
Improved Throughput Bounds for
Interference-aware Routing in Wireless Networks

Chiranjeeb Buragohain and Subhash Suri Csaba D. Tóth Yunhong Zhou
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Abstract— We propose new algorithms and improved bounds
for interference-aware routing in wireless networks. First, we
prove that n arbitrarily matched source-destination pairs with
average distanced, for any 1 ≤ d ≤

√
n, in an O(n) size

grid network achieve throughput capacity Ω(n/d). By a simple
packing argument, this is also an upper bound in the worst-
case. We show that, interestingly, theΩ(n/d) throughput can
be achieved with single-path routing, and present a simple
distributed algorithm to compute these routes. For arbitrary
networks, we propose a newnode-based linear programming
formulation (LP-N ODE) that leads to an improved worst-case
throughput bound. Specifically, we show that the throughput
delivered by LP-NODE is at least1/3 of the optimal, improving
the previous best of1/8. In addition, we show that for certain
special topologies, such as tree-structured networks, LP-NODE
yields optimal throughput.

The multipath routes produced by our linear program can be
replaced by single-path routes using randomized rounding,at a
loss of O(log n) factor in the throughput. Achieving a constant
factor throughput approximation using single-path routes in
arbitrary networks seems difficult, and we prove that several
natural candidates for single-path routing fail to achieve a
constant-factor throughput and, in fact, do arbitrarily po orly.

Finally, we report on the experimental evaluation of our
algorithms. In simulations, LP-NODE achieves a throughput
typically within 10% of the optimal, and significantly higher
(almost twice) than the previous edge-based LP formulations.

I. I NTRODUCTION

Interference is a fundamental limiting factor in wireless net-
works. Due to interaction among transmissions of neighboring
nodes and need for multi-hop routing in large networks, it
is a non-trivial problem to estimate how much throughput a
network can deliver. In an important piece of work, Gupta and
Kumar [4] showed that in a random model, wheren identical
nodes are distributed uniformly in a unit square and each node
is communicating with a random destination, the capacity of
the network as measured in bit-meters/sec isO(

√
n). This

result articulates the packing constraint of then paths: on
average each path isΘ(

√
n) hops long, and thus in the space

of sizeO(n), only O(
√

n) paths can be accommodated.
The Gupta-Kumar result is quite elegant, but its relevance

to practical networks is dubious because it assumesrandom
source-destination (s–t) pairs. As Li et al. [12] point out,
such an assumption may hold in small networks, but it is
unlikely that communication patterns would be distributed
uniformly at random as the network scales. It is more relevant

to ask: what is the maximum possible throughput for a given
network layout and a given set ofs–t pairs? Jain et al. [5],
Alicherry et al. [1], and Kumar et al. [10] have investigatedthe
capacity of wireless networks for arbitrary source-destination
pairs, and arbitrary networks. They all model the problem as
a linear program (LP), and provide a computational scheme
for estimating the throughput. This is indeed an important
direction and, as one of our main results, we present a novel
node-basedLP formulation which, combined with anode
ordering technique, yields a 1/3 approximation of the optimal
throughput— this improves the previous best lower bound of
1/8. But we first begin with a more fundamental question.

Is there a generalization of the Gupta-Kumar result for arbi-
trary networks and arbitrary sets ofs–t pairs? In other words,
can one estimate the network capacity in broad terms, without
resorting to computational techniques? And how widely does
the capacity vary for different choices ofs–t pairs in the
network?

Of course, it is easy to observe that without some additional
parameters this question is not particularly meaningful. Be-
cause we measure throughput in the number of bits transmitted
(and not bit-meters as Gupta and Kumar), the capacity can vary
widely depending on how far apart the sources and destinations
are. If each source is adjacent to its destination, then we can
achieve a throughput ofΘ(n); if source-destination pairs are
Θ(n) distance apart (as in a path graph), then the throughput
drops toO(1). Thus, a natural and important parameter is the
distancebetween the source and destination nodes.

However, even if two input instances have roughly equal
average distance betweens–t pairs, their throughputs can vary
widely. If a constant size cut separates all source-destination
pairs, then the throughput is onlyO(1). This may occur, for
instance, if a single node with a few neighbors is the source of
all network traffic. Thus, under arbitrarily structured networks,
there seems little hope of a general theorem that characterizes
the maximum throughput tightly. We show, however, that there
is an intermediate ground ofstructured networkandgivens–t
pairs, where such a characterization is possible. The special
structure we consider is agrid network where thes–t pairs
form a matching. The following subsection details the main
contributions of our paper.



A. Our Contributions

1) Suppose we haven arbitrarily matchingof s–t pairs in
an Θ(

√
n) × Θ(

√
n) size grid network. We show that

if the average (hop) distance among thes–t pairs isd,
then it is always possible to achieve a total throughput
of Ω(n/d). There are instances where this bound is
tight. The Ω(n/d) throughput in a grid network can
be achieved by a simple routing scheme that routes
each flow along asingle path. Both the routing and
the scheduling algorithms are simple, deterministic, and
distributed. Thus, for the grid topology networks, one
can achieve (asymptotic) worst-case optimal throughput
without resorting tocomputationally expensive LP type
methods.

