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Abstract very efficient and practical for HPC systems.

Virtualization has become increasingly popular for en- )
abling full system isolation, load balancing, and hardware 1 Introduction
multiplexing. This wide-spread use is the result of novel
techniques such as paravirtualization that make virtualiz Virtualization is a widely used technique in which a soft-
tion systems practical and efficient. Paravirtualizing-sys \are layer multiplexes lower-level resources among higher
tems export an interface that is slightly different from the |eye| software programs and systems. Examples of virtu-
underlying hardware but that significantly streamlines and ajization systems include a vast body of work in the area
simplifies the virtualization process. of operating systems [36, 34, 27, 33, 4, 17], high-level lan-
In this work, we investigate the efficacy of using par- guage virtual machines such as those for Java and .Net, and,
avirtualizing software for performance-critical HPC ker- more recently, virtual machine monitors (VMMs). VMMs
nels and applications. Such systems are not currently em-virtualize entire software stacks including the operasiygr
ployed in HPC environments due to their perceived over- tem (OS) and application, via a software layer between
head. However, virtualization systems offer tremendous po the hardware and the OS of the machine. VMMs offer
tential for benefitting HPC systems by facilitating appfica a wide range of benefits including application and full-
tion isolation, portability, operating system customiaat system isolation (sand-boxing), OS-based migration, dis-
and program migration. tributed load balancing, OS-level check-pointing and veco
We present a comprehensive performance evaluation ofery, non-native (cross-system) application executior an
Xen, a low-overhead, Linux-based, virtual machine moni- support for multiple or customized operating systems.
tor (VMM), for paravirtualization of HPC cluster systems Virtualization historically came at the cost of perfor-
at Lawrence Livermore National Lab (LLNL). We consider mance due to the additional level of indirection and soft-
four categories of micro-benchmarks from the HPC Chal- ware abstraction necessary to achieve system isolation. Re
lenge (HPCC) and LLNL ASCI Purple suites to evaluate a cent advances in VMM technology however, address this
wide range of subsystem-specific behaviors. In addition, weissue with novel techniques that reduce this overhead. One
employ macro-benchmarks and HPC application to evalu- such technique is paravirtualization [1] which is the psxce
ate overall performance in a real setting. We also employ of strategically modifying a small segment of the interface
statistically sound methods to compare the performance ofthat the VMM exports along with the OS that executes us-
a paravirtualized kernel against three popular Linux oper- ing it. Paravirtualization significantly simplifies the pess
ating systems: RedHat Enterprise 4 (RHEL4) for build ver- of virtualization (at the cost of perfect hardware compati-
sions 2.6.9 and 2.6.12 and the LLNL CHAOS kernel, a spe-bility) by eliminating special hardware features and instr
cialized version of RHEL4. Our results indicate that Xen is tions that are difficult to virtualize efficiently. Parawigl-
ization systems thus, have the potential for improved scal-
“This work is sponsored in part by grant from the National scee  @Dility and performance over prior VMM implementations.
Foundation (ST-HEC-0444412). A large number of popular VMMs employ paravirtualiza-




