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Abstract— A user located in a congested area of a wireless
LAN may benefit by moving to a less-crowded area and using
a less-loaded access point. This idea has gained attention from
researchers in recent literature [3], [19]. However, its effectiveness
and stability are questionable. Each user selects the access point
that offers the optimal trade-off between load and distance to be
traveled. Since users are selfish, a user’s selection may adversely
impact other users, in turn motivating them to change their
selections. Also, future user arrivals and exits may invalidate
current selections. This paper presents the first game-theoretic
analysis of this idea. We model access point selection as a game,
characterize the Nash equilibria of the system and examine
distributed myopic selections that naturally mimic selfish users.
We analytically and empirically assess the impact of user diversity
and dynamic exit patterns on system behavior. The paper
contributes to a deeper understanding of the costs, benefits and
stability of such a solution in various usage scenarios, which is
an essential pre-requisite for real-world deployment.

I. INTRODUCTION

Wireless LANs are commonly deployed to provide Internet
access, particularly in large areas such as university and corpo-
rate campuses, airports and shopping malls. To obtain network
connectivity in a wireless LAN, a device must first locate and
associate itself with an access point within transmission range.
Several access points are typically deployed across an area in
order to provide uninterrupted network coverage.

In many deployment scenarios, the distribution of users in
the geographical area is non-uniform. Consider the example
of an airport, where the concentration of users at different
gates may vary significantly depending on flight schedules. A
high concentration of users in a localized area increases the
load on the access points in that area, resulting in a reduced
bandwidth share per user. The wireless medium may become
congested, resulting in undesirable effects such as packet loss
and increased end-to-end delay.

While the access points in the congested area are over-
loaded, those in other less-crowded areas of the network may
simultaneously be under-utilized. In such circumstances, a user
located in the congested region could benefit by moving to a
different area of the network and using an access point that
is less loaded. This idea was first envisioned in a seminal
paper by Satyanarayanan [19]. The paper describes a scenario
where a user at an airport gate is unable to obtain sufficient
bandwidth to complete her tasks due to a high concentration
of users in the locality. As a solution to this problem, the smart
computing system running on the user’s machine discovers a

nearby location with greater available capacity and prompts
the user to move to that location. This idea is appealing since
it not only meets the user’s needs but also redistributes users,
balances network load and improves resource utilization.

Apart from being non-uniform, the distribution of users in
the network may be dynamic and often unpredictable. This
creates a potential problem, which we illustrate by extending
the earlier example scenario. In the example, the user at the
airport decides to move to a different gate in order to obtain
more bandwidth. However, while she is positioned at the
new location, more users arrive and cause an increase in the
network load at this location. As a result, the bandwidth share
available to the user decreases. The new bandwidth share could
potentially be even lower than what was available to the user
at the initial location. The user may decide to move again to
receive more bandwidth. However, the same problem can recur
at the new location. Thus, the change of location may bring
no benefit to the user, resulting in dissatisfaction and wasted
effort. In a worst case scenario, the user may be prompted to
move repeatedly, leading to instability in the system.

Thus, although the idea of a mobile user changing location
to obtain more bandwidth can bring benefits to both the user
and the network, its effectiveness and stability need to be
examined before it can be applied in real networks. With
this motivation, we present an analysis of the stability and
performance of such a system.

A user is motivated to move to a different location if and
only if the bandwidth gain justifies the extra distance to be
traveled. In other words, there is a trade-off between the
bandwidth gained by changing location and the effort involved
in traveling the additional distance to the access point. To
select an access point, the user weighs the load and distance
parameters for all access points in the system and then chooses
the one that is optimal.

There are two main reasons for the potential ineffectiveness
and instability of such a system. The first reason is that neither
the network nor the user has prior knowledge of how the
user distribution in the network will change in the future1.
As a result, decisions that are based on current conditions
may be invalidated by future changes. The second reason is
that each user makes an independent location change decision
that optimizes her own benefit, without regard to other users

1It may be possible to predict user movement based on past history and
other domain-specific information, such as flight schedules for the airport
example; however, this cannot be assumed for the general case.
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or to the system as a whole. In other words, users are selfish
entities and their decisions may therefore unintentionally harm
the interests of other users and the entire system.

Game theory is an appropriate tool to analyze systems
comprising selfish rational entities. We therefore model the
access point selection system as a game. The stable user-to-
access-point assignments are the Nash equilibria of the game.

Although game theory helps us explore multi-player inter-
actions and understand the form of resulting stable outcomes,
which can often be counter-intuitive, it does not suggest
algorithms to reach the desired outcome. In deciding a strategy,
each player must take into account the possible actions of
other players; this potentially infinite sequence of speculation-
counter-speculation often makes it difficult to design dis-
tributed algorithms for achieving Nash equilibria. Specifically,
for our access point selection game, each user must consider
the choices of other, both current and future, users. Since the
choice of one user may invalidate the selections of other users,
in principle there could be a non-terminating sequence of user
moves, never leading to equilibrium.

Our analysis begins with a system comprised of a user
population with homogeneous preferences and a simple ar-
rival/departure model. Although our previous observations lead
one to believe that an algorithm that guarantees equilibrium
is likely to be fairly complex, we find that, with the simple
system model, a trivial myopic algorithm that naturally mimics
selfish user behavior always brings the game to a Nash
equilibrium in just a single iteration. In other words, each user
makes a single selfish selection based on the current state of
the system and is never motivated to change her mind. This
is different from several well-known games, where a greedy
strategy does not result in equilibrium.

Real systems may have a heterogenous user population, and
users may arrive and depart from the system in a dynamic
fashion. If the user population is heterogenous, the myopic
algorithm no longer results in equilibrium. However, we find
that the maximum individual gain that a user may obtain
through a unilateral change of strategy is bounded, and this
bound is proportional to the extent of diversity. If diversity in
the user population is limited, the potential individual gain
is low, and therefore users have less motivation to change
strategy, resulting in a greater likelihood that the system
remains stable.

A dynamic user departure pattern is somewhat at odds with
the concept of a Nash equilibrium since the definition of Nash
equilibrium implicitly states that the user population must
remain static. Dynamic departures can change the state of
the system in unpredictable ways, and maintaining equilibrium
may be impossible. We analyze the effectiveness of myopic
access point selection based on a load-distance trade-off in
such a system through simulations. Our results show that, un-
der a realistic arrival/exit pattern, the effectiveness of myopic
access point selection increases with the average number of
users in the system. The experienced load of a user can be
improved significantly by traveling relatively short distances.
Further, the myopic access point selection of a user remains
optimal for a large percentage of the time that the user is
present in the system.