2) Our second result concerns an approximation bound for
the throughput in a general network:arbitrary network
layout andarbitrary s–t pairs. In contrast to previous
work [5], [1], [10], we introduce two novel ideas:
improved interference constraints at thenodelevel, and
an ordering on all the nodes. As a result of these two
ideas, we achieve an approximation ratio of 3 for the
optimal throughput, improving all previous bounds.

3) An interesting corollary is that LP-NODE, our node-
based LP formulation, yieldsprovably optimalthrough-
put if the network topology has a special structure, such
as a tree. Tree-like networks may be quite natural in
some wireless mesh networks, especially at the periph-
eries.

4) We show through experimentation that LP-NODE de-
livers excellent performance. In most cases, it achieves
twice the throughput of the edge-based LP, and within
10% of the optimal.

5) All LP based techniques split flows across multiple
paths, and an obvious question is to bound the integrality
gap between the optimal multi-path and single-path
routes. Several natural heuristics based on the classical
shortest path schemes are possible that try to route flows
along single-paths, while taking into account the inter-
ference between paths. Simulations studies [10] suggest
that, for random inputs, such routing schemes can give
acceptable results. However, little is known about the
worst-case performance of these heuristics. In this paper,
we establish upper bounds on the performance of three
natural routing schemes, and show that all of them can
have arbitrarily bad throughput. On the other hand, in
the special case of grid networks, we show that anO(1)
approximation with single-path routing is possible.

II. PRELIMINARIES AND RELATED WORK

We assume a standard graph model of wireless networks.
The network connectivity is described by an undirected graph
G = (V, E), where V denotes the set of ad-hoc wireless
nodes in a terrain, andE denotes the set of node-pairs that
are neighbors. The communication radius of every radio node
i ∈ {1, 2, . . . , n} is R; throughout the paper, we assume
that the communication occurs on a single radio channel,

although the extension to multiple channels is straightforward.
Each communicating node causes interferences at all other
nodes within distance̺ from it, where̺ ≥ R, is called the
interference radiusof the node. Note that we assume that
all radios have an identical communication radiusR, and
an identical interference radius̺. In order to simplify the
discussion, we assume that̺ = R, but all our arguments can
be easily extended to the general case of̺ > R.

A problem instance is a networkG = (V, E), and a set
of k source-destination pairs(sj , tj), j = 1, 2, . . . , k, where
sj and tj are nodes ofV . We assume that each sourcesj

wants to transmit to its targettj at a normalized rate of1. For
simplicity, we also assume that the channel capacity is also1;
again, these can easily be generalized to different rates. Our
problem is to maximize the networkthroughput, which is the
total amount of traffic that can be scheduled among all thes–t
pairs subject to the capacity and interference constraints.

A. Models of Interference
The wireless network uses a broadcast medium, which

means that when one node transmits, it causes interference
at the neighboring nodes, preventing them from receiving
(correct) signals from other nodes. The details of which nodes
cause interference at which other nodes depend on the specifics
of the MAC protocol being used. In this paper, we adopt
the interference model corresponding to the IEEE 802.11-like
MAC protocols, which is currently the most widely used MAC
protocol in wireless networks. Under this protocol, transmitters
are required to send RTS control messages and receivers to
send CTS and ACK messages. Two edgesinterfere if either
endpoint (node) of one edge is within the interference radius̺
of a node of the other edge. In other words, the edgesij andkl
interfere if max{dist(i, k), dist(i, l), dist(j, k), dist(j, l)} ≤
̺. It is clear that whenever a set of edges pairwise interfere
with each other, then only one of those edges can be active at
any point of time.

There are several other models of interference in the litera-
ture. Theprotocol modelintroduced by Gupta and Kumar [4]
assumes that the transmission from nodei is received correctly
at j if no other nodek is transmitting within interference
range̺ of j. This model corresponds to MAC protocols that
do not require an ACK from the receiver. The throughput of
a network can be higher under the protocol model because
it assumes a weaker interference condition than the 802.11-
like protocols. Thetransmitter modelintroduced in Kumar et
al. [10] assumes that two transmitting nodes are in conflict
unless they are separated bytwice the interference range
(2̺). The interference condition assumed here is unnecessarily
stronger than 802.11 MACs and leads to a lower estimate of
throughput of the network. While we have chosen to work
with the 802.11 model of interference, our methodology is
quite general, and can be applied to these other models as
well.

B. Organization

The remainder of the paper is organized as follows. In
Section II-C, we briefly review related previous work. In



Section III, we consider the network capacity in grid-like
networks for arbitrary matcheds–t pairs. In Section IV,
we describe our node-based linear programming scheme for
arbitrary networks and arbitrarys–t pairs, and prove that it
yields 1/3 of the optimal throughput. In Section V, we discuss
the throughput problem under the single-path constraint, and
present constructions that exhibit poor performance by natural
greedy schemes in the worst-case. In Section VI, we discuss
our experimental results. We conclude with some future direc-
tions in Section VII.