tion in some form to reduce the overhead of virtualization In each such case, we attempt an analysis of the cause of
including Denali [1], IBM rHype [46], Xen [31, 45, 11], the overhead. Curiously, in a small number of other cases,
and VMWare [21, 37, 42]. Moreover, hardware vendors Xen improves subsystem or full system performance over
now employ new ways of enabling efficient virtualization in  various other kernels due to its implementation for effitien
the next-generation processors [41, 32] which have the po-interaction between the guest and host OS. Overall, we find
tential for improving VMM-based execution performance that Xen does not impose an onerous performance penalty
further. for a wide range of HPC program behaviors and applica-
Despite the potential benefits, performance advancesfions. As aresult we believe the the flexibility and potentia
and recent research indicating its potential [24, 48, 1§, 20 for enhanced security that Xen offers makes it useful in a
virtualization is currently not used in high-performance commodity HPC context.
computing (HPC) environments. One reason for this is the  In the sections that follow, we first present background
perception that the remaining overhead that VMMs intro- and motivation for the use of paravirtualized systems in
duce is unacceptable for performance-critical applicetio HPC environments. In Section 3, we overview our exper-
and systems. The goal of our work is to evaluate empiri- imental methodology, platform, operating systems, VMM
cally and to quantify the degree to which this perception is configuration, and applications. We then present results
true for Linux and Xen. from a large number of experiments that show the perfor-
Xen is an open-source virtual machine monitor for the Mance impact of using Xen for HPC systems and programs
Linux operating system which reports low-overhead and ef- @ compared to extant non-virtualized Linux systems. We
ficient execution of Linux [45]. Linux, itself, is the cur- analyze the performance characteristics of the micro- and
rent operating system of choice when building and deploy- macro-benchmarks as well as of the HPC applications. We
ing computational clusters composed of commodity com- Present related work in Section 6, and our conclusions and
ponents. In this work, we study the performance impact of future work in Section 7.
Xen using current HPC commaodity hardware at Lawrence
Livermore National Laboratory (LLNL). Xen is an ideal 2 Background and Motivation
candidate VMM for an HPC setting given its large-scale de-
velopment efforts' [31,47] arjd its availability, perfornean Our investigation into the performance implications of
focus, and evolution for a wide range of platforms. coupling modern virtualization technologies with high-per
We objectively compare the performance of benchmarksformance computing (HPC) systems stems from our goal
and applications using a Xen-based Linux system againstg improve the flexibility of large-scale HPC clusters at
three Linux OS versions and configurations currently in | awrence Livermore National Laboratory (LLNL) without
use for HPC application execution at LLNL. The Linux jntroducing a serious performance degradation. For exam-
versions include Red Hat Enterprise Linux 4 (RHEL4) for ple, Xen supports guest-OS suspend/resume and system im-
build versions 2.6.9 and 2.6.12 and the LLNL CHAOS ker- age migration. If it does not impose a substantial perfor-
nel, a specialized version of RHEL4 version 2.6.9. mance cost, it is possible to use this facility to implement
We collect performance data using micro- and macro- automatic checkpoint/restart for cluster users withoutmo
benchmarks from the HPC Challenge, LLNL ASCI Purple, ifications to the Linux kernel.
and NAS parallel benchmark suites among others, as well OS migration is another added benefit to full-system
as using a large-scale, HPC application for simulation of virtualization that makes deployment and maintenance of
oceanographic and climatologic phenomena. We employvMM-based HPC clusters appealing. Several researchers
four categories of micro-benchmarks that evaluate distinc have explored OS and process migration, such as Internet
performance characteristics of machine subsystems includ Suspend/Resume [23] ap®enali [43]. Recent studies on
ing MPI-based network bandwidth and latency, CPU pro- OS image migration [18, 12] illustrate that migrating an en-
cessing, memory and disk 1/0. Our experiments using thetire OS instance with live interactive services is achiésab
macro-benchmarks and HPC applications assess full systenyith very little down time (e.g. 60ms) using a VMM. Ef-
performance. fective migration can be used for load balancing but also for
We find that the Xen paravirtualizing system, in gen- proactive replacement of failing hardware. For example, if
eral, does not introduce significant overhead over the otherhardware failure occurs, the application which was running
OS configurations that we study — including the specialized on it has to be restarted from the last checkpoint. A proac-
CHAQOS kernel — for almost all of the test cases. The two tive approach can avoid this re-execution overhead by mi-
exceptions are for random access disk I/O (where Xen'’s per-grating applications off of machines requiring maintereanc
formance degradation is significant) and bidirectional MPI or exhibiting behaviors indicative of potential failuresgk
network bandwidth where the performance impact is only errors, fan speed inconsistency, etc.). Such an approach ca
for a small number of message sizes and is generally smallpotentially save HPC centers thousands of computational



hours and leading to higher hardware utilization rates. a 1024KB L2 cache. Each node has 4GB of RAM and a
In addition, it is possible for one cluster to run different 120 GB SCSI hard disk with DMA enabled. The nodes
Linux images which aids software maintenance (by provid- are interconnected with an Intel PRO/1000, 1Gigabit Eth-
ing an upgrade path that does not require a single OS “up-ernet network fabric using the ghv interface with TCP/IP.
grade” event) and allows both legacy codes and new func-We used ANL implementation of message passing interface
tionality to co-exist. This is important for legacy codeatth  (MPI) protocol; i.e. MPICH v1.2.7p1 for establishing com-
execute using a particular version of the OS and/or obsoletemunications between the distributed processes on differen
language-level libraries that depend on a specific OS kernelhodes in the cluster.
release level. VMMs also enable very fast OS installation  We perform our experiments by repeatedly executing the
(even more when coupled with effective check-pointing), benchmarks and collecting the performance data. We per-
and thus, their use can result significant reductions in sys-form 50 runs per benchmark code per kernel and compute
tem down time for reboot. Finally, VMMs offer the poten- the average across runs. We perfortit@stat thea: > 0.95
tial for facilitating the use of application-specific andseu  significance level to compare the means of two sets of ex-
tomized operating systems [24, 48, 16, 20]. periments (e.g. those from two different kernels). Thest-te
Though many of the benefits of virtualization are well tells us whether the difference between the observed means
known, the perceived cost of virtualization is not accept- is statistically significant. More information on the tites
able to the HPC community, where performance is critical. and the computation we use can be found in [25, 8].
VMMs by design introduce an additional software layer,
and thus overhead, to facilitate virtualization. This dwesad 3.1 HPC Linux Operating System Comparison
however, has been the focus of much optimization effort
recently. In particular, extant, performance-aware, VMMs
such as Xen [31], emplgyaravirtualizationto reduce virtu-
alization overhead. Paravirtualization is the process$mof s
plifying the interface exported by the hardware in a way
that eliminates hardware features that are difficult touvirt
alize. Examples of such features aensitiveinstructions
that perform differently depending on whether they are ex-
ecuted in user or kernel mode but that do not trap when ex-
ecuted in user mode; such instructions must be intercepte
and interpreted by the virtualization layer, introducing s
nificant overhead. There are a small number of these in-
structions that the OS uses that must be replaced to enabl
execution of the OS over the VMM. No application code
must be changed to execute using a paravirtualizing syste
such as Xen. A more detailed overview of system-level vir-

tual machines, sensitive instructions, and paravirtatibn :
management, and parallel job launch, among others. We

can be found in [38]. RN .
To investigate the performance implications of using par- gmploy the latest release of CHAOS as of this writing which

