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Abstract— We propose new algorithms and improved bounds
for interference-aware routing in wireless networks. Fird, we
prove that n arbitrarily matched source-destination pairs with
average distanced, for any 1 < d < /n, in an O(n) size
grid network achieve throughput capacity Q(n/d). By a simple
packing argument, this is also an upper bound in the worst-
case. We show that, interestingly, the®2(n/d) throughput can
be achieved with single-path routing, and present a simple
distributed algorithm to compute these routes. For arbitrary
networks, we propose a newnode-based linear programming
formulation (LP-N oDE) that leads to an improved worst-case
throughput bound. Specifically, we show that the throughput
delivered by LP-NODE is at least1/3 of the optimal, improving
the previous best of1/8. In addition, we show that for certain
special topologies, such as tree-structured networks, LINODE
yields optimal throughput.

The multipath routes produced by our linear program can be
replaced by single-path routes using randomized roundingat a
loss of O(logn) factor in the throughput. Achieving a constant
factor throughput approximation using single-path routes in
arbitrary networks seems difficult, and we prove that sever&
natural candidates for single-path routing fail to achieve a
constant-factor throughput and, in fact, do arbitrarily po orly.

Finally, we report on the experimental evaluation of our
algorithms. In simulations, LP-NODE achieves a throughput
typically within 10% of the optimal, and significantly higher
(almost twice) than the previous edge-based LP formulatios

I. INTRODUCTION

Interference is a fundamental limiting factor in wireleggf-n

works. Due to interaction among transmissions of neighﬁg)ri@(
nodes and need for multi-hop routing in large networks,
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to ask: what is the maximum possible throughput for a given
network layout and a given set @&t pairs? Jain et al. [5],
Alicherry et al. [1], and Kumar et al. [10] have investigathd
capacity of wireless networks for arbitrary source-deston
pairs, and arbitrary networks. They all model the problem as
a linear program (LP), and provide a computational scheme
for estimating the throughput. This is indeed an important
direction and, as one of our main results, we present a novel
node-basedLP formulation which, combined with aode
orderingtechnique, yields a 1/3 approximation of the optimal
throughput— this improves the previous best lower bound of
1/8. But we first begin with a more fundamental question.

Is there a generalization of the Gupta-Kumar result for-arbi
trary networks and arbitrary sets oft pairs? In other words,
can one estimate the network capacity in broad terms, withou
resorting to computational techniques? And how widely does
the capacity vary for different choices af¢ pairs in the
network?

Of course, it is easy to observe that without some additional
parameters this question is not particularly meaningfd- B
cause we measure throughput in the number of bits transmitte
(and not bit-meters as Gupta and Kumar), the capacity can var
widely depending on how far apart the sources and destimsatio
are. If each source is adjacent to its destination, then we ca
achieve a throughput ad(n); if source-destination pairs are
n) distance apart (as in a path graph), then the throughput
grops toO(1). Thus, a natural and important parameter is the

is a non-trivial problem to estimate how much throughput Gistancebetween the source and destination nodes.
network can deliver. In an important piece of work, Gupta and

Kumar [4] showed that in a random model, wheré&entical

However, even if two input instances have roughly equal

nodes are distributed uniformly in a unit square and eacle noaverage distance betweer: pairs, their throughputs can vary
is communicating with a random destination, the capacity ofidely. If a constant size cut separates all source-degiima

the network as measured in bit-meters/sed®is/n). This
result articulates the packing constraint of thepaths: on

pairs, then the throughput is onty(1). This may occur, for
instance, if a single node with a few neighbors is the soufce o

average each path 8(,/n) hops long, and thus in the spacall network traffic. Thus, under arbitrarily structuredwetks,

of sizeO(n), only O(y/n) paths can be accommodated.

there seems little hope of a general theorem that charaeteri

The Gupta-Kumar result is quite elegant, but its relevantiee maximum throughput tightly. We show, however, thateher

to practical networks is dubious because it assuraaslom
source-destinations¢t) pairs. As Li et al. [12] point out,

is an intermediate ground sfructured networlandgivens—t
pairs, where such a characterization is possible. The &lpeci

such an assumption may hold in small networks, but it &ructure we consider is grid networkwhere thes—t pairs
unlikely that communication patterns would be distributefbrm a matching The following subsection details the main
uniformly at random as the network scales. It is more relevacontributions of our paper.