This paper thus contributes to a deeper understanding of the
costs, benefits and stability of load-distance-based distributed
access point selection in various usage scenarios. Such an
understanding is an essential pre-requisite to enable real-world
deployment of such a system. The remainder of the paper
is organized as follows: Section II presents a brief review
of related work. In Section III we model the access point
selection game for a simple system, while Section IV describes
the myopic access point selection algorithm. In Section V, we
add some complexities to the system model and examine their
effect on system behavior. Section VI presents our simulation-
based evaluation of system performance with dynamic user
arrivals and exits. Finally, Section VII concludes the paper.

II. RELATED WORK

The idea of a user changing location to obtain more band-
width was first described by Satyanarayanan in the context of a
pervasive computing environment [19]. In the envisioned sce-
nario, a device gathers inputs from the network and application
and appropriately suggests a location change to the user so that
the user can obtain sufficient bandwidth to complete her tasks.
However, no implementation or evaluation is performed and
no consideration is given to the stability of the approach. Bal-
achandran et al. propose network-directed roaming to relieve
congestion in public area wireless LANs [3]. In their proposed
solution, heavily-loaded access points direct mobile users to
move to less-loaded cells for improved service. Since the new
locations are computed centrally, stability is not an issue here;
however, the drawback is that this scheme does not take into
consideration the individual preferences of users. A solution
that gives users the flexibility to make their own selections fits
more naturally with the distributed nature of networks and the
diversity and selfish nature of users. Sanzgiri et al. propose a
decentralized protocol whereby users can change location to
improve quality of service in wireless multihop networks [17].

Since the Internet is comprised of multiple players with
selfish interests, game theory is an appropriate tool to study
various Internet phenomena [13]. Specifically, game theory
has been used to analyze network creation [6], [8], selfish
routing [10], [14], [16] and transport protocols [1]. In the area
of wireless networks, game-theoretic approaches have been
proposed for several problems, including multihop routing [2],
[22], power control [7], [18], participation incentives [20] and
wireless access pricing [12].

Suri et al. analyze the selfish load balancing game, where
selfish clients make a server selection such that their individual
execution latency is minimized [21]. This is similar to access
point selection by selfish users. The authors ignore the network
latency in their study, which is analogous to the distance
between the user and access point in our work. Also, they
impose additional restrictions on the set of permissible servers
for a given client. Therefore, their results differ significantly
from ours. In particular, the myopic strategy does not lead to
a Nash equilibrium in their case.

III. THE ACCESS POINT SELECTION GAME

In this section we describe the wireless access point selec-
tion game. We begin with a detailed description of the system
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and state our assumptions. This is followed by a discussion
of our game-theoretic model of the access point selection
problem. We then derive the condition necessary for attaining
a Nash equilibrium in this game.

A. System Description

The real-world problem of access point selection by mobile
users involves several complexities. For example, users may
have different bandwidth requirements and may assign differ-
ent relative importance to the load and distance parameters.
Users may enter and exit the system at random times. For
our initial analysis, we ignore some of these complexities so
that the problem becomes more tractable. A description of our
system model, including all assumptions, follows. In Section V
we revisit some of the complexities by introducing them to the
system model and examining their effect on system behavior.

When a user enters the system (i.e. first connects to the
network), she may be located anywhere in the geographical
area covered by the network. A service is deployed in the
network that informs users about the location and current load
of all access points. On entering the system, a user obtains the
necessary information from this service and then selects an
access point after evaluating the load-distance trade-off. We
assume that this evaluation and selection is done based on
the user’s requirements and preferences by software running
on the user’s machine and is therefore rational. The software
then prompts the user to move to the selected access point.

A user can select any access point in the system. Selections
are made sequentially, i.e. each user completes her access
point selection before the next user enters the system. Since
the access point selection process typically takes only a few
seconds, the probability that another user arrives before the
previous user completes her selection is low in most scenarios,
and so we ignore this possibility in our analysis. Note that the
user need not physically move to the new location before the
next user’s arrival; it is sufficient that the user’s selection is
communicated to the network service by the software running
on the user’s machine.

On selecting an access point, the user is assumed to move
very close to the access point used, such that the distance
between the user and the access point becomes negligible in
comparison with the distances between access points. This
assumption significantly simplifies our analysis. Once the user
associates with an access point and begins a data session, she
remains stationary. This is consistent with the observations of
recent wireless network usage studies [9], [11].

For our initial analysis, we assume that all users exit the
system within a very short time of each other. This is a
reasonable assumption for users attending a sports/music event
or a conference session, or users waiting for the same flight
at an airport gate, etc. Our assumption implies that when the
first user exits the system, all other users are approaching the
end of their sessions and so are no longer motivated to change
location. We therefore do not consider the effect of user exits
on the system equilibrium in our initial analysis. Dynamic user
exits are considered in Section V-C.

All access points are identical in capability and differ only
in location and traffic load. The transmissions of an access

point and its associated users do not interfere with those
of neighboring access points and their associated users; this
is typically achieved by assigning non-overlapping frequency
channels to neighboring access points.

Each user wants to maximize the bandwidth that she can
obtain from the network and therefore prefers the least-loaded
access point. It has been pointed out that access point load
does not directly correlate with the number of associated
users and depends more on individual workload behavior [4],
[5]. However, user workloads may vary significantly during
the course of their network association, thereby causing the
access point loads to fluctuate. A selection based on fluctuating
workloads is not likely to be stable. Also, it may be difficult
for a user to pre-determine the workload she will generate.
Therefore, for the access point selection decision, we believe
that it is more practical to estimate access point load based on
the number of associated users, which is a relatively stable
property. Each user, therefore, prefers an access point that
has fewer associated users. The effect of different individual
workloads is considered in Section V-B.

Users prefer access points that are closer to their current
location in order to reduce the extra distance they need to
travel. In our initial analysis, we assume that each user assigns
the same relative importance, or weights, to load and distance
when selecting the optimal access point. In Section V-A,
we examine the system behavior when users assign different
weights to the load and distance parameters. All distances are
Euclidean and therefore satisfy the triangle inequality.