C. Related Work

Gupta and Kumar [4] provide (near) tight bounds on the
throughput capacity of arandom network, where the nodes
are placed randomly in a square and sources and destinations
are randomly paired. They show that the expected throughput
available to each node in the network isΘ(1/

√
n). Their result

essentially suggests that interference leads to ageometric
packing constraint in the medium. In a follow up paper, Li
et al. [12] carried out simulations and experiments to measure
the impact of interference in some realistic networks. They
made the case that uniformly randoms–t pairs might be very
unlikely in practice. They argue that ifs–t pairs are not too
far from each other then the throughput improves; in fact,
they observe that the throughput is bounded byO(n/d) if the
averages–t separation isd. They cannot tell, however, if this
throughput bound can always be achieved. Kyasanur et al. [11]
have recently extended the work of Gupta and Kumar [4] and
studied the dependence of total throughput on the number of
radio channels and interfaces at each node.

While the results of Gupta-Kumar and Li et al. focused
on random or grid-like networks, they did not address a very
practical question: given a particular instance of a network
and a set ofs–t pairs, how much throughput is achievable?
Jain et al. [5] formalized this problem, proved that it is
NP-hard, and gave upper and lower bounds to estimate the
optimal throughput. Their methods, however, do not trans-
late to polynomial time approximation algorithms with any
provable guarantees. Kodialam et al. [7] studied a variant of
the throughput maximization problem for arbitrary networks,
but they do not consider the effect of interference in detail.
The interference constraints were very simply modeled by
requiring the nodes not to transmit and receive at the same
time. The actual patterns of interference in a realistic wireless
network are more complex. Recently Padhye et al. [13] have
taken significant steps to measure interference between real
radio links.

The interference effects in wireless networks can be reduced
by utilizing multiple radio channels and interfaces. Raniwala
et al. [15] have designed and implemented a multichannel
wireless network. Draves et al. [3] have proposed routing
metrics to efficiently route in such networks. On the theoretical
side, the problem of maximizing throughput in a network using
multiple radio channels and interfaces have been studied by
Alicherry et al. [1] and Kodialam et al. [8].

Kumar et al. [10], [9] were the first to give a constant factor
approximation algorithm for the throughput maximization
problem in a network with a single radio channel. In particular,
they give a 5-approximation algorithm under thetransmitter
model. As we mentioned earlier, the transmitter model is
unduly restrictive compared to the 802.11-like models, and
their algorithm does not give any explicit approximation bound
for the 802.11 model. Alicherry et al. [1] considered the prob-
lem of routing in the presence of interference with multiple
radio channels and interfaces. As part of that work, they give
an approximation algorithm for the throughput maximization
problem with a constant factor guarantee under the 802.11-
like model using interference constraints between edges. Their
approximation factor is 1/8 for the case of̺ = R, and it
becomes progressively worse as̺ becomes larger compared
to R. By contrast, our approximation factor is 1/3, and does
not depend on the ratio̺/R.

III. M AXIMUM THROUGHPUT FORGRID TOPOLOGIES

Before we discuss our linear programming approach for
computing interference-aware routes in arbitrary wireless net-
works with arbitrarys–t pairs, it is worth asking to what
extent one can estimate the throughput usingstructural facts,
in the style of Gupta and Kumar [4]. In other words, are
there simple characterizations of the network and thes–t
distributions that allow us to derive good estimates of the
achievable throughputwithout resorting to computationally
expensive methods such as linear programming. We do not
know of any result of this type for completely general setting
(nor is one likely to exist), but we show below that for special
network topologies, such as grids, and if each node participates
in a bounded number ofs–t pairs, one can obtain a bound
on achievable throughput based on average separation among
source-destination pairs. Furthermore, we also show that a
simple and distributed routing scheme can achieve the optimal
throughput usingsinglepaths.

Consider a grid network of sizeΘ(
√

n)×Θ(
√

n), which can
be thought of as a square lattice in the plane. We assume there
aren s–t pairs, arbitrarily chosen by the user (or adversary),
and each lattice point appears inO(1) source and destination
nodes. We assume thatR = ̺ = 1, each edge in the network
has capacity 1, and each source wants to communicate with its
destination at the rate of 1. These demands are assumed to be
persistent, i.e., the flow demands are constant over time and
we are interested in the steady state flow. We wish to maximize
the total throughput among alls–t pairs. (For the moment, we
will not worry about fairness among different pairs, but will
discuss that issue briefly in Section VI-C.)

A. Manhattan Routing

We first consider the case when eachs–t pair has (lattice)
distanced. In the following subsection, we will generalize the
result to average distances. A simple packing argument shows
that the maximum possible throughput is at mostO(n/d); a
similar observation was also made in Li et al. [12]. But it is far
from obvious thatΩ(n/d) throughput canalwaysbe realized



(for adversarially chosens–t matchings). By clustering sources
on one side, and destinations on the other, it may be possible
to create significant bottlenecks in routing.

In fact, one can see that a simple-minded routing scheme
can lead to very low throughput. Consider, for instance, the
particular choice ofs–t pairs shown in Fig. 1. There are
4 source-destination pairs{(A, B), (C, D), (F, E), (G, H)}.
Suppose we route each flow using the shortest paths, staying as
close as possible to the straight line joining thes–t pair. These
routes are shown using dotted lines in Fig. 1. Observe that all
these paths go through a common nodeN , which becomes the
bottleneck, and limits the total throughput to 1. Nevertheless,
the following result shows that for any configuration ofn
source-destination pairs, one can achieveΘ(n/d) throughput.