A. Our Contributions although the extension to multiple channels is straightéod.

1)

2)

3)

4)

5)

Suppose we have arbitrarily matchingof s—¢ pairs in Each communicating node causes interferences at all other

an ©(y/n) x ©(y/n) size grid network. We show that Nodes within distance from it, wherep > R, is called the

if the average (hop) distance among the pairs isd, interference radiusof the node. Note that we assume that
then it is always possible to achieve a total throughp@t! radios have an identical communication radits and

of Q(n/d). There are instances where this bound &N identical interference radius In order to simplify the
tight. The Q(n/d) throughput in a grid network can discuss_ion, we assume that= R, but all our arguments can
be achieved by a simple routing scheme that rout§ €asily extended to the general case of R.

each flow along asingle path. Both the routing and A Problem instance is a networ = (V. £), and a set
the scheduling algorithms are simple, deterministic, arff # source-destination pairs;;, ¢;), j = 1,2,..., k, where
distributed. Thus, for the grid topology networks, onéi @ndt; are nodes ofi”. We assume that each soureg
can achieve (asymptotic) worst-case optimal throughpfnts to transmit to its targej at a normalized rate_o‘lf._For
without resorting tocomputationally expensive LP typesmpllcny, we also assume that the channel capacity is Hlso
methods. again, these can easily be generalized to different ratas. O

Our second result concerns an approximation bound ffioPlem is to maximize the netwotkroughput which is the
the throughput in a general networbitrary network total amount of traffic that can be scheduled among allstite

layout andarbitrary s—t pairs. In contrast to previous pairs subject to the capacity and interference constraints
work [5], [1], [10], we introduce two novel ideas:A. Models of Interference

improved interference constraints at thedelevel, and  The wireless network uses a broadcast medium, which
an ordering on all the nodes. As a result of these twaneans that when one node transmits, it causes interference
ideas, we achieve an approximation ratio of 3 for that the neighboring nodes, preventing them from receiving
optimal throughput, improving all previous bounds. (correct) signals from other nodes. The details of whicheasod
An interesting corollary is that LP-OBDE, our node- cause interference at which other nodes depend on the sgecifi
based LP formulation, yieldgrovably optimalthrough- of the MAC protocol being used. In this paper, we adopt
put if the network topology has a special structure, suthe interference model corresponding to the IEEE 802 Kel -i

as a tree. Tree-like networks may be quite natural MAC protocols, which is currently the most widely used MAC
some wireless mesh networks, especially at the perighrotocol in wireless networks. Under this protocol, traitsens
eries. are required to send RTS control messages and receivers to
We show through experimentation that LRoDE de- send CTS and ACK messages. Two edigdsrfere if either
livers excellent performance. In most cases, it achieveadpoint (node) of one edge is within the interference mdiu
twice the throughput of the edge-based LP, and withiof a node of the other edge. In other words, the edgesidkl

10% of the optimal. interfere if max{dist(, k), dist(¢, 1), dist(j, k), dist(j,1)} <

All LP based techniques split flows across multiple. It is clear that whenever a set of edges pairwise interfere
paths, and an obvious question is to bound the integralitjith each other, then only one of those edges can be active at
gap between the optimal multi-path and single-patmy point of time.

routes. Several natural heuristics based on the classical'here are several other models of interference in the litera
shortest path schemes are possible that try to route flotuse. Theprotocol modelntroduced by Gupta and Kumar [4]
along single-paths, while taking into account the inteassumes that the transmission from nodgereceived correctly
ference between paths. Simulations studies [10] suggast; if no other nodek is transmitting within interference
that, for random inputs, such routing schemes can givangeo of ;. This model corresponds to MAC protocols that
acceptable results. However, little is known about the#o not require an ACK from the receivefhe throughput of
worst-case performance of these heuristics. In this paparnetwork can be higher under the protocol model because
we establish upper bounds on the performance of threeassumes a weaker interference condition than the 802.11-
natural routing schemes, and show that all of them céike protocols. Theransmitter modelntroduced in Kumar et
have arbitrarily bad throughput. On the other hand, ial. [10] assumes that two transmitting nodes are in conflict
the special case of grid networks, we show that@fi) unless they are separated Iwyice the interference range
approximation with single-path routing is possible.  (20). The interference condition assumed here is unnecessaril
stronger than 802.11 MACs and leads to a lower estimate of

. K .
Il. PRELIMINARIES AND RELATED WOR throughput of the network. While we have chosen to work

We assume a standard graph model of wireless networfgih the 802.11 model of interference, our methodology is

The network connectivity is described by an undirected 'gra&uite general, and can be applied to these other models as
G = (V,E), whereV denotes the set of ad-hoc wirelesgq.

nodes in a terrain, and’ denotes the set of node-pairs that o

are neighbors. The communication radius of every radio nofle Organization

i € {1,2,...,n} is R; throughout the paper, we assume The remainder of the paper is organized as follows. In
that the communication occurs on a single radio chann8ection II-C, we briefly review related previous work. In



Section Ill, we consider the network capacity in grid-like Kumar et al. [10], [9] were the first to give a constant factor
networks for arbitrary matched—t pairs. In Section IV, approximation algorithm for the throughput maximization
we describe our node-based linear programming scheme ffooblem in a network with a single radio channel. In paréeul
arbitrary networks and arbitrary—¢ pairs, and prove that it they give a 5-approximation algorithm under ttransmitter
yields 1/3 of the optimal throughput. In Section V, we dicusmodel As we mentioned earlier, the transmitter model is
the throughput problem under the single-path constraimd, aunduly restrictive compared to the 802.11-like models, and
present constructions that exhibit poor performance byrat their algorithm does not give any explicit approximatioruhd
greedy schemes in the worst-case. In Section VI, we discdssthe 802.11 model. Alicherry et al. [1] considered thelpro
our experimental results. We conclude with some futurecdirdem of routing in the presence of interference with multiple

