
Realizability of Interactions in Collaboration Diagrams

Tevfik Bultan
Department of Computer Science
University of California

Santa Barbara, CA 93106, USA
bultan@cs.ucsb.edu

Xiang Fu
School of Computer and Information Science
Georgia Southwestern State University

Americus, GA 31709, USA
xfu@canes.gsw.edu

Abstract

Specification, modeling and analysis of interactions
among peers that communicate via messages are becoming
increasingly important due to the emerging area of web ser-
vices. Collaboration diagrams provide a convenient visual
model for characterizing such interactions. An interaction
can be characterized as a global sequence of messages ex-
changed among a set of peers, listed in the order they are
sent. A collaboration diagram can be used to specify the
set of allowable interactions among the peers participating
to a composite web service. Specification of the interac-
tions from such a global perspective leads to the realizabil-
ity problem: Is it possible to construct a set of peers that
generate exactly the specified interactions? In this paper we
investigate the realizability of interactions specified by col-
laboration diagrams. We formalize the realizability prob-
lem by modeling peers as concurrently executing finite state
machines. We give sufficient realizability conditions for dif-
ferent classes of collaboration diagrams. We generalize the
collaboration diagrams to collaboration diagram graphs
and show that collaboration diagram graphs are equiva-
lent to conversation protocols. We show that the sufficient
conditions for realizability of conversation protocols can be
adopted to realizability of collaboration diagram graphs.

1. Introduction

Collaboration diagrams are useful for modeling interac-
tions among distributed components without exposing their
internal structure. In particular, collaboration diagrams
model interactions as a sequence of messages which are
recorded in the order they are sent. Such an interaction
model is becoming increasingly important in the web ser-
vices domain where a set of autonomous peers interact with
each other using synchronous or asynchronous messages.
Web services that belong to different organizations need
to interact with each other through standardized interfaces

and without access to each other’s internal implementations
[2, 7, 11, 13]. Formalisms which focus on interactions
rather than the local behaviors of individual peers are neces-
sary for both specification and analysis of such distributed
applications.
Web Services Choreography Description Language

(WS-CDL) [18] is an XML-based language for describing
the interactions among the peers participating to a web ser-
vice. WS-CDL specifications describe “peer-to-peer col-
laborations of Web Services participants by defining, from
a global viewpoint, their common and complementary ob-
servable behavior; where ordered message exchanges result
in accomplishing a common business goal.” Collaboration
diagrams provide a suitable visual formalism for modeling
such specifications. However, characterization of interac-
tions using a global viewmay lead to specification of behav-
iors that may not be implementable. In this paper we study
the problem of realizability which addresses the following
question: Given an interaction specification, is it possible to
find a set of distributed peers which generate the specified
interactions.
In order to study the realizability problem we give a for-

mal model for collaborations diagrams. We model a dis-
tributed system as a set of communicating finite state ma-
chines [6]. A collaboration diagram is realizable if there
exists a set of communicating finite state machines which
generate exactly the set of interactions specified by the col-
laboration diagram. We present sufficient conditions for re-
alizability for different classes of collaboration diagrams.
It is unlikely that all the interactions in a distributed sys-

tem can be expressed using a single collaboration diagram.
Hence, most of the time it is necessary to use a set of col-
laborations diagrams where each diagram specifies a subset
of the possible interactions. We extend this idea to collab-
oration diagram graphs where the interactions specified by
different collaboration diagrams can be combined in vari-
ous ways (using union, concatenation or repetition). We
show that collaboration diagram graphs are equivalent to
conversation protocols [9, 10] and the realizability results

for conversation protocols can be adopted to realizability of
collaboration diagram graphs.
Rest of the paper is organized as follows. In Section 2 we

introduce a formal model for collaboration diagrams and
we define the set of interactions specified by a collabora-
tion diagram. In Section 3 we present a formal model for a
set of autonomous peers communicating via messages and
we define the set of interactions generated by such peers.
In Section 4 we discuss the realizability of collaboration
diagrams and give sufficient conditions for realizability of
some classes of collaboration diagrams. In Section 5 we
introduce the collaboration diagram graphs. We show that
collaboration diagram graphs are more powerful than col-
laboration diagram sets. We show that collaboration dia-
gram graphs can be translated to conversation protocols and
the realizability conditions on conversation protocols can
be used to determine realizability of collaboration diagram
graphs. In Section 6 we discuss the related work and in
Section 7 we conclude the paper.

2. Collaboration Diagrams

In this paper we focus on the use of collaboration dia-
grams for specifying a set of interactions among a set of
peers. Each peer is like an active object with its own thread
of control. We will model the interactions specified by a
collaboration diagram as a sequence of messages exchanged
among these peers. This provides an appropriate model for
the web services domain where a set of autonomous peers
communicate with each other through messages.
A collaboration diagram (called communication diagram

in [17]) consists of a set of peers, a set of links among
the peers showing associations, and a set of message send
events among the peers. Each message send event is shown
by drawing an arrow over a link denoting the sender and the
receiver of the message. Messages can be transmitted using
synchronous (shown with a filled solid arrowhead) or asyn-
chronous (shown with a stick arrowhead) communication.
During a synchronousmessage transmission, the sender and
the receiver must execute the send and receive events simul-
taneously. During an asynchronous message transmission,
the send event appends themessage to the input queue of the
receiver, where it is stored until receiver consumes it with
a receive event. Note that, a collaboration diagram does
not show when a receive event for an asynchronous mes-
sage will be executed, it just gives an ordering of the send
events.
In a collaboration diagram each message send event has

a unique sequence label. These sequence labels are used
to declare the order the messages should be sent. Each se-
quence label consists of a (possibly empty) string of let-
ters (which we call the prefix) followed by a numeric part
(which we call the sequence number). The numeric order-

ing of the sequence numbers defines an implicit total order-
ing among the message send events with the same prefix.
For example, event A2 can occur only after the event A1,
but B1 and A2 do not have any implicit ordering. In addition
to the implicit ordering defined by the sequence numbers, it
is possible to explicitly state the events that should precede
an event by listing their sequence labels (followed by the
symbol “/”) before the sequence label of the event. For ex-
ample if an event is labeled with “B2,C3/A2” then A2 is the
sequence label of the event, and the events B2, C3 and A1
must precede A2 (note that, A1 is not listed explicitly since
it is implied by the implicit ordering).
The prefixes in sequence labels of collaboration dia-

grams enable specification of concurrent interactions where
each prefix represents a thread. Note that, here by “thread”,
we do not mean a thread of execution. Rather, we are re-
ferring to a set messages that have a total ordering and that
can be interleaved arbitrarily with other messages. The se-
quence numbers specify a total ordering of the send events
in each thread. The explicitly listed dependencies, on the
other hand, provide a synchronization mechanism among
different threads.
In a collaboration diagram message send events can be

marked to be conditional, denoted as a suffix “[condition]”,
or iterative, denoted as a suffix“*[condition]”, where condi-
tion is written in some pseudocode. In our formal model we
represent conditional and iterative message sends with non-
determinism where a conditional message send corresponds
to either zero or one message send, and an iterative message
send corresponds to either zero or one or more consecutive
message sends for the same message.

1:order

:Vendor

:Shipping:Customer

:Invoicing

:Scheduling

A2,B3,C2/2:orderReply

1/A1:shipReq

A2:shipInfo

1/B1:productInfo

A1/B2:shipType

B3:invoice

1/C1:productSchedule

A2/C2:shipSchedule

Figure 1. An example collaboration diagram
for a composite web service. A vendor ser-
vice processes a purchase order from a cus-
tomer by delegating the tasks to three other
services.