A

B

C

D

E

F

G

H

N

Fig. 1. Illustration of the Manhattan routing. The source-destination pairs
are (A,B), (C,D), (E,F) and (G,H).

Theorem 1:Consider n source-destination pairs in an
Θ(

√
n) × Θ(

√
n) size grid, with each grid point appears in

O(1) source and destination nodes. Suppose that eachs–t pair
has (lattice) distanced. Then, one can always achieve the
(asymptotic) maximum throughput ofΘ(n/d) using single-
path routing.

Proof: Using a packing argument, it is easy to see that
O(n/d) is an upper bound on the throughput: the network’s
total transport capacity (bits× distance) isO(n), each bit
transmitted from a source to its destination travelsΩ(d)
distance, and so the maximum throughput isO(n/d).

The main part of the theorem is the lower bound, that
Ω(n/d) throughput can always be realized. We argue that a
particular routing strategy, which we callManhattan routing, is
able to guaranteeΩ(n/d) throughput. We consider a particular
s–t pair, and suppose that the source has coordinates(xs, ys)
while the destination has coordinates(xt, yt). We route along
a path that runs from(xs, ys) to (xt, ys), and then to(xt, yt).
That is, the path is composed of two segments, forming an
L-shape (see Fig. 1).

We now argue that this Manhattan routing has the desired
throughput guarantee. For any nodei, let column(i) be the
set of nodes that have the samex-coordinate asi; similarly, let
row(i) be the set of nodes that share the samey-coordinate as
i. The key observation is that a nodek appears in the routing

path fromi to j if and only if i ∈ row(k) or j ∈ column(k),
and bothi and j lie at a distance less thand from k. Since
each grid point appears inO(1) source-destination pairs, at
mostO(d) flows are routed through nodek. Thus, if we route
all the flows using Manhattan routing and allocateΘ(1/d)
capacity to eachs–t pair, the resulting flow will be feasible
and respects all interference constraints. This gives a feasible
throughput ofΘ(n/d), and so our proof is complete.

B. Extension to average or median distances

It is somewhat surprising that a simple routing scheme
that is oblivious to the global details of source-destination
placements can route flows (asymptotically) optimally. We
now show that the result actually holds more broadly, for
the case whend is either theaverageor themediandistance
among all pairs.

Theorem 2:Consider n source-destination pairs in an
Θ(

√
n) × Θ(

√
n) size grid, with each grid point appears in

O(1) source and destination nodes. If theaverageor median
(lattice) distance between thes–t pairs is d, then one can
always achieve a throughput ofΩ(n/d).

Proof: We simply observe that if then pairs have average
distanced, then at least half the pairs must be at distance less
than2d. We set the rate for all the pairs whose separation is
larger than2d to zero, and route the remaining pairs using
Manhattan routing. By Theorem 1, the throughput of these
routes isΩ(n/d).

A similar argument shows that a throughput ofΩ(n/d) is
also achievable when themedians–t distance isd.

These bounds characterize the throughput of an instance
based on just one key parameter: the separation among the
source-destination pairs. Given an instance of the problem, a
network manager can now deduce the asymptotic worst-case
optimal throughput of the network simply from the distances
among the source-destination pairs. From a network manager’s
perspective, this result is an encouraging one: while the traffic
matrix of a network is beyond control, the network topology
is something she can control. Thus, our result suggests thatin
sufficiently regular network topologies, one can consistently
achieve high throughputanddo so through single-path routing.

IV. T HROUGHPUT INARBITRARY WIRELESSNETWORKS

In this section, we consider the general problem of esti-
mating the throughput for a given (arbitrary) network with
arbitrarys–t pairs (namely, the problem defined in Section II).

A. A Linear Programming Approach

The throughput maximization problem is a joint routing and
scheduling problem: route a multicommodity flow between the
s-t pairs and schedule the links subject to the interference
constraints.

We first consider the routing part and formulate a linear
program with flow conservation constraints. We will add addi-
tional interference constraints later to guarantee schedulability
of the underlying flow. The throughput maximization problem
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Fig. 2. Interference zone for a single nodei

for a single s–t pair with only flow constraints is just the
classical max-flow problem:

Maximize
∑

i∈N(s)

fsi subject to

∑

j∈N(i)

fij =
∑

j∈N(i)

fji, ∀ i 6= s, t

0 ≤ fij ≤ 1, ∀ ij ∈ E (1)

wherefij denotes the amount of flow in edgeij from nodei
to nodej, for each edgeij ∈ E, andN(i) denotes the set of
nodes adjacent toi. The objective function maximizes the total
flow out of s subject to the capacity constraint on each edge;
the other constraint imposes the flow conservation condition
at each intermediate node. In order to simplify the discussion,
we have assumed that there is only one source-destination pair
(s, t). The extension to multiple pairs is straightforward: in
each term, we sum over all flows instead of just one.