tions in Section VII. radio channels and interfaces. As part of that work, theg giv
an approximation algorithm for the throughput maximizatio
C. Related Work problem with a constant factor guarantee under the 802.11-

like model using interference constraints between eddgesir T
Gupta and Kumar [4] provide (near) tight bounds on thgpproximation factor is 1/8 for the case of= R, and it
throughput capacity of aandomnetwork, where the nodeshecomes progressively worse asecomes larger compared
are placed randomly in a square and sources and destinati@n®. By contrast, our approximation factor is 1/3, and does
are randomly paired. They show that the expected throughpiét depend on the ratig/R.
available to each node in the networld$1/./n). Their result
essentially suggests that interference leads tgeametric ~ !ll. M AXIMUM THROUGHPUT FORGRID TOPOLOGIES

packing constraint in the medium. In a follow up paper, Li Before we discuss our linear programming approach for
etal. [12] carried out simulations and experiments to measomputing interference-aware routes in arbitrary wirelest-
the impact of interference in some realistic networks. Theyorks with arbitrarys—t pairs, it is worth asking to what
made the case that uniformly randes¥ pairs might be very extent one can estimate the throughput usitrgctural facts,
unlikely in practice. They argue that ¥t pairs are not too in the style of Gupta and Kumar [4]. In other words, are
far from each other then the throughput improves; in faghere simple characterizations of the network and ihe
they observe that the throughput is boundedlfy./d) if the  distributions that allow us to derive good estimates of the
averages—t separation isl. They cannot tell, however, if this achijevable throughpuwithout resorting to computationally
throughput bound can always be achieved. Kyasanur et dl. [Bkpensive methods such as linear programming. We do not
have recently extended the work of Gupta and Kumar [4] aghow of any result of this type for completely general settin
studied the dependence of total throughput on the number(gbr is one likely to exist), but we show below that for spécia
radio channels and interfaces at each node. network topologies, such as grids, and if each node paatieip

While the results of Gupta-Kumar and Li et al. focuseth a bounded number of—t pairs, one can obtain a bound
on random or grid-like networks, they did not address a vegn achievable throughput based on average separation among
practical question: given a particular instance of a nekwogsource-destination pairs. Furthermore, we also show that a
and a set ofs— pairs, how much throughput is achievable3imple and distributed routing scheme can achieve the aptim
Jain et al. [5] formalized this problem, proved that it ishroughput usingingle paths.
NP-hard, and gave upper and lower bounds to estimate the&onsider a grid network of siz@ (y/n) x ©(y/n), which can
optimal throughput. Their methods, however, do not trange thought of as a square lattice in the plane. We assume there
late to polynomial time approximation algorithms with anyren s—t pairs, arbitrarily chosen by the user (or adversary),
provable guarantees. Kodialam et al. [7] studied a variént and each lattice point appearsdr(1) source and destination
the throughput maximization problem for arbitrary netws)rk nodes. We assume th& = o = 1, each edge in the network
but they do not consider the effect of interference in detaitas capacity 1, and each source wants to communicate with its
The interference constraints were very simply modeled kjestination at the rate of 1. These demands are assumed to be
requiring the nodes not to transmit and receive at the sapersistent, i.e., the flow demands are constant over time and
time. The actual patterns of interference in a realistieless we are interested in the steady state flow. We wish to maximize
network are more complex. Recently Padhye et al. [13] ha¢e total throughput among ai- pairs. (For the moment, we
taken significant steps to measure interference betweén rgal not worry about fairness among different pairs, butlwil
radio links. discuss that issue briefly in Section VI-C.)

The interference effects in wireless networks can be ratiuce )
by utilizing multiple radio channels and interfaces. Reafiwy A- Manhattan Routing
et al. [15] have designed and implemented a multichannelWe first consider the case when each pair has (lattice)
wireless network. Draves et al. [3] have proposed routirdjstanced. In the following subsection, we will generalize the
metrics to efficiently route in such networks. On the theioatt result to average distances. A simple packing argumentshow
side, the problem of maximizing throughput in a network gsinthat the maximum possible throughput is at mest./d); a
multiple radio channels and interfaces have been studied dignilar observation was also made in Li et al. [12]. But itas f
Alicherry et al. [1] and Kodialam et al. [8]. from obvious that2(n/d) throughput caralwaysbe realized



(for adversarially chosest matchings). By clustering sourcespath from: to j if and only if ¢ € row(k) or j € column(k),

on one side, and destinations on the other, it may be possiatel bothi and j lie at a distance less thahfrom k. Since

to create significant bottlenecks in routing. each grid point appears i@(1) source-destination pairs, at
In fact, one can see that a simple-minded routing schemmstO(d) flows are routed through node Thus, if we route

can lead to very low throughput. Consider, for instance, tledl the flows using Manhattan routing and alloca®é1/d)

particular choice ofs— pairs shown in Fig. 1. There arecapacity to eachl—t pair, the resulting flow will be feasible

4 source-destination pair§(A, B), (C, D), (F,E),(G,H)}. and respects all interference constraints. This gives silflea