avirtualization for HPC systems, we have performed a rigor- > v2.6.9-22; we refer to this system as CHAOS kernel in
ous empirical evaluation of HPC systems with and without our results. )

virtualization using a wide range of HPC benchmarks, ker- Our Xgn-based Linux kernel (host O‘S)s. RHEL4
nels, and applications, using LLNL HPC hardware. More- v2.6.12 with the Xen 3.0.1 patch. Above Xen, i.e. the guest

over, we compare VMM-based execution with a number kernel, is a paravirtualized Linux RHEL4 v2.6.12, which
of nén—VMM—based Linux systems, including the one cur- we configure with 4 virtual CPUs and 2GB of virtual mem-

rently employed by and specialized for LLNL users and ory. We refer to. this overgll configur'ation aenin our
HPC clusters. results. Xen v3 is not available for Linux v2.6.9, the lat-

est version for which the CHAOS extensions are available.
We thus, include both v2.6.9 and v2.6.12 (non-CHAQOS and
3 Methodology and Hardware Platform non-XEN) in our study to identify and isolate any perfor-

mance differences between these versions.

We empirically compare four different HPC Linux op-
erating systems. The first two are current releases of the
RedHat Enterprise Linux 4 (RHEL4) system. We employ
builds v2.6.9 and v2.6.12 and refer to them respectively in
this paper aRHEL2.6.9andRHEL2.6.12

We also evaluate the CHAOS kernel. CHAOS is the
Clustered, High-Availability, Operating System [13, 10]
rom LLNL. CHAOS is a Linux distribution based on

HEL4 v2.6.9 that LLNL computer scientists have cus-
tomized for the LLNL HPC cluster hardware and for the
gpecific needs of current users. In addition, CHAOS ex-
tends the original distribution with new administratoriso
peupport for very large Linux clusters, and HPC application
development. Examples of these extensions include asliti
for cluster monitoring, system installation, power/cdeso

Our experimental hardware platform consists of a four- — _
node cluster of InteExtendedM emory 64 Technology _ The_ Xen host OS |s_common|y referred to as domO and the _ggest oS
. . which sits above domO is commonly referred to as domU (U farivi
(EM64T) machines. Each noqe consists of four Intel Xeon jeged). we also refer to the two kernels as the host OS anduégt @S,
3.40 GHz processors, each with a 16KB L1 data cache andespectively



For RHEL2.6.9, RHEL2.6.12, and CHAQOS, we execute sustainable memory bandwidth in MB/s for four different
the applications without VMM (Xen) support. Only Xen memory operations:
employs VMM support. Figure 1 depicts these two cases,

respectively. Copy :A(i) =DB(»)
Scale : A(i) =q=*B(i)
Sum :A(G) = B(@)+C(»)
Application Seeleaion Triad :A(i) = B(i) +q¢*xC(3)
Guest OS

0s Host OS (Xen VMM) The first operationcopyreads a large array from memory,

Hardware Hardware and writes it back to a different location. The three other op
. . erations combine computation with memory access to mea-

(') (”) sure the corresponding computational rate for simple vecto

operations.
Figure 1. Software stack for our different ex- For evaluation of disk performance, we employ Bon-
periments. (i) shows the traditional OS de- nie [9]. Bonnie is a disk stress-test that uses popular UNIX
ployment running directly on the hardware; file system operations. Bonnie measures the system I/O
we employ this setup for CHAOS, RHEL2.6.9 throughput for six different patterns of reads, writes, and
and RHEL2.6.12 experiments. (ii) shows the seeks. We employ three differentfile sizes: 100MB, 500MB
virtualized system on which Xen executes and 1GB for our experiments to eliminate any cache impact
on the hardware and RHEL2.6.12 Linux (the on measured performance.

guest OS) runs on Xen. We refer to experi- To evaluate the full system performance, we employ
ments that employ this setup simply as Xen. several popular macro-benchmarks from the NAS Parallel
benchmark suite [6, 5]. The former set is from the NASA

3.2 Benchmarks Advanced Supercomputing (NAS) facility at the NASA

Ames Research Center. The suite evaluates the efficiency

We overview the benchmarks that we use in this empiri- of highly parallel HPC computing systems in handling crit-
cal investigation in Table 1. The benchmarks set consists ofical operations that are part of simulation of the futurecgpa
micro-benchmarks, macro-benchmarks, and real HPC ap-missions. The benchmarks mimic the computational, com-
plications. We employ the same benchmark binaries for all municational and data movement characteristics of large
operating system configurations. scale computational fluid dynamics (CFD) applications.

Our micro-benchmark set includes programs from the  As an example of large-scale HPC applications, we em-
HPC Challenge [26] and LLNL ASCI Purple [3]. The ploy an application from the popular scientific simulations
programs are specifically designed to evaluate distinet per class of programs: the General Circulation Model (GCM)
formance characteristics of machine subsystems includingfrom the Massachusetts Institute of Technology. GCM is a
MPI-based network bandwidth and latency, CPU process-popular numerical model used by application scientists to
ing, memory and disk I/O. The ASCI Purple Presta suite study oceanographic and climatologic phenomena. GCM
evaluates inter-process network latency and bandwidth forsimulates ocean and wind currents and their circulation in
MPI message passing operations. The benchmark is writ-the earth’s atmosphere thousands of years in advance. A
ten in C. We employ two of the benchmark codes to eval- widely used implementation of GCM is made available by
uate latency (Laten) and bandwidth (Com). Presta usesMassachusetts Institute of Technology (MIT) Climate Mod-
MPI_wtime to report the time measurements of the codes, eling Initiative (CMI) team [29]. Researchers commonly
therefore we configure the code to perform one thousandintegrate this implementation into oceanographic simula-
operations between calls to MRItime to obtain accurate tions. The MIT CMI team supports a publicly available
resolution. version [2, 28], which we employ and refer to in this pa-

To evaluate computational overhead, we employ the perMIT GCM. The MIT GCM package has been carefully
freely available Linpack benchmark [30]. Linpack is a optimized by its developers to ensure low overhead and high
benchmark that solves dense systems of linear equationsiesource utilization.