As an example, consider the collaboration diagram in
Figure 1 for the Purchase Order Handling service described
in the Business Process Execution Language for Web Ser-

vices (BPEL) 1.1 language specification [5]. In this exam-
ple, a customer sends a purchase order to a vendor. The ven-
dor calculates the price for the order including the shipping
fee, arranges a shipment, and schedules the production and
shipment. The vendor uses an invoicing service to calculate
the price, a shipping service to arrange the shipment, and a
scheduling service to handle the scheduling. To respond to
the customer in a timely manner, the vendor performs these
three tasks concurrently while processing the purchase or-
der. There are two control dependencies among these three
tasks that the vendor needs to consider: The shipment type
is required to complete the final price calculation, and the
shipping date is required to complete the scheduling. After
these tasks are completed, the vendor sends a reply to the
customer.
The web service for this example is composed of five

peers: Customer, Vendor, Shipping, Scheduling, and In-
voicing. Customer orders products by sending the order
message to the Vendor. The Vendor responds to the Cus-
tomer with the orderReply message. The remaining peers
are the ones that the Vendor uses to process the product or-
der. The Shipping peer communicates with the shipReq,
and shipInfo messages, the Scheduling peer with the prod-
uctSchedule, and shipSchedulemessages, and the Invoicing
peer with the productInfo, shipType, and invoice messages.
Figure 1 shows the interactions among the peers in the

Purchase Order Handling service using a collaboration di-
agram. All the messages in this example are transmitted
asynchronously. Note that the collaboration diagram in Fig-
ure 1 has four threads (the main thread, which corresponds
to the empty prefix, and the threads with labels A, B and C)
and the interactions between the Vendor and the Shipping,
Scheduling and Invoicing peers are executed concurrently.
However, there are some dependencies among these concur-
rent interactions: shipTypemessage should be sent after the
shipReq message is sent, the shipSchedule message should
be sent after the shipInfo message is sent, and the orderRe-
ply message should be sent after all the other messages are
sent.

2.1. A Formal Model for Collaboration
Diagrams

Based on the assumptions discussed above we formalize
the semantics of collaboration diagrams as follows. A col-
laboration diagram C = (P, L, M, E, D) consists of a set
of peers P , a set of links L ∈ P × P , a set of messagesM ,
a set of message send events E and a dependency relation
D ⊆ E × E among the message send events. The sets P ,
L, M and E are all finite. To simplify our formal model,
we assume that the asynchronous messages MA and syn-
chronous messagesMS are separate (i.e.,M = MA ∪MS

and MA ∩ MS = ∅), and that each message has a unique

sender and a unique receiver denoted by send(m) ∈ P and
recv(m) ∈ P , respectively. (Note that, messages in any
collaboration diagram can be converted to this form by con-
catenating each message with tags denoting the synchro-
nization type and its sender and its receiver.) For each mes-
sage m ∈ M , the sender and the receiver of m must be
linked, i.e., (send(m), recv (m)) ∈ L.
The set of send events E is a set of tuples of the form

(l, m, r) where l is the label of the event,m ∈ M is a mes-
sage, and r ∈ {1, ?, ∗} is the recurrence type. We denote
the size of the set E with |E| and for each tuple e ∈ E we
use e.l, e.m, and e.r to denote different fields of e. The la-
bels of the events correspond to the sequence labels and we
assume that each tuple in E has a unique label, i.e., for all
e, e′ ∈ E, e (= e′ ⇒ e.l (= e′.l. Each tuple denotes a mes-
sage send event where peer send(m) sends a messagem to
peer recv(m). The recurrence type r ∈ {1, ?, ∗} determines
if the send event corresponds to a single message send event
(r = 1), a conditional message send event (r =?), or an it-
erative message send event (r = ∗).
The dependency relation D ⊆ E × E denotes the or-

dering among the message send events where (e1, e2) ∈ D
means that e1 has to occur before e2. We assume that there
are no circular dependencies, i.e., the dependency graph
(E, D), where the send events in E form the vertices and
the dependencies inD form the edges, should be a directed
acyclic graph (dag). Note that, if there are circular depen-
dencies among message send events, then it is not possible
to find an ordering of the message send events satisfying the
dependencies. Therefore, we do not allow circular depen-
dencies. This condition can be checked in linear time before
the analyses we discuss in this paper are performed.
We also assume that the dependency relation does not

have any redundant dependencies. Given a dependency re-
lation D ⊆ E × E let pred(e) denote the predecessors
of the event e where e′ ∈ pred(e) if there exists a set of
events e1, e2, . . . , ek where k > 1, e′ = e1, e = ek, and
for all i ∈ [1..k − 1], (ei, ei+1) ∈ D. A dependency
(e′, e) ∈ D is redundant if there exists an e′′ ∈ pred(e) such
that e′ ∈ pred(e′′). Since we do not allow any redundant
dependencies in D, we call e′ an immediate predecessor of
e if (e′, e) ∈ D. We will call an event eI with pred(eI) = ∅
an initial event of C and an event eF where for all e ∈ E
eF (∈ pred(e) a final event of C. Note that since the de-
pendency relation is a dag there is always at least one initial
event and one final event (and there may be multiple initial
events and multiple final events).
Figure 2 shows the dependency graph for the the collab-

oration diagram of the Purchase Order example shown in
Figure 1. In this example event 1 is an initial event and
event 2 is a final event. Event 2 has three immediate prede-
cessors: A2, B3 and C2.
Let C = {P, L, M, E, D} denote the formal model for

1:order

1/A1:shipReq

A2:shipInfo

1/B1:productInfo

A1/B2:shipType

B3:invoice

1/C1:productSchedule

A2/C2:shipSchedule

A2,B3,C2/2:orderReply

Figure 2. Dependencies among the message
send events in the Purchase Order example.

the collaboration diagram of the Purchase Order example
shown in Figure 1. The elements of the formal model are
as follows (where we denote the peers and messages with
their initials or first two letters): P = {C, V, Sh, I, Sc}
is the set of peers, L = {(C, V), (V, Sh), (V, I), (V, Sc)}
is the set of links among the peers, M = {o, oR,
sR, sI, pI, sT, i, pS, sS} is the set of messages, where
send(o) = recv(oR) = C, recv(o) = send(oR) =
send(sR) = recv(sI) = send(pI) = send(sT) =
recv(I) = send(pS) = send(sS) = V , send(sI) =
recv(sR) = Sh, recv(pI) = recv(sT) = send(I) = I ,
and recv(pS) = recv(sS) = Sc. The set of events are E =
{(1, o, 1), (2, oR, 1), (A1, sR, 1), (A2, sI, 1), (B1, pI, 1),
(B2, sT, 1), (B3, i, 1), (C1, pS, 1), (C2, sS, 1)}. Finally,
the dependency relation is (where we identify the events
with their labels) D = { (e1, eA1), (eA1, eA2), (e1, eB1),
(eA1, eB2), (eB1, eB2), (eB2, eB3), (e1, eC1), (eA2, eC2),
(eC1, eC2), (eA2, e2), (eB3, e2), (eC2, e2)}.
Given a collaboration diagram C = (P, L, M, E, D) we

denote the set of interactions defined by C as I(C) where
I(C) ⊆ M∗. An interaction σ = m1m2 . . . mn is in I(C),
i.e., σ ∈ I(C), if and only if σ ∈ M ∗ and there exists a
corresponding matching sequence of message send events
γ = e1e2 . . . en such that

1. for all i ∈ [1..n] ei = (li, mi, ri) ∈ E

2. for all i, j ∈ [1..n] (ei, ej) ∈ D ⇒ i < j

3. for all e ∈ E (for all i ∈ [1..n] ei (= e) ⇒
(e.r = ∗ ∨ e.r =?)