Suppose we route each flow using the shortest paths, stayinghaoughput of©(n/d), and so our proof is complete. B

close as possible to the straight line joining te pair. These ) ) )

routes are shown using dotted lines in Fig. 1. Observe that B Extension to average or median distances

these paths go through a common nddewhich becomes the It is somewhat surprising that a simple routing scheme

bottleneck, and limits the total throughput to 1. Neverss| that is oblivious to the global details of source-destiati

the following result shows that for any configuration of placements can route flows (asymptotically) optimally. We

source-destination pairs, one can achi®e/d) throughput. now show that the result actually holds more broadly, for

the case when is either theaverageor the mediandistance

A§ among all pairs.
,,,,, c Theorem 2:Consider n source-destination pairs in an

E ©(y/n) x ©(y/n) size grid, with each grid point appears in

i O(1) source and destination nodes. If theerageor median
(lattice) distance between the-t pairs isd, then one can
N always achieve a throughput 6f(n/d).

Proof: We simply observe that if the pairs have average
distanced, then at least half the pairs must be at distance less
_» "D than2d. We set the rate for all the pairs whose separation is
larger than2d to zero, and route the remaining pairs using

= X Manhattan routing. By Theorem 1, the throughput of these
{ YH routes isQ2(n/d).
. , _ o _ A similar argument shows that a throughputefn/d) is
Fig. 1. lllustration of the Manhattan routing. The sour@stihation pairs also achievable when theedians—t distance isd. -

are (A,B), (C,D), (E,F) and (G,H).
These bounds characterize the throughput of an instance

Theorem 1:Consider n source-destination pairs in anbased on just one key parameter: the separation among the
O(y/n) x ©(y/n) size grid, with each grid point appears irsource-destination pairs. Given an instance of the propbéem
O(1) source and destination nodes. Suppose that eachair network manager can now deduce the asymptotic worst-case
has (lattice) distancé. Then, one can always achieve th@ptimal throughput of the network simply from the distances
(asymptotic) maximum throughput & (n/d) using single- among the source-destination pairs. From a network maisager
path routing. perspective, this result is an encouraging one: while tiidr

Proof: Using a packing argument, it is easy to see thg{latrix of a network is beyond control, the network top_ology
O(n/d) is an upper bound on the throughput: the network!§ sc_)r_nethmg she can control. Thus,_our result suggest_srthat
total transport capacity (bitx distance) isO(n), each bit Sufficiently regular network topologies, one can conskjen
transmitted from a source to its destination travelsl) @achieve high throughpainddo so through single-path routing.
distance, and so the maximum throughpu®i:/d).

The main part of the theorem is the lower bound, tha
Q(n/d) throughput can always be realized. We argue that aln this section, we consider the general problem of esti-
particular routing strategy, which we céllanhattan routingis  mating the throughput for a given (arbitrary) network with
able to guarante@(n/d) throughput. We consider a particulararbitrarys—t pairs (namely, the problem defined in Section I1).
s—t pair, and suppose that the source has coordifateys)
while the destination has coordinates, y;). We route along

{V. THROUGHPUT INARBITRARY WIRELESSNETWORKS

A. A Linear Programming Approach

a path that runs fronx,, ys) to (z¢, ys), and then tqxy, y;). The throughput maximization problem is a joint routing and
That is, the path is composed of two segments, forming anheduling problem: route a multicommodity flow between the
L-shape (see Fig. 1). s-t pairs and schedule the links subject to the interference

We now argue that this Manhattan routing has the desirednstraints.
throughput guarantee. For any noddet columr{i) be the We first consider the routing part and formulate a linear
set of nodes that have the sameoordinate ag; similarly, let program with flow conservation constraints. We will add addi
row(i) be the set of nodes that share the sgrueordinate as tional interference constraints later to guarantee sdaédity
1. The key observation is that a noéleappears in the routing of the underlying flow. The throughput maximization problem



Schedulability with Node Level Interference Constraints

Let us assume that the flow of data through the network
is infinitely divisible like fluids. In a steady state solutican
edgeij carries the flow off;; <1 (recall that each edge has
unit capacity). This means that in evaugit time interva) the
edgeij is required to be active for afi; fraction of time and
remain inactive for the rest of the time. We introduce twe set
of variablesr;; andr;, resp., so that;; represents théotal
fraction of the unit time interval that an edggis active and
similarly 7; is the fraction of time for the nodé

Tij = fij+fi <l
4 R - ;
Fig. 2. Interference zone for a single node Ti = Z Ty <1, VieV (@)
JEN(?)