It is available in different languages, and parallel and se- The package includes a number of inputs. We use the
rial versions. We employ serial Fortran implementation as sequential version aéxp2 for this study. Exp2 simulates

our micro-benchmark for evaluating computational perfor- the planetary ocean circulation at a 4 degree resolutioa. Th
mance in isolation. simulation uses twenty layers on the vertical grid, ranging

Stream is a standard memory benchmark that is part ofin thickness between 50m at the surface to 815m at depth.
both HPCC and LLNL ASCI Purple [40]. It reports the We configure the experiment to simulate 1 year of ocean



Bandwidth in MB/s

| | Benchmark Category | Code Name | What it measures
s Presta Com Bandwidth and OpTime versus message size
Communication
o Presta Laten Max latency versus number of processes
2 || Computational Linpack 3000d Total Mflops and different execution time
= Memory Stream Rate of memory read/write in MB/s
Disk 1/0 Bonnie sequential & Random disk input/output in MB/s
NAS Parallel Benchmark; class C Total time and millions of operations per second (Mops)
Multigrid (MG) input 512
o LU Solver (LU) input 162
5 Parallel Benchmarks Integer Sort (IS) input ¥
= Embarrassingly parallel (EP) input®2
Conjugate gradient (CG) input 150000
g || Scientific Simulations | MIT GCM exp2 Total execution time
<

25

20 -

-
3
L

=
o
L

Table 1. Benchmark Overview

—+— CHAOS kernel

—=—Xen kernel 25

—+— CHAOS kernel
—=—Xen kernel

—* RHEL 2.6.9 —*-RHEL 2.6.9
RHEL 2.6.12 RHEL 2.6.12
20 4
)
@ 15 4
s
<
£
o =
2
S 10 4
©
[a1]
51
— 0 — —
n © ~ oo} (=] o - o~ o < n © ~ ee] (<] o - N o wn © ~ 0 [e2] o - o~ (32 < n © ~ [ee] o o - N (¢
< < < < < — I — I - - — — — - N o N N < < < < < bl bl bl bl bal Dl bl Pal bl bl N N N N
N N N N N < < < < < < < < < < < < < N N N N o~ < < < < < < < < < < < < < <
N N N N N N N N N N N N N N N N N N N N N N N N N N N N

Me:

1]

Figure 2. Com benchmark results for average network bandwid

sage size in Bytes

(left graph) and the MPI bidirectional test (right graph)

Message size in Bytes

th (MB/s) for the MPI unidirectional



circulation at a one-second resolution.

4 Micro-Benchmarks

—+— CHAOS kernel
25 —=—Xen kernel

In this section, we evaluate the performance impact of “RHEL269

using virtualization for specific subsystems of our cluster —
system. We employ micro-benchmarks for network com-?°
munication, computation, memory access, and disk /0. We

present and analyze the results for each of these m|c§o$s—
benchmarks in the following subsections.

10 4

Bandwidth in

4.1 Network Performance

We first evaluate the impact that using Xen has on net- *]
work communication performance. We focus on the Mes-
sage Passing Interface (MPI) for this investigation sinpge a  °©
plications commonly employ MPI to facilitate and coor-
dinate distributed execution of the program across cluster
resources. Although, applications differ in the type and .
amount of communication they perform [49], MPI micro- ~ Figure 3. Com benchmark results for the = max-
benchmark performance gives us insight into the perfor- imum bandwidth (MB/s) attained by MPI bidi-
mance overhead introduced by virtualized communication. ~ "ectional messages.

Our MPI micro-benchmarks are part of the LLNL ASCI
Purple Presta Stress Benchmark v1.2 [35]. To investigate
unidirectional and bidirectional bandwidth, we employ the
Combenchmark. Com calculates bisectional bandwidth for
unidirectional and bidirectional MPI process communica-
tion. Com outputs both bandwidth and the average time
calculated for the longest operation per test. We refereo th
latter as operation time (OpTime) and report these values irteo - = % Unidreciona