Given the routes of a multicommodity flow, it is nontrivial
and sometimes infeasible to find a schedule subject to inter-
ference constraints. We now describe how to add (restrictive)
interference constraints to guarantee schedulability.

Jain et al. [5] modeled schedulability under interference con-
straints using anindependent setframework, which attempts to
assign time slots to all maximal independent sets of theconflict
graph. 1 This approach yields optimal throughput, however
it takes exponential time since the total number of maximal
independent sets is normally exponentially large. Alternative
approaches [9], [10], [1] try to enforcerestrictive interference
constraints to guarantee schedulability of the underlyingflow.
This may sacrifice optimality but hopefully it remains closeto
the optimum. Alicherry et al [1] addedrestrictive interference
constraints on the link level, and Kumar et al. [10] did the same
with an additional ordering over all the edges. Our approach
is similar to [1], [10], however improves both by addingless
restrictive interference constraints on the node level and a
global ordering on all the nodes. These two ideas allow us
to guarantee an approximation ratio of 3.

1Nodes of the conflict graph are links in the physical connectivity graph
and edges are mutually interfering links.

Schedulability with Node Level Interference Constraints

Let us assume that the flow of data through the network
is infinitely divisible like fluids. In a steady state solution, an
edgeij carries the flow offij ≤ 1 (recall that each edge has
unit capacity). This means that in everyunit time interval, the
edgeij is required to be active for anfij fraction of time and
remain inactive for the rest of the time. We introduce two sets
of variablesτij and τi, resp., so thatτij represents thetotal
fraction of the unit time interval that an edgeij is active and
similarly τi is the fraction of time for the nodei.

τij = fij + fji ≤ 1,

τi =
∑

j∈N(i)

τij ≤ 1, ∀ i ∈ V. (2)

Using these variables, we can now introduce thenode inter-
ferenceconstraint which enforces the interference restrictions.
Consider the nodei shown in Fig. 2, and the set of its
neighbors (within interference range) denoted byN(i). It is
clear that while any nodej in the setN(i)∪{i} is transmitting,
all other nodes in its range must be inactive unless there is a
single node that is communicating withj. Writing N(i)∪{i}
instead of the range ofj leads us to the following constraint:

∑

j∈N(i)∪{i}

τj −
∑

j,k∈N(i)∪{i}, jk∈E

τjk ≤ 1, ∀i ∈ V, (3)

where E denotes the edges of the interference graph. To
understand this inequality, let us consider which nodes can
be active for how long in any given unit time interval. The
first term in LHS, counts the total amount of time (out of the
unit time interval) that nodes are active in the neighborhood
of i. The second term accounts for the fact that if two nodesj
andk in the neighborhood ofi are communicating with each
other, the time they spend communicating to each other should
be counted only once.

By construction, if the nodes satisfy condition (3), then the
flow is definitely free of interference. But condition (3) is
actually more restrictive than necessary. For instance, consider
the nodesj andk in Fig. 2, which are separated by a distance
larger than the radio range. Constraint (3) implies that the
edgesjp andkq can not be active at the same time, while in
reality they can. Eliminating such unnecessary constraints is
key to our improved analysis, and so we next introduce the
idea of node ordering.

Node ordering

Consider a total order on the nodes. (We will prescribe a
specific order shortly.) Observe that the interference relation
is symmetric. If nodesi andj interfere with each other, then
constraint (3) imposes the interference condition twice: once
when we consider the neighborhood ofi and once forj.
Therefore, ifi precedesj in the ordering, then it is enough to
only consider the constraint introduced byi on j. Specifically,
let NL(i) denote the set of interfering nodesprecedingnode
i in the ordering, then the following relaxed constraint still
ensures an interference-free schedule.



∑

j∈NL(i)∪{i}

τj −
∑

j,k∈NL(i)∪{i}, jk∈E

τjk ≤ 1, ∀i ∈ V. (4)

In order to defineNL(i), any arbitrary ordering over the
nodes will work. To get a good approximation factor, we
specify the followinglexicographicalorder on the nodes:i
precedesj if and only if, denoting the coordinates of the points
by i = (xi, yi) and j = (xj , yj), we have eitherxi < xj or
xi = xj andyi < yj .

LP-NODE

We are now ready to describe the complete linear program,
which we call LP-NODE.

Maximize
∑

i∈N(s)

fsi subject to

∑

j∈N(i)

fij =
∑

j∈N(i)

fji, ∀ i 6= s, t

0 ≤ fij ≤ 1, ∀ ij ∈ E

τij = fij + fji ≤ 1,

τi =
∑

j∈N(i)

τij ≤ 1, ∀ i ∈ V,

∑

j∈NL(i)∪{i}

τj −
∑

j,k∈NL(i)∪{i}, jk∈E

τjk ≤ 1, ∀ i ∈ V. (5)

By construction, the solution to LP-NODE leads to a
feasible flow. Let the total flow produced by LP-NODE be
fNODE. We prove below thatfNODE is schedulable, and it
gives a factor-3 approximation tofOPT.

Theorem 3:The flow produced by the solution of
LP-NODE is schedulable and satisfiesfNODE ≤ fOPT ≤
3fNODE .