Using these variables, we can now introducertbde inter-
for a single s— pair with only flow constraints is just the ferenceconstraint which enforces the interference restrictions.

classical max-flow problem: Consider the nodé& shown in Fig. 2, and the set of its
neighbors (within interference range) denoted /6y:). It is
Maximize > fe subject to clear that while any nodgin the setV (i)U{i} is transmitting,
iEN(s) all other nodes in its range must be inactive unless there is a
Z fii = Z Fiin Vi st single node that is communicating wigh Writing N (i) U {i}
JeN() JeN () instead of the range of leads us to the following constraint:
0< fi; < 1, Vijek (1)

S - Yok <1, VieV, (3)

where f;; denotes the amount of flow in edgg from nodes: JEN@U{} jkEN(i)U{i}, jKEE

to nodej,_for eaqh edgegle E andN.(z) denqte_s the set of where E denotes the edges of the interference graph. To
nodes adjacent to The objective function maximizes the total e . . .
nderstand this inequality, let us consider which nodes can

flow out of s subject to the capacity constraint on each edg & active for how long in any given unit time interval. The

the other constraint imposes the flow conservation Comjiti(ﬂrst term in LHS, counts the total amount of time (out 'Of the

at each intermediate node. In order to simplify the disarssi = . . . ' o .

we have assumed that there is only one source-destination H?rl"t time interval) that nodes are active in the _ne|ghbot;hoo
of 7. The second term accounts for the fact that if two noges

. Th i Itipl irs i ightf s : ) L .
é‘;é% terrﬁ ?,;(;egj:ﬁno\t,zrrgﬁ tfllgv(\e/spi?srfe:d s;;z]}lljgsttoor]r;vard Ir(l;mdlc in the neighborhood of are communicating with each

Given the routes of a multicommodity flow, it is nontriviaIOther’ the time they spend communicating to each other ghoul

and sometimes infeasible to find a schedule subject to intQF— counted only once.

eence consraits e o descrbe ow o o (e 27 S0SLEn, |0 s sl conion (3, e
interference constraints to guarantee schedulability. y )

Jain et al. [5] modeled schedulability under interfererme-c actually more restrictive than necessary. For instanagsider

straints using amdependent sétamework, which attempts to |t2re gfiﬁgna?hdek r'; d'.:(')g ra2n V\éhI?Oirirzt_%nptargte_?n bﬁ{: d,:ﬁ:;nfhee
assign time slots to all maximal independent sets ottélict dges' andk canlnot bg e{ctive Zt tr:e s(ar)mle ti?nleswhile in
graph ! This approach yields optimal throughput, howeveF- 3E/P d '

it takes exponential time since the total number of maximé?ea“% t:jgir%ar;bfé'én:na;'lngissugg dugg?:;gsﬁ:g iz?rrg)sdiisé]tthe
independent sets is normally exponentially large. Altévea y P ysis,

approaches [9], [10], [1] try to enforaestrictiveinterference idea of node ordering.
constraints to guarantee schedulability of the underljiog.  Node ordering
This may sacrifice optimality but hopefully it remains cldee

the otptlm tu m. ,?[\::cr;.erlz et ?I [1](ja:éide@str;ct;vellgtzr_ge$ nce specific order shortly.) Observe that the interferenceticeia
constraints on the link level, and Kumar et al. [10] did thmea is symmetric. If nodes andj interfere with each other, then

With. an additional ordering over all the edges. Qur approagllsiraint (3) imposes the interference condition twiceceo
is similar to [1], [10], however improves both by additegs when we consider the neighborhood ofand once forj.
restrictive interference constraints on the node level and Fherefore. ifi precedes in the ordering, then it is enough to
tglobal orciermg on al t_he ?.odes.t.ThefSSe two ideas allow ltﬂ?‘nly consider the constraint introduced bgn ;. Specifically,
0 guarantee an approximation ratio ot .. let Ny (i) denote the set of interfering nodpgecedingnode

INodes of the conflict graph are links in the physical conniagtigraph ¢ N the ordgrmg, then the following relaxed constraintl stil
and edges are mutually interfering links. ensures an interference-free schedule.

Consider a total order on the nodes. (We will prescribe a



we claim that there are at most three active links intersgcti
. with P. This immediately implies eqn. (6). To prove this claim,
D7~ S < L VieVe @) i cuficiont tb show that s impgssible 0 F?ut four paitin
P such that all pairwise distances are strictly greater thdh 1
In order to defineNy (i), any arbitrary ordering over the four points are placed on the half-disk centered, &en there
nodes will work. To get a good approximation factor, wexist two pointsp, ¢ such that/piq < =/3. Since|ip| < 1 and
specify the followinglexicographicalorder on the nodesi |ig| <1, |pq| < 1. In summary, there are at most three active
precedeg if and only if, denoting the coordinates of the point$inks in P at any time, and the proof is complete. [ ]
by i = (z;,y;) andj = (z;,y;), we have eitherr; < x; or
Ti = T; andyi < Yj-

JENL(i)U{i} j,keNL())U{i}, jkEE

The above proof can easily be extended to the case that the
interference rangg s larger than radio rangk = 1. Consider

LP-NoDE any o > 1. Constraint (5) will now include all nodes which
We are now ready to describe the complete linear prograf#® Within interference range of We can see from Fig. 2,
which we call LP-NbDE. that within a semicircle of radiug, we can still pack at most

3 nodes which do not interfere with each other and hence the
approximation bound given above, holds oy o > R. By