4. for all e ∈ E if there exists i, j ∈ [1..n] such that
i (= j ∧ ei = ej then ei.r = ∗.

The first condition above ensures that each message in the
interaction σ is equal to the message of the matching send
event in the event sequence γ. The second condition en-
sures that the ordering of the events in the event sequence γ

does not violate the dependencies inD. The third condition
ensures that the only events that are omitted from the event
sequence γ are the conditional or iterative events. Finally,
the fourth condition states that only iterative events can be
repeated in the event sequence γ.
For example, a possible interaction for the collaboration

diagram shown in Figure 1 is o, sR, sI , pS, pI , sS, sT ,
i, oR. The matching sequence of events for this interac-
tion which satisfy all the four conditions listed above are:
(1, o, 1), (A1, sR, 1), (A2, sI, 1), (C1, pS, 1), (B1, pI, 1),
(C2, sS, 1), (B2, sT, 1), (B3, i, 1), (2, oR, 1).
It is common to use several collaboration diagrams to

specify the interactions among a set of peers. We define a
collaboration diagram set as S = {C1, C2, . . . , Cn} where
n is the number of collaboration diagrams in S and each Ci

is in the form Ci = (P, L, M, Ei, Di), i.e., the collabora-
tion diagrams in a collaboration diagram set only differ in
their event sets and dependencies. (Note that we can always
convert a set of collaboration diagrams to this form without
changing their interaction sets by replacing the individual
peer, link and message sets by their unions.) We define the
set of interactions defined by a collaboration diagram set as
I(S) =

⋃
C∈S I(C).

:P :Q

1:x
2:y

:P :Q

2:x
3:y

3:z 1:z

Figure 3. A collaboration diagram set which
specifies a set of interactions that cannot
be specified by any single collaboration di-
agram.

Collaboration diagram sets are strictly more powerful
than the collaboration diagrams:

Theorem 1 There exists a collaboration diagram set S
such that there is no collaboration diagram C for which
I(S) = I(C).

Consider the collaboration diagram set shown in Figure
3. This collaboration diagram set specifies the following
set of interactions {xyz, zyx}. Note that any collaboration
diagram which tries to specify this set of interactions will
either specify a circular dependency between the message
transmissions for x and y, or it will allow more interactions
which are not in this set. This can be shown by enumerat-
ing all the collaboration diagrams which contain only these
message send events and these peers (there are a finite num-
ber of such collaboration diagrams).

3. Execution Model

We model the behaviors of peers that participate to a col-
laboration as concurrently executing finite state machines
that interact via messages [9, 10]. We assume that the
machines can interact with both synchronous and asyn-
chronous messages. We assume that each finite state ma-
chine has a single FIFO input queue for asynchronous mes-
sages. A send event for an asynchronous message appends
the message to the end of the input queue of the receiver,
and a receive event for an asynchronous message removes
the message at the head of the input queue of the receiver.
The send and receive events for synchronous messages are
executed simultaneously and synchronous message trans-
missions do not change the contents of the message queues.
We assume reliable messaging, i.e., messages are not lost or
reordered during transmission.
Formally, given a set of peers P = {p1, . . . , pn}

that participate in a collaboration, the peer state machine
for the peer pi ∈ P is a nondeterministic FSA Ai =
(Mi, Ti, si, Fi, δi) where Mi = MA

i ∩ MS
i is the set of

messages that are either received or sent by pi, Ti is the fi-
nite set of states, si ∈ T is the initial state, Fi ⊆ T is the
set of final states, and δi ⊆ Ti × ({!, ?}× Mi ∪ {ε}) × Ti

is the transition relation. A transition τ ∈ δi can be one of
the following three types: (1) a send-transition of the form
(t1, !m, t2) which sends out a message m ∈ Mi from peer
pi = send(m) to peer recv(m), (2) a receive-transition of
the form (t1, ?m, t2) which receives a message m ∈ Mi

from peer send(m) to peer pi = recv(m), and (3) an ε-
transition of the form (t1, ε, t2).
Let A1, . . . ,An be the peer state machines (implemen-

tations) for a set of peers P = {p1, . . . , pn} that partici-
pate in a collaborationwhereAi = (Mi, Ti, si, Fi, δi) is the
state machine for peer pi. A configuration is a (2n)-tuple
of the form (Q1, t1, ..., Qn, tn) where for each j ∈ [1..n],
Qj ∈ (MA

j)∗, tj ∈ Tj . Here ti, Qi denote the state and
the queue contents of the peer state machine Ai respec-
tively. For two configurations c = (Q1, t1, ..., Qn, tn) and
c′ = (Q′

1, t
′
1, ..., Q

′
n, t′n), we say that c derives c′, written as

c → c′, if one of the following three conditions hold:
• One peer executes an asynchronous send action (de-
noted as c

!m
→ c′), i.e., there exist 1 ≤ i, j ≤ n

and m ∈ MA
i ∩ MA

j , such that, pi = send(m),
pj = recv(m) and:

1. (ti, !m, t′i) ∈ δi,
2. Q′

j = Qjm,
3. Qk = Q′

k for each k (= j, and
4. t′k = tk for each k (= i.

• One peer executes an asynchronous receive action (de-
noted as c

?m
→ c′), i.e., there exists 1 ≤ i ≤ n and

m ∈ MA
i , such that, pi = recv(m) and:

1. (ti, ?m, t′i) ∈ δi,
2. Qi = mQ′

i,
3. Qk = Q′

k for each k (= i, and
4. t′k = tk for each k (= i.

• Two peers execute synchronous send and receive ac-
tions (denoted as c !?m

→ c′), i.e., there exist 1 ≤ i, j ≤ n
and m ∈ MS

i ∩ MS
j , such that, pi = send(m),

pj = recv(m) and:

1. (ti, !m, t′i) ∈ δi,
2. (tj , ?m, t′j) ∈ δj ,
3. Qk = Q′

k for each k, and
4. t′k = tk for each k (= i and k (= j.

• One peer executes an ε-action (denoted as c ε
→ c′), i.e.,

there exists 1 ≤ i ≤ n such that:

1. (ti, ε, t′i) ∈ δi,
2. Qk = Q′

k for each k ∈ [1..n], and
3. t′k = tk for each k (= i.

Consider the definition of the asynchronous receive action.
Intuitively, the above definition says that the peer pi exe-
cutes an asynchronous receive action if there is a message
at the head of its queue and a corresponding asynchronous
receive transition in its transition relation from its current
state. After the receive is executed, the received message is
removed from the queue of pi and the state ofAi is updated
accordingly. The queues and states of other peers remain
the same. An asynchronous send action inserts a message
to the end of the message queue of the receiver and updates
the state of the sender. The synchronous send and receive
actions are executed simultaneously and update the states
of both the sender and the receiver (the queue contents do
not change during the execution of synchronous send and
receive actions). In an ε-action a peer takes an ε-transition
and updates its state.
Now we can define the runs of a set of peer state

machines participating in a collaboration as follows: Let
A1, . . . ,An be a set of peer state machines for the set of
peers P = {p1, . . . , pn} participating in a collaboration, a
sequence of configurations γ = c0c1 . . . ck is a partial run
of A1, . . . ,An if it satisfies the first two of the following
three conditions, and γ is a complete run if it satisfies all
three conditions:

1. The configuration c0 = (ε, s1, . . . , ε, sn) is the initial
configurationwhere si is the initial state ofAi for each
i ∈ [1..n].