In the following section, we describe how the access point
selection problem is modeled as a game.

B. Selection Model

We model the access point selection game as follows. The
players in this game are the users. Each user can select any one
of the access points in the network. Thus, if there are M access
points in the network, each player has M possible strategies.
A cost is assigned to each strategy, i.e. each access point,
as described further in this section. The utility of a player
is inversely proportional to her cost. Each player’s objective
is to maximize her utility from the system by minimizing
her cost. Therefore, every user selects the access point that
has the least cost. Users make their selections sequentially.
When making a selection, each user has knowledge of the
decisions made by users before her in the sequence through
information available from the deployed network service, but
is unaware of the remaining users. The outcome of the game
is an assignment of users to access points.

To determine how a cost may be assigned to each access
point, we refer to our system description from Section III-
A. We have assumed that a user prefers an access point that
has fewer associated users. The user also wants to minimize
the extra distance to be traveled in order to associate with
an access point. Therefore, our cost function must have the
following characteristics:

• The cost should increase as the number of users associ-
ated with the access point increases.

• The cost should increase with an increase in the distance
that must be traversed to use the access point.
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Fig. 1. Effect of the value of α on the access point selection.

There are several ways to define a cost function that satisfies
the above characteristics. In this analysis, we choose a cost
function that defines the cost assigned by user i to access
point j as:

Ci,j = α ∗ xj + Di,j (1)

where xj is the number of users associated with access point j,
Di,j is the cumulative distance traveled by user i to reach
access point j, and α is a constant. This function satisfies
both the desired characteristics of the cost function. Note that
Di,j is the cumulative distance traveled by the user, i.e. if the
user first selects access point j and then relocates to access
point k, Di,j is the sum of the distances traveled for reaching
access points j and k2.

The constant α expresses the relative weight assigned by the
user to the load and distance parameters. Its value can vary
from zero to infinity. The higher the value of α, the greater the
weight assigned to the load parameter in calculating the cost
of an access point. In other words, the higher the value of α,
the greater the distance a user is willing to travel in order to
use an access point with fewer associated users. Specifically,
from equation 1 we can deduce that the user would be willing
to travel a maximum extra distance of nα units in order to
use an access point that has n fewer users associated with it.

If α = 0, the user does not care about the access point
load and always selects the access point that is nearest to her
current location. As the value of α increases, a user is willing
to travel larger distances in order to use a less-loaded access
point. Let Dmax be the diameter of the wireless network, i.e.
Dmax is the maximum distance between any two access points
in the network. Then if α > Dmax, the user always prefers the
access point with the least number of associated users without
regard to its distance. For all values of α between 0 and Dmax,
the user is willing to trade distance to obtain a proportionate
decrease in access point load.

The effect of the value of α on the access point selection
decision is graphically represented in Figure 1. As specified in
Section III-A, for our initial analysis we assume that all users
assign the same relative weight to the user load and distance
parameters, so α has the same value across all users.

The access point selection game has some flavor of a
sequential game: users make their decisions sequentially and

2An alternative way to define the cost function is to consider the distance of
the access point from the initial location of the user. The application scenario
would determine which definition is more appropriate.

the order of play can influence the outcome. Users are assumed
to have perfect information about the selections of previous
users. However, the selection of a user later in the sequence
may cause previous users to change their decisions, and the
number of moves may potentially be infinite. Further, at the
time of making a selection, users have no knowledge about
how many more users may enter the system and in what
order. Therefore, the backward induction process used to solve
sequential games cannot be used in this case. Also, since the
selection by a player may cause multiple previous players to
simultaneously change their strategy, the access point selection
game is not a pure sequential game.

Next, we examine the conditions necessary to attain a Nash
equilibrium in this game.

C. Nash Condition

A given assignment of users to access points is a Nash
equilibrium if and only if no user can increase her utility, i.e.
reduce her cost, by unilaterally changing her strategy. In other
words, in a Nash equilibrium, no single user is motivated to
move to a different access point if the selection of every other
user remains unchanged. The only stable assignments are those
that are Nash equilibria. In order to evaluate the stability of
the assignments resulting from our algorithm, we first need to
derive the condition that must be satisfied for an assignment
to be a Nash equilibrium. This is the objective of this section.

Consider an assignment of users to access points. In this
assignment, let user i be associated with access point j. Since
we have assumed that a user moves very close to the access
point used, user i must have traveled from her initial location
to the location of access point j; let this distance be di,j .
Now, user i will be motivated to move to a different access
point k if and only if the cost of access point k is less than
that of access point j, i.e. Ci,k < Ci,j . If the assignment is a
Nash equilibrium, no user is motivated to change her decision.
Therefore, to attain Nash equilibrium, it is necessary that

Ci,j ≤ Ci,k (2)

∀i ≤ N, k ≤ M , where N is the total number of users and M
is the total number of access points. Note that j indicates the
access point associated with user i in the given assignment.
Using equation 1,

Ci,j = α ∗ xj + di,j (3)

where xj is the total number of users associated with access
point j, including user i, and di,j is the distance of access
point j from the initial location of user i (note that Di,j in
equation 1 represents the cumulative distance).

Now, if user i moves to access point k, the number of users
associated with access point k increases by one. Also, user i
needs to travel an additional distance. Since user i is currently
located very close to access point j, the current distance
between user i and access point k is almost the same as that
between access points j and k. So the additional distance to
be traveled can be approximated as dj,k, the distance between
access points j and k. The cumulative extra distance traveled
by user i in order to use access point k is then the sum of the
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distances traveled for reaching access point j and then moving
to access point k, i.e. di,j +dj,k. Therefore, the cost of moving
to access point k is given by

Ci,k = α ∗ (xk + 1) + (di,j + dj,k) (4)

where xk is the number of users currently associated with
access point k.

From equations 2, 3 and 4, we obtain the following condi-
tion for a Nash equilibrium:

xj − xk ≤
1

α
∗ dj,k + 1 (5)

∀i ≤ N, k ≤ M . Equation 5 represents the Nash condition
for the access point selection game with our simple system
model. Note that even though our cost function considers
the cumulative distance traveled, the decision to move from
one access point to another only depends upon the distance
between the two access points without regard to the distance
traveled previously. We use the Nash condition to evaluate the
stability of assignments in further sections.

In the next section, we examine a simple distributed myopic
algorithm for access point selection.