Maximize > [« subject to contrast, the approximation ratio given by Alicherry et[al.
iEN(s) grows monotonically with increasing it is 8 whenp = 2R,
Z fii = Z fii, Yi#st 12 whenp = 2.5R, and so on.
JEN() JEN()

B. Optimal Throughput for Tree-Structured Networks

0< fi; <1, VijeE - : i
< fy < *J If the underlying network is a tree, then we show that a vari-

Tij = fij + fie <1, ation of our LP-NoDE can solve the throughput maximization
T = Z Ti; <1, VieV, problem optimally. Given a tree, pick an arbitrary node and
FEN(4) root the tree at that node. Then perforrbraadth first search
Z - Z e < 1, VieV.(5) (BFS) of the tree, starting at the root, and list the node&ién t

order they are visited during the search. We now makeya
) ] observation for any nodei, the setNy (i) contains exactly
By construction, the solution to LP-®bE leads t0 a gne preceding node in this ordering, which is the parent of
feasible flow. Let the total flow produced by LPeNE be ; That is, constraint (4) states that at most one edge should
Jnope. We prove below thaffxope is schedulable, and it pe active simultaneously for all edges adjacent to either
gives a factor-3 approximation tfopr. _ j. This is also anecessancondition, since all edges adjacent
Theorem 3:The flow produced by the solution oftg ejtheri or j are pairwise interfering with each other. Thus
LP-NODE is schedulable and satisfiefnope < fopt < the constraint imposed by condition (5) is optimal, and so th
3/NODE - - ) solution of LP-NoDE is optimal as long as the ordering of the
Proof: The schedulability offxopr is guaranteed by poges is given by the BFS order. We summarize this result
constraint (5). Details are omitted due to space limit. &mi 55 follows.
proofs can be found in [10] and [1]. The inequalfiyopr < Theorem 4:If the network connectivity graph is a tree,
fopr follows directly from the definition offopr and the then a solution of LP-NDE with a BFS ordering solves the

JENL(H)U{i}  4,keNL(i)U{i}, jkEE

feasibility of fxope. _ _ _ throughput maximization problem optimally.

For the second part of the inequality, we will show
that fopr/3 < fxopr. For the optimal solution OPT, let V. SINGLE-PATH ROUTING
fij(OPT) denote the flow value oveyj for each edge; € The solution of any LP formulation described above leads
E. We define another solutio®PT’ with f;;(OPT’) = to a multicommodity flow which uses multiple paths to route
fi;(OPT)/3 for all ij € E. It is obvious thatfoprr = each commodity from source to destination. In many wire-

fopr/3 andOPT’ has a interference-free scheduleOPT’ |ess network protocols, however, data are generally routed

satisfies the constraints of LPEWE, then fop < fxope, along a single-path. In this section we address the question

and the second part of the inequality follows. whether it is feasible to achieve near optimal throughpirtgus
Itis easy to verify thaOPT’ satisfies all the flow constraintssingle-paths only. A straightforward single-path routiag-

of LP-NODE. The only non-trivial constraint is eqn. (5), whichproach could be to greedily route flows using an interference

is equivalent to dependent cost metric [10]. We first show that such greedy

. approaches can have very poor performance, and then outline
; — ; < : :
4 ZTJ (OPT) Z T]’?(OPT) < 3 Viev. (6 approaches that can potentially lead to better throughput.
JENL()U{i}  j,k€ENL(i)u{i}, jkEE

Consider a nodé € V as shown in Fig. 2 and the airspae A Worst-Case Performance of Single-Path Routing Heusisti
which is the left half of the unit disk centered atAll links We show that three natural heuristics for maximizing
counted in eqgn. (6) have an endpoinfinAt any pointin time, throughput under the single-path constraints do quite Ipoor
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Fig. 3.  Lower bound construction for MkFLow and ADJUSTFLOW-
GLOBAL algorithms.

Fig. 4. Two crossing paths.

when routingk source-destination pairs, their throughput may
be Q(k) times smaller than the optimum.

We establish our bounds for greedy heuristics that reste
pairs sequentially. They differ in their policies of how tmute
the next flow, but they all have the same objective: to maxémiz
the throughput (either system-wide or for a particular flow)
In the i-th step, each algorithm choosegath from s; to ¢;
along which to route the-th flow, and theamount of flowf;
to send along this route. The three natural greedy hewgistic
we study are the following:

1) MaxFLow: This algorithm routes the next flow along
a path that maximizes its flow amount. Once a flow has
been set up, the algorithm cannot change its route Nor  gig 5. Lower bound construction for BUSTFLOWL OCAL.
its flow amount.