—+— RHEL2.6.9 Unidirectional

microseconds. Each test consists of 1000 operations and wg RHEL2.6.12 Unidirectional
1400 | | - CHAOS Bidirectional

consider 1 pair of MPI processes. We vary the message size - XEN Bidiroctonal /
from 2° to 223 bytes. Our cluster system currently imple- 1200 | [ RHEL2612 Bidirectional
ments cluster connectivity via 100Mb (12.5MB/s) Etherneg 1000
Figure 2 shows the bandwidth attained by the d|fferer§t
kernels for unidirectional (left graph) and bidirectionaés- £ 8o
sages (right graph). The y-axis in each graph is the attain‘Egd600
bandwidth in MB/s as a function of the message size shovin
along the x-axis (higher is better). 400 1
The MPI bandwidth saturates at approximately 12 MB/s |
equally for all kernels (except RHEL2.6.9 unidirectional
MPI bandwidth) for both unidirectional and bidirectional ©
MPI messages. RHELZ2.6.9 performs significantly worse
than the other three kernels for the MPI unidirectional.test Message size in Bytes
This is due to a known implementation error in the TCP seg-
mentation offload (TSO) of RHEL Linux in versions. The  Figure 4. Com benchmark results for OpTime
bug causes the driver to limit the buffer size to the maximum  for both MPI unidirectional and MPI bidirec-
transmission unit (MTU) of the fabric and thus, to drop ~ tional tests. OpTime is the average time cal-
packets prematurely which results in the decreased band- culated for the longest bandwidth operation
width. This bug is fixed in the CHAOS, Xen, and RHEL per test.
v2.6.12 kernels, and thus they are not impacted by it.
Xen bandwidth for small buffer sizes is less than that
achieved by CHAOS or RHEL2.6.12. This is due to the im-
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plementation of the network layer in Xen. Xen provides two sg | 4 $HAS keme
I/0 rings of buffer descriptors for each domain for network ORMEL269, s
activity, one for transmit and the other for receive. To sendso | -
a packet, the guest OS produces a buffer descriptor and adds
it to the 1/O ring. The host OS consumes the requests usingy |
a simple round-robin packet scheduler. The guest OS hogy-
ever, must however exchange a page frame with host OS fago |
each received packet in order to ensure efficient packet ;ie
ception. This process degrades the bandwidth achieved faso |
small packet sends since there are a large number of guest-
host interactions and heavy use of the I/O rings of buffer so |
descriptors. Xen is able to amortize this overhead as the
buffer size increases. Similarly, for the bidirectiongbex- 0
ments, this difference is insignificant for small packegsiz

For the bidirectional experiments (right graph in Fig-
ure 2), CHAOS, Xen, and RHEL2.6.12 achieve hypersat-  Figure 5. Laten MPI bidirectional results in
uration for message sizes betweéh @nd 2. This is due microseconds.
to the buffering that the kernels perform that enables over-
lap of communication qnd message proces_sing. Xen a”dsimultaneously communicating processes.
RHEL2.6.9 do not achieve the same benefits as CHAOS  Figyre 5 shows the results for the four kernels. The y-
and RHEL2.6.12 on average. Figure 3 shows the maxi- 555 is the average of maximum latency in microseconds

mum bandwidth achieved across tests for different message,onyeen per test as a function of the number of processes
sizes. These results show that RHEL2.6.9 behaves similarlygh own on the x-axis (lower is better).

to CHAOS and RHEL2.6.12. Thus, the apparent loss of  ajthough it is counter-intuitive, Xen has lower latency
per_for.mance in the average for RHEL2.6.9 is due to greatersy, up to 32 MPI communicating processes than CHAOS
variation rather than an absolute loss. and RHEL2.6.12. This is a result of the usepafe-flipping
However, Xen bidirectional performance for message in Xen that optimizes data transfer by avoiding copying be-
sizes 2* and 2° does not achieve the same maximum even tween the guest OS and the host OS. However, as the num-
in the best case, i.e., there is a true systemic difference inper of processes increases, the overhead of Xen'’s 1/O rings
absolute best-case performance for these message sizes. ¢ buffer descriptors has a larger impact that the optimiza-
believe that this effect is due to the management of the dualtion cannot amortize to the same degree.
ring buffer descriptors which reduces the effective buffer ~ RHEL2.6.9 enables the lowest latency. This behavior
size and thus, efficacy, of kernel buffering thereby reduc- depicts an interesting effect of the TSO bug described ear-
ing the amount of overlap that Xen is able to achieve. All ier. The bug causes RHEL2.6.9 to achieve lower bandwidth
kernels saturate the network at the same level for messagenan the other kernels but also to introduce less overhead fo
sizes greater than'2 We plan to investigate optimizations individual sends that do not require buffering. Therefore,
for the I/O rings and descriptor management in Xen as partkernels prior to v2.6.11 impose lower latency.
of future work.
We present the OpTime for both unidirectional and bidi- 4.2 Computational Perfor mance
rectional messages in Figure 4. The y-axis is the average
time in microseconds for the longest operation in atestas HPC are performance-critical systems. The computa-
a function of the message size on the x-axis (lower is bet-tional performance is undoubtedly one of the most impor-
ter). The data indicates that there is no significant diffeee  tant factors -if not the most important- in characterizing t
in OpTime between Xen and Chaos and RHEL2.6.12. Theefficiency of the HPC system. Therefore, we also evaluate
RHEL2.6.9 data for the unidirectional test shows a statis- the computational performance of the paravirtualized sys-
tically significant performance degradation in OpTime for tem in comparison with the non-virtualized kernels.
large message sizes. This is a side-effect of the lack of the we use Linpack [14] LU decomposition for this study.
TSO bug in the Ethernet driver as we described previously. The Linpack LU decomposition process consists of two
We next evaluate network latency using the Presta Latenphases: factoring and back-solve. The benchmark reports
benchmark from the ASCI Purple suite. Laten calculates the time taken in each phase and the rate of floating point
the maximum latency for a test (1000 operations) betweenoperations in mflops. We also measure the total time using
pairs of MPI processes as the elapsed time in a ping-ponghe Linux time utility. Our input to Linpack is a matrix with
communication. In this benchmark we vary the number of 3000x3000 in double-precision values.