Proof: The schedulability offNODE is guaranteed by
constraint (5). Details are omitted due to space limit. Similar
proofs can be found in [10] and [1]. The inequalityfNODE ≤
fOPT follows directly from the definition offOPT and the
feasibility of fNODE.

For the second part of the inequality, we will show
that fOPT/3 ≤ fNODE. For the optimal solution OPT, let
fij(OPT) denote the flow value overij for each edgeij ∈
E. We define another solutionOPT′ with fij(OPT′) =
fij(OPT)/3 for all ij ∈ E. It is obvious thatfOPT′ =
fOPT/3 andOPT′ has a interference-free schedule. IfOPT′

satisfies the constraints of LP-NODE, thenfOPT′ ≤ fNODE,
and the second part of the inequality follows.

It is easy to verify thatOPT′ satisfies all the flow constraints
of LP-NODE. The only non-trivial constraint is eqn. (5), which
is equivalent to

∑

j∈NL(i)∪{i}

τj(OPT) −
∑

j,k∈NL(i)∪{i}, jk∈E

τjk(OPT) ≤ 3, ∀ i ∈ V. (6)

Consider a nodei ∈ V as shown in Fig. 2 and the airspaceP
which is the left half of the unit disk centered ati. All links
counted in eqn. (6) have an endpoint inP . At any point in time,

we claim that there are at most three active links intersecting
with P . This immediately implies eqn. (6). To prove this claim,
it is sufficient to show that it is impossible to put four points in
P such that all pairwise distances are strictly greater than 1. If
four points are placed on the half-disk centered ati, then there
exist two pointsp, q such that6 piq ≤ π/3. Since|ip| ≤ 1 and
|iq| ≤ 1, |pq| ≤ 1. In summary, there are at most three active
links in P at any time, and the proof is complete.

The above proof can easily be extended to the case that the
interference range̺ is larger than radio rangeR = 1. Consider
any ̺ > 1. Constraint (5) will now include all nodes which
are within interference range ofi. We can see from Fig. 2,
that within a semicircle of radius̺, we can still pack at most
3 nodes which do not interfere with each other and hence the
approximation bound given above, holds forany ̺ > R. By
contrast, the approximation ratio given by Alicherry et al.[1]
grows monotonically with increasing̺; it is 8 when̺ = 2R,
12 when̺ = 2.5R, and so on.

B. Optimal Throughput for Tree-Structured Networks

If the underlying network is a tree, then we show that a vari-
ation of our LP-NODE can solve the throughput maximization
problem optimally. Given a tree, pick an arbitrary node and
root the tree at that node. Then perform abreadth first search
(BFS) of the tree, starting at the root, and list the nodes in the
order they are visited during the search. We now make akey
observation: for any nodei, the setNL(i) contains exactly
one preceding node in this ordering, which is the parent of
i. That is, constraint (4) states that at most one edge should
be active simultaneously for all edges adjacent to eitheri or
j. This is also anecessarycondition, since all edges adjacent
to eitheri or j are pairwise interfering with each other. Thus
the constraint imposed by condition (5) is optimal, and so the
solution of LP-NODE is optimal as long as the ordering of the
nodes is given by the BFS order. We summarize this result
as follows.

Theorem 4:If the network connectivity graph is a tree,
then a solution of LP-NODE with a BFS ordering solves the
throughput maximization problem optimally.

V. SINGLE-PATH ROUTING

The solution of any LP formulation described above leads
to a multicommodity flow which uses multiple paths to route
each commodity from source to destination. In many wire-
less network protocols, however, data are generally routed
along a single-path. In this section we address the question
whether it is feasible to achieve near optimal throughput using
single-paths only. A straightforward single-path routingap-
proach could be to greedily route flows using an interference-
dependent cost metric [10]. We first show that such greedy
approaches can have very poor performance, and then outline
approaches that can potentially lead to better throughput.

A. Worst-Case Performance of Single-Path Routing Heuristics

We show that three natural heuristics for maximizing
throughput under the single-path constraints do quite poorly:
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Fig. 3. Lower bound construction for MAX FLOW and ADJUSTFLOW-
GLOBAL algorithms.

when routingk source-destination pairs, their throughput may
be Ω(k) times smaller than the optimum.

We establish our bounds for greedy heuristics that routes–t
pairs sequentially. They differ in their policies of how to route
the next flow, but they all have the same objective: to maximize
the throughput (either system-wide or for a particular flow).
In the i-th step, each algorithm chooses apath from si to ti
along which to route thei-th flow, and theamount of flowfi

to send along this route. The three natural greedy heuristics
we study are the following:

1) MAX FLOW: This algorithm routes the next flow along
a path that maximizes its flow amount. Once a flow has
been set up, the algorithm cannot change its route nor
its flow amount.

2) ADJUSTFLOWGLOBAL : This algorithm canreducethe
flow for any previously routed flow, but it cannot change
the route for any existing flow. The algorithm adjusts
previous flows, if necessary, and routes the next one, to
maximize thecurrent total throughput.