2) ADJUSTFLOWGLOBAL: This algorithm carreducethe
flow for any previously routed flow, but it cannot changalong all s;—t; pairs, fori = 3,4,...,k. Thus, this routing
the route for any existing flow. The algorithm adjuststrategy has performance rafit{k).

previous flows, if necessary, and routes the next one, toThe same example also shows the poor performance of
maximize thecurrent total throughput. the second routing strategypAUSTFLOWGLOBAL. It routes

3) AbJusTFLOWLOCAL: Like the previous algorithm, this the first two pairs(s;, 1) and (so, ;) along the conflict-free
algorithm cannot change the route for any existing flowiorizontal paths. Now consider any subsequent pait;,
but it canreducethe flow along any previously routed; > 3. Because the only,—t; path interferes with both;—t,
flow. In particular, when multiple flows share a link orands,—¢,, any flow allocation that does not sgtto zero, has
interfere, the bandwidth is shared equally among thetal throughput strictly smaller than 2. Thus, the alduorit
flows (and so previously routed flow amounts are nevegain rejects all subsequent pairs, ¢;), fori = 3,4,...k.
reduced to zero). But, unlike the previous algorithm, thian optimal solution establishds— 2 interference-free routes,

algorithm adjusts the previous flows to maximize th@nd so this algorithm also achieves oril1/k) fraction of
flow of the next s— pair. the optimal.

All these algorithms areinterference-awareand fair- For ADJUSTFLOWLOCAL, we present a geometric con-
sharing In terms of computational power, all three algorithmstruction. Consider a simple path in a network carrying a
described above have unlimited power in choosing the routgigle unit of traffic. When two such paths intersect, they
but once chosen, they are not to be altered. However, tt@n interfere with each other and reduce their individual
algorithm can still reduce the previously scheduled flows throughput. If two paths cross as depicted in Fig. 4, then
doing so helps it maximize the throughput for the futurthey can jointly carry the same amount of traffic as each
flows. Thus, these algorithms are fairly powerful versiofis @ne would carry independently. In our general construction
the simple minimum-hop routing. Nevertheless, as we shqgee Fig 5), we havelk pairs (s;,t;), i = 1,2,..., 4k.
below, in the worst-case, their throughput canlyé of the Curves on the figure represent a sequence of nodes that do
optimal, wherek is the number of—t pairs in the input. not interfere with nodes off the path, the gray area at the

In order to understand the behavior olAMFLOw, consider perimeter denotes a dense wireless cloud. Crossings inside
the example network in Fig. 3. This greedy scheme schedutee middle square are realized as in Fig. 4. An optimal
the first two pairg(s1,¢1) and(ss, t2), which then completely solution can achieve (k) total throughput, since any pair can
block the remaining: — 2 pairs. (Because the algorithm doede connected by interference-free paths through the ssele
not alter the previously set up flows, there is no interfeeenccloud. ADJusTFLOWLOCAL may route the first four pairs
free capacity available along any of the pathdo ¢;, fori > along theshortest pathsvithout interference. But the first four
3.) The optimal solution, on the other hand, routes unit flowsaths form a rectangle that separates the remaiing; ),




pairs for all > 4. The flow F; has to cross at least one 0.8 ‘ ‘ LP-EDGE Soo0
of the first four paths, therefore the total flow volume cannot 07t LE-NODE 1
increase, even if 5 maximizes its own flow on the expense ]
of previous flows. So AJusTFLOWLOCAL can just as well
choose the shortest patiiss,¢5). Inductively one can see
that ADJusTFLOWL OCAL optimizes the volume for each pair
(si,t;) if it chooses the shortest path. This means that
collides on each side of the rectangle, and the total flow

volume is only©(1).

Throughput

64
B. LP Rounding Techniques and Single-Path Routing Number of Nodes

The preceding discussion highlights some of the difficaltiarig. 6. Performance of the LP-dbE, LP-EDGE and QPTIMAL algorithms
in designing single-path routing schemes. A more sophiith 32, 64 and 96-node networks.
ticated approach is to utilize algorithms designed for the
Unsplittable Flow Problen{fUFP). Given an undirected graphradio range was chosen so that the network is connected with
G(V,E) with edge capacities., and k source-destination probability close to one. We assume a bidirectional MAC
pairs (s;,t;) with demandsg;, the UFP asks for the maxi- protocol (like 802.11) and that all radio ranges as well as
mum multicommodity flow where each commodityrisuted all interference ranges are the same. We assume that ech lin
along a single-pathWithout the interference constraint, ourcan support 1 unit of throughput.
throughput problem in wireless networks is exactly eqemél  In our evaluation, we used three algorithms:
to the UFP. For arbitrary network topologies, Raghavan and, | p-Nope: This is our main linear program described
Thompson [14] pioneeredrandomized roundingcheme that in Section IV. This algorithm has provable worst-case
constructs a single-path flow from the multipath flow solntio approximation ratio of 3.

achieved by the linear program solution. Thus, we can apply, | p-Epge: This is the best previously known linear

this idea to the solution produced by our LRoNE. However, programming based scheme, as described in Alicherry
this solution is not entirely satisfactory because it |asésctor et al. [1]. This algorithm has an approximation ratio of

Although a constant factor approximation algorithm for , OptimaL: Since the throughput maximization problem
arbitrary graphs remains elusive, Kleinberg [6] describes s NP-Complete, there is no polynomial time scheme
an offline O(1)-approximation and an online(logn)- to compute the maximum throughput. We therefore use
approximation algorithm for the unsplittable flow problem o the independent set enumeration method described by
grid'like graphS. This work was built Upon earlier resulfs o Jain et al_ [5] by add|ng maxima| independent sets into
Raghavan-Thompson [14] and Awerbuch et al. [2]. Relying interference constraints until adding more independent
on Kleinberg's work, we can show that the maximal single-  gets does not improve the throughput any more. At this

path throughput problem on grid-like graphs can be reduced point we declare convergence and use the final throughput
to the unsplittable flow problem; which immediately leads to a5 optimal.