IV. DISTRIBUTED MYOPIC ALGORITHM

We noted in Section I that, although game theory enables
us to understand the form of a stable outcome, it does not
suggest a way to reach that outcome. In other words, the Nash
condition, which we derived in Section III-C, does not provide
an algorithm for attaining a Nash equilibrium. Algorithms that
guarantee Nash equilibrium are often complex because of the
inter-dependence of the actions of players and the speculation-
counter-speculation involved.

We consider a simple myopic algorithm for access point se-
lection and examine the stability of the resulting assignments.
This algorithm naturally mimics the behavior of a selfish
greedy user. We find that, under our simple system model,
this algorithm always produces a Nash equilibrium in just a
single iteration. This is unlike several other well-known games
where a simple greedy strategy does not result in equilibrium.

A. Algorithm

On entering the system, each user executes the following
algorithm to select an access point:

1) The user obtains information regarding the locations
of access points and the number of users currently
associated with each access point.

2) The user calculates the cost of each access point based
on equation 1.

3) The user selects the access point that has the least cost.
4) The user associates herself with the selected access point

after moving towards it if necessary.

The information service deployed in the network is critical
in enabling this, or any other, access point selection algorithm.
Without this service, the user has no information about the
location and current load of the access points in the system
and therefore cannot make an informed decision. Note that,

while making a selection, the objective of the user is simply
to minimize her own cost.

The myopic algorithm naturally mimics the behavior of a
selfish rational user in this system. With no knowledge about
whether more users will enter the system and at what locations,
the most logical strategy is to select the best access point
based on the knowledge possessed, i.e. the current state of
the system. Further, it is in the interest of the selfish user
to directly associate with the preferred access point, thereby
increasing its load and discouraging subsequent users from
associating with it. The user gains nothing by temporarily
associating with a different access point.

In the next section, we prove that this algorithm always
produces a Nash equilibrium.

B. Proof of Nash Equilibrium

Consider an assignment of users to access points resulting
from the myopic algorithm described in the previous section.
Assume for the sake of contradiction that this assignment is
not a Nash equilibrium. Then, at time T when all the users
have completed their selection, there must exist a pair of access
points j, k, for which the Nash condition from equation 5 is
violated. In other words,

xj(T ) − xk(T ) >
1

α
∗ dj,k + 1 (6)

where xj(T ) and xk(T ) are the number of users associated
with access points j and k, respectively, at time T , i.e. in the
final assignment. Note that all users are assumed to exit the
system approximately simultaneously at some later time, so
no user exits before time T .

Let user i be the last user to have selected access point j.
We denote the time at which user i made her selection as t
(t ≤ T ). Since user i preferred access point j over access
point k at time t, it follows that

Ci,j(t) ≤ Ci,k(t) (7)

Using equation 1, we get

α ∗ xj(t) + di,j ≤ α ∗ (xk(t) + 1) + di,k (8)

where xj(t) and xk(t) denote the number of users at access
points j and k, respectively, after user i has completed her
selection (note that xj(t) includes user i) and di,j and di,k

are the distances of access points j and k, respectively, from
the initial location of user i. Therefore,

xj(t) − xk(t) ≤
1

α
∗ (di,k − di,j) + 1 (9)

Since user i is the last user to have selected access point j, the
number of users associated with access point j cannot have
increased after time t. In other words,

xj(t) = xj(T ) (10)

Also, the number of users associated with access point k
cannot have decreased between times t and T since users do
not exit the system before time T . So,

xk(t) ≤ xk(T ) (11)
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Subtracting equation 11 from equation 10, we get

xj(t) − xk(t) ≥ xj(T ) − xk(T ) (12)

Using equations 6, 9 and 12, we get

di,k > di,j + dj,k (13)

Since di,j , di,k and dj,k are Euclidean distances, they must
satisfy the triangle inequality, i.e.,

di,k ≤ di,j + dj,k (14)

We see that equations 13 and 14 contradict each other. There-
fore our assumption that the assignment resulting from the
myopic algorithm is not a Nash equilibrium must be incorrect.
We have thus proved by contradiction that every assignment
of users to access points that is produced by the myopic
algorithm is a Nash equilibrium with our simple system model.
Observe that a Nash equilibrium is constantly maintained even
while users are entering the system. In other words, all sub-
assignments that exist temporarily while users are entering the
system are also Nash equilibria.

In the next section, we add some complexities to our system
model and examine how this affects the behavior of the system.

V. MORE COMPLEX SYSTEM MODELS

The analysis presented in the previous sections was based
on the simple system model described in Section III-A. Real
systems, however, are often more complex than this model.
In this section, we examine how the behavior of the access
point selection game changes when various complexities are
added to the system model. First, we allow each user to
assign different weights to the load and distance parameters in
selecting the optimal access point. Next, we consider different
individual user workloads when determining the access point
loads. Finally, we discuss the effect of dynamic user exits from
the system.

A. Diversity in α Values

The constant α represents the relative weight assigned by
the user to the access point load and distance parameters.
Different users may assign different values to α depending
on their requirements. For example, bandwidth is of critical
importance to a user who urgently needs to download a large
file. This user may be willing to travel a relatively large
distance in order to improve bandwidth availability; the value
assigned by this user to α is therefore high. On the other hand,
a user casually browsing the web does not care as much about
bandwidth, so the value she assigns to α is likely to be low.

Let αi denote the relative weight assigned by user i to
the access point load and distance parameters. The new cost
function is therefore

Ci,j = αi ∗ xj + Di,j (15)

The Nash condition from equation 5 correspondingly changes
to

xj − xk ≤
1

αi

∗ dj,k + 1 (16)

∀ users i associated with access point j.

Notice that all users associated with a single access point j
are no longer equivalent. Equation 16 indicates that, from
among all users associated with a given access point, the Nash
condition would be first violated for the user with the largest
α value. In other words, the user with the largest α is the first
to be motivated to change her strategy.

What event can motivate a user to change her strategy?
We have assumed that all user exits happen approximately
simultaneously and therefore do not motivate users to change
their strategy. A user p associated with access point j can
therefore be motivated to move only due to the arrival of
another user q at the same access point. Since user q prefers
access point j, it follows that αq < αp. In other words, a user
is motivated to change her strategy only when another user
with a smaller α value arrives at the same access point.