3) ADJUSTFLOWLOCAL: Like the previous algorithm, this
algorithm cannot change the route for any existing flow,
but it can reducethe flow along any previously routed
flow. In particular, when multiple flows share a link or
interfere, the bandwidth is shared equally among the
flows (and so previously routed flow amounts are never
reduced to zero). But, unlike the previous algorithm, this
algorithm adjusts the previous flows to maximize the
flow of the next s–t pair.

All these algorithms areinterference-awareand fair-
sharing. In terms of computational power, all three algorithms
described above have unlimited power in choosing the routes;
but once chosen, they are not to be altered. However, the
algorithm can still reduce the previously scheduled flows if
doing so helps it maximize the throughput for the future
flows. Thus, these algorithms are fairly powerful versions of
the simple minimum-hop routing. Nevertheless, as we show
below, in the worst-case, their throughput can be1/k of the
optimal, wherek is the number ofs–t pairs in the input.

In order to understand the behavior of MAX FLOW, consider
the example network in Fig. 3. This greedy scheme schedules
the first two pairs(s1, t1) and(s2, t2), which then completely
block the remainingk − 2 pairs. (Because the algorithm does
not alter the previously set up flows, there is no interference-
free capacity available along any of the pathssi to ti, for i ≥
3.) The optimal solution, on the other hand, routes unit flows
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Fig. 4. Two crossing paths.
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Fig. 5. Lower bound construction for ADJUSTFLOWLOCAL.

along all si–ti pairs, for i = 3, 4, . . . , k. Thus, this routing
strategy has performance ratioΩ(k).

The same example also shows the poor performance of
the second routing strategy ADJUSTFLOWGLOBAL . It routes
the first two pairs(s1, t1) and (s2, t2) along the conflict-free
horizontal paths. Now consider any subsequent pairsi–ti,
i ≥ 3. Because the onlysi–ti path interferes with boths1–t1
ands2–t2, any flow allocation that does not setfi to zero, has
total throughput strictly smaller than 2. Thus, the algorithm
again rejects all subsequent pairs(si, ti), for i = 3, 4, . . . k.
An optimal solution establishesk− 2 interference-free routes,
and so this algorithm also achieves onlyO(1/k) fraction of
the optimal.

For ADJUSTFLOWLOCAL, we present a geometric con-
struction. Consider a simple path in a network carrying a
single unit of traffic. When two such paths intersect, they
can interfere with each other and reduce their individual
throughput. If two paths cross as depicted in Fig. 4, then
they can jointly carry the same amount of traffic as each
one would carry independently. In our general construction
(see Fig 5), we have4k pairs (si, ti), i = 1, 2, . . . , 4k.
Curves on the figure represent a sequence of nodes that do
not interfere with nodes off the path, the gray area at the
perimeter denotes a dense wireless cloud. Crossings inside
the middle square are realized as in Fig. 4. An optimal
solution can achieveΩ(k) total throughput, since any pair can
be connected by interference-free paths through the wireless
cloud. ADJUSTFLOWLOCAL may route the first four pairs
along theshortest pathswithout interference. But the first four
paths form a rectangle that separates the remaining(si, ti),



pairs for all i > 4. The flow F5 has to cross at least one
of the first four paths, therefore the total flow volume cannot
increase, even if 5 maximizes its own flow on the expense
of previous flows. So ADJUSTFLOWLOCAL can just as well
choose the shortest paths(s5, t5). Inductively one can see
that ADJUSTFLOWLOCAL optimizes the volume for each pair
(si, ti) if it chooses the shortest path. This means thatk/4
collides on each side of the rectangle, and the total flow
volume is onlyΘ(1).

B. LP Rounding Techniques and Single-Path Routing

The preceding discussion highlights some of the difficulties
in designing single-path routing schemes. A more sophis-
ticated approach is to utilize algorithms designed for the
Unsplittable Flow Problem(UFP). Given an undirected graph
G(V, E) with edge capacitiesce, and k source-destination
pairs (si, ti) with demandsqi, the UFP asks for the maxi-
mum multicommodity flow where each commodity isrouted
along a single-path. Without the interference constraint, our
throughput problem in wireless networks is exactly equivalent
to the UFP. For arbitrary network topologies, Raghavan and
Thompson [14] pioneered arandomized roundingscheme that
constructs a single-path flow from the multipath flow solution
achieved by the linear program solution. Thus, we can apply
this idea to the solution produced by our LP-NODE. However,
this solution is not entirely satisfactory because it losesa factor
of O(log n) in the final throughput.

Although a constant factor approximation algorithm for
arbitrary graphs remains elusive, Kleinberg [6] describes
an offline O(1)-approximation and an onlineO(log n)-
approximation algorithm for the unsplittable flow problem on
grid-like graphs. This work was built upon earlier results of
Raghavan-Thompson [14] and Awerbuch et al. [2]. Relying
on Kleinberg’s work, we can show that the maximal single-
path throughput problem on grid-like graphs can be reduced
to the unsplittable flow problem; which immediately leads to
a constant factor approximation algorithm for the single-path
routing problem. We point out that this result differs from the
setting of Section III, because the source-destination pairs are
not required to form a matching. In other words, this result
holds for arbitrarys–t pairs, furthermore the number ofs–t
pairs can be larger than the network size. This result is fairly
technical and, due to its complexity and length, we omit the
details, and simply state our main result.