2. For each j ∈ [0..k − 1], cj → cj+1.

3. The configuration ck = (ε, t1, . . . , ε, tn) is a final
configuration where ti is a final state of Ai for each
i ∈ [1..n].
Given a run γ the interaction generated by γ, denoted by

I(γ) where I(γ) ∈ M∗, is defined inductively as follows:
• If |γ| ≤ 1, then I(γ) is the empty sequence.

• If γ = γ′cc′, then

– I(γ) = I(γ′c)m if c !m
→ c′

– I(γ) = I(γ′c)m if c !?m
→ c′

– I(γ) = I(γ′c) otherwise.

A sequence σ is an interaction of a set of peer state
machines A1, . . . ,An, denoted as σ ∈ I(A1, . . . ,An), if
there exists a complete run γ such that σ = I(γ), i.e., an
interaction of a set of peer state machines must be an in-
teraction generated by a complete run. The interaction set
I(A1, . . . ,An) of a set of peer state machines A1, . . . ,An

is the set of interactions generated by all the complete runs
of A1, . . . ,An.
We call a set of peer state machines A1, . . . ,An well-

behaved if each partial run of A1, . . . ,An is a prefix of a
complete run. Note that, if a set of peer state machines are
well-behaved then the peers never get stuck (i.e., each peer
can always consume all the incoming messages in its input
queue and reach a final state).
Let C be a collaboration diagram. We say that the peer

state machines A1, . . . ,An realize C if I(A1, . . . ,An) =
I(C). A collaboration diagram C is realizable if there exists
a set of well-behaved peer state machines which realize C.
We define the realizability for a collaboration diagram set
exactly the same way.

4. Realizability of Collaboration Diagrams

:P :Q
1:x

:R :S
2:y

:P :Q

:R

2:y

1:x

(a) (b)

Figure 4. Two unrealizable collaboration dia-
grams.

Not all collaboration diagrams are realizable. Figure 4
shows two unrealizable collaboration diagrams. The in-
teractions specified by these collaboration diagrams do not

correspond to interactions of any set of peer implementa-
tions. The interaction set for both of these collaboration
diagrams is {xy}. Note that for both cases, any set of peer
state machines which generates the interaction xy will also
generate the interaction yx since peer R cannot know if x is
sent before it sends y.

:P :Q
1:x

2:y
:P :Q

:R

3:z

1:y

2:x

:R

Figure 5. An unrealizable collaboration dia-
gram set which consists of realizable collab-
oration diagrams.

Since each collaboration diagram corresponds to a sin-
gleton collaboration diagram set, existence of unrealizable
collaboration diagrams implies existence of unrealizable
collaboration diagram sets. Interestingly, a collaboration
diagram set which consists of realizable collaboration di-
agrams may not be realizable. Figure 5 shows such a col-
laboration diagram set. Note that, the two individual col-
laboration diagrams shown in Figure 5 define realizable in-
teractions. However, when we take the union of their inter-
actions, the resulting interaction set is not realizable. The
interaction set of the collaboration diagram set in Figure 5
is {xy, yxz}. Assume that there exists a set of peer state
machines which generate the set of interactions specified
by this collaboration diagram set. During an execution of
these state machines, peers P and Q may behave according
to the collaboration diagrams on the left and right, respec-
tively, without realizing that the other peer is conforming
to a different collaboration diagram. The following execu-
tion demonstrates this behavior: P first sends the message
x, and x is stored in the message queue of Q; then Q sends
the message y, and y is stored in the message queue of P.
Peers P and Q consume (i.e., receive) the messages in their
respective message queues, and finally Q sends the message
z. Hence, the generated interaction is xyz which is not in
the interaction set of the collaboration diagram set shown in
Figure 5. The problem is, in the above execution, peer Q has
no way of knowing if y was sent first or if xwas sent first. If
we require peer Q to receive the message x before sending
y (hence, ensuring that x is sent before y) then we cannot
generate the interaction yxz. One could consider modify-
ing our state machine and execution models for the peers.
However, allowing a conditional send action which checks
the queue contents and then sends a message based on the
result will not work unless the condition check and the send

are executed atomically. On the other hand, allowing such
atomicity is unreasonable in modeling asynchronous com-
munication among distributed programs (for example in the
web services domain).

:P :Q
1:x

:R :S
2:y

:P :Q
2:x

:R :S
1:y

Figure 6. A realizable collaboration diagram
set which consists of unrealizable collabora-
tion diagrams.

It is also possible to have a realizable collaboration di-
agram set which consists of unrealizable collaboration dia-
grams. Figure 6 shows such an example. The interaction
set specified by this collaboration diagram set is {xy, yx}
which is a superset of the interaction set specified by the
collaboration diagram in Figure 4(a). Note that the set
{xy, yx} covers both the case where P sends x first and the
case whereQ sends y first. Since both orderings are accept-
able, the ordering of x and y does not matter, and therefore,
the collaboration diagram set shown in Figure 6 is realiz-
able.
Below we first discuss conditions for realizability of in-

dividual collaboration diagrams. In the following sections
we extend our discussion to realizability of collaboration
diagram sets.

4.1. Separated Collaboration Diagrams

We call a collaboration diagram separated if each mes-
sage appears in the event set of only one thread, i.e., given a
separated collaboration diagram C = (P, L, M, E, D) with
k threads the event setE can be partitioned asE =

⋃k
i=1 Ei

whereEi is the event set for thread i,Mi = {e.m | e ∈ Ei}
is the set of messages that appear in the event set Ei and
i (= j ⇒ Mi ∩ Mj = ∅. Recall that, the events in
each Ei are totally ordered since they belong to the same
thread. Note that dependencies among the events of differ-
ent threads are still allowed in separated collaboration dia-
grams. For example, the collaboration diagrams in Figure
1, Figure 4(a) and Figure 4(b) are separated whereas the
collaboration diagram in Figure 7 is not separated.
Given an event e = (l, m, r) in a collaboration diagram

C = (P, L, M, E, D) let e′ = (l′, m′, r′) be an immediate
predecessor of e if it exists (i.e., (e′, e) ∈ D). We will call
the event e well-informed if one of the following conditions
hold:

1. e = eI i.e., e is an initial event of C, or

2. r′ = 1 or m′ ∈ MS , and send(m) ∈ {recv(m′),
send(m′)}, or

3. r′ (= 1 and m′ ∈ MA and send(m) = send(m′) and
recv(m) = recv(m′) andm (= m′ and r = 1.

We have the following result:
Theorem 2 A separated collaboration diagram C = (P , L,
M , E,D) is realizable if all the events e ∈ E are well-
informed.