I

2 4 8 16 32 64
Number of MPI processes



Performance relative to CHAOS
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Figure 6. Linpack LU decomposition 3000d
performance relative to CHAOS. Lower is bet-
ter for metrics factor, solve, total, user, sys-
tem, and real time. Higher is better for Mflops.

Figure 7. Stream memory bandwidth perfor-
mance in Mb/s.

is due to a known bug in they way Xen computes system
time — this value is invalid but we report it to enable others

Figure 6 illustrates a Linpack performance comparison to validate our exact results using this version of Xen. The
between the four kernels. The y-axis is the performancebug will be fixed in the next release of Xen.
of the different kernels relative to the CHAOS kernel with
respect to the different metrics on the x-axis. The smaller
the time ratio, the better but the higher the Mflops ratio is 43 Memory Access Perfor mance
the better.

The comparison indicates that Xen is slower than
CHAQOS kernel for the factoring phase and in terms of the
total time. However, Xen is faster than the other kernels.
Furthermore, the t-values for these differences showsstati
tical significance for these differences even att{999 con-
fidence level.

Most of the difference occurs during the factoring phase
of LU. The Xen kernel does appear to have a shorter back-
solve time than three other kernels, but the t-values do not Figure 7 shows the results. CHAQS attains the highest
indicate statistical significance at the)5 confidence level. ~ memory bandwidth for all stream operations. This is the re-
On the other hand, Xen achieves a total Mflops rate thatSult of CHAOS optimizations by LLNL computer scientists
is approximately 2% lower than CHAOS kernels and 3% for memory-intensive workloads. Surprisingly, Xen attain
higher than the RHEL kernels. The reason behind betterconsistently higher memory bandwidth by approximately
Mflops performance for Xen is due to its CPU scheduling 1-2% for every operation over RHEL2.6.12. The t-value
process: a very efficient implementation of the borrowed for the difference ranges between 12-14, indicating thet th
virtual time (BVT) scheduler [15]. BVT and the overhead differences between Xen and RHEL2.6.12 measurements is
of scheduling in general positively impacts the Mflops rate Statistically significant.
of Xen-based Linpack. CHAOS scheduler optimizations  Since Xen uses asynchronous I/O rings for data transfers
enable additional performance improvements. As a result,between the guest OS and the host OS, it is able to reorder
a Xen-based CHAOS implementation (that we are building requests and amortize each for better memory performance.
as part of future work) should be able to achieve benefits The Xen I/O ring algorithm was wise enough to arrange the
similar to those for CHAOS reported here. requests produces by domU on behave of the stream code,

For these reasons, Xen improves user time (and thus to-and exploited their sequential nature to gain performance
tal time) by approximately 3% over the RHEL kernels and and memory bandwidth. On the other hand, these gains are
achieve user/total time that is lower by 2% than CHAQOS. less apparent between the Xen and RHEL2.6.9 configura-
The system time bar in the graph for Xen is an anomaly thattions.

Sustainable memory bandwidth is another important per-
formance aspect for HPC systems, since long cache miss
handling can hinder the computational power attainable by
any machine. To study the impact of paravirtualization on
sustainable memory bandwidth, we use Stream [40], which
we configure with the default array size of 2 million ele-
ments.
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Figure 8. Bonnie Disk 1/0 bandwidth rate and Real-time relat  ive to CHAOS performance

4.4 Disk /0O Performance 1GB file. CHAOS has not been optimized for disk I/0. The
1GB sequential output rewrite performance using Xen is
the result of Xen's disk scheduling algorithm. As described

Disk performance of viralized systems is also a con- reviously, Xen used an 1/O descriptor ring for each guest
cern for applications that perform significant disk 1/0O such P STy, P 9 N g
domain, to reduce the overhead of domain crossing upon

as those for scientific database applications. To measuree ach request. Each domain bosts its request in the descrio-
this performance, we use the Bonnie I/O benchmark. For quest. n P ! questt 'P

the Xen kernel, we configure an LVM-backed virtual block tor.rlng; the .hOSt OS consumes them as they are produced.
; This results in producer-consumer problem that the authors
device (VBD). U X
Bonni d d writ tial ch ter input dof Xen describe in [31]. The improvements from Xen 1/O
i or;rye ;ia bSI ank writes ?ﬁquetn Iad cda(r:a(i_sr inpu ﬁm are the result of reordering of I/O requests by the host OS to
outpu n i 0cks gsmg g S.fm ar F 'thrag' callS enable highly efficient disk access. In the case of sequentia
Eiuetigwri'tge C(t)est' rggngie }22 dlvnd‘iarges Ian%Ir Wr?teso?)-ack output for 1GB files, the requests are very large in number
' : ' ! . and randomly generated across the file. This prevents Xen
each block after performing dseek() . The Bonnie ran- g P

. . f ki fficient f the 1/O ri timizi
dom I/O test performs alseek()  to random locations in rom making efficient use of the 1/O rings and optimizing

, requests effectively. This effect is also apparent andfsign
the file, then themead() to r'eads a. block from that loca- cant in the results from the random seek tests. These results
tion. For these events, Bonnie rewrites 10% of the blocks.