Theorem 5:Given a square grid network and an arbitrary
set of source-destination pairs, there exists a polynomial-
time O(1)-approximation algorithm to maximize end-to-end
throughput with single-path routing.

VI. EXPERIMENTAL RESULTS

In this section, we report on the experimental evaluation
of our algorithms, and discuss the results of our simulations.
We ran experiments on both the regular as well as random
networks. The random networks consist ofn nodes spread
over a square

√
n × √

n area with radio range 3.0. Any two
nodes which are within radio range can communicate. This
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Fig. 6. Performance of the LP-NODE, LP-EDGE and OPTIMAL algorithms
with 32, 64 and 96-node networks.

radio range was chosen so that the network is connected with
probability close to one. We assume a bidirectional MAC
protocol (like 802.11) and that all radio ranges as well as
all interference ranges are the same. We assume that each link
can support 1 unit of throughput.

In our evaluation, we used three algorithms:

• LP-NODE: This is our main linear program described
in Section IV. This algorithm has provable worst-case
approximation ratio of 3.

• LP-EDGE: This is the best previously known linear
programming based scheme, as described in Alicherry
et al. [1]. This algorithm has an approximation ratio of
8, under the condition that̺ = R.

• OPTIMAL : Since the throughput maximization problem
is NP-Complete, there is no polynomial time scheme
to compute the maximum throughput. We therefore use
the independent set enumeration method described by
Jain et al. [5] by adding maximal independent sets into
interference constraints until adding more independent
sets does not improve the throughput any more. At this
point we declare convergence and use the final throughput
as optimal.

A. Throughput Scaling With Network Size

In this experiment, we tested how the performance of
LP-NODE scales with the network size. We used a random
network layout where the nodes were distributed uniformly at
random in a square. The source and destination are located at
diagonally opposite corners. We then increased the number of
nodes in the network from32 to 64 to 96. In each case, we
also computed the optimal throughputfOPT by running the
OPTIMAL algorithm.

In Fig. 6 we plot the throughput of the OPTIMAL , LP-NODE

and LP-EDGE algorithms. Our LP-NODE algorithm shows
excellent performance and yields close to 90% of the optimal
throughput. By contrast, LP-EDGE performs much worse and
achieves only 50%-60% of the OPTIMAL . In fact, even with
a single source-destination pair, LP-EDGE at times failed to
achieve 1/3 of the optimal throughput, which one could have
achieved by routing along a single-path [12]! With a single
s–t pair, the maximum possible throughput using multipath
routing is 5/6; by contrast, the maximum throughput using
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Fig. 8. Effect of fairness on total flow for 64 and 128-node networks. Note
that the fairness constraint lowers total throughput by only a small amount.

a single-path is1/3. In these cases, the constant factors in
the approximation algorithms become crucially important,and
LP-NODE does well.

B. Throughput Scaling with Source-Destination Pairs

In this experiment, we fixed the network and increased
the number ofs–t pairs in the network to evaluate the
throughput that the various routing schemes achieve. We used
a random network topology with 64 nodes and up to 16
source-destination pairs organized in a crosshatch pattern. In
Fig. 7 we plot the total throughput using LP-EDGE, LP-NODE

and OPTIMAL algorithms for different number of source-
destination pairs. As expected, we see that the throughput
increases with the number of flows, but the dependence is
not linear because interference from one set of paths reduces
throughput for other pairs. Again, LP-NODE shows excellent
performance, reaching near-optimal throughput in most cases,
while LP-EDGE achieves less than half the throughput of LP-
NODE.

C. Impact of Fairness on Flows

When multiple flows compete for bandwidth, the optimal
flow is not necessarily fair. In practice, though, fairness is
an important criterion in any network protocol. To investigate
the effect of fairness we again used uniformly random nodes
in a square with four source-destination pairs which intersect
at the center of the square. For multiple flows we enforced
the simplest fairness condition that each flow gets an equal

amount of the total flow. We computed the total throughput
using the LP-NODE algorithm and the results are shown in
Fig. 8. As expected we see that enforcing fairness reduces the
total throughput, but surprisingly,the effect is very mild. In
fact for the larger 128 node networks, the throughput for fair
and unfair flows is almost identical. This is due to the fact
that in larger networks the nodes have a lot of freedom in
routing the flows and hence overall interference around any
single node is low. Thus every flow can carry equal amounts
of traffic without congestion.

VII. D ISCUSSION

We have studied the throughput maximization problem in
multi-hop wireless networks explicitly taking into account
the radio interference. We show that in regular grid net-
works, a simple distributedsingle-pathrouting algorithm is
able to achieve (asymptotic) worst-case optimal throughput
with a dense distribution of source-destination matchings.
For arbitrary network layouts and arbitrarys–t pairs, we
proposed a novel node-based linear programming formulation
that achieves an approximation ratio of 3. We also argued
that, for general networks, the prospects for efficient single-
path routing using simple heuristic algorithms are more bleak.
But if the network has regular structure, such as a grid, then
a constant factor approximation is possible.
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