We will need the following definitions to prove this re-
sult. A word w = e0e1...ek is said to conform to a de-
pendency graph, if given any 0 ≤ i < j ≤ k, ei is not
a descendant of ej in the dependency graph. Given a col-
laboration diagram C, let SE(C) ⊆ E∗ include all event
sequences (note that, these are sequences of events not mes-
sages) which conform to the dependency graph of C. Obvi-
ously, SE(C) is a finite set.
Given a word w ∈ E∗, its projection to a peer pi is a

word generated from w by removing all events that are not
related to pi (i.e., the events for which peer pi is neither
the sender nor the receiver) and the remaining events keep
their original order in w. The projection of a set of words
to a peer is obtained by applying the projection operation to
each word in the set.
Since SE(C) is a finite set, the projection of SE(C) to

each peer is also a finite set and can be recognized by a
FSA. Let AE

i be the minimal, deterministic FSA that rec-
ognizes the projection of SE(C) to peer pi. Using AE

i s
we can construct a set of peer implementations (Ais) that
realize the interaction set I(C) as follows: Replace each
transition (s, (l, m, 1), s′) in AE

i with (s, m, s′). Replace
each transition (s, (l, m, ∗), s′) in AE

i with three transitions
(s, ε, t), (t, ε, s′), and (t, m, t) where t is a new state. Re-
place each transition (s, (l, m, ?), s′) in AE

i with two tran-
sitions (s, ε, s′) and (s, m, s′). It is not hard to see that Ai

recognizes the projection of the interaction set I(C) to the
peer pi. We call Ai the peer projection to peer pi. Since
Ai is generated from AE

i , we can annotate each transition
in Ai with the send event that is associated with the cor-
responding transition in AE

i . During the execution of peer
projections, when Ai takes a transition to send (receive) a
messagem, if the transition is with event e we say that e is
being executed at sender (receiver).
Based on the algorithm we described above for con-

structing the peer projections we can infer the following
property (call it P1): For any state in a peer projection, the
annotation event of an out-going transition can not be an im-
mediate predecessor of the annotation event of an in-coming
transition.
Now, we prove the following property (P2): For a

well-informed and separated collaboration diagram, for any

event e, any direct descendant e′ (and hence all descen-
dants) of e can not be executed before e is executed at the
sender. If the above fact is true we can conclude that each
interaction generated by the projected peers conforms to the
dependency graph of C and therefore is an interaction spec-
ified by C.
Consider an execution in which e = (l, m, r) is being

executed at the sender and consider any direct descendant
e′ = (l′, m′, r′) of e. According to the definition of well-
informedness, the sender of m′ is either the sender ofm or
the receiver ofm. We discuss these two cases:
Case 1) send(m′) = send(m): According to P1 e′

could not have been executed yet, because the execution of
the peer FSA has not reached its transition. Hence P2 holds
for case 1.
Case 2) send(m′) = recv(m): Examine the FSA of

send(m′), since send(m′) = recv(m), events e and e′ must
be a pair of incoming and out-going transitions of some
state in the projected FSA for recv(m). (This is not the case
if well-informedness is not enforced, e.g., Figure 4(a).)
Now the question is: Can e′ be executed at its sender

(send(m′)) before e is executed at its sender (send(m))?
Figure 7 shows an example where this can happen if the
collaboration diagram is not separated. We need the collab-
oration diagram to be separated and the events to be well-
informed to prevent a situation we will call impersonation.
Given two send events ei = (li, mi, ri) and ej =

(lj , mi, rj)where ej is a descendant of ei in the dependency
graph and the two events send the same message mi. Dur-
ing the execution of all peer projections, we say that ei im-
personates ej , if anmi sent by ei is consumed (at recv(mi))
by a transition annotated with ej . If impersonation can be
prevented, for case 2 when e is executed its descendant e′
cannot be executed before it (because the peer projection of
recv(mi) has to execute e at receiver before executing e′).
The definition of the separated property rules out the pos-

sibility of impersonation caused by a message shared by
different threads. We now show that the condition 3 of the
well-informedness property prevents impersonation in the
same thread. We prove this by contradiction.
Let e1, ..., ei, ..., ej , ..., en be the total order of all the

send events that belong to the same thread as ei, and send
the same message mi. Before recv(mi) executes ej (at re-
ceiver), all of e1, ..., ej−1 must be executed by recv(mi) at
receiver. Without loss of generality, let ej be the first imper-
sonated event of the execution. We claim that there exists
k where i ≤ k < j such that ek’s recurrence type is not
1. (Otherwise each send event will be counted one by one
by the receiver and no confusion could be caused when exe-
cuting ej at recv(mi)). Now according to the condition 3 of
well-informedness, since the recurrence type of ek is not 1,
ek+1 must send a different message (let it be mk+1 (= mi)
than ek and has recurrence type 1. Hence k + 1 (= j, since

:P :Q

A1:x
A2:y

B1:y
B2:x

:R
B3:z

Figure 7. An unrealizable collaboration dia-
gram which is not separated, and in which all
events are well-informed.

ek+1 and ej send two different messages.
Now we have i < k + 1 < j. Examine the receiver side.

ej is impersonated (executed at receiver recv(mi)) and be-
cause ek+1 is a predecessor of of ej , ek+1 is already exe-
cuted at the receiver earlier. This implies thatmk+1 is con-
sumed earlier than the mi sent by ei (which is used to im-
personate ej). However, at the sender side (i.e., send(mi)),
ei should be executed earlier than ek+1, because ei precedes
ek+1. This contradicts the fact that message buffer is FIFO.
Hence, once condition 3 is satisfied, and C is separated, no
impersonation can happen, which implies that property P2
also holds for case 2 which completes the proof.
Note that we can check the above realizability condition

for separated collaboration diagrams in linear time. The ex-
amples given in Figure 4(a) and Figure 4(b) are both sep-
arated collaboration diagrams and they both violate the re-
alizability condition discussed above. In both of these ex-
amples the sender for the final event (which is 2) is the peer
R and R is not the receiver or the sender of the message
for event 1 which is the immediate predecessor of event 2.
Hence event 2 is not well-informed. On the other hand the
collaboration diagram in Figure 1 is a separated collabo-
ration diagram in which all the events are well-informed,
hence, it is realizable.
Now, we will give an example to show that well-

informedness of the events alone does not guarantee real-
izability of a collaboration diagram which is not separated.
Consider the collaboration diagram given in Figure 7. This
collaboration diagram has two threads (A and B) and it is
not separated since both threads have send events for mes-
sages x and y. Note that all the events in this collaboration
diagram are well-informed. The interaction set specified by
this collaboration diagram consists of all interleavings of
the sequences xy and yxz which is the set {xyyxz, xyxyz,
xyxzy, yxzxy, yxxzy, yxxyz, yxyxz}. However any set
of peer state machines that generate this interaction set will
either generate the interaction xyzxy or will not be well-
behaved. Consider any set of peer state machines that gen-
erate this interaction set. Consider the partial run in which
first peer P sends x and then the peer Q sends y. From the
peer Q’s perspective there is no way to tell if y was sent first
or if x was sent first. If we require peer Q to receive the

message x before sending y (hence, ensuring that x is sent
before y) then we cannot generate the interactions which
start with the prefix yx. Hence, peer Q can continue execu-
tion assuming that the interaction being generated is yxzxy
and send the message z before peer P sends another mes-
sage. Such a partial execution will generate the sequence
xyz which is not the prefix of any interaction in the inter-
action set of the collaboration diagram. Therefore such a
partial execution will either lead to a complete run and gen-
erate an interaction that is not allowed or it will not lead to
any complete run, either of which violate the realizability
condition.
Although well-informedness property is not a necessary

condition for realizability of separated collaboration dia-
grams. It is a necessary condition for a more restricted class
of collaboration diagrams. We call a collaboration diagram
C = (P, L, M, E, D) simple if for all e ∈ E e.r = 1. Then
we have the following result:
Theorem 3 A simple separated collaboration diagram C =
(P , L, M , E, D) is realizable if and only if all the events
e ∈ E are well-informed.

The “if” direction follows from Theorem 2. For the “only
if” direction assume that there exists an event e ∈ E which
is not well-informed. Then there must be an immediate pre-
decessor of event e = (l, m, r), say event e′ = (l′, m′, r′),
such that send(m) (∈ {recv(m′), send(m′)}. Then we
have m (= m′ and for any implementation of the peers,
sender of message m has no way of knowing if message
m′ has been sent. So it is always possible to get an interac-
tion where messagem is sent before messagem′, violating
the dependency relation.