. ] indicate that if random seeks to large files is a key operation
Figure 8 shows the performance comparison for the four;, 54 particular HPC application, the Xen /O implementa-

kernels relative to the performance of CHAOS. The x-axis is tjon should be changed and specialized for this case.

the performance of the different disk I/O metrics relative t

the performance of CHAQS, for different file sizes (y-axis).

The first three bars in each group show the performance of

the sequential output tests; the next two bars are for the se- The sequential input per character among all kernels is

quential input test; the sixth bar is for the random test; and not significantly different. However, for sequential input

the last bar is total time (Real-Time). per block, Xen disk 1/O speed lags behind the other three
Xen has a higher per-character output, per-block output,kernels by about 11-17%. We suspect this is a configuration

and rewrite rate for all file sizes relative to CHAOS. Xen problem and we will work to verify this conjecture for the

performance is slower for sequential output rewrite for the final version of this paper, should it be accepted.
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1.2 @ Xen kernel
O RHEL269 kernel
O RHEL2612 kernel

Paravirtualization offers many opportunities to HPC ap-
plications and software systems, e.g., full system cus-
tomization, check-pointing and migration, etc. As such, &
is important to understand the performance implications éffg A i
such systems impose for a wide range of programs and éﬂ} _
plications. We do so in this section for the popular NA%% ] il
parallel benchmarks and the MIT GCM oceanographic arft
climatologic simulation system. This set of experimen@g
shows the impact of using Xen for programs that exercige °°1
the complete machine (subsystems in an ensemble).  *

1.1 A

5.1 NASParalle Benchmarks (NPB) L S —
EP IS MG LU CG EP IS MG LU CG
For the first set of experiments we employ the NAS
parallel benchmarks (NPB) as we describe in Section 3.
The benchmarks mimic the computational, communica-
tional and data movement characteristics of large scale com
putational fluid dynamics applications.
Figure 9 shows the performance of the NPB codes(x-
axis) for our different kernels relative to CHAOS (y-axis).
We present two different metrics for each of the five bench- Which may mean that the differences was introduced due to

marks. The left five sets of bars reflect total execution time, N0ise in the readings. We support this claim using the stan-

second (Mops) the benchmarks achieve. ing this kernel: This value is 31 for an average measurement
All of the kernels perform similarly for EP, 1S, and MG. of 607s, in terms of Mops this value is 1.2 for an average of
The differences between the bars, though visually differ- 237s. In summary, Xen performs conS|stentIy_ comparable
ent in some cases, are not statistically significant when wet0 CHAOS and the two RHEL kernels and delivers perfor-
compare them using the t-test with 95% confidence. This ismance similar to that of natively executed parallel applica
interesting since the benchmarks are very different in germ t0ns.
of their behavior: EP performs distributed computatiorhwit
little communication overhead, IS performs a significant 5.2 MIT GCM
amount of communication using collective operations, and
MG employs a large number of blocking send operations.  To evaluate the use of virtualization for real HPC ap-
In all cases, paravirtualization imposes no statisticsidy plications, we employ the MITseneralCirculation Model
nificant overhead. (GCM) implementation. MIT GCM is a simulation model
LU decomposition shows a performance degradation of for oceanographic and climatologic phenomena. The ex-
approximately 5% for RHEL2.6.12 for both total time and ecution of the MIT GCM using thexp2 input, involves
Mops. The reason for this is similar to that for the Linpack reading several input files at the beginning of the run for
results in the previous section due to overhead this kernelinitialization, processing a computationally intensive-s
places on computation (c.f. Section 4.2). CHAQOS opti- ulation, check-pointing the processed data to files periodi
mizes this overhead away and RHEL2.6.9 makes up for thiscally, and outputting the final results to several other files
loss due to its low overhead on MPI-based network latency The total amount of data that is read and written by the sys-
(c.f. Section 4.1). A combination of the scheduling policy tem during each run is approximately 33MB. The individual
and network performance enabled by Xen enables the Xenwrites are on the order of 200B per call to write() and the
system to avoid the overhead also. total size of each file is approximately 1MB.
TheConjugateGradient (CG) code computes an approx-  We use the Linux time utility to measure the perfor-
imation to the smallest eigenvalue of a large sparse ma-mance of MIT GCM which reports the time spent execut-
trix. It combines unstructured matrix system vector multi- ing user code (User Time), the time spent executing system
plication with irregular MPI communications. CG executes code (System Time), and the total time (Real Time). We
slower using CHAQS than using the other kernels by aboutpresent the results in Figure 10. The y-axis is the time in
5%. The statistical difference however was not significant, seconds for the kernels shown on the x-axis.