Is a Nash assignment always possible in this system? The
arrival of each user can potentially displace only those users
that have a larger α value than her own. These users may
change their selection and in turn displace other users with
still larger α values. Within a finite user population, this
series of displacements cannot continue infinitely and must
terminate when the user with the largest α value has made
her selection. The resulting assignment is guaranteed to be a
Nash equilibrium.

It follows that, with global knowledge of all users, a Nash
assignment can be trivially computed by ordering the users in
increasing order of α and then running the simple myopic
algorithm from Section IV-A. However, when user arrivals
are randomly ordered, the myopic algorithm is no longer
guaranteed to produce a Nash assignment.

When an algorithm does not produce a Nash equilibrium,
it is often useful to compute the maximum individual gain
that a user can obtain through a unilateral change of strategy.
The lower the individual gain, the lower the motivation for
a change of strategy, and the higher the likelihood that the
user adheres to her original selection, thereby maintaining the
stability of the system. Consider a situation where a user q
arrives at access point j and motivates another user p currently
associated with access point j to move to access point k. Since
user q prefers access point j over access point k, it follows
that,

xj − xk ≤
1

αq

∗ dj,k + 1 (17)

From equation 15, the individual gain obtained by user p by
moving from access point j to access point k is given by

Cp,j − Cp,k = αp ∗ xj + Dp,j − (αp ∗ (xk + 1) + Dp,k)

= αp ∗ (xj − xk − 1) − dj,k

(18)

Using equation 17, we get

Cp,j − Cp,k ≤ (
αp

αq

− 1) ∗ dj,k (19)

Equation 19 gives the upper bound on the individual gain
obtainable through a unilateral change of strategy. This upper
bound depends on the maximum value of the ratio αp

αq

. If
the diversity of the user population is limited, the maximum
value of this ratio is small, resulting in a small upper bound
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on individual gain. In other words, the less diverse the user
population, the higher the likelihood of attaining a stable
assignment through the myopic algorithm. In particular, if
there is no diversity, i.e. all users have the same value for α,
the maximum individual gain is zero and a Nash equilibrium
is attained. This is in agreement with the result derived in
Section IV-B.

B. Diversity in Individual Workloads

In our simple system model, we do not account for dif-
ferences in individual user workloads, and we assume that
the load at an access point is estimated based on the number
of associated users. This assumption may not be accurate in
some deployment scenarios. A user running a high bandwidth
application, such as multimedia streaming or file download,
is likely to increase access point load by a disproportionately
higher amount than a user checking e-mail. Therefore, access
point load may not directly correlate with the number of
associated users.

Let si denote the individual workload of user i. The total
load at an access point j is given by Sj =

∑
i si ∀ users i

associated with access point j. Under this model, the original
cost function from equation 1 changes to

Ci,j = α ∗ Sj + Di,j (20)

From this, the new Nash condition can be derived as

Sj − Sk ≤
1

α
∗ dj,k + si (21)

∀ users i associated with access point j.
We again observe that all users associated with a single

access point are not equivalent. Equation 21 indicates that the
Nash condition at an access point j will be first violated for
the user i with the smallest workload si. This can happen
only when another user q arrives at the same access point
(remember we have assumed that user exits do not motivate
other users to move). Since user q prefers access point j, it
must be true that sq > si. Thus, in this system, the arrival of
a user with a larger workload may displace another user with
a smaller workload.

A Nash assignment is always possible in this system; this
can be proved by an argument similar to the one used in
Section V-A. With global knowledge, a Nash equilibrium
can be computed by ordering users in decreasing order of
individual workloads and running the myopic algorithm from
Section IV-A. Since a user can only displace other users with
smaller workloads, when users are ordered in decreasing order
of workloads, no user can cause previous users to be displaced
and a Nash equilibrium is obtained in a single iteration.

When users are randomly ordered, the myopic algorithm
no longer produces a Nash equilibrium. We now compute the
maximum individual gain that a user may obtain through a
unilateral change of strategy. Consider that the arrival of a
user q at access point j motivates another user p currently
associated with access point j to move to access point k. Since
user q prefers access point j over access point k, it must be
true that

Sj − Sk ≤
1

α
∗ dj,k + sq (22)

The individual gain obtained by user p by moving from access
point j to access point k is given by

Cp,j − Cp,k = α ∗ Sj + Dp,j − (α ∗ (Sk + sp) + Dp,k)

= α ∗ (Sj − Sk − sp) − dj,k

(23)

From equations 22 and 23, we get

Cp,j − Cp,k ≤ α ∗ (sq − sp) (24)

This is the upper bound on the maximum individual gain,
which depends on the extent of diversity in the user popula-
tion. If diversity is limited, the value of (sq − sp) is small,
leading to a smaller individual gain and greater likelihood of
stability. If we do not consider diversity among individual user
workloads, i.e. sq = sp, no individual gain is possible and
Nash equilibrium is attained, as derived in Section IV-B.

As mentioned in Section III-A, individual workloads in
real deployments may vary significantly over time, thereby
causing access point loads to fluctuate. So a decision based
on current load conditions may potentially be invalidated in
a short while. This leads to ineffective decisions and system
instability. Also, a user may be unable to pre-determine her
workload. Therefore, when deploying such a solution, it is
more practical to use the number of associated users, which
is a relatively stable property, as an indicator of access point
load.

C. Dynamic User Exits

When a user exits the system, the load at the corresponding
access point decreases, potentially motivating other users to
change their previous selection and associate with that access
point. In the analysis presented in the previous sections, we
have assumed that all users exit the system within a short
time of each other, and so the exit of one user does not
motivate other users to change strategy since they are almost
at the end of their own sessions. Although this assumption
may be reasonable for certain deployment scenarios, there are
several other scenarios where the exit pattern of users is more
dynamic. Our objective in this section is to discuss the impact
of dynamic user exits on the access point selection game.

As mentioned in Section I, a dynamic user exit pattern is
somewhat at odds with the concept of a Nash equilibrium.
The definition of a Nash equilibrium states that no single
player is motivated to unilaterally change her strategy as long
as all other players adhere to their decisions. This definition
inherently implies that the player population must remain
static. If users dynamically exit from the system, the user
population may change in unpredictable ways. Under these
circumstances, it is extremely difficult, if not impossible, to
produce a user-to-access-point assignment that remains in
equilibrium. For example, in a system consisting of two access
points and several users, no matter how the users are assigned
to the access points, it is possible that all the users associated
with one access point exit before the others, thereby disrupting
the equilibrium. Further, in this scenario, no bound can be
placed on the maximum individual gain obtainable through
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a change of strategy; as the number of users in the system
increases, the individual gain can become infinitely large.