5. Collaboration Diagram Sets
and Graphs vs. Conversation
Protocols

In this section we will give sufficient conditions for re-
alizability of collaboration diagram sets. We will do this
by reducing the realizability problem for collaboration dia-
gram sets to realizability of conversation protocols [9, 10].
We will show that this reduction allows us to handle even
a larger class of interactions. We will define collaboration
diagram graphs which are strictly more powerful than col-
laboration diagram sets and show that they are equivalent to
conversation protocols in terms of the interactions they can
specify.

5.1. Conversation Protocols

A conversation protocol [9] is a tuple P = (P,A) where
P is a set of peers and A = (M, T, s, F, δ) is a nondeter-
ministic FSA where M is a set of messages such that for

each m ∈ M recv(m) ∈ P and send(m) ∈ P , T is the
finite set of states, s ∈ T is the initial state, F ⊆ T is the set
of final states, and δ ⊆ T × (M ∪ {ε})×T is the transition
relation. Note that, a conversation protocol has two types
of transitions: (1) (t1, m, t2) denotes a message transmis-
sion where message m is sent from peer send(m) to peer
recv(m), and (2) (t1, ε, t2) denotes an ε-transition.
We define the set of interactions defined by the conver-

sation protocol P = (P,A) as I(P) where I(P) ⊆ M ∗

and σ ∈ I(C) if and only if σ = m1, m2, . . . , mn where
for all 1 ≤ i ≤ n mi ∈ M and there exists a path
t1, t2, . . . , tn, tn+1 in A such that t1 = s, tn+1 ∈ F , and
for all 1 ≤ i ≤ n (ti, mi, ti+1) ∈ δ.
Let P be a conversation protocol. We say that the peer

state machines A1, . . . ,An realize P if I(A1, . . . ,An) =
I(P). A conversation protocol C is realizable if there exists
a set of well-behaved peer state machines which realize P .
Below we will give a constructive proof for the following

property:

Theorem 4 Given a collaboration diagram set S there ex-
ists a conversation protocol P such that I(S) = I(P).

Given a collaboration diagram set S = {C1, C2, . . . , Cn}
where n is the number of collaboration diagrams in S and
each Ci is in the form Ci = (P, L, M, Ei, Di) we will
construct a conversation protocol PS = (P,AS) such that
I(PS) = I(S). Let AS = (M, T, s, F, δ). We define the
set of states of AS as T = {s} ∪

⋃
Ci∈S 2Ei , i.e., the set of

states of AS consists of the start state s and the power sets
of the event sets of the collaboration diagrams that are in S.
If there exists an Ei such that Ei = ∅, then F = {s, ∅},
otherwise F = {∅}. We define the transition relation δ as
follows:

• For each i ∈ [1..n], δ contains the transition (s, ε, Ei).

• For each state E ⊆ Ei, if there exists an event e ∈ Ei

such that for all (e′, e) ∈ Di e′ (∈ E, then

– if e = (l, m, 1) then δ contains the transition (E,
m, E− {e}),

– if e = (l, m, ?) then δ contains the transitions (E,
m, E− {e}) and (E, ε, E − {e}),

– if e = (l, m, ∗) then δ contains the transitions
(E, m, E) and (E, ε, E − {e}).

The automaton AS first nondeterministically chooses one
of the collaboration diagrams in the collaboration diagram
set. Each state in the automaton after the start state represent
a set of events that need to be executed. Given a state E, if
there is an event e ∈ E which does not have any of its
predecessors in E, then we add transitions from E to E −
{e} that correspond to the send event e. If e is an iterative

event then we add a self loop to E to represent arbitrary
number of sends.
Note that based on the above construction, the number

of states generated for a collaboration diagram Ci with the
event set Ei could be 2|Ei| in the worst case. This worst
case is realized only if Ci has |Ei| threads. If Ci has a sin-
gle thread then the number of states it generates will be |Ei|.
So the number of threads generated for each collaboration
diagram is exponential in the number of threads. If we de-
terminize the automaton AS then the number of states will
also be exponential in |S|, i.e., the the number of collabora-
tion diagrams in the collaboration diagram set.

{1,2}

{3}

{1,2,3}

{2,3}

{2}

∅

εε

Q!R: z

Q!P: y

Q!P: y

P!Q: x

P!Q: x

Figure 8. The conversation protocol for the
collaboration diagram set shown in Figure 5.

{A1,A2,B1,B2,B3}

{A1,A2}

{A1,A2,B2,B3}

{A1,A2,B3}

{A2,B1,B2,B3}

∅

Q!R: z

P!Q: x

P!Q: x

{B1,B2,B3} {A2,B2,B3}

{A2,B3}{B2,B3}

{A2}{B3}

P!Q: x

P!Q: x

P!Q: x

Q!P: y

Q!P: y

Q!P: y
Q!P: y

Q!P: y

Q!P: y

P!Q: x

P!Q: x

Q!R: z

Q!P: y
Q!R: z

Figure 9. The conversation protocol for the
collaboration diagram shown in Figure 7.

Figure 8 shows the conversation protocol for the collabo-
ration diagram set shown in Figure 5 and Figure 9 shows the
conversation protocol for the collaboration diagram shown

in Figure 4 (since there is a single collaboration diagram we
omitted the extra start state).

5.2. Collaboration Diagram Graphs

:P :Q
1:x

2:y

P!Q: x

Q!P: y
ε

(a) (b)

Figure 10. A collaboration diagram graph and
corresponding conversation protocol.

A collaboration diagram graph G = (vs, Z, V, O) is a
directed graph which consists of a set of vertices V , a set of
directed edges O ⊆ V × V , an initial vertex vs ∈ V , a set
of final vertices Z ⊆ V , where each vertex in v ∈ V is a
collaboration diagram v = (P, L, M, Ev, Dv). As with the
collaboration diagram sets, to simplify our presentation, we
assume that the collaboration diagrams in a collaboration
diagram graph only differ in their event sets and dependency
relations.
Given a collaboration diagram graph G = (vs, Z, V, O)

we define the set of interactions defined by G as I(G). The
interactions of a collaboration diagram graph is defined as
the concatenation of the interactions of its vertices on a path
that starts from the initial vertex and ends at a final vertex.
Formally, an interaction σ ∈ M ∗, is in the interaction set of
G, i.e., σ ∈ G, if and only if σ = σ1σ2 . . .σn where for all
i ∈ [1..n] σi ∈ M∗ and there exists a path v1, v2, . . . , vn in
G such that v1 = vs, vn ∈ Z , for all 1 ≤ i < n (vi, vi+1) ∈
O and for all 1 ≤ i ≤ n σi ∈ I(vi).
Collaboration diagram graphs are strictly more powerful

than the collaboration diagram sets:

Theorem 5 There exists a collaboration diagram graph G
such that there is no collaboration diagram S for which
I(G) = I(S).

The set of interactions specified by the collaboration di-
agram graph given in Figure 10 cannot be specified by any
collaboration diagram set. Note that the set of interactions
specified in Figure 10 involve arbitrary number of repeti-
tions of two consecutive events. There is no way to specify

such interactions using collaboration diagram sets since the
only available repetition construct is “*” which repeats a
single event.
Collaboration diagram graphs and conversation proto-

cols have the same expressive power:

Theorem 6 Given a collaboration diagram graph G there
exists a conversation protocol P such that I(G) = I(P)
and visa versa.