Figure 9. NAS Parallel Benchmark perfor-
mance relative to CHAOS. The left half (first
benchmark set) is for total time (lower is bet-

ter); the right half is for Mops (higher is bet-

ter).
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R . ;g;:tfemfme for HPC cluster resources (IA64, SMP machines).
' ' OReal time Other work has investigated the performance of Xen
and other similar technologies in an non-HPC setting. The
most popular performance evaluation of Xen is described
100 ] in [31]. A similar, yet independent but concurrent, study
is described in [11]. Both papers show the efficacy and
80 1 low overhead of paravirtualizing systems. The benchmarks
that both papers employ are general-purpose operating sys-
60 1 tems benchmarks. The systems that the authors evaluate are
IA32, stand-alone machines with a single processor. Fur-
thermore, those papers investigate the performance of the
first release of Xen, which has changed significantly. We
employ the latest version of Xen (v3.0.1) that includes a
‘ ‘ ‘ wide range of optimization and features not present in the
CHAOS Kernel Xen Kernel RHEL2.6.9 Kernel ~ RHEL2.6.12 Ke mel ear“er VersionS.
Students as part of an unpublished, class project at the
Figure 10. MIT GCM performance using input Norwegian University of Science and Technology (NTNU)
Exp2 in seconds (lower is better). have investigated Xen performance for clusters [19]. This
study investigates the network communication perfor-
From the experiments, we found Xen execution time of mance in Xen versus a native kernel using low-level and
MIT GCM to be slightly faster than that for CHAOS. The application-level network communication benchmarks. The
difference however, is not statistically significant given resulting Master's Thesis [7] describes a port of Xen to
95% confidence level. Similarly, the difference in perfor- 1A64 but provides only a minimal evaluation. On the other
mance between Xen and RHEL kernels is negligible. hand, another study [39] done at Wayne State University
Our experience with the system indicates that the differ- investigated the communication performance for different
ence between Xen and CHAOS is primarily due to the disk Network switch fabric on Linux clusters. They evaluated
/0 activity. We also observe that Xen User Time and CPU performance of Fast Ethernet using joh interface, Giga-
usage is consistently and uniformly different from that of bit Ethernet using clp4 interface, Myrinet using ch4 in-
the other kernels. This is due to the way Xen computes userterface, and Myrinet using chm interface. Based on that
and system time in the Linux time utility (in error as men- study results, we anticipate that Xen would perform on Fast
tioned previously). This is a Xen implementation bug that Ethernetand Myrinet using cp4 similar to how it did per-
will be fixed in the next version of Xen. form on Gigabit Ethernet in our study. However, It would
These results are extremely promising, despite the timebe interesting to see how Xen page-flipping algorithm, de-
utility bug. They show that Xen achieves performance equal scribed earlier interact with Myrinet's OS-bypass feasure
to that of the RHEL kernels and slightly better than that of ~ More recent studies evaluate other features of Xen such
CHAOS. In addition, our results from the prior section on as the performance overhead of live migration of a guest
disk 1/0 indicate that Xen is able to mask I/O overhead for OS [12]. They show that live migration can be done with no
common disk activities. Our results show, that Xen can sat- performance cost, and with down times as low as 60 msec-
isfy the performance requirements of real HPC applicationsonds. Related tools have been developed to Xen VMM, as
such as GCM. We plan to investigate how other applicationsin Jisha [22] andXen-Get [44]. These systems do not
behave over Xen as part of future work. rigorously investigate the performance overheads of doing
so in an HPC setting.
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6 Related Research _
7 Conclusionsand Future Work

The work related to that which we pursue in this paper,

include performance studies of virtualization-based sys- Paravirtualizing systems expose unique and exciting op-
tems. To our knowledge, our study is the first to inves- portunities to the HPC community in the form of flexi-
tigate the performance implications of using paravirtual- ble system maintenance, management, and customization.
ization technologies in an HPC setting. We investigate a Such systems however, are currently not considered for
wide range of metrics for HPC benchmarks, applications, HPC environments since they are perceived to impose over-
and systems. We consider both subsystem performance fohead that is unacceptable for performance-critical applic

a number of important HPC components as well as full- tions and systems. In this paper, we present a rigorous em-
system performance when using paravirtualizing systemspirical evaluation of using Xen paravirtualization for HPC



applications, kernels, and systems that shows that such conRefer ences

cern is unwarranted.

We compare three different Linux configurations with
a Xen-based kernel. The three non-Xen kernels are those
currently in use at LLNL for HPC clusters: RedHat En-
terprise 4 (RHEL4) for build versions 2.6.9 and 2.6.12 and [
the LLNL CHAOS kernel, a specialized version of RHEL4
version 2.6.9. We perform experiments using micro- and
macro-benchmarks from the HPC Challenge, LLNL ASCI
Purple, and NAS parallel benchmark suites among others,
as well as using a large-scale, HPC application for simu- ]
lation of oceanographic and climatologic phenomena. As a
result, we are able to rigorously evaluate the performahce o
Xen-based HPC systems relative to non-virtualized system
for subsystems independently and in ensemble.

Our results indicate that, in general, the Xen paravirtual-
izing system poses no statistically significant overhead ov
other OS configurations currently in use at LLNL for HPC
clusters — even one that is specialized for HPC clusters —
except in two instances. We find that this is the case for
programs that exercise specific subsystems, a complete ma-
chine, or combined cluster resources. In the instancesavher
a performance difference is measurable, we detail how Xen [7]
either introduces overhead or somewhat counter-intijtive
produces superior performance over the other kernels. g

As part of future work, we will empirically evaluate the
Linux v2.6.12 CHAOS kernel as well as Infiniband net-
work connectivity. The latter is very high-performance and [€]
successful networking technology for HPC applications.
LLNL's cluster implementation will soon be extended to
make use of this technology and our goal is to optimize
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