The above example is an extreme case. In real-world scenar-
ios, it is unlikely that users exit the system in such a contrived
fashion. Under a more realistic exit pattern, the potential
individual gain through a change of strategy may not be as
large. Further, as the system state changes in unpredictable
ways with every user exit, users may be less likely to change
their selections based on some intermediate system state. The
question remains whether it is still beneficial for a user to
base her access point selection on the load-distance trade-off
when the user first enters the system, as opposed to simply
associating with the nearest access point. In the next section,
we examine this through simulation.

We use simulation to investigate the behavior of the system
under dynamic exit patterns. The simulation results, presented
in the following section, help us to gauge the benefits, costs
and stability of access point selection based on the load-
distance trade-off in dynamic environments.

VI. EVALUATION

In this section, we present a simulation-based study of
myopic access point selection based on the load-distance trade-
off. Our main objective is to evaluate the costs, benefits
and stability of this approach with dynamic user arrivals and
exits. We also study how the parameter α impacts the user-
to-access-point assignments. The details of our experiments
are presented in Section VI-A and metrics are defined in
Section VI-B. In Section VI-C, we visually examine some
user-to-access-point assignments and the corresponding load
distributions. Section VI-D presents our simulation results.

A. Experiment Details

We evaluate the myopic access point selection under both
uniform and non-uniform user distributions. Each scenario has
16 access points and 100 users placed in a 500mx500m area.
The access points are arranged in a 4x4 grid in the center of the
region, with 100m of distance between adjacent access points.
For example, in Figure 2(d), the bounding box indicates the
network area and the small squares represent the access points
arranged in a grid. The user locations are generated randomly.
In the first test scenario, users are uniformly distributed
through the entire region, as shown in Figure 2(a), where each
dot represents a user. In the second scenario, 80% of the users
are placed within 16% of the total region (200mx200m area),
as seen in Figure 2(d). This scenario models the phenomenon
of high user concentration in a localized area, which can occur
in real deployments as noted in Section I.

For our test scenarios, Dmax, the maximum distance be-
tween any two access points, is approximately 425 units. We
therefore vary the value of the parameter α from 0 to 500
in different tests. This covers the entire range of significant
α values indicated in Figure 1. We do not simulate diversity
of α values and individual workloads among users in order to
limit the number of simulation parameters and clearly identify
the impact of dynamic exit patterns.

Simulating user arrivals and exits in a realistic manner
is challenging. There are very few studies of real wireless
network deployments that characterize user arrival and exit
patterns [4]. Moreover, these patterns can vary significantly
in different deployment scenarios. For our study, we assume
that user arrivals follow a Poisson distribution; the Poisson
arrival process is traditionally used to model independent user
arrivals [15]. The time spent by users in the system, i.e. the in-
system time, is assumed to follow an exponential distribution.
Intuitively these distributions seem appropriate and provide a
good starting point to examine the effect of dynamic arrivals
and exits on the access point selection game. We leave the
study of other distributions for future work.

The Poisson arrival process is characterized by a mean inter-
arrival time (MIAT ), while the exponentially-distributed time
spent by users in the system is characterized by a mean in-
system time (MIST ). We fix the MIST at 300 seconds and
vary the MIAT as 3, 10 and 30 seconds in different tests.
In other words, the MIST/MIAT ratio is varied as 100, 30
and 10. The larger the value of this ratio, the higher the rate at
which users arrive in the system compared to their in-system
times, and so the greater the average number of users in the
system. Apart from this dynamic arrival/exit model, we also
implement the simple model described in Section III-A. In this
model, users enter the system sequentially at the beginning of
the simulation and exit simultaneously at the end.

In our simulations, when each user enters the system, she
moves towards and associates with the access point that offers
the best load-distance trade-off. Thereafter, further arrivals and
exits may motivate the user to change her selection. However,
since the arrivals and exits are dynamic and unpredictable,
this motivation is likely to fluctuate. It is desirable for system
stability that users adhere to their initial selections. We sim-
ulate this desirable behavior and measure metrics such as the
potential individual gain that can be obtained by selecting a
different access point and the time for which equilibrium is
disrupted, i.e. at least one user in the system wishes to change
her selection. These metrics indicate whether the simulated
user behavior is effective and stable.

The simulations are implemented in Java. For each test
scenario, we average our results over 100 simulation runs with
the random number generator seeded differently in each run. In
each run, the first user enters the system at time zero, and the
simulation executes until the last user has exited the system.

B. Metrics

To evaluate the benefits, costs and stability of access point
selection in a dynamic environment, we use the following
performance metrics:

• Maximum AP load difference: We define access point
(AP) load as the number of users associated with an ac-
cess point. The maximum AP load difference is calculated
as the difference in average load between the most-loaded
and least-loaded access points. A low value for this metric
indicates a balanced load distribution.

• Average experienced load per user: The experienced
load for a user is the load at the associated access point.
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(a) Uniform,
α=0.

(b) Uniform,
α=30.

(c) Uniform,
α=90.

(d) Non-uniform,
α=0.

(e) Non-uniform,
α=30.

(f) Non-uniform,
α=90.

Fig. 2. Sample assignments with uniform and non-uniform user distribution for different values of α.
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(a) Uniform,
α=0.
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(b) Uniform,
α=30.
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(c) Uniform,
α=90.
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(d) Non-uniform,
α=0.
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(e) Non-uniform,
α=30.
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(f) Non-uniform,
α=90.

Fig. 3. Sample distribution of access point load with uniform and non-uniform user distribution for different values of α.

This value is averaged over the in-system time of each
user and then across all users. Again, a low value for this
metric is desirable.

• Distance traveled per user: This is the distance that a
user travels in order to use the access point with the best
load-distance trade-off instead of the nearest access point.
This metric indicates the cost of this approach.

• System Nash time: This is the fraction of time for which
a Nash equilibrium exists in the system. The higher this
value, the better the stability of the system.

• Fraction of users motivated to change strategy: This
is the fraction of users that are motivated to move to
a different access point at some instant during their in-
system time. A low value for this metric is desirable for
greater stability of the system.