Given a collaboration diagram graph G = (vs, Z, V, O)
where each v ∈ V is a collaboration diagram v = (P , L,
M , Ev , Dv), we will construct a conversation protocol PG

= (P , AG) whereAG = (M , T , s, F , δ), such that I(G) =
I(PG). First, for each vertex v ∈ V of G, construct a con-
versation protocol Pv = (P,Av), where Av = (M , Tv, sv ,
Fv, δv), using the construction given above for translating
collaboration diagram sets to conversation protocols (each
vertex v corresponds to a singleton collaboration diagram
set) such that I(v) = I(Pv). Then for AG = (M , T , s, F ,
δ) we have T =

⋃
v∈V Tv, i.e., the set of states ofAG is the

union of the states of the conversation protocols constructed
for each vertex of G. We define the initial state ofAG as the
initial state of the conversation protocol constructed for the
initial vertex vs, i.e., s = svs

. The final states of AG are
the union of the final states of the conversation protocols
constructed for vertices v ∈ Z , i.e, F =

⋃
v∈Z Fv .

The transitions of AG include all the transitions of the
conversation protocols constructed for all the vertices, i.e.,
δ ⊇

⋃
v∈V δv. Additionally we add some ε-transitions to δ

as follows. For each edge (v, v′) ∈ O, where Av = (M ,
Tv, sv, Fv , δv) and Av′ = (M , Tv′ , sv′ , Fv′ , δv′) are the
automata constructed for v and v′, respectively, δ includes
an ε-transition from each final state ofAv to the initial state
of Av′ , i.e., δ ⊇

⋃
(v,v′)∈O,s∈Fv

(s, ε, sv′).
The set of interactions specified by the collaboration dia-

gram graph given in Figure 10(b) is the conversation proto-
col constructed for the collaboration diagram graph in Fig-
ure 10(a) based on the above construction.
It is easy to show that translation in the other direction is

also possible, i.e., given a conversation protocol it is possi-
ble to construct a collaboration diagram graphwith the same
interaction set. Note that, given a conversation protocol,
we can generate a collaboration diagram with a single send
event for each transition of the conversation protocol. Then,
we can combine these collaboration diagrams in a collabo-
ration diagram graph based on the transition relation of the
conversation protocol. We can also define the initial and fi-
nal states of the collaboration diagram based on the initial
and final states of the conversation protocol. Then, the re-
sulting collaboration diagram graph would specify exactly
the same set of interactions defined by the conversation pro-
tocol.

5.3. Realizability Revisited

Since we showed that we can translate collaboration di-
agrams to conversation protocols, we can use the earlier re-
alizability results on conversation protocols to identify re-
alizable collaboration diagram graphs. In [9, 10], three
realizability conditions for conversation protocols are de-
fined: synchronous compatibility, autonomy, and lossless
join. Given a collaboration diagram graph G, let PG be a
conversation protocol with the same interaction set. If P
satisfies the synchronous compatibility, autonomy, and loss-
less join conditions then G is realizable.
Before presenting the three realizability conditions, we

need to define an alternative synchronous semantics for the
execution of a set of peers [10]. Intuitively, the synchronous
semantics dictates that the sending and receiving peers take
the send and receive actions concurrently even for asyn-
chronousmessages (i.e., asynchronousmessages are treated
exactly like the synchronous messages). During the execu-
tion based on the synchronous semantics there is no need to
have the input message queues.
Assume that we are given a set of peersA1, ...,An where

each automaton Ai is a finite state automaton defined as in
Section 3. The global configuration with respect to the syn-
chronous semantics, called the syn-configuration, is a tuple
(t1, ..., tn), where for each j ∈ [1..n], tj ∈ Tj is the local
state of peerAi. For two syn-configurations c = (t1, ..., tn)
and c′ = (t′1, ..., t

′
n), we say that c derives c′, written as

c → c′, if the following condition hold: Two peers ex-
ecute a send action (denoted as c

m
→ c′), i.e., there exist

1 ≤ i, j ≤ n andm ∈ M out
i ∩ M in

j such that:
1. (ti, !m, t′i) ∈ δi,
2. (tj , ?m, t′j) ∈ δj ,
3. t′k = tk for each k (= i and k (= j.
Notice that the messagem in the above definition can either
be an asynchronous or a synchronous message. We call this
new semantics described above the synchronous semantics
and the original semantics defined in Section 3 the asyn-
chronous semantics. The definitions of a run, a partial run,
and an interaction generated by a run for synchronous se-
mantics is similar to those of the asynchronous semantics
given in Section 3.
Given a conversation protocolP = (P,A)we denote the

projection of A = (M, T, s, F, δ) to peer pi ∈ P as πi(A)
which is defined as follows: πi(A) = (Mi, T, s, F, δi)
where Mi ⊆ M contains all the messages m such that
send(m) = pi or recv(m) = pi. The set of states, the ini-
tial state and the final states of A and πi(A) are the same.
We define δi as follows:
• For eachm ∈ M such thatm (∈ Mi, for each transition

(t1, m, t2) ∈ δ, or (t1, m, t2) ∈ δ we add the transition
(t1, ε , t2) to δi.

• For each m ∈ Mi such that send(m) = pi, for each
transition (t1 , m , t2) ∈ δ, we add the transition (t1,
!m, t2) to δi.

• For each m ∈ Mi such that recv(m) = pi, for each
transition (t1 , m, t2) ∈ δ, we add the transition (t1,
?m, t2) to δi.

• For each transition (t1, ε, t2) ∈ δ we add the transition
(t1, ε, t2) to δi.

Using the standard automata algorithms, we can remove ε-
transitions in a projection using determinization and then
minimize it. We call the resulting automaton the deter-
minized peer projection to pi. Figure 11 shows the deter-
minized peer projection of the conversation protocol in Fig-
ure 8 to the peers P, Q and R.

p1

p3p2

p4

?y

?y

!x

!x
q1

q4

q3
q2

!z

!y

!y

?x

?x
?z

P Q
R

q5

r1

r2

Figure 11. Projection of the conversation pro-
tocol in Figure 8 to peers P, Q and R (after
they are determinized and minimized).

We now describe the three realizability conditions pre-
sented in [9, 10]:

Synchronous compatible condition: This condition re-
quires that if we project the conversation protocol to each
peer, then for each syn-configuration that is reachable from
the initial state, if there is a peer which has a send transi-
tion for a message from its local state in that configuration,
then in the same configuration there should be a correspond-
ing peer with a receive transition from its local state for the
same message.

Autonomous condition: A conversation protocol is au-
tonomous if each of its determinized peer projections, at
any moment, can do only one of the following 1) termi-
nate, 2) send a message, or 3) receive a message. No-
tice that autonomous condition still allows a certain level
of nondeterminism, e.g., a peer can have a choice of send-
ing one of many messages. However, autonomous condi-
tion does not permit a choice between send and receive ac-
tions. To check the autonomous condition we obtain each
determinized peer projection and check that out-going tran-
sitions for each non-final state are either all send transitions

:P :Q

:R

2:y

1:x

x
y

P QR

Figure 12. A collaboration diagram which
specifies a set of interactions that cannot be
specified by Message Sequence Charts.

or all receive transitions. We also check that each final state
has no out-going transitions.