a constant factor approximation algorithm for the singiéhp
routing problem. We point out that this result differs fronet A. Throughput Scaling With Network Size
setting of Section Ill, because the source-destinatiorsaie In this experiment, we tested how the performance of
not required to form a matching. In other words, this resuliP-NoDE scales with the network size. We used a random
holds for arbitrarys—¢ pairs, furthermore the number eft network layout where the nodes were distributed unifornily a
pairs can be larger than the network size. This result i¢yfairandom in a square. The source and destination are located at
technical and, due to its complexity and length, we omit thdiagonally opposite corners. We then increased the nunfber o
details, and simply state our main result. nodes in the network from2 to 64 to 96. In each case, we
Theorem 5:Given a square grid network and an arbitraralso computed the optimal throughpfgpr by running the
set of source-destination pairs, there exists a polynemi@pTIMAL algorithm.
time O(1)-approximation algorithm to maximize end-to-end In Fig. 6 we plot the throughput of thef@ImMAL, LP-NoDE
throughput with single-path routing. and LP-BDGE algorithms. Our LP-MDE algorithm shows
excellent performance and yields close to 90% of the optimal
throughput. By contrast, LP&E performs much worse and
In this section, we report on the experimental evaluatiachieves only 50%-60% of the F@IMAL. In fact, even with
of our algorithms, and discuss the results of our simulatiora single source-destination pair, LA>&E at times failed to
We ran experiments on both the regular as well as rand@ohieve 1/3 of the optimal throughput, which one could have
networks. The random networks consist :ofnodes spread achieved by routing along a single-path [12]! With a single
over a squarg/n x y/n area with radio range 3.0. Any two s—t pair, the maximum possible throughput using multipath
nodes which are within radio range can communicate. Thisuting is 5/6; by contrast, the maximum throughput using

VI. EXPERIMENTAL RESULTS
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Fig. 7. The total throughput with different numbers ot pairs and a

1.2

08 r

64-node network.

0.9

0.8

rOPTIMAL

LP-EDGE
LP-NODE

4 8
Number of Flows

Fair:64 xxxza
Unfair:64
Fair:128

Unfair:128 &=~

amount of the total flow. We computed the total throughput
using the LP-MDE algorithm and the results are shown in
Fig. 8. As expected we see that enforcing fairness reduees th
total throughput, but surprisinglyhe effect is very mildin

fact for the larger 128 node networks, the throughput far fai
and unfair flows is almost identical. This is due to the fact
that in larger networks the nodes have a lot of freedom in
routing the flows and hence overall interference around any
single node is low. Thus every flow can carry equal amounts
of traffic without congestion.

VIl. DISCUSSION

We have studied the throughput maximization problem in
multi-hop wireless networks explicitly taking into accdun
the radio interference. We show that in regular grid net-
works, a simple distributedingle-pathrouting algorithm is
able to achieve (asymptotic) worst-case optimal throughpu
with a dense distribution of source-destination matchings

0.7

0.6

Throughput

Number of Flows

Fig. 8. Effect of fairness on total flow for 64 and 128-nodewweks. Note
that the fairness constraint lowers total throughput by @kmall amount.

(1]

a single-path isl/3. In these cases, the constant factors irh]
the approximation algorithms become crucially important
LP-NoDE does well. (3]

B. Throughput Scaling with Source-Destination Pairs (4]

In this experiment, we fixed the network and increased
the number ofs—t pairs in the network to evaluate the 5
throughput that the various routing schemes achieve. We usgs)
a random network topology with 64 nodes and up to 16?7]
source-destination pairs organized in a crosshatch patter
Fig. 7 we plot the total throughput using LPREE, LP-NODE
and CpTIMAL algorithms for different number of source- |
destination pairs. As expected, we see that the throughput
increases with the number of flows, but the dependence ¥
not linear because interference from one set of paths reduce
throughput for other pairs. Again, LPdWbE shows excellent [10]
performance, reaching near-optimal throughput in mostsas
while LP-EDGE achieves less than half the throughput of LPj11)
NODE.

C. Impact of Fairness on Flows (12]

When multiple flows compete for bandwidth, the optim&l3]
flow is not necessarily fair. In practice, though, fairness i
an important criterion in any network protocol. To investig [14]
the effect of fairness we again used uniformly random nodes
in a square with four source-destination pairs which irgets 1
at the center of the square. For multiple flows we enforced
the simplest fairness condition that each flow gets an equal

For arbitrary network layouts and arbitraryt pairs, we
proposed a novel node-based linear programming formulatio
that achieves an approximation ratio of 3. We also argued
that, for general networks, the prospects for efficient Ising
path routing using simple heuristic algorithms are moreakle
But if the network has regular structure, such as a grid, then
a constant factor approximation is possible.
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