• Fraction of in-system time for which users are mo-
tivated to change strategy: This is the fraction of a
user’s in-system time during which her initial access point
selection is no longer optimal, thereby motivating her
to move to a different access point. Only those users
for whom this fraction is non-zero are included in the
calculation of this metric. Again, a low value indicates
greater system stability.

• Maximum individual gain: This is the maximum indi-
vidual gain that a user can obtain by a change of strategy.
It is calculated as a fraction of the user’s current cost. The
lower the value of this metric, the less the motivation for
moving, and so the better the stability of the system.

C. Sample assignments and load distributions

Before studying the behavior of the system under dynamic
user arrivals and exits, we visually examine some sample

user-to-access-point assignments and the corresponding access
point load distributions. This gives us a feel for the effective-
ness of this approach. Figure 2 shows sample assignments
from test scenarios with both uniform and non-uniform user
distributions. In each sub-figure, the small squares represent
the access points, the dots represent the initial locations of
users and the lines indicate the assignment. Figure 3 presents
the final distribution of access point load corresponding to
each assignment in Figure 2. Note that these assignments are
with the simple system model without dynamic exits.

When α = 0, there is no weight assigned to the access point
load parameter, and so each user simply associates with the
nearest access point as shown in Figures 2(a) and 2(d). There
is considerable variation in the access point load for these
assignments. As seen in Figures 3(a) and 3(d), respectively,
the access point load varies from 1 to 13 users per access
point under the uniform user distribution and from 0 to 44
users per access point under the non-uniform user distribution
(note the difference in scale on the Y-axis in the two figures).

As the value of α increases, users travel larger distances
to reduce load, and so we expect the access point load
distribution to gradually even out. Figures 2(b) and 2(e) show
the assignments when α = 30. This is a relatively low α value
when compared to the distance between adjacent access points
(note that α represents the additional distance a user is willing
to travel in order to associate with an access point that has one
fewer associated user.) Even at this low value of α, the load
distribution evens considerably when compared to the case
where α = 0. Figures 3(b) and 3(e) show the corresponding
load distributions.

When the value of α increases to 90, the assignment
lines intersect each other to a greater extent, as seen in
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Figures 2(c) and 2(f). This is because users travel larger
distances on entering the system to select an access point
with a lighter load. Note that the overall efficiency of the
assignments could be improved by swapping user-access-point
pairs whose assignment lines intersect; this would maintain
the same load distribution while reducing the total distance
traveled. However, selfish users do not care about overall
efficiency and only seek to optimize their individual load-
distance trade-off. The load distribution improves significantly
when α increases to 90 and is close to evenly balanced under
both user distributions, as indicated in Figures 3(c) and 3(f).

We thus observe that myopic access point selection based
on the load-distance trade-off is very effective in improving
load distribution even at relatively low values of α. In the next
section, we examine the effectiveness and stability when users
arrive and exit in a dynamic fashion.

D. Experiment Results

We now present the results of our experiments. Due to lack
of space, we only present the results from the test scenario
with non-uniform user distribution. Results from the uniform
user distribution scenario show similar trends. The graphs in
Figure 4 show results for the dynamic arrival/exit model with
different MIST/MIAT ratio values, and also for the simple
system model with simultaneous exits.

Figure 4(a) plots the maximum access point load difference
for different values of α. At α = 0, the maximum access point
load difference is greater than 45 for the simultaneous exit
model, indicating that load distribution is highly imbalanced.
For this model, the load distribution improves dramatically
with an increase in α, demonstrating effectiveness even under
small values of α. As α continues to increase, load distribution
evens and relative improvements become smaller in magni-
tude, until finally the distribution is perfectly balanced and no
further improvement is possible.

With dynamic user arrivals and exits, the improvement is
less dramatic. This is primarily because the average number
of users in the system at any given time is less than in the
simultaneous exit case. At MIST/MIAT = 10, users enter
the system relatively slowly when compared to their average
in-system time. As a result, the average number of users in
the system at any given time is low, and so there is not much
scope for improvement in load distribution. As the value of
the MIST/MIAT ratio increases, more users are present in
the system at any given time, and so myopic access point
selection is found to be more beneficial. The improvement in
load distribution is most significant at low values of α. At
higher α values, users are more evenly distributed and the
average load of all access points over time is approximately
equal. Therefore, the maximum difference between average
AP loads is close to zero at higher values of α. (Note that the
difference between instantaneous AP loads may still be high
due to dynamic arrivals and exits).

The average load experienced per user, shown in Fig-
ure 4(b), shows similar trends for the same reasons. Fig-
ures 4(a) and 4(b) demonstrate the benefit of myopic access
point selection in a dynamic system. The greater the average
number of users in the system, the larger the benefit.

The distance traveled by users to associate with the optimal
access point is shown in Figure 4(c). The distance increases
with an increase in α since users attach greater importance
to access point load and are willing to travel a larger dis-
tance to associate with a lightly-loaded access point. As the
MIST/MIAT ratio increases, the average number of users
in the system increases, and so a user has to travel farther
in order to find an access point with a sufficiently low load.
Therefore, the distance traveled increases with an increase in
the MIST/MIAT ratio.

The remaining graphs in Figure 4 indicate the stability of
the system. Figure 4(d) shows the system Nash time. As seen
in Figure 4(d), the system is always in Nash equilibrium when
users exit simultaneously from the system; we proved this in
Section IV-B. Under a dynamic exit model, this is no longer
the case. We observe that the system Nash time decreases
with an increase in the MIST/MIAT ratio. To explain this
behavior, we first analyze the effect of user arrivals and exits
on system equilibrium. System equilibrium is never disturbed
by the arrival of a user (note that we do not model diversity
of individual workloads and α values in these simulations).
The exit of a user reduces the load at the corresponding
access point and can therefore disturb the equilibrium by
motivating other users to move to that access point. The system
equilibrium is subsequently restored either when a new user
arrives and associates with the same access point, thereby
increasing its load again, or when more exits occur at other
access points and proportionately reduce their loads.