Lossless Join Condition: A conversation protocol is loss-
less join if the product automaton constructed from its de-
terminized projections is equivalent to itself. This condition
is a necessary condition for realizability.
Algorithms for checking the synchronous compatible,

autonomous and lossless join conditions are given in [10].
We now present the following realizability result:

Theorem 5.1 Given a collaboration diagram graph G, let
P be a conversation protocol where I(P) = I(G). Let
Ap1

, ...,Apn
be the determinized projections of P . If P

satisfies the synchronous compatible, autonomous and loss-
less join conditions, then I(Ap1

, ...,Apn
) = I(P) = I(G).

Moreover, Ap1
, ...,Apn

are well-behaved and for each in-
teraction generated by Ap1

, ...,Apn
(based on the asyn-

chronous semantics) there exists a run which generates the
same interaction in which each asynchronous send is imme-
diately followed by the corresponding receive.
This result follows directly from the realizability results

on conversation protocols presented in [9, 10]. Theorem 5.1
implies that if we convert a collaboration diagram graph to
an equivalent conversation protocol and examine the three
sufficient realizability conditions, then the collaboration di-
agram graph is guaranteed to be realizable if the equivalent
conversation protocol satisfies the three realizability condi-
tions. Moreover, the collaboration diagram graph will be
realized by the determinized projections of the equivalent
conversation protocol. Note that, in addition to providing a
way to determine realizability, this gives us a way to con-
struct the peers which realize the set of interactions speci-
fied by the collaboration diagram graph.

6. Related Work

Message Sequence Charts (MSC) [12] provide another
visual model for specification of interactions in distributed

x y

P Q R :Q :R

:P

A1:x

B1:y

Figure 13. The ordering of the send and re-
ceive events described by the Message Se-
quence Chart on the left cannot be specified
by any collaboration diagram.

systems. MSC model has also been used in modeling and
verification of web services [8]. As opposed to the collab-
oration diagrams which only specify the ordering of send
events, in the MSCmodel ordering of both send and receive
events are captured. Another difference between the collab-
oration diagram model and the MSC model is the fact that
MSC model gives a local ordering of the send and receive
events whereas a collaboration diagram gives a global or-
dering of the send events. A detailed comparison of MSCs,
MSC graphs and conversation protocols is given in [10].
The examples in Figures 12 and 13 demonstrate the dif-

ferences between the MSC and collaboration diagram mod-
els. Consider the collaboration diagram shown in Figure 12
which states that the peer P should send the message x be-
fore peerR sends the message y. There is no way to express
this ordering using a MSC since the senders of messages y
and x are different. Even if peer P makes sure that it sends
message x before it receives message y (as shown in Figure
12), this does not guarantee that message y is sent after mes-
sage x is sent (note that these are asynchronous messages).
Figure 13, on the other hand, shows a MSC which spec-

ifies and ordering of send and receive events which cannot
be specified using a collaboration diagram. The MSC in
Figure 13 states that the peer Q should receive message x
before it receives message y, however, it does not specify
any ordering between the send events for messages x and
y. The collaboration diagram in Figure 13 also leaves the
ordering of send events for messages x and y unspecified,
however, there is no way of restricting the ordering of the
receive events in collaboration diagrams.
The realizability problem for MSCs [3] and its ex-

tensions such as high-level MSC (hMSC) [16] and MSC
Graphs [4] have been studied before. However as we dis-
cussed above, the type of interactions specified by collab-
oration diagrams and MSCs are different. Our generaliza-
tion of the collaboration diagrams to collaboration diagram
graphs is similar to (and in fact inspired by) the generaliza-
tion of MSCs to MSC graphs [4].

The notion of realizability has been studied for several
models of concurrent and distributed systems [1, 14, 15].
In [1, 14, 15], realizability problem is defined as whether a
peer has a strategy to cope with the environment no matter
how the environment decides to move. In our model, on the
other hand, the environment of an individual peer consists
of other peers which behave according to the given collabo-
ration diagram. Also our definition of realizability requires
that implementation should generate all (instead of a subset
of) behaviors as specified by a collaboration diagram.

7. Conclusions

In this paper we formalized the realizability problem for
collaboration diagrams. We gave sufficient conditions for
realizability of some classes of collaboration diagrams. We
generalized the collaboration diagrams to collaboration dia-
gram sets and collaboration diagram graphs and showed that
these models have increasing expressive power. We showed
that collaboration diagram graphs are equivalent to conver-
sation protocols. Hence, realizability conditions on conver-
sation protocols can be used to determine realizability of
conversation diagram graphs.
We believe that analysis of type interactions specified by

collaborations diagrams is becoming increasingly important
in the web services domain where autonomous peers in-
teract with each other through messages to achieve a com-
mon goal. Since such interactions can cross organizational
boundaries, it is necessary to focus on specification of in-
teractions rather then the internal structure of individual
peers. However, specification of interactions from a global
perspective inevitably leads to the realizability problem.
Our results in this paper address the realizability problem
when such interactions are specified using collaboration di-
agrams.

References

[1] M. Abadi, L. Lamport, and P.Wolper. Realizable and unreal-
izable specifications of reactive systems. In Proc. of 16th Int.
Colloq. on Automata, Languages and Programming, volume
372 of LNCS, pages 1–17. Springer Verlag, 1989.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
Services Concepts, Architectures and Applications Series:
Data-Centric Systems and Applications. Addison Wesley
Professional, 2002.

[3] R. Alur, K. Etessami, and M. Yannakakis. Inference of mes-
sage sequence charts. In Proc. 22nd Int. Conf. on Software
Engineering, pages 304–313, 2000.

[4] R. Alur, K. Etessami, and M. Yannakakis. Realizability and
verification of MSC graphs. In Proc. 28th Int. Colloq. on
Automata, Languages, and Programming, pages 797–808,
2001.

[5] Business process execution language for web services
(BPEL), version 1.1. http://www.ibm.com/
developerworks/library/ws-bpel.

[6] D. Brand and P. Zafiropulo. On communicating finite-state
machines. J. ACM, 30(2):323–342, 1983.

[7] C. Ferris and J. Farrell. What are web services? Comm. of
the ACM, 46(6):31–31, June 2003.

[8] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions. In Proc. 18th IEEE
Int. Conf. on Automated Software Engineering Conference,
pages 152–163, 2003.

[9] X. Fu, T. Bultan, and J. Su. Conversation protocols: A for-
malism for specification and analysis of reactive electronic
services. Theoretical Computer Science, 328(1-2):19–37,
November 2004.

[10] X. Fu, T. Bultan, and J. Su. Synchronizability of conversa-
tions among web services. IEEE Transactions on Software
Engineering, 31(12):1042–1055, December 2005.

[11] S. Kleijnen and S. Raju. An open web services architecture.
ACM Queue, 1(1):39–46, March 2003.

[12] Message Sequence Chart (MSC). ITU-T, Geneva Recom-
mendation Z.120, 1994.

[13] E. Newcomer. Understanding Web Services: XML, WSDL,
SOAP, and UDDI. Springer, 2004.

[14] A. Pnueli and R. Rosner. On the synthesis of a reactive mod-
ule. In Proc. 16th ACM Symp. Principles of Programming
Languages, pages 179–190, 1989.

[15] A. Pnueli and R. Rosner. On the synthesis of an asyn-
chronous reactive module. In Proc. 16th Int. Colloq. on Au-
tomata, Languages, and Programs, volume 372 of LNCS,
pages 652–671, 1989.

[16] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration
of scenario-based specifications and behavior models using
implied scenarios. ACMTransactions on Software Engineer-
ing and Methodology, 13(1):37–85, 2004.

[17] UML 2.0 superstructure specification. http://ww.uml.
org/, October 2004.

[18] Web Service Choreography Description Language (WS-
CDL). http://www.w3.org/TR/ws-cdl-10/,
2005.

