion just before the theorem
it is clear that the instance of the p-pairwise edge disjoint shortest paths problem has a solution
if and only if the instance of L3-SAT that we start from is satisfiable. Therefore the problem is
NP-complete.

2

It is simple to see that all the pairs in the p-pairwise edge disjoint shortest paths problem
constructed by the above reduction are such that their pair distance at most three. Therefore, we
have the following corollary.

Corollary 1 The p-pairwise edge disjoint shortest paths problem for the n-cube is NP-complete
even when d(Xi) ≤ 3, for 1 ≤ i ≤ p.

We have not been able to establish that the pairwise edge disjoint arbitrary length paths problem
is NP-complete. The main problem is that we lack appropriate edge blocking components. We
conjecture that this problem is NP-hard.

3 Conclusions

In this paper we examined complexity issues regarding a high performance computing topology,
namely the n-cube. For the p-pairwise edge disjoint shortest paths problem in the n-cube the
distance at most two pair problem is found to be solvable in polynomial time (Section 2.1). When
the pair distance is at most three we established intractability (Section 2.2). The corresponding
node disjoint shortest paths problem and related problems, even in the context of an approximation
to the shortest paths are also computationally intractable [5].

Acknowledgments

We like to thank the referees for pointing out mistakes in earlier versions of our paper and for their
suggestions on ways to improve the readability of our paper.

References

[1] Garey, M. R., and Johnson, D. S. Computers and Intractability A Guide to the Theory of
NP-Completeness. Freeman, 1979.

10



[2] Gonzalez, T. F., and Serena, F. D. Complexity of k-Pairwise Disjoint Shortest Paths in
the Hypercube and Grid Networks. Tech. Rep. TRCS-2002-14, University of California at Santa
Barbara, May 2002.

[3] Gonzalez, T. F., and Serena, F. D. Complexity of Pairwise Shortest Path Routing in the
Grid. Theoretical Computer Science 326 (2004), 155 – 185.

[4] Gonzalez, T. F., and Serena, F. D. n-Cube Network: Node Disjoint Shortest Paths for
Maximal Distance Pairs of Vertices. Parallel Computing 30 (2004), 973 – 998.

[5] Gonzalez, T. F., and Serena, F. D. Pairwise disjoint shortest paths in the n-cube and
related problems. Tech. rep., CS Technical Report 2006-04, UCSB, 2006.

[6] Lubiw, A. Counterexample to a Conjecture of Szymanski on Hypercube Routing. Information
Processing Letters 35 (June 1990), 57–61.

[7] Madhavapeddy, S., and Sudborough, I. H. Disjoint Paths in the Hypercube. In WG (June
1990), M. Nagl, Ed., vol. 411 of Lecture Notes in Computer Science. Graph-Theoretic Concepts
in Computer Science, 15th International Workshop, WG ’89, pp. 3–18.

11