Consider that the exit of user q from access point j motivates
user p to move from access point k to access point j. Assuming
that user p adheres to her original selection, equilibrium is
restored when either a new user arrives at access point j, or
when an existing user from access point k exits the system.
Since access point j is preferred by user p, it is highly likely
that a new user also prefers the same access point. Therefore,
the chance that equilibrium is restored within the next one or
two user arrivals is high. On the other hand, from among the
various access points in the system, the probability that the
next exit is from access point k is low. Therefore, equilibrium
is not likely to be restored soon if the exit of user q is
followed by more user exits and no arrivals. Moreover, the
subsequent exits may create further imbalance in the load
distribution, thereby making it harder for equilibrium to be
restored. In summary, the system equilibrium is likely to be
restored quickly when a user exit is soon followed by a user
arrival, and equilibrium remains disturbed for a longer duration
when multiple exits occur in succession.

When the value of the MIST/MIAT ratio is low, user
arrivals and exits are fairly evenly intermingled throughout the
duration of the simulation. In other words, a user exit is likely
to be soon followed by a user arrival. As a result, equilibrium
is restored quickly following any disruptions and the system
Nash time is high. As MIST/MIAT increases, user arrivals
tend to be clustered in the earlier part of the simulation, while
exits are clustered in the later part. Therefore, the exit of a
user is less likely to be followed by an arrival, and system
equilibrium disrupted by the exit does not get restored quickly,
thereby reducing the system Nash time.
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(a) Maximum access point load
difference.
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(b) Experienced load per user.
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(c) Distance traveled per user.
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(d) System Nash time.
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(e) Fraction of users motivated
to change strategy.
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(f) Fraction of in-system time
for which users are motivated
to change strategy.
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(g) Maximum individual gain.

Fig. 4. Performance results with dynamic arrivals and exits.

Next, we examine the trend in system Nash time with
increasing α. At α = 0, the system is always in a state of Nash
equilibrium. An initial increase in the value of α causes system
Nash time to decrease since users attach greater importance to
access point load and therefore have more motivation to move.
At α = 100, the system Nash time increases abruptly. Since
this α value equals the inter-access-point distance (100m),
users can select from a wider range of access points when
they initially enter the system. As a result, the initial assign-
ments are more spread out and therefore more stable. Similar
behavior is observed at α = 200. When MIST/MIAT = 10,
a continued increase in α causes the stability of the system
to increase significantly. Since on an average there are fewer
users in the system, by initially moving longer distances, users
distance themselves from each other and associate with lightly-
loaded access points, thereby reducing the motivation to move
later. Beyond a certain threshold, the increasing α value has
no further impact on user decisions, and system Nash time
remains constant. The higher the value of the MIST/MIAT
ratio, the greater the average number of users in the system,
and therefore the smaller the threshold value of α beyond
which system stability is unaffected.

Figure 4(e) indicates the average number of users that are
motivated to change strategy, while Figure 4(f) indicates the
average fraction of in-system time for which users are thus
motivated. Both graphs show trends that are complementary
to the system Nash time in Figure 4(d) and can be explained in
a similar manner. As seen in Figure 4(f), users are motivated
to change strategy for only up to 35% of their in-system time
in the worst case, i.e. the access point selected by the myopic

algorithm when the user enters the system remains the optimal
access point for 65% or more of the user’s in-system time.
This is an important result, clearly indicating the stability and
effectiveness of the access point selection method.

Finally, Figure 4(g) shows the maximum instantaneous
individual gain that a user can obtain through a change of
strategy. This value increases with an increase in α since more
weight is assigned to the access point load parameter in the
cost calculation. The value also increases with an increase in
the MIST/MIAT ratio due to the clustering of user exits,
which lead to a greater instantaneous load difference between
access points. The maximum value of the metric is around
65% in our test scenarios.

In summary, our results show that myopic access point
selection based on the load-distance trade-off significantly
improves load distribution. The magnitude of improvement
increases with an increase in the average number of users
present in the system. System stability is high in the steady
state but decreases when a large number of user exits tend
to occur in succession. The access point selected by the user
on entering the system remains the optimal access point for
that user for 65% or more of the user’s in-system time in
all our test scenarios. We also observe that the best trade-
off between benefits, costs and stability is obtained at low
values of α, i.e. between 30% to 50% of the inter-access-point
distance. We have conducted more experiments to verify this
behavior by increasing the inter-access-point distance to 150m
and proportionately increasing the terrain size. The results of
these experiments show very similar trends and validate our
inference.
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VII. CONCLUSION

Relocation of users from congested areas to less-crowded
areas of a wireless network could be a simple and effective
solution to balance network load distribution and thereby im-
prove the distribution of bandwidth among users. However, the
effectiveness and stability of such a system is questionable, due
to the selfish nature of users and the lack of prior knowledge
about future changes in user distribution, and must be analyzed
before this solution can be deployed in real wireless networks.

In this paper, we presented an analysis of this solution using
a game-theoretic approach. To our knowledge, this is the first
such analysis of this idea. We modeled the system as a game
and analyzed the resulting Nash equilibria. We found that, in
a system consisting of homogeneous users and a simple ar-
rival/exit model, a myopic distributed strategy leads this game
to a Nash equilibrium in just a single iteration. When diversity
is introduced among the users, the myopic algorithm is no
longer guaranteed to produce a Nash equilibrium. However,
the maximum individual gain that a user can obtain through
a unilateral change of strategy is bounded, and this bound
is proportional to the extent of diversity. In other words, the
lower the diversity among the users, the greater the likelihood
that the system will remain stable.

We used simulation to analyze the effectiveness and stability
of myopic access point selection when users arrive and depart
in a dynamic fashion. We found that the approach gives
greater benefit when more users are present in the system
on an average. The initial access point selection made by a
user remains the optimal selection for 65% or more of the
user’s in-system time, clearly indicating the effectiveness of
the approach. The system stability is high when user arrivals
and exits are evenly intermingled; this is likely to be the case
in several deployment scenarios, such as college campuses and
shopping malls. The best trade-off between costs, benefits and
stability is obtained when the value of α is between 30% and
50% of the inter-access-point distance. At these values of α,
users can significantly improve experienced load by traveling
relatively short distances.

Our work validates the effectiveness of users changing loca-
tion on entering the system to improve received bandwidth. We
provide a detailed analysis of the behavior of a system based
on this idea in various usage scenarios. Such a system is simple
to deploy and can bring improvement with relatively little
effort from users. The magnitude of effectiveness and stability
depends upon the characteristics of the deployment scenario.
In future work, we plan to empirically examine how this idea
performs under different arrival/exit patterns and when the user
population is heterogenous. We would also like to explore
more sophisticated non-linear modeling of user preferences,
and other algorithms for access point selection under more
complex system models